Chapter 3

The Presentation Generation Phase
of Hera

Hera is a model-driven methodology for designing Semantic Web Information
Systems (SWIS). The presentation generation phase of the Hera methodology
builds a Web presentation for some given input data. Based on the principle of
separation of concerns, Hera defines models to describe the different aspects of a
SWIS. These models drive the specification of the data transformations used in
the implementation of the Hera presentation generation phase. The Hera pre-
sentation generation phase has two variants: a static one that computes at once
a full Web presentation, and a dynamic one that computes one-page-at-a-time
by letting the user influence the next Web page to be presented. The dynamic
variant proposes, in addition to the models from the static variant, new models
to capture the data resulted from the user’s interaction with the system. The
implementation of the static variant is based on XSLT data transformations and
the implementation of the dynamic variant is based on Java data transforma-
tions.

3.1 Introduction

Hera is a SWIS design methodology. It proposes design steps that, based on the separation
of concern principle, specify different aspects of a SWIS. These specification aspects are
given by models that have graphical representations. The implementation of a SWIS using
the Hera methodology is based on data transformations driven by Hera models. Hera has
its origins in the RMM design methodology [Diaz et al., 1997]. Differently than RMM, Hera
specifies also other features of a SWIS like the look-and-feel aspects, the user interaction
with the system, or the presentation adaptation.

Figure 3.1 shows the main phases in Hera: data collection and presentation genera-
tion. The Hera methodology comes also with a straightforward implementation in which
the Hera’s main phases and the design steps corresponding to these phases are naturally

2 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

mapped to components in a pipeline software architecture. We point out that the software
based on this architecture is just one of the possible implementations of SWIS given the
specifications required by the Hera methodology.

S | g
Presentation -

Generation
Query Data

Collection 1 e
S Cam) N @

Presentation

I — | e — |

Data Sources Browsing Devices
Figure 3.1: Hera’s main phases.

The data collection phase helps to make the data available from different sources, such
that in response to a user query a data result set is obtained. In this phase of the process
the integration model is defined that maps data from the different sources to a common
data representation. This mapping is needed whenever for a given query the instances that
compose the query result need to be retrieved. The data collection phase is outside the
scope of this thesis. More information on this phase can be found in [Vdovjak et al., 2003].

The presentation generation phase builds a hypermedia presentation for the retrieved
data. It is based on a sequence of data transformations driven by several models. These
models depict different application aspects that are relevant in this process: what is the
domain of the application, what is the navigation structure for data from this domain, how
to arrange and style the data on the user’s display, and how can we tailor the generated
presentation based on user preferences and user browsing platform. As can be seen from
Figure 3.1 the generated hypermedia presentations can target different platforms like PC,
WAP phone, PDA, etc.

The presentation generation phase has two variants: a static one in which the user is
unable to change the content of the generated hypermedia presentation and a dynamic one
which considers the user interaction with the system in the process of building the next
hypermedia page. In the static variant all pages are generated before the user browses
the presentation and in the dynamic variant one page is generated-at-a-time during the
browsing.

In order to better support the description of Hera’s presentation generation phase we
use a running example based on real data coming from the painting collection in a museum,
the Rijksmuseum in Amsterdam.

3.2. RDF(S) 3

The remainder of this chapter is structured as follows. Section 3.2 explains why we
chose RDF as a model representation language. Section 3.3 presents the static presentation
generation phase of Hera. Section 3.4 presents the dynamic presentation generation phase
of Hera. Section 3.5 concludes the chapter and presents future work.

3.2 RDF(S)

For the Hera specifications RDF(S) [Lassila and Swick, 1999; Brickley and Guha, 2004] is
used. RDF(S) is the foundation language of the Semantic Web. There are several reasons
for choosing RDF(S): it is flexible (it supports schema refinement and description enrich-
ment), it is extensible (it allows the definition of new resources/properties), and it fosters
Web application interoperability (it provides a framework to describe in a uniform way
the data semantics). As RDF(S) doesn’t impose a strict data typing mechanism it proved
to be very useful in dealing with semi-structured (Web) data. On top of RDF(S) high-
level ontology languages (e.g., DAML+OIL [Connolly et al., 2001], OWL [Bechhofer et al.,
2004]) are defined, which allows for expressing axioms and rules about the described classes
giving the designer a tool with larger expressive power. We believe that choosing RDF(S)
as the foundation for describing models enables a smooth transition in this direction.

Hera models are described in RDFS. An RDFS vocabulary is developed for each model
in order to define the model’s concepts (which are the classes and properties to be used
in a model). Model instances have an RDF representation which are validated against
their corresponding schema (model). Having such standards to express models enables
the model reuse between different applications. The use of RDFS allows us also to reuse
existing RDFS vocabularies for expressing for example domain models or user profiles.

In some applications built with Hera we successfully reused the domain model de-
veloped for museum descriptions in the TOPIA (Topic-based Interaction with Archives)
project [Rutledge et al., 2003] and the User Agent Profile (UAProf) [Wireless Application
Protocol Forum, Ltd., 2001], a Composite Capability/Preference Profiles (CC/PP) [Klyne
et al., 2004] vocabulary for modeling device capabilities and user preferences.

3.3 Presentation Generation (Static)

The typical structure of the static variant of the presentation generation phase is given
in Figure 3.2 in terms of three layers: the conceptual layer defines the content that is
managed in the SWIS, the application layer provides the navigation structure on the data,
and the presentation layer gives the presentation details that are needed for the generation
of the hypermedia presentations on a concrete platform. As can be noted from Figure 3.2,
in the static variant for the presentation generation phase the whole Web presentation is
produced at once in response to a user query.

The presentation generation phase distinguishes the following steps: the conceptual
design, the application design, the presentation design, and the implementation. Each

4 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Conceptual Layer Application Layer Presentation Layer

Conceptual Design }“ it il ﬁ Application Design }“ -~ |~ 7|~ ™| Presentation Design

(o =2 e [=+ 2]
[=)
[
e s =
[Conceptual Model (CM) j [Application Model (AM) j [Presentation Model (PM)]
CM Adaptation Model AM Adaptation Model PM Adaptation Model
(User/Platform Profile]

| Implementation |
CM Adaptation ApplicationEngine Presentation Engine
(incl. AM Adaptation) (incl. PM Adaptation)

J U J U \
Data.. Collection Web page "
Engine
(External)

Figure 3.2: Presentation generation phase (static).

design step produces appropriate models that capture the design aspects specific to this
step. A model uses concepts from a model-specific vocabulary. In order to ease the
specification of the models the model concepts have associated graphical representations.
In this way a model can be showed as a diagram to facilitate the designer development and
understanding of a certain model.

Adaptation [Frasincar et al., 2004] is not seen as a separate design phase because this
process is distributed through all the previously identified design steps. In the adaptation
design the user/platform profile (UP) is defined, i.e., it is determined which are the user
preferences and platform characteristics that can influence the Web presentation before
the user starts the browsing session. The adaptation model specifies adaptation conditions
(Boolean expressions) used to tailor the Hera models based on the UP attributes. An
excerpt of the UP vocabulary is given in Figure 3.3.

We present the adaptation model when we show the different design steps. If the
designer is not interested in adapting the system he can ignore the adaptation aspects
in the proposed methodological steps. The adaptation presented here is a fine-grained
adaptation. A coarse-grained adaptation is achieved by using group profiles, instead of
UPs. In this approach users with similar characteristics are assigned a group profile. One
of the advantages of coarse-level adaptation is the decrease in the system’s workload, as
the performed adaptation is relevant for several users.

3.3. PRESENTATION GENERATION (STATIC))

-1 Yes

(e &

imageCapable °

Hardware Platform

PC

~

client

WAP phone

Software Platform

Profile

Beginner

<;\::’ -1 Normal

~

levelOfExpertise

Expert

,,-P
:;

o

User Preferences

————= component

—— ™ property

Figure 3.3: User/platform vocabulary.

3.3.1 Conceptual Design

The conceptual design specifies the input data in a uniform manner, independent from the
input sources. The result of this activity is the conceptual model (CM). From a database
point of view, the CM defines the schema for the data that needs to be presented. The
CM serves also as the interface between the data collection phase and the presentation
generation phase of the Hera methodology.

Figure 3.4 shows the CM vocabulary. It defines the following notions: concept, concept
attribute, and concept relationship. A concept represents a certain entity in a particular
application domain. Concept attributes and concept relationships refer to media types
and other concepts, respectively, in order to describe the properties that characterize a
concept. As CM vocabulary we did use the standard RDFS concepts with three extensions:
one for modeling the cardinality of the concept relationships, one for representing the
inverse of the concept relationships, and one for depicting the media types, the so-called
media vocabulary. Similar to database modeling, many-to-many concept relationships are
decomposed into two one-to-many concept relationships. In this way we have only two
types of cardinalities: one-to-one and one-to-many.

