
Hypermedia Presentation Generation

for Semantic Web Information Systems

Flavius Frăsincar

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Frăsincar, Flavius

Hypermedia Presentation Generation for Semantic Web Information Systems/ by Flav-
ius Frăsincar.
Eindhoven: Technische Universiteit Eindhoven, 2005. Proefschrift.

ISBN 90-386-0594-3
NUR 983

Keywords: hypermedia / information systems; Internet / ontology / knowledge manage-
ment
C.R. Subject Classification (1998): H.5.4, H.5.2, H.5.1, D.2.2, H.2.4, H.3.4, I.2.4

SIKS Dissertation Series No. 2005-07
The research reported in this dissertation has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Cover design: Paul Verspaget
Printed by University Press Facilities, Eindhoven, the Netherlands.

Copyright c© 2005 by F. Frăsincar, Eindhoven, the Netherlands.

All rights reserved. No part of this thesis publication may be reproduced, stored in retrieval
systems, or transmitted in any form by any means, mechanical, photocopying, recording,
or otherwise, without written consent of the author.

Hypermedia Presentation Generation
for Semantic Web Information Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn,

voor een commissie aangewezen door het College voor Promoties
in het openbaar te verdedigen

op maandag 20 juni 2005 om 16.00 uur

door

Flavius Frăsincar

geboren te Boekarest, Roemenië

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. P.M.E. De Bra

en
prof.dr.ir. G.J.P.M. Houben

Copromotor:
prof.dr. J. Paredaens

Preface

At the end of the software technology program of Stan Ackermans Institute at Eindhoven
University of Technology I met professor Paul De Bra who offered me a PhD position on
the NWO-sponsored Dynamo project. The Dynamo project focuses on the semi-automatic
hypermedia presentation generation. After a short discussion with professor Paul De Bra
I was immediately attracted by the research topics proposed in the Dynamo project and
the knowledge and kindness of professor Paul De Bra.

The Dynamo project was a joint project with the Multimedia and Human-Computer
Interaction Group of CWI, Computer Science Department of Eindhoven University of
Technology, and New Media Systems and Applications Group of Philips Research. In this
way I was able to participate in interesting research discussions with people from different
institutes and with different backgrounds, among which I would like to mention professor
Lynda Hardman, Jacco van Ossenbruggen, Lloyd Rutledge, and Warner ten Kate. The
part of the Dynamo project carried out at the Eindhoven University of Technology was
done in the frame of the Hera project, a more general project for modeling Web information
systems.

I would like to thank professor Geert-Jan Houben, my daily supervisor and chair of
the Hera project, for the research freedom and support offered during my PhD. Despite
his volume of research and teaching, professor Geert-Jan had always his door open for me,
ready to help me whatever was the issue. Through professor Geert-Jan Houben I had the
great pleasure to meet and work on various database subjects with professor Jan Paredaens
and his colleagues at University of Antwerpen. I would like to thank professor Paul De
Bra for his continuous support during my years of PhD studies. I would like to thank both
professor Paul De Bra and professor Geert-Jan Houben for the teaching opportunities that
they gave me in the areas of databases and Web information systems.

I also want to thank all the people I worked with during my PhD studies. I would
like to thank my colleagues Richard Vdovjak and Peter Barna for the numerous research
discussions and papers that we wrote together. I would like also to thank my students Bas
Rutten, Bert Okkerse, and Martijn Schuijers for their help in building support software
tools for our research. Special thanks deserves my friend Alexandru Telea for the fruitful
research that we done together by applying data visualization techniques for Semantic Web
representations. A debt of gratitude is owed to my friend Cristian Pau for helping me at
the beginning of my PhD. I had useful discussions and collaborations with Zoltan Fiala
from the AMACONT project at Department of Computer Science of Dresden University

v

vi PREFACE

of Technology. I would like to thank Ad Aerts, Reinier Post, and Jan Hidders for their
help and support for my research.

Finally I would like to thank my parents for their continuous encouragement during my
PhD.

Flavius Frasincar

Eindhoven, June 2005

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research Questions and Approaches . 3

1.3 Outline of the Dissertation . 5

2 Methodologies for Web Information Systems Design 7

2.1 Introduction . 7

2.2 Methodologies for WIS Design . 10

2.2.1 RMM . 10

2.2.2 OOHDM . 12

2.2.3 WSDM . 14

2.2.4 WebML . 16

2.2.5 SiteLang . 18

2.3 Methodologies for SWIS Design . 20

2.3.1 XWMF . 20

2.3.2 OntoWebber . 21

2.3.3 SEAL . 22

2.3.4 SHDM . 23

2.4 Discussion . 25

2.5 Conclusions . 29

3 The Presentation Generation Phase of Hera 31

3.1 Introduction . 31

3.2 RDF(S) . 33

3.3 Presentation Generation (Static) . 33

3.3.1 Conceptual Design . 35

3.3.2 Application Design . 38

3.3.3 Presentation Design . 42

3.3.4 Implementation . 50

3.4 Presentation Generation (Dynamic) . 54

3.4.1 Implementation . 62

3.5 Conclusions . 64

vii

viii CONTENTS

4 Hera Presentation Generator 67
4.1 Introduction . 67
4.2 HPG-XSLT . 68

4.2.1 CM Design Interface . 68
4.2.2 AM Design Interface . 69
4.2.3 PM Design Interface . 69
4.2.4 UP Design Interface . 70
4.2.5 Implementation Interface . 71

4.3 HPG-Java . 76
4.3.1 Designing HPG-Java . 76
4.3.2 Using HPG-Java . 78

4.4 HPG-XSLT vs. HPG-Java . 79
4.5 A Web Service-Oriented Architecture for HPG 82

4.5.1 Web Service Descriptions . 83
4.5.2 SOAP Messages . 84
4.5.3 Tools . 85
4.5.4 Adaptation in HPG Web Service-Oriented Architecture 86

4.6 Conclusions . 87

5 Query Optimization in Hera 89
5.1 Introduction . 89
5.2 Related Work . 91
5.3 Data Model . 92

5.3.1 RDF Model . 92
5.3.2 Nodes and Edges . 94
5.3.3 RDFS . 95
5.3.4 Class and Property Nodes . 97
5.3.5 Complete Models . 98

5.4 Basic RAL Operators . 99
5.4.1 Extraction Operators . 101
5.4.2 Loop Operators . 103
5.4.3 Construction Operators . 104

5.5 Additional RAL Features . 106
5.5.1 Variables . 106
5.5.2 Additional Operators . 108
5.5.3 RQL and RAL . 108

5.6 RAL Equivalence Laws . 109
5.7 Conclusions . 113

6 Data Visualization in Hera 115
6.1 Introduction . 115
6.2 Related Work . 116
6.3 GViz . 119

CONTENTS ix

6.3.1 Data Model . 119
6.3.2 Operation Model . 120
6.3.3 Visualization . 121

6.4 Applications . 123
6.4.1 Conceptual Model Visualization . 124
6.4.2 Conceptual Model Instance Visualization 125
6.4.3 Application Model Visualisation . 128
6.4.4 Application Model Instance Visualisation 129

6.5 Conclusions . 130

7 Concluding Remarks 133
7.1 Conclusions . 133
7.2 Future Research . 136

Bibliography 139

Index 151

Summary 153

Samenvatting 155

Curriculum Vitae 159

SIKS Dissertatiereeks 161

x CONTENTS

Chapter 1

Introduction

Since its birth in the early nineties the World Wide Web has grown into one of the most
popular channels for reaching a very diverse audience on different platforms worldwide
and 24 hours per day. Its success is overwhelming and its impact on the humankind is
tremendous. Some compare its importance with Gutenberg’s invention of the printing
press. As a result of Web popularity, many information system have been made available
through the Web, resulting in so-called Web Information Systems (WIS)1 [Isakowitz et al.,
1998].

The early WIS presented information in terms of carefully authored hypermedia docu-
ments. This approach fails to meet the growing demand to make available on the Web large
amounts of data. The data-intensive aspect of WIS is present in many applications which
can be found today on the Web: institutional portals, community Web sites, online shops,
digital libraries, etc. Going from data to a user appealing Web presentation is a complex
process that asks for a highly structured and controlled approach to WIS design. Con-
ventional software engineering practices are useful for the design of the back-end of these
applications. The hypermedia paradigm specific to the Web application front-end asks
for a Web-specific engineering approach. A new emerging discipline called Web engineer-
ing [Murugesan et al., 2001] is concerned with the establishment of systematic approaches
to the development of WIS.