Figure 3.5 shows the type hierarchy in the media vocabulary. In the same way as
AMACONT [Fiala et al., 2003], we base our media vocabulary on a subset of the MPEG-7
standard [Martinez, 2003]. The basic media types are: Text, Image, Audio, and Video.
The figure also shows the attributes of the media types, for example the nrChars of a text
or the width and height of an image. For the refinement of the Text media types the XML

6 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

. concept attribute concept relationship
Media Concept
— cardinality inverse
"Cardmahty “ Concept Relationship

‘ Single ‘ ‘Multiple ‘

———— ™ property

Figure 3.4: Conceptual model vocabulary.

Schema Datatypes (e.g., String or Integer) are used (not shown in the figure). One of the
focus points of the Hera methodology is to reuse as much as possible the existing Web
standards providing thus a higher degree of application interoperability.

mediaURL | .
Literal

. frameWidth
Literal .
duration
FrameMedia ‘ ‘ TimeMedia
A A

Literal | frameHeight

@E‘ Image Video Audio

nrChars bitsPerPixel frameRate samplingRate
Y Y Y Y

Literal Literal Literal Literal

———— ™ property

— > subClassOf

Figure 3.5: Media vocabulary.

Media adaptation selects the most appropriate media items for the technical system
parameters provided by different network environments and client devices. Figure 3.6 shows
a few media adaptation examples. For devices that are not able to display images (like
certain WAP phones), the images are removed from the presentation. Based on display
size, large strings and images are selected for PC, and small versions of the same strings
and images are selected for PDA.

Figure 3.7 shows am excerpt of the CM for the running example. Concepts are rep-
resented as ovals and media types as rectangles. There are three concepts: Technique,

3.3. PRESENTATION GENERATION (STATIC) 7

™ | up:imageCapable = Yes

A
LargeString‘ ‘ SmallString‘ ‘ Largelmage ‘ ‘ Smalllmage
\ 4 ; A
’ up:client = PC ‘ ’ up:client = PDA ‘

— > subClassOf

"""""" > condition

Figure 3.6: Media adaptation.

Artifact, and Creator. A Creator has two concept attributes attached to it, cname, for the
creator’s name, and biography for the creator’s biography, both depicted by String items. A
Creator is associated using the concept relationship creates to an Artifact. The cardinality
of this concept relationship is one-to-many, i.e., one creator creates many artifacts. The
inverse of the creates concept relationship is the created_by concept relationship. Note that
both concept relationships and concept attributes are denoted as concept properties.

Image

A picture

‘ Integer ‘
year
created_by

‘ String ‘
aname
exemplified_by,

description

Technique Artifact

|
lexemplifies % x creates

tname

———* property

Figure 3.7: Conceptual model.

The conceptual model presented in Figure 3.7 depicting any creator, artifact, or tech-
nique can be refined to a specific artistic domain. Figure 3.8 shows the specialization (in
a type hierarchy) of the previous conceptual model to the painting domain. Concepts
are specialized by the subClassOf property and concept relationships are specialized by
the subPropertyOf property. For example, the Creator is specialized as a Painter and the
creates relationship is specialized as paints.

CM adaptation selects concepts or concepts attributes from the CM to be used in the
presentation. Figure 3.9 shows an adaptation example in the conceptual model. In this
example the description of the painting technique is removed from the whole presentation
if the user is not an Fxpert. This is the so-called context-independent adaptation, i.e., adap-
tation that affects the entire presentation. An example of context-dependent adaptation,

8 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Image

A picture

‘ Integer ‘
year
created_by

‘ String ‘
aname

description

Technique

[— ™
| exemplifies

w creates 1
tname A

A

Painting Painter

x paints
area

\

String

——— property
— > subClassOf
******* = subPropertyOf

Figure 3.8: Specialization in the conceptual model.

i.e., adaptation that affects only a certain situation in a presentation, is provided in the
next section.

‘ up:level OfExpetise = Expert F """"""""" description

Technique

——— ™ property

""""" > condition

Figure 3.9: Adaptation in the conceptual model.

3.3.2 Application Design

The application design defines the navigational aspects of the presentation that is gener-
ated. A CM does not suffice to model a Web application [Rossi et al., 1999]: one needs
to define the navigational view over the CM. The result of this activity is the application
model (AM). From a database point of view, the AM is a view over the CM extended with
navigation primitives.

Figure 3.10 shows the AM vocabulary. It defines the following notions: slice, slice at-
tribute, and slice relationship. A slice [Isakowitz et al., 1998] is a meaningful presentation
unit that fulfills a certain communication purpose. Slice attributes are used to refer to

3.3. PRESENTATION GENERATION (STATIC) 9

media types. There are two types of slice relationships, slice aggregation and slice navi-
gation. The first type of slice relationship facilitates the inclusion of a slice into another
slice and the second type of slice relationship is used to define navigation between slices.
An empty slice! is a slice that has its content defined at design-time. Such a slice has only
one attribute that refers to a media type added at design-time. A non-empty slice has its
content defined at run-time. In order to know from where the content is to be extracted at
run-time slices have associated to them an owner concept from CM. The owner attribute
for an empty slice can be any concept, as the slice content is defined at design-time.

Concept

A

owner

navigation Q slice navigation
External Page Slice <

slice attribute slice
Empty Slice J [Non—Empty Slice}—@
A

slice aggregation
Concept Attribute

Slice Relationship
/\

concept attribute

Simple Slice} [Complex Sliceji

slice aggregation

slice attribute

[Slice Navigation J [Slice Aggregation] concept relationship »| Concept Relationship

——— property
— > subClassOf
******* = subPropertyOf

Figure 3.10: Application model vocabulary.

The definition of a non-empty slice is recursive: a slice can be a simple slice or can con-
tain other slices®. A simple slice has only one slice attribute that refers to the same media

!Dealing with data-intensive applications, by ‘empty’ is meant that there is no content that will populate
this type of slice at run-time.

2Due to their nested nature, slices are also called M-slices where "M’ stands for Matryoshka, the Russian
doll [Diaz et al., 1997].

10 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

as the concept attribute of the owner concept from CM. A slice that aggregates other slices
is called a complex slice. The recursion is defined by utilizing the slice aggregation relation-
ship. The aggregation relationship between two slices that have two different owners needs
to specify the concept relationship (or a relationship derived from the CM by relationship
chaining) between the two owner concepts from the CM that made such an embedding
possible. In case that the cardinality of this concept relationship is one-to-many the Set
construct needs to be used. A top-level slice corresponds to a Web page. Using a slice
navigation relationship, a slice (the anchor) can be linked to a top-level slice. Additionally
a slice can be linked to an external Web page.

Figure 3.11 shows an excerpt of the AM for the running example. Slices are depicted
(as their name suggests) by pizza-slice shapes. There are two slices, the main slice owned
by Technique and the main slice owned by Artifact. We use the convention to denote
the slice (long) name by Slice.<concept name>.<slice short name>, in order to distin-
guish them from concept names or slices with the same short name but owned by dif-
ferent concepts. The name of the slice owned by Technique is thus Slice. Technique.main.
The slice Slice. Technique.main aggregates (by means of slice aggregation relationships)
two simple slices and one complex slice. The simple slices Slice. Technique.tname and
Slice. Technique.description are owned by Technique. The complex slice that aggregates
Slice. Artifact.picture is owned by a different concept, i.e., Artifact. The aggregation re-
lationship used for this embedding refers to the exemplified_by concept relationship be-
tween Technique and Artifact. As the cardinality of exemplified_by is one-to-many the
Set construct is also inserted. In a similar manner the slice Slice. Artifact.main is de-
fined. As created_by has cardinality many-to-one (inverse of creates), the Set construct
is not used in this case. The slice navigation relationship connects the picture of an ar-
tifact Slice. Artifact.picture with the slice giving detailed information about that artifact
Slice. Artifact. main.

Technique Artifact

Artifact created_by

ot

exemplified_by Set Creator
e
L
main main

——* navigation

aggregation (with CM property name)
Figure 3.11: Application model.

The AM presented in Figure 3.11 depicting the main slices for techniques and ar-

3.3. PRESENTATION GENERATION (STATIC) 11

tifacts can be refined to a specific artistic domain. Figure 3.12 shows the specializa-
tion (in a type hierarchy) of the previous AM to the painting domain. Slices are spe-
cialized by the subClassOf property. For example, the slice Slice. Creator.main is spe-
cialized by the slice Slice. Painting.main. Slice. Painting.main inherits all the slice rela-
tionships of Slice. Technique.main and adds three new slice relationships to it: two slice
aggregations and one slice navigation. The aggregation relationships refer to the slice
Slice. Technique.area and Slice. Technique.tname. The navigation relationship links back-
wards the Slice. Technique.tname with the Slice. Technique.main.

Technique Artifact

.
)

Artifact

Set

o

created_by

exemplified_by

L

main main

Painting

exemplifies

Technique

emain

———" navigation
aggregation (with CM property name)
— > subClassOf

Figure 3.12: Specialization in the application model.

The AM adaptation [Frasincar and Houben, 2002] is based on two typical adaptation
mechanisms: conditional inclusion of fragments (fragments are slices in our context) and
link hiding [Brusilovsky, 2001] (links are slice navigation relationships in our context). A
link is hidden when its destination slice has an invalid condition.

Figure 3.13 shows an adaptation example in the AM. In this example the description
of the painting technique is removed from the main slice of this technique if the user is
not an Ezpert. Later on in the presentation, the description of the painting technique can

12 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Technique

"""""" ﬁ up:level OfExpertise = Expert

Set

exemplified_by

L

main

aggregation (with CM property name)

""""" > condition

Figure 3.13: Adaptation in the application model.

appear also for users that are not Fzperts (at that point in the presentation, the system
can consider that the user is now ready to digest more advanced information). This is the
so-called context-dependent adaptation, i.e., adaptation that affects only the current slice
(by current slice is meant the top-level slice that contains the slice with the condition).
Slices that have attached conditions outside the scope of a container slice have a context-
independent adaptation, i.e., these slices will be removed from the whole presentation,
no matter where they appear. This is similar to the contert-independent adaptation for
conceptual model adaptation showed in Figure 3.9. Note that the removal of a concept or
concept attribute from a presentation has as its consequence the removal of all associated
slices (i.e., slices for which the concept is an owner) and of the slice that refers to that
concept attribute, respectively.

3.3.3 Presentation Design

The presentation design specifies the look-and-feel aspects of the presentation that is gener-
ated, independent from the implementation. The result of this activity is the presentation
model (PM). It describes the layout and style information of the presentation. Both aspects
are not to be neglected because they might have an immediate impact on the user choice
for a certain application among applications offering similar functionality.

Figure 3.14 shows the PM vocabulary. It defines the following notions: region, region
attribute, and region relationship. A region is an abstraction for a rectangular part of the
display area where the content of a slice will be displayed. Each region is associated to
a slice, the so-called region owner, from which the region content will be derived. The
definition of region is very similar to that of a slice with a few simplifications and some
additions. Region attributes are used to refer to media types. There are two types of
region relationships, region aggregation and region navigation. The first type of region
relationship facilitates the inclusion of a region into another region and the second type

3.3. PRESENTATION GENERATION (STATIC) 13

of region relationship is used to define navigation between regions. The classification
empty/non-empty does not apply for regions as regions get their content from the slice
owner always at run-time.

The definition of regions is recursive: a region can be a simple region or can contain
other regions. A simple region has only one region attribute that refers to the same media
as the slice attribute of the corresponding simple slice from AM. Differently than for slices,
one doesn’t need to specify a corresponding concept attribute. A region that aggregates
other regions is called a complex region. The recursion is defined by utilizing the region
aggregation relationship. Another difference from slices is that for aggregation relationships
there is no need to specify concept relationships. The Set construct, aggregation, and
navigation relationships are copied for a region from the corresponding (by the owner
relationship) slice. A top-level region corresponds to a Web page and is owned by a top-
level slice.

Slice
BoxLayout navigation A
External Page owner

TableLayout layout region navigation
region aggregation

region

region attribute Simple Regiorﬂ [Complex Region
Region Relationship

FlowLayout

TimeLayout

il

=
@
[=N
=
()

region aggregation

Region Navigation} [Region Aggregation}

)

———— ™ property
——> subClassOf
******* = subPropertyOf

Figure 3.14: Presentation model vocabulary.

A region has a particular layout manager and style associated with it. There are four
abstract layout managers: BoxLayout, TableLayout, FlowLayout, and TimeLayout. The
layout managers describe the spatial/temporal arrangements of regions embedded into
another region. The list of layout managers can be easily extended with other layouts like
BorderLayout, OverlayLayout, GuidedTourLayout, etc.

[Frasincar et al., 2001] presents an alternative way of defining layouts by using quali-
tative and quantitative constraints for regions. These constraints are associated to region

14 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

relationships which are further classified as temporal, navigational, and spatial. Temporal
relationships express the notion of time, navigational relationships represent (hyper)links,
and spatial relationships define the spatial arrangements in presentations.

The layout managers were inspired from the abstract user interface (XML) representa-
tions from AMACONT [Fiala et al., 2004], UIML, and XIML [Souchon and Vanderdonckt,
2003]. These layout managers describe client-independent layouts that allow to abstract
from the exact features of the browser’s display. Note that because regions can be aggre-
gated, layouts can also be aggregated (by means of regions), and thus one is able to build
complex layouts.

The style information describes the colors, fonts, backgrounds to be used in a region,
etc. Regions that do not have explicitly associated style information associated with them
inherit the style of their container. In this way the designer is not forced to specify style
information if that is not necessary.

The BoxLayout arranges the inner regions on one row or one column. Table 3.1 sum-
marizes the possible attributes of the BoxLayout. The height, width, border, and space
attributes have integer values that represent number of pixels.

Attribute Meaning Usage Values
axis orientation of the layout required “x7|“y”
rows number of rows optional integer
columns number of columns optional integer
height height of the layout optional integer|percentage
width width of the layout optional integer|percentage
border size of the layout border optional integer
space space between content and border optional integer

Table 3.1: BoxLayout attributes.

TableLayout arranges the inner regions in a table. Though it can be realized by nested
BoxLayouts, we implemented it separately because SWISs often present dynamically re-
trieved sets of data in a tabular way. Table 3.2 summarizes the possible attributes of the
TableLayout. Due to the dynamic nature of SWIS applications, the number of items in
a complex region that uses the Set construct is not known at design-time. In such cases
one should use only one of the dimensions: rows or columns. The missing dimension is
automatically computed at run-time.

FlowLayout arranges the inner regions in the same way as words on a page: the first
line is filled from left to right, then does the same for the lines below. Table 3.3 summarizes
the possible attributes of the FlowLayout.

TimeLayout shows the inner regions in a time sequence that produces a slide show.
Table 3.4 summarizes the possible attributes of the TimeLayout. The duration attribute
has a float value that represents number of seconds. TimeLayout is used for platforms that
support time sequences for presenting media items, e.g., Timed Interactive Multimedia

3.3. PRESENTATION GENERATION (STATIC) 15

Attribute Meaning Usage Values
rOwS number of rows optional integer
columns number of columns optional integer
height height of the layout optional integer|percentage
width width of the layout optional integer|percentage
border size of the layout border optional integer
space space between content and border optional integer

Table 3.2: TableLayout attributes.

Attribute Meaning Usage Values
border size of the layout border optional integer
space space between content and border optional integer

Table 3.3: FlowLayout attributes.

Extensions for HTML (HTML+TIME) [Schmitz et al., 1998] and Synchronized Multimedia
Integration Language (SMIL) [Ayars et al., 2005].

Attribute Meaning Usage Values
duration play time for a sequence element optional integer
repeat number of times to repeat one sequence optional “indefinite” |integer

Table 3.4: TimeLayout attributes.

Table 3.5 summarizes the possible layout-related attributes for a region used inside a
BoxLayout, TableLayout, or FlowLayout. These attributes describe how each referenced
region has to be arranged in its surrounding layout. For example, the regions embedded in a
layout form a sequence for which the order needs to be specified. For this purpose the order
attribute is used. Note that for the TableLayout, the cell elements are counted from left
to right and from top to bottom. The sort attribute specifies the sorting criteria for region
instances. For example alpha(Slice. Technique.tname,ascending) specifies an alphabetical
sorting in ascending order based on the name of artistic techniques. Besides the existing
sorting functions like alpha and num, for alphabetical and numerical sorting, one can use
its own sorting function (e.g., a multi-sort for data with different facets). If the sort criteria
is not provided, the regions will be arranged in the order in which region content (data) is
given by the data collection phase.

Even though most attributes are platform-independent, there are platform-dependent
attributes in order to consider the specific card-based structure of WML presentations.
The optional attribute wml_visible determines whether in a WML presentation a region
should be shown on the same card. If not, it is put onto a separate card that is accessible

16

CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

by an automatically generated hyperlink, the text of which is defined in wml_description.
The wml_description attribute can refer to a constant string or one of the simple slices that
give some of the content for a region. Note that this kind of content separation provides
scalability by fragmenting the presentation according to the small displays of WAP phones.

Attribute Meaning Usage Values

valign vertical alignment optional “left” | “center”| “right”
halign horizontal alignment optional “top”|“center”|“bottom”
ratio space to be filled optional percentage

order order in the sequence optional integer

sort sorting criteria optional string

wml_visible show on same card optional boolean
wml_description anchor description optional string

Table 3.5: Layout-related region attributes inside BoxLayout/TableLayout.

Table 3.6 summarizes the possible layout-related attributes for a region used inside a
FlowLayout. It is a subset of the previous set of attributes.

Attribute Meaning Usage Values
order order in the sequence optional integer
sort sorting criteria optional string
wml_visible show on same card optional boolean
wml_description anchor description optional string

Table 3.6: Layout-related region attributes inside FlowLayout.

Table 3.7 summarizes the possible attributes for a region used inside a TimeLayout.
The begin, duration, and end attributes have float values that represent the number of

seconds.
Attribute Meaning Usage Values
begin (absolute) start time optional float
duration play time optional float
end (absolute) end time optional float

Table 3.7: Layout-related region attributes inside TimeLayout.