A typical scenario in a WIS is the following: in response to a user query the system
(semi-)automatically generates a hypermedia presentation. The content of the hypermedia
presentation is gathered from different, possibly heterogeneous, sources that are distributed
over the Web. A characteristic aspect of a WIS is the personalization of the generated hy-
permedia presentation. The one-size-fits-all approach that is so typical for traditional
hypermedia is not suitable for delivering information at run-time to different users with
different platforms (e.g., PC, PDA, WAP phone, WebTV) and different network connec-
tions (e.g., dial-up modem, network copper cable, network fiber optic cable). The WIS
support for user interaction (e.g., by means of forms) enables the user to influence the
generated hypermedia presentation based on his explicit needs.

1From now on we will refer by WIS to both Web Information Systems and a Web Information System,
as a matter of convenience.

1

2 CHAPTER 1. INTRODUCTION

Several methodologies have been proposed for the design of WIS. In the plethora
of proposed methodologies we distinguish the model-driven methodologies (e.g., WebML,
OOHDM, RMM, UWE, OO-H, OOWS, OntoWebber) that use models to specify the dif-
ferent aspects involved in the WIS design. The advantages of such model-based approaches
are countless: better understanding of the system by the different stakeholders, support for
reuse of previously defined models, checking validity/consistency between different design
artifacts, (semi-)automatic model-driven generation of the presentation, better maintain-
ability, etc.

The next generation Web, the Semantic Web [Berners-Lee et al., 2001], is an extension
of the current Web in which data will have associated semantics to it. Several Semantic
Web languages (e. g. RDF(S), OWL) have been proposed to represent data semantics
(as metadata) in a uniform way at different abstractions levels. WIS that use Semantic
Web technologies we call Semantic Web Information Systems (SWIS). The Semantic Web
will enable the interoperability between different SWIS. The benefits that the Semantic
Web brings to SWIS are remarkable: a large amount of annotated data accessible by any
SWIS, exchange and reuse of data models between different SWIS, flexible representation
of the Web semistructured (meta-)data, etc. Model-driven SWIS design methodologies
that exploit the advantages of the Semantic Web, will help the construction of successful
SWIS on the future Web.

1.1 Motivation

Despite the existence of many model-driven methodologies for designing WIS there are not
many model-driven methodologies targeting the design of SWIS. The existing SWIS design
methodologies (e. g. XWMF, SEAL, OntoWebber, SHDM) fail to support the complete de-
sign process of a SWIS. Personalization, a critical aspect in a SWIS, is very often neglected
in present SWIS design methodologies. Also, the ability to model the user interaction with
the system (besides the ‘link following’ mechanism) is missing from these methodologies.

A methodology that comes with CASE tools will be better accepted by WIS developers.
Most of the existing CASE tools (e.g., WebRatio, OOHDM-Web, RMCase) do not target
the development of SWIS. Based on our knowledge the CASE tools that support the design
of SWIS are now either work-in-progress (e.g., SHDM) or do say very little about how the
implementation of such a system was realized (e.g., OntoWebber) in order to make these
results available to the SWIS research community.

An aspect very often neglected is the ability to reuse design artifacts in building WIS.
Despite the fact that there are methodologies that support the reuse of components at
implementation level (e.g., AMACONT), reuse at design level is poorly sustained. The
WIS design patterns in existing methodologies (e.g., WebML) usually do not consider the
great potential for reuse which the Semantic Web has to offer. Also, Web services have
been primarily used as a way to share data between WIS. Web services that provide a
certain functionality to a WIS (e.g., data presentation or presentation adaptation) are not
yet available. The existence of such services, as building blocks, would make the WIS more

1.2. RESEARCH QUESTIONS AND APPROACHES 3

robust, of a better quality, and it will shorten the development time.