Table 3.8 presents some of the possible style attributes. These attributes refer to the
font characteristics (e.g., size, color), background, link colors, etc. The definition of these
attributes is inspired from Cascading Style Sheets (CSS) [Bos et al., 2004].

3.3. PRESENTATION GENERATION (STATIC) 17

Attribute Meaning Usage Values

font-family the family of a font optional “times”|“helvetica”| ...
font-style the style of a font optional “normal”|“italic”
font-size the size of a font optional “small”|“medium”|“large”
font-color the color of a font optional “red”|“green”|...
font-weight the weight of a font optional “normal”|“bold”|...
background-color the color of the background optional “red”|“green”|...
link-color the color of a not-visited link optional “red”|“green”|...
visited-color the color of a visited link optional “red”|“green”|...

Table 3.8: Style attributes.

The layout managers need to be instantiated in order to be used in the PM. The layout
manager instances are used for complex regions. Also when referencing a region (or set of
regions) one needs to define values for the layout-related region attributes corresponding
to the layout associated to the container region.

Figure 3.15 shows an excerpt of the PM for the running example. Regions are de-
picted as rectangles. There are two top-level regions: RegionFullT and RegionFullA. Re-
gionFullT and RegionFullA are owned by Slice. Technique.main and Slice. Artifact.main,
respectively. We use the convention to denote the region (long) name by Region.<Slice full
name>.< Region short name>. The short name of a region can be omitted from its full
name, if the full name unambiguously identifies the region. The full name of RegionFullT
is Region.Slice. Technique.main. RegionFullT. As the full names are quite long in the rest of
the explanation it is used the short name of regions when these short names are available.

The region RegionFullT aggregates (by means of slice aggregation relationships) three
regions: one contains the technique name, one contains the technique description and, one
contains the set of pictures that exemplify a painting technique. As simple regions, the first
two regions do not need a layout. The third region, a complex region, has a TableLayout
specified for arranging the set of pictures. All three regions are arranged using a BoxLayout
specified in the RegionFullT. The style information is given by the DefaultStyle. As can be
seen from the figure the inner regions do not have the style information explicitly defined
which means that they inherit the style information from the container region. In a similar
manner is defined the region RegionFullA. The region navigation relationship connects
RegionBottomA with RegionFullA.

Figure 3.16 shows some of the layout attributes and layout-related region attributes
for our running example. RegionFullT has a BoxLayout with two attributes defined: azis
with value y which indicates that this layout has a vertical arrangement and width with
value 100% which means that this layout will completely fill the width of its container.
As RegionFullT is a top-level region, the container is the user’s display. In BoxzLayoutl
there are three regions embedded in the order specified by the order attribute. All three
regions have the halign layout-related attribute defined in order to specify that their hor-

18 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

RegionFullT (BoxLayoutl, DefaultStyle) RegionFullA (BoxLayout2, DefaultStyle)
Technique Artifact
descnpuon
RegionBottomiA (TableLayoutl)
Amtact
Creator
main main

———" navigation

Figure 3.15: Presentation model.

izontal alignment will be centered. The third layout, RegionBottomA has two attributes
defined: cols with value & which indicates that this layout has three columns and width
with value 100% which means that this layout will completely fill the width of its container.
The container is in this case RegionFullT. RegionBottomA contains pictures for which the
horizontal alignment is centered.

RegionFullT (BoxLayoutl, DefaultStyle) axis
. N [width
Technique —— 100%
order halign
]l < Ctname > » center
) order T halign
- description > center
& J
cols 3
RegionBottodA (TableLayoutl) width
— > 100%
3 order Artifact halign
- @ = center
Set halign
= center

main

property
Figure 3.16: Layout and layout-related region attributes.

The PM presented in Figure 3.15 depicting the main regions for techniques and artifacts
can be refined to a specific artistic domain. Figure 3.17 shows the specialization (in a type
hierarchy) of the previous PM to the painting domain.

Regions are specialized by the subClassOf property. For example, the region Region-
FullA is specialized by the region RegionFullP. RegionFullP inherits all the region relation-

3.3. PRESENTATION GENERATION (STATIC) 19

RegionFullT (BoxLayoutl, DefaultStyle) RegionFullA (BoxLayout2, DefaultStyle)
Technique Artifact
descnptlon

RegionBottomiA (TableLayoutl)

Amfact

Q
Il
2
S
=

Set

main main

‘f

RegionFullP (BoxLayout2r, DefaultStyle)

Painting

RegionBottomT

Technique

emain

—™ navigation

— > subClassOf

Figure 3.17: Specialization in the presentation model.

ships of RegionFullA and adds three new region relationships to it: two region aggrega-
tions and one region navigation. The aggregation relationships refer to the regions Re-
gion.Slice. Painting.area and RegionBottomT. As RegionFullP contains more regions than
RegionFullA, the BoxLayout? is replaced with BoxLayout2r which among other things
specifies in which order the added regions are placed. The navigation relationship links
backwards the RegionBottomT with RegionFullT.

PM adaptation selects layouts or styles from PM to be used in the presentation. Fig-
ure 3.18 shows two adaptation examples in PM. In one example, depending on the size
of the screen, the RegionBottomA uses a BoxLayout for PDA and a TableLayout for PC.
The small screen size of the PDA requires a vertical arrangement of the data. In the other
example the DefaultStyle uses medium fonts for a user with a average level of vision and
large fonts for a user with a low level of vision. Other possible adaptation examples are:
increasing the font of links for users with limited manual dexterity, eliminate colors for

20 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

color-blind users, etc.

RegionFullT (BoxLayoutl, DefaultStyle)

Technique

RegionBottomAﬂSoxLayouB) ‘ """""""""" up:client = PDA

RegionBottofhA (TableLayoutl)
Artifact N
"""""""" up:client = PC
-

main

medium

font—weight

,l up:levelOfVision = Normal ‘
DefaultStyle ’ ‘

b‘ up:levelOfVision = Poor

font—weight

large

———— ™ property

""""" > condition

Figure 3.18: Adaptation in the presentation model.

3.3.4 Implementation

The implementation of the static variant of the Hera presentation generation phase is
based on several data transformations specified by XSLT [Kay, 2005b] stylesheets. These
transformations operate on the RDF/XML [Beckett, 2004] serialization of the RDF mod-
els. The XSLT processor used for interpreting XSLT stylesheets is Saxon [Kay, 2005a].
Figure 3.19 shows the transformation steps for the static variant of the Hera presentation
generation phase. Each transformation step has a label associated with it. Some of these
transformations have substeps which are labeled using a second digit notation.

In Figure 3.19 there are two types of dashed arrows: “is used by” to express that an
RDFS model is used by another RDFS model and “has instance” to denote that an RDFS
model has as instance an RDF model. A model vocabulary, a model, a model instance, and
the generated presentations are depicted by rectangles. The transformation specifications
are represented by ovals.

There are three types of model/transformation specifications: application-independent,
application-dependent, and query-dependent. The application-independent specifications

3.3. PRESENTATION GENERATION (STATIC) 21

media CC/PP user/platform
vocabulary vocabulary
(rdfs) (rdfs)
1S S [T S
v is used by v is used by
conceptual model application model user/platform profile presentation model
vocabulary vocabulary vocabulary vocabulary
(rdfs) (rdfs) (rdfs) (rdfs)
3 3 "has instance 3 has instance
| has instance has instance | user/platform profile |- i
I | is usedﬁbﬁyi (rdf) is yaed by |
I I r i I
v ‘ v A v
conceptual model | _ _ isusedby _] application model |___|_ isusedby »| presentation model
(rdfs) (rdfs) [] (rdfs) [
I I I
| has instance has instance | has instance
| | |
Y v ¥
1 conceptual model 3.2 application model 5.2 presentation model
—* instance T _———__ ™| instance instance

data . (rdf) cmi2ami (rdf) ami2pmi (rdf)
collection (XSI) - (XSI)

application model | 2.1 presentation model | 4.1
unfolded - unfolded [«
(rdf) (rdf)

3.1 2.2 | ((2daptation 5.1 4.2 | ((2daptation

(xsl) (xsl)

application model presentation model
unfolded, adapted unfolded, adapted
(rdf) (rdf)

DO Application—-independent
D O Application—dependent
|:| O Query—dependent

Figure 3.19: Presentation generation using XSLT.

do not refer to SWIS models (CM, AM, and PM), the application-dependent specifica-
tions refer to SWIS models, and query-dependent specifications refer to the SWIS models
and the retrieved data (e.g., model instances). One can note that the query-dependent
transformations are also application-dependent transformations. Transformations that are
application-independent are also called generic transformations. Transformations that are
application-dependent are also called specific transformations.

The input to the presentation generation phase is the conceptual model instance (CMI),
i.e., the data retrieved in response to a user query. This data is produced in the data
collection phase from a given set of input sources. This is step 1 in the figure and is not
described here. More information on step 1 can be found in [Vdovjak et al., 2003]. At the
current moment CM and media adaptation are carried on in the AM adaptation. Future
implementations will separate the CM and media adaptation from the AM adaptation.

22 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Step 2, the AM generation, builds an adapted AM template. This step contains two
substeps: the AM unfolding and the AM adaptation.

Step 2.1, the AM unfolding, generates the AM template. The AM template represents
the structure of an AM instance (RDF) based on the AM schema (RDFS). Such a template
will ease the specification of an XSLT stylesheet used to convert a CM instance (CMI) to
an AM instance (AMI). By unfolding the AM we mean repeating the process of adding
properties inside the subject classes until slice references or media items are reached. In this
way one obtains an AM template which will be filled later on with appropriate instances.

Step 2.2, the AM adaptation, executes the adaptation specifications on the AM tem-
plate. The transformation stylesheet of this step has two inputs: the AM template and
the UP. The UP attributes are replaced in the conditions by their corresponding values.
The slices that have the conditions not valid are discarded and the hyperlinks pointing to
these slices are disabled.

Step 3, the AMI generation, instantiates the AM with the retrieved data. This step is
composed of two substeps: the AMI transformation generation and the AMI creation.

Step 3.1, the AMI transformation generation, builds the transformation stylesheet that
will convert a CMI to an AMI. This step uses an XSLT stylesheet that will generate
another XSLT stylesheet. One should note that an XSLT stylesheet is a valid XML file
that can be produced by another XSLT stylesheet. This technique was also successfully
used in the previous version of the implementation which was XML-based [Frasincar and
Houben, 2001]. This transformation is based on the owner of a slice and the concept
attribute of a simple slice. The following name convention is used: a slice instance name
(e.g., Slice. Painting.main_ID1) is obtained from the slice name (e.g., Slice. Painting.main)
concatenated with the suffix (e.g., ID1) of the associated concept instance identifier (e.g.,
Painting_ID1). The implemented algorithm is straightforward: instantiate all slices for all
the corresponding retrieved concept instances and each time a slice is referenced add its
identifier based on the above name convention.

The transformation used in this phase is a generic one, but the output that it produces
is used for a specific transformation (the next step).

Step 3.2, the AMI creation, converts the CMI to an AMI. The XSLT stylesheet obtained
in the previous substep is applied to the CMI to yield an AMI. As opposed to the previous
transformations, this stylesheet will operate for inputs and outputs that are both query-
dependent. For each query, Hera will dynamically instantiate the AM with the query
result, i.e., a CMIL.

The PM-related transformation steps (steps 4 and 5) are realized in a similar manner
as the AM-related transformation steps (steps 2 and 3).

Step 4, the PM generation, builds a PM template. This step contains two substeps:
the PM unfolding and the PM adaptation.

Step 4.1, the PM unfolding, generates the PM template. The PM template represents
the structure of a PM instance (RDF) based on the PM schema (RDFS). Such a template
will ease the specification of an XSLT stylesheet used to convert an AM instance (AMI)
to a PM instance (PMI). By unfolding the PM we mean repeating the process of adding
properties inside the subject classes until slice references or media items are reached. In this

3.3. PRESENTATION GENERATION (STATIC) 23

way, one obtains a PM template which will be filled later on with appropriate instances.

Step 4.2, the PM adaptation, executes the adaptation specifications on the PM tem-
plate. The transformation stylesheet of this step has two inputs: the PM template and the
UP. The UP attributes are replaced in the conditions by their corresponding values. The
layouts and styles that have the conditions not valid are discarded.

Step 5, the PMI generation, instantiates the PM with data from the AMI. This step is
composed of two substeps: the PMI transformation generation and the PMI generation.

Step 5.1, the PMI transformation generation, builds the transformation stylesheet that
will convert an AMI to a PMI. As in step 3.1, an XSLT stylesheet that will generate another
XSLT stylesheet is used. This transformation is based on the owner of a region and the fact
that simple regions are associated to simple slices. The following name convention is used: a
region instance name (e.g., Region.Slice. Painting.main. RegionFullA_ID1) is obtained from
the region name (e.g., Region.Slice. Painting.main. RegionFullA) concatenated with the suf-
fix (e.g., ID1) of the associated slice instance identifier (e.g., Slice. Painting.main_ID1). The
implemented algorithm is straightforward: instantiate all regions for all the corresponding
slice instances and each time a region is referenced add its identifier based on the above
name convention.

Step 5.2, the PMI creation, converts the AMI to a PMI. The XSLT stylesheet obtained
in the previous substep is applied to the AMI to yield a PMI. As opposed to the previous
transformations, this stylesheet will operate for inputs and outputs that are both query-
dependent.

Step 6, the presentation data generation, transforms the PMI into code specific for the
user’s browser. Note that a set of Web pages is generated at-a-time. Some of supported
formats are: HTML, HTML+TIME, WML, and SMIL. For each type of serialization a
specific stylesheet is used. The stylesheets used for the HTML, HTML+TIME, and SMIL
use the ability of XSLT 2.0 [Kay, 2005b] to generate multiple outputs (this feature is not
supported in XSLT 1.0 [Clark, 1999]). In order to generate multiple outputs the XSLT 2.0
result-document() function was used.

For HTML(4+TIME), BorderLayout and TableLayout are implemented using tables.
An HTML presentation is composed from the indez.html document (starting point of the
presentation) and a set of HTML pages each corresponding to a top-level slice.

The FlowLayout is supported by any HTML browser (the content of a table cell
is automatically wrapped if it doesn’t fit one line). TimeLayout is supported only by
HTMLA+TIME and SMIL browsers.

For WML, there is only one layout supported, i.e., the BorderLayout with a vertical
alignment. Because lists are not available in WML, they are implemented as simple se-
quences of items without any visual cues. To each top-level region corresponds a WML
card. A WML presentation is composed from a single WML document, a deck that contains
a set of cards. The first card is the starting point of the presentation.

For SMIL, there is an explicit part to describe the layout of a document. As tables/flow
are not supported in SMIL, one needs always to fully define the layout information for
BoxLayout, TableLayout, and FlowLayout. The TimeLayout was defined using the seq
container for regions. Hera regions are implemented as SMIL regions. A SMIL presentation

24 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

is composed from a main SMIL document (starting point of the presentation), a set of SMIL
documents each corresponding to a top-level region, a set of RealText (RT) clips, one per
each text media, and a set of audio clips (AU), one per each audio media.

3.4 Presentation Generation (Dynamic)

Recently the Hera methodology has been extended in order to accommodate more complex
forms of user interaction in addition to simple link-following, e.g., interaction by means of
forms in which the user can enter data [Houben et al., 2004]. In this way the user can better
personalize the SWIS according to his needs, specially regarding the dynamics within a
browsing session. Figure 3.20 shows the “loop” with which we extended the presentation
generation to support this additional dynamics and to allow the user to influence the
generation of the Web presentation. Note that in response to a user query only one page is
generated at-a-time instead of the full Web presentation as is the case for the static variant
of the presentation generation phase. Generating one-page-at-a-time allows the system to
consider the user input before generating the next Web page. The request contains the
(owner) concept instance identifier and the slice type of the next slice to be generated (i.e.,
the one corresponding to the next Web page).

Conceptual Layer Application Layer Presentation Layer

Conceptual Design }“ il il % Application Design }“ =~ 7|~ 7|~ ™| Presentation Design

o < z 3 =5

A =}
(52
= & =
(Conceptual Model (CM)] [Application Model (AM)] (Presentation Model (PM)]
CM Adaptation Model AM Adaptation Model PM Adaptation Model
(User/Platform Profile]

T T T T
[User Session (Navigation Data Model, User/Platform Model, Form Models, and Variables)]
I [I [

| tmplementation |
CM Adaptation Application Engine Presentation Engine
(incl. AM Adaptation) " (incl. PM Adaptation)

J U J U
Request
Data Collection
Engine Web page
(External) Web Browser

Figure 3.20: Presentation generation phase (dynamic).

3.4. PRESENTATION GENERATION (DYNAMIC) 25

In order to illustrate the dynamic version of the presentation generation the running
example is extended such that it allows the visitor to buy posters of the paintings in the
museum. For simplicity we didn’t model explicitly the posters, assuming a one-to-one
correspondence with the depicted painting. Also, after buying a certain painting, the user
will not be presented with the same painting again.

In addition to the data from CM, AM, and PM, interaction requires a support for
creating, storing, and accessing data that emerges while the user interacts with the sys-
tem. This support is provided by means of the user session (US). US is composed of the
navigation data model, user/platform model, form models, and variables.

The purpose of the navigation data model (NDM) is to complement the CM with a
number of auxiliary concepts that do not necessarily exist in the CM (although this is the
decision of the designer in concrete applications) and which can be used in the AM when
defining the behavior of the application and its navigation structure.

The user/platform model (UM) stores user preferences and device capabilities that
change during user browsing (e.g., network connection speed, user knowledge on some of
the displayed topics, etc.). In Section 3.3 the UP was defined. The UP-based adaptation
is done at the beginning of the user browsing session in order to adapt the CM, AM, and
PM. In a similar way the UM is used to adapt the CM, AM, and PM. Differently than for
UP, the UM-based adaptation is done before each Web page is generated.

The form models (FM) describe the data that is entered by the user by means of
forms. Each form has a so-called form model associated with it. The data input by the
user in a form populates the associated form model. Similar to XForms [Dubinko et al.,
2003], a form separates presentation from content. FM describes the form content. The
presentation-related issues of forms are given in the AM.

The session variables are the concept instance identifier, i.e., instanceid, and the slice
type, i.e., slicetype, of the previous slice (the one from which a request originated), and a
number of variables to store temporary data created during a user browsing session (e.g.,
for storing the URIs of newly created resources).

We remark that from the system perspective the concepts in the NDM can be divided
into two groups. The first group essentially represents views over the concepts from the
CM, the second group corresponds to a locally maintained repository. A concept from the
first group can be instantiated only with a subset of instances of a concept existing in the
CM, without the possibility to change the actual content of the data. A concept from the
second group is populated with instances based on the user’s interaction, i.e., the data is
created, updated, and potentially deleted on-the-fly. The AM can refer to the concepts
from NDM as if they were representing “real” data concepts.

The NDM of our example is depicted in Figure 3.21; it consists of the following con-
cepts: SelectedPainting, Order, and Trolley. The SelectedPainting concept is a subclass of
the Painting concept from the CM. It represents those paintings which the user selected in
a selection form. The Order concept models a single ordered item consisting of a selected
painting (the property includes) and the quantity represented by an Integer. The Trol-
ley concept represents a shopping cart containing a set of orders linked by the property
contains.

26 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

quantity

contained_by
> Trolley
1includes 1 4 contains 1

——— ™ property

— > subClassOf

Figure 3.21: Navigation data model.

In the example the SelectedPainting concept belongs to the group of view concepts
whereas both the Order and the Trolley are updatable concepts with the values determined
at run-time. This is reflected also in the navigational data model instance (NDMI) depicted
in Figure 3.22 that results from the user’s desire to buy 1 poster of the selected painting.
The instance Paintingl comes from the CM, i.e., it is not (re)created: what is created
however, is the type property associating it with the Selected Painting concept. Both
instances Orderl and Trolleyl are created during the user’s interaction; they, as well as
their properties, are depicted in bold in Figure 3.22.

quantity

contained_by

1

Trolley

4 contains

contained_by

Trolleyl

contains

Figure 3.22: Navigation data model instance.

The application model vocabulary from Figure 3.10 was extended in order to support
forms. Figure 3.23 shows these extensions, inspired by the XForms standard. Similar to
XForms, a form separates presentation from content. The presentation-related issues of
forms are associated to the AM. In AM, a form is a particular type of slice which has
controls associated with it. Some of the supported form controls (as in XForms) are:
Select1 (S1), selects one instance from a set; SelectN (SN), selects several instances from a
set; Input (I), accepts one line of input text, etc.

3.4. PRESENTATION GENERATION (DYNAMIC) 27

_ slice navigation
Slice

A
control
(oo
query queryEnable | | querySelect ZT
[Selectl j [Selecth [Input j
query query
Ad

Slice Navigation | 99¢TY _[Query jomer—w

———* property

— > subClassOf

Figure 3.23: Extended application model vocabulary.

The dynamics of the application is given by a set of AM queries used for selection,
deleting, or updating of data. These queries can be attached to:

e slices, to express user-independent updates (e.g., creation of a trolley),

e form controls, to get values for these controls (e.g., select all names of paintings that
are not in the trolley),

e forms, (1) to enable/disable a form (e.g., if the user has already added all paintings
to his trolley, there is no painting left to be offered to the user for the next selection,
and therefore the selection form is disabled) or (2) to select the concept instance for
the next slice (e.g., after selecting a painting, the main slice of the selected painting
is presented),

e slice navigation, to express user-dependent updates (e.g., create order and add it to
the trolley).

By a query that enables/disables a form it is actually meant a condition that uses
some query results for enabling/disabling a form. The identification of the query with
the condition is done because the condition usually is a very simple one (in most of the
encountered cases it is a comparison of the query result with ‘0’). An element from AM
can have attached a single query or a sequence of queries. The order in which the sequence
queries will be executed is given by the order attribute.

The content of the form is based on a form model (FM), i.e., the schema of the data
associated with a certain form. The data of the form that populates (at run-time, based on
user actions) the FM is the so-called form model instance (FMI). The mappings (bindings)

28 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

of the data provided by the form controls to the form model instance is outside the scope
of this description as this is done by an external XForms processor. Figure 3.24 shows an
example of a form model and its instance.

Form model

quantity
BuyForm1

Form model instance

—* property

Figure 3.24: Form model and form model instance.

Figure 3.25 shows two form slices that can be embedded in an AM. The short names of
the forms are SelectForm and Delete Form and the long names are Slice. Painting.SelectForm
and Slice. Trolley. DeleteForm, respectively. The owner of the SelectForm is Painting and
the owner of the DeleteForm is Trolley. Two queries are used to enable/disable the forms:
QFEnableSF and QFEnableDF. Both forms have one control field defined S1 (selects one
instance from a set). The values from which the user makes one selection are given by
the queries QSelectSFPn and ()SelectDFPn. The first form has @QSelectP a query that
selects a painting instance identifier based on the user’s choice. The second form has a
slice navigation relationship with an update query defined, i.e., QDeleteO.

Painting Trolley
QEnableSF QEnableDF
SelectForm DeleteForm
QSelectSFPn = = [=~ ~[{staname || | | [[st]aname - ---F -~ QSelectDFPn

QDeleteO

L QSelectP J

Figure 3.25: Form in application model.

Figure 3.26 shows the application model extended with forms. The main slice of a
painting depicts information related to the painting. It also contains the BuyForm, a form
that allows the user to make an order by specifying the quantity of desired posters for the
presented painting. In order not to produce too much visual clutter, we do not show in
the figure the concept owner of the form (this is the same as the owner of the destination
slice when one navigates from that form). The main slice of the trolley displays the orders
contained in the trolley. Note that when the user makes an order, this order is immediately
added to the trolley. In addition the main slice of the trolley has two other forms SelectForm
and DeleteForm. SelectForm is used to select paintings by their name, paintings which do
not have posters in the trolley. DeleteForm is used to delete orders from the trolley.

3.4. PRESENTATION GENERATION (DYNAMIC)

QCreateT
Painting Trolley
QCreateOU
QCreateOP QDeletcO
JA
painted_by QEnableSF QEnableDF
. BuyForm SelectForm DeleteForm
Painter Jsl ‘ aname ‘ ‘sl ‘ aname L
. QSelectP .
main e main
QSelectSFPn QSelectDFPn
Order Trolley
. l‘d Order
mcludes A
Painting @
contains
Set
main content

——*™ navigation

aggregation (with CM property name)

Figure 3.26: Extended application model.

29

Because models are represented in RDF(S), the AM queries are described using an RDF
query language. As an RDF query language it was chosen SeRQL [Aduna, BV, 2005], one
of the most expressive RDF query languages that supports not only the selection of RDF
data but also the creation of new RDF data. In the rest of this section several queries
are presented in their SeRQL syntax. Due to the fact that SeRQL doesn’t support nested
queries some queries are expressed in RQL [Karvounarakis et al., 2002]. In the rest of this

section the queries from Figure 3.26 are presented.

Figure 3.27 shows ()CreateT a query attached to the main slice of a painting. It is used
to create a trolley for the user. The SeRQL was extended with the new() function that is
able to create a URI (identifier) unique in the application for a new resource. The newly

created URI is stored in the user session variable trolleyid.

‘ CONSTRUCT {new()}<rdf:type><ndm:Trolley> ‘

Figure 3.27: QCreateT (create trolley).

30 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

QCreateOU and ()CreateOP are a sequence of queries attached to the slice navigation
from BuyForm to the main slice of the trolley. Figure 3.28 depicts QCreateOU, a query
that creates a new order. The newly created URI is stored in the user session variable
orderid.

‘CONSTRUCT {new()}<rdf:type><ndm:0rder>‘

Figure 3.28: QCreateOU (create order).

Figure 3.29 shows @QCreateOP, a query that fills the order properties and adds the
order to the trolley. Note that the order is captured in NDM, the owner concept instance
identifier of the current slice and the newly generated order identifier are user session
variables, and the user input (the poster’s quantity) is captured in BuyForml, the form
model instance of the form BuyForm.

CONSTRUCT
{x}<ndm: contains>{y},
{y}<ndm:contained_by>{x},
{y}<ndm:includes>{z},
{z}<ndm:included_by>{y},
{y}<ndm:quantity>{v}

FROM
{session}<var:trolleyid>{x},
{session}<var:instanceid}{z},
{session}<var:orderid>{y},
{BuyForm1}<bf :quantity>{v}

Figure 3.29: QCreateOP (add order to trolley).

Figure 3.30 shows @QFnableSF, a query attached to the SelectForm form in order to
enable/disable this form. If all paintings have orders associated with them, the SelectForm
is disabled, as there are no paintings left for user selection. SeRQL was extended with
aggregation functions like the count() function.

(SELECT count(x)
FROM {x}<rdf:type><cm:Painting>
WHERE NOT x IN SELECT y
FROM {session}<var:trolleyid>{v},
{v}<ndm:contains>{w},
{w}<ndm:includes>{y}) > 0

Figure 3.30: QEnableSF (condition that enables/disables SelectForm).

Figure 3.31 shows @QSelectSFPn, a query attached to the control of the form SelectForm
in the main slice of trolley. Note that ()SelectSFPn is a nested query: first the paintings
included in the order are computed and the result is subtracted from the set of all the
paintings. The query returns the name of the paintings that are not in the trolley.

3.4. PRESENTATION GENERATION (DYNAMIC) 31

SELECT xname
FROM {x}<rdf:type><cm:Painting>,
{x}<cm:aname>{xname}
WHERE NOT x IN SELECT y
FROM {session}<var:trolleyid>{v},
{v}<ndm:contains>{w},
{w}<ndm:includes>{y}

Figure 3.31: QSelectSFPn (select paintings (names) that are not in the trolley).

Figure 3.32 shows @QSelectP, a query attached to the SelectForm in order to select
the concept instance that owns the next slice to be presented (i.e., the main slice of a
painting). In the future we would like to exploit this selection feature (based on queries)
at a more general level, i.e., in the navigation between any two slices and not just between
forms (form slices) and slices. In this way the restriction that slice navigation relationships
connect slices that have the same owner will be eliminated. Nevertheless one should ensure
that only one instance of the destination slice is created.

SELECT x
FROM {SelectForml}<sf:aname>{yname},
{x}<cm:aname>{yname}

Figure 3.32: QSelectP (select painting).

Figure 3.33 shows QFEnableDF, a query attached to DeleteFormin order to enable/disable
this form. If the trolley is empty, DeleteForm is disabled, as there are no orders to delete.

(SELECT count (x)
FROM {session}<var:trolleyid>{y},
{y}<ndm:contains>{x}) > 0

Figure 3.33: QEnableDF (condition that enables/disables DeleteForm).

Figure 3.34 shows @QSelectDF Pn, a query attached to the control of the form DeleteFrom
in the main slice of trolley. The query returns the name of the paintings that are in the
trolley.

SELECT xname

FROM {session}<var:trolleyid>{y},
{y}<ndm:contains>{x7},
{x}<cm:aname>{xname}

Figure 3.34: QSelectDFPn (select paintings (names) that are in the trolley).

Figure 3.35 shows the query QQDeleteO associated to DeleteForm used to delete a se-
lected painting order from trolley. The SeRQL query language was extended with the
DELETE construct. Basically it is a deletion of statements from an RDF model. The dele-
tion of resources from an RDF model can be easily done by deleting statements of the form

32 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

{x}<rdf:type>{rdf:Resource}, where x is the URI of a resource. A garbage collector
will make sure that the properties of the deleted resources will be also removed from the
model.

DELETE
{x}<ndm: contains>{y},
{y}<ndm:contained_by>{x},
{y}<ndm:includes>{z},
{z}<ndm:included_by>{y},
{y}<ndm:quantity>{a}

FROM
{session}<var:trolleyid>{x},
{DeleteForm1}<df:aname>{yname},
{y}<cm:aname>{yname},
{y}<ndm:includes>{z},
{y}<ndm:quantity>{a}

Figure 3.35: QDeleteO (delete selected order from trolley).

In the above queries we did need to extend Se(RQL) with new constructs like URI
generators, aggregation functions, and DELETE statements. We do hope that future RDF
query languages will be equipped with all these constructs.

3.4.1 Implementation

The implementation of the dynamic variant of the Hera presentation generation phase
is based on several data transformations realized in Java. The Se(RQL) queries are ex-
ecuted by Sesame [Aduna, BV, 2005] and the data transformations are implemented in
Jena [Hewlett-Packard Development Company, LP, 2005]. In this way the data transfor-
mations exploit more of the RDF(S) semantics given by the Hera models than the ones
based on XSLT. A transformation language for XML documents like XSLT cannot use the
full RDF semantics stored in the RDF /XML serialization of an RDF model.

Figure 3.36 shows the transformation steps for the dynamic variant of the Hera pre-
sentation generation. Each transformation step has a label associated with it. Some of
these transformations have substeps which are labeled using a second digit notation. In
Figure 3.36 there are two types of dashed arrows: “is used by” to express that an RDFS
model is used by another RDFS model and “has instance” to denote that an RDFS model
has as instance a certain RDF model. A model vocabulary, a model, a model instance, and
the generated presentations are depicted by rectangles. The transformation specifications
are represented by ovals. In the same way as for the static variant of the implementa-
tion models and transformation specifications are classified as application-independent,
application-dependent, and query-dependent.

3.4. PRESENTATION GENERATION (DYNAMIC) 33

media CC/PP user/platform
vocabulary vocabulary
(rdfs) (rdfs)
" is used by " is used by
conceptual model application model user/platform profile presentation model
vocabulary vocabulary vocabulary vocabulary
(rdfs) (rdfs) (rdfs) (rdfs)
! ! | has instance !
I I v I .
! . . ! - ' has instance
 has instance has instance | user/platform profile | .
I | is usegpy | dfy is Es,ed by |
I | | | I
v 4 || 4 (I
conceptual model | _ _ isusedby _] application model |_ __|__ isusedby |] presentation model
(rdfs) (rdfs) (rdfs)
I
!
I
I ‘application model presentation model
| 2.1 adaptation adaptation 31
| (java) (java)
I
1 has instance
I .
I icati ; presentation model
. is used b application model) is used by | o
! == Y] adapted I adapted
! 1 (rdf) ! (rdf)
I I
I | ,
1 :
| request :
I
| instance
i creation
N - Web
1 conceptual model slice AR region page Web
$’ ins;ance ™ insttance creation instance creation p:ge]
collection (tdh (dh (ava) (rdh (Gava) (humb)
3.2 4

user session

2.2

variables
(rdf)
form models instances || have instance | form models

- - - - -----4
(rdf) (rdfs)
navigation data model it
instaice . has instance | navigation data model
(df) (rdfs)

DO Application independent
D o Application dependent
|:| O Query dependent

Figure 3.36: Presentation generation using Java.

Step 1, the data collection phase, is the same as in the static variant of the implemen-
tation. The result of this step is the CMI, i.e., the data retrieved in response to a user
query. More information on step 1 can be found in [Vdovjak et al., 2003].

Step 2, the slice instance generation, computes a top-level slice instance in response to
a user request. This step contains two substeps: the AM adaptation and the slice instance
creation.

Step 2.1, the AM adaptation, executes the adaptation specifications on the AM. This
transformation has two inputs: the AM and the UP. The UP attributes are replaced in

34 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

the conditions by their corresponding values. The slices that have the conditions not
valid are discarded and the hyperlinks pointing to these slices are disabled. This step
is executed only once at the beginning of a user session. In the current version of the
implementation, AM adaptation based on the user model is not performed. Future versions
of the implementation, that will make use of the user model will execute this step at each
user request.

Step 2.2, the slice instance creation, creates the next slice instance. The user request
provides: the slice type and the concept instance identifier of the slice instance correspond-
ing to the next Web page to be computed, and possibly form model information, in case
that request originates from a form. The first user request in a session specifies also the
Hera models that will be used in the current session. The queries associated with the
slice navigation that initiated the request and the queries associated to the slice to be
computed are executed in the user session update. Besides updating the NDMI, the user
session update also stores in the user session the form models and the value of the variables
associated to queries.

Step 3, the region instance generation, computes the top-level region instance corre-
sponding to the previously computed slice instance. This step contains two substeps: the
PM adaptation and the region instance creation.

Step 3.1, the PM adaptation, executes the adaptation specifications on the PM. This
transformation has two inputs: the PM and the UP. The UP attributes are replaced in the
conditions by their corresponding values. The layouts and styles that have the conditions
not valid are discarded. Similar to step 2.1, this step is executed only once at the beginning
of a user session. In the current version of the implementation, PM adaptation based on
the UM is not performed. Future versions of the implementation, that will make use of
the UM, will execute this step at each user request.

Step 3.2, the region instance creation, creates the region instance for the previously
computed top-level slice instance.

Step 4, the Web page creation, transforms the region instance generated in the previous
step into code specific to the user’s browser. Note that only one Web page is generated
at-a-time. At the current moment only HTML is supported by the implementation.

3.5 Conclusions

Hera is a model-driven methodology for designing Semantic Web Information Systems.
The presentation generation phase of the Hera methodology builds a Web presentation for
some given input data. The Hera presentation generation phase has two variants: a static
one that computes at once a full Web presentation, and a dynamic one that computes
one-page-at-a-time by letting the user influence the next Web page to be presented. The
design of both variants uses models that are specified in RDF. The implementation of
the static variant is based on XSLT data transformations and the implementation of the
dynamic variant is based on Java data transformations.

As future work we would like to improve the design and implementation of the Hera

3.5. CONCLUSIONS 35

presentation generation phase. For the static variant we would like to implement the
CM and media adaptation as given in the design specifications as a separate (from AM
adaptation) data transformation. The design of the dynamic variant can be extended
by adding specifications for UM-based adaptation. With respect to this we anticipate to
reuse some of the work done in the adaptive hypermedia field [De Bra et al., 1999]. The
implementation of the dynamic variant needs to be extended with other code generators
like HTML+TIME, WML, and SMIL.

Also we would like to investigate the use of a declarative RDF transformation language
(similar to XSLT but exploiting better than XSLT the RDF semantics). In [van Ossen-
bruggen et al., 2005] it is proposed the use of XSLT stylesheets in combination with SeRQL
queries (for selections) as a possible RDF transformation language. This hybrid solution
is easy to implement and it exploits more of the RDF semantics than XSLT. Nevertheless
it relies on the RDF /XML serialization of RDF models and it is less elegant than a solu-
tion based on the RDF data model. Lacking an RDF data transformation language based
on the RDF data model, we plan investigate the definition and implementation of such a
language.

At the current moment Hera doesn’t support the requirements phase of the development
life cycle of a SWIS. We would like to extend our methodology with a task (activity) model
that will specify the activities that can be performed by a user with the system. Once
devising a task model one can generate the navigation structure of the application from
the task model eliminating the design effort for defining new application models. The task
models can be assigned to a particular user or to a group of users (users that share the
same task model) facilitating thus the definition of coarse-grained adaptation at navigation
level.

36 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Bibliography

Aduna, BV (2005). openrdf.org ... home of sesame. http://www.openrdf.org/.

Ayars, J., Bulterman, D., Cohen, A., Day, K., Hodge, E., Hoschka, P., Hyche, E., Jour-
dan, M., Kim, M., Kubota, K., Lanphier, R., Layaida, N., Michel, T., Newman, D.,
van Ossenbruggen, J., Rutledge, L., Saccocio, B., Schmitz, P., and ten Kate, W. (2005).
Synchronized multimedia integration language (smil 2.0) - [second edition]. W3C Rec-
ommendation 07 January 2005. http://www.w3.org/TR/SMIL/.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F.; and Stein, L. A. (2004). Owl web ontology language reference. W3C
Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/.

Beckett, D. (2004). Rdf/xml syntax specification (revised). W3C Recommendation 10
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

Bos, B., Celik, T., Hickson, I., and Lie, H. W. (2004). Cascading style sheets, level 2
revision 1 css 2.1 specification. W3C Candidate Recommendation 25 February 2004.
http://www.w3.org/TR/CSS21/.

Brickley, D. and Guha, R. (2004). Rdf vocabulary description language 1.0: Rdf schema.
W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-schema/.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction,
11(1-2):87-110.

Clark, J. (1999). Xsl transformations (xslt) version 1.0. W3C Recommendation 16 Novem-
ber 1999. http://www.w3.org/TR/xslt.

Connolly, D., van Harmelen, F., Horrocks, 1., McGuinness, D. L., Patel-Schneider, P. F.,
and Stein, L. A. (2001). Daml+-oil (march 2001) reference description. W3C Note 18
December 2001. http://www.w3.org/TR/daml+oil-reference.

De Bra, P., Houben, G. J., and Wu, H. (1999). Aham: A dexter-based reference model for
adaptive hypermedia. In 10th ACM conference on Hypertext and Hypermedia (Hyper-
text’99), pages 147-156. ACM.

37

38 BIBLIOGRAPHY

Diaz, A., Isakowitz, T., Maiorana, V., and Gilabert, G. (1997). Extending the capabilities
of rmm: Russian dolls and hypertext. In $0th Hawaii International Conference on
System Sciences (HICSS-30), volume 6, pages 177-186. IEEE Computer Society.

Dubinko, M., Klotz, L. L., Merrick, R., and Raman, T. V. (2003). Xforms 1.0. W3C
Recommendation 14 October 2003. http://www.w3.org/TR/xforms/.

Fiala, Z., Frasincar, F., Hinz, M., Houben, G. J., Barna, P., and Meissner, K. (2004).
Engineering the presentation layer of adaptable web information systems. In Web Engi-
neering - 4th International Conference (ICWE 2004), volume 3140 of Lecture Notes in
Computer Science, pages 459-472. Springer.

Fiala, Z., Hinz, M., Meissner, K., and Wehner, F. (2003). A component-based approach
for adaptive, dynamic web documents. Journal of Web Engineering, 2(1-2):58-73.

Frasincar, F., Barna, P., Houben, G. J., and Fiala, Z. (2004). Adaptation and reuse in
designing web information systems. In International Conference on Information Tech-
nology: Coding and Computing (ITCC 2004), pages 387-291. IEEE Computer Society.

Frasincar, F. and Houben, G. J. (2001). Xml-based automatic web presentation generation.
In WebNet 2001 World Conference on the WWW and Internet (WebNet 2001), pages
372-377. AACE.

Frasincar, F. and Houben, G. J. (2002). Hypermedia presentation adaptation on the
semantic web. In Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2002),
volume 2347 of Lecture Notes in Computer Science, pages 133-142. Springer.

Frasincar, F., Houben, G. J., and Vdovjak, R. (2001). An rmm-based methodology for
hypermedia presentation design. In Advances in Databases and Information Systems
(ADBIS 2001), volume 2151 of Lecture Notes in Computer Science, pages 323-337.
Springer.

Hewlett-Packard Development Company, LP (2005). Jena - a semantic web framework for
java. http://jena.sourceforge.net/.

Houben, G. J., Frasincar, F., Barna, P., and Vdovjak, R. (2004). Engineering the presenta-
tion layer of adaptable web information systems. In Web Engineering - 4th International
Conference (ICWE 2004), volume 3140 of Lecture Notes in Computer Science, pages 60—
73. Springer.

Isakowitz, T., Bieber, M., and Vitali, F. (1998). Web information systems. Communications
of the ACM, 41(1):78-80.

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., and Scholl, M. (2002).
Rql: a declarative query language for rdf. In Eleventh International World Wide Web
Conference (WWW2002), pages 592-603. ACM.

BIBLIOGRAPHY 39

Kay, M. (2005a). Saxon (the xslt and xquery processor). http://saxon.sourceforge.net.

Kay, M. (2005b). Xsl transformations (xslt) version 2.0. W3C Working Draft 11 February
2005. http://www.w3.org/TR/xs1t20/.

Klyne, G., Reynolds, F., Woodrow, C., Hidetaka, O., Hjelm, J., Butler, M. H., and Tran,
L. (2004). Composite capability/preference profiles (cc/pp): Structure and vocabularies
1.0. W3C Recommendation 15 January 2004.

Lassila, O. and Swick, R. R. (1999). Resource description framework (rdf) model and
syntax specification. W3C Recommendation 22 February 1999. http://www.w3.org/
TR/1999/REC-rdf-syntax-19990222.

Martinez, J. M. (2003). Mpeg-7 overview. Version 9, ISO/IEC JTC1/SC29/WG11/N5525
March 2003.

Rossi, G., Schwabe, D., and Lyardet, F. (1999). Web application models are more than
conceptual models. In International Workshop on the World-Wide Web and Concep-
tual Modeling (WWWCM 1999), ER 1999, volume 1727 of Lecture Notes in Computer
Science, pages 239-253. Springer.

Rutledge, L., Alberink, M., Brussee, R., Pokraev, S., van Dieten, W., and Veenstra, M.
(2003). Finding the story: Broader applicability of semantics and discourse for hyper-
media generation. In ACM Conference on Hypertext and Hypermedia (Hypertext 2003),
pages 67-76. ACM.

Schmitz, P., Yu, J., and Santangeli, P. (1998). Timed interactive multimedia exten-
sions for html (html+time). W3C Note 18 September 1998. http://www.w3.org/TR/
NOTE-HTMLplusTIME.

Souchon, N. and Vanderdonckt, J. (2003). A review of xml-compliant user interface descrip-
tion languages. In International Workshop on Design, Specification and Verification of
Interactive Systems (DSV-1S 2003), volume 2844 of Lecture Notes in Computer Science,
pages 377-391. Springer.

van Ossenbruggen, J., Hardman, L., and Rutledge, L. (2005). Combining rdf semantics
with xml document transformations. International Journal of Web Engineering and
Technology, 2(4). To appear (guest editors: Frasincar, F., Houben, G. J., and van
Ossenbruggen, J.).

Vdovjak, R., Frasincar, F., Houben, G. J., and Barna, P. (2003). Engineering semantic
web information systems in hera. Journal of Web Engineering, 2(1-2):3-26.

Wireless Application Protocol Forum, Ltd. (2001). Wireless application group: User agent
profile. 20 October 2001.