RDF is the foundation language for the Semantic Web. SWIS typically use RDF (or
a higher-level language like OWL, also RDF-based) to represent both models and input
data. This data needs to be transformed and queried in a number of subsequent steps2.
The available RDF query languages (e.g., SeRQL, RQL, RDQL) are very often at an early
development stage in which query optimization issues are not yet (or poorly) considered.
It is important to note that once these languages are used for large amounts of data (as it
is the case in a SWIS) the query optimization aspects are crucial for the WIS success. Also
the possibility to analyze these large amounts of data can be facilitated by appropriate
visualization techniques.

Hera is a SWIS design methodology. It proposes two phases: data collection, which
retrieves data from different sources, and presentation generation, which produces Web
presentations for the retrieved data. Hera encapsulates the best aspects from existing
methodologies: the ontology-based approach from OntoWebber, the reusable components
from AMACONT, the modeling style of WebML, the simplicity of RMM, etc. In addition,
it focuses on the adaptation aspects involved prior or during user browsing that are consid-
ered early in the design process. A CASE tool, the Hera Presentation Generator (HPG),
was developed in order to support the presentation generation phase of Hera. Several ap-
plications have been built using the HPG: a review system for the Hera papers, a shopping
site for vehicles, a portal for a virtual paintings museum (without user interaction), and a
shopping site for posters depicting paintings, etc. As Hera uses RDF for its specification
language, significant work was also done on query optimization and data visualization of
RDF data.

For all these reasons Hera is a unique answer to the complex task of SWIS design.
It is based on a blend of traditional software engineering design steps with (Semantic)
Web specific design steps. Each step is supported by appropriate concepts, notations, and
techniques.

1.2 Research Questions and Approaches

The contribution of this dissertation is the proposal of the presentation generation phase
of the Hera methodology. For this purpose several questions have to be answered:

Question 1: How to design the presentation generation for SWIS?
First we look at existing (S)WIS design methodologies identifying their main features.
Then we we can ask ourselves how can one devise a SWIS design methodology that will
have all these characteristics and some additional ones that we consider useful. Because we
do not want to propose yet another SWIS design methodology, we would like to build upon
the strong points of existing methodologies taking in consideration the facilities offered by
the Semantic Web. Also one needs to explore how easily the design specifications can

2Note that most of the WIS methodologies use the pipeline architecture in which the input of one step
is the output of the previous step.

4 CHAPTER 1. INTRODUCTION

be translated in an automatic way to software components that produce a ready-to-use
SWIS. This dissertation concentrates on the front-end of SWIS design, i.e., the presentation
generation.

Question 2: How can we support adaptation during the design of the presen-
tation generation for SWIS?
One of the most important features that a SWIS needs to have is its ability to support
adaptation of the hypermedia presentation prior and during user browsing. We need to
consider which are the adaptation “hot-spots” inside such a methodology and how one can
make the adaptation specifications work in practice. The modeling of the user interaction
with the system (by means of forms) is an important adaptation aspect as it allows for a
better personalization of the system according to user needs.

Question 3: What CASE tools can support the design of the presentation
generation for SWIS?
The benefits of CASE tools associated to a SWIS design methodology are tremendous. It
does not only simplify the designer’s tasks but it will also show how one can build a SWIS
using the proposed methodology. Based on the methodology steps and their associated
output specifications we need to consider which are the necessary support tools and how
one can build them. Having these tools applied in realizing different SWIS (possibly from
different domains) will validate our proposed methodology.

Next to these major research questions, there are two other research questions that we
encountered while building SWIS.

Question 4: How can one realize query optimization inside a SWIS?
SWIS usually deal with large amounts of data. As such a query optimization mechanism
that will shorten the system response time (to user actions) is very important3. Taking in
consideration the query languages used in a SWIS one needs to investigate what are the
possible query optimization techniques and how they can be made available for these query
languages. As we consider the Semantic Web foundation language, RDF, we will ask this
question in the context of RDF query languages.

Question 5: What are suitable visualization techniques for the data used by a
SWIS?
Having to deal with large amounts of data (input data or even large specification models) it
is important to support the SWIS designer with techniques to get a better insight into the
data properties. Visualization techniques proved to be successful in the past in realizing
different software engineering objectives (e.g., reverse engineering). A legitimate question
would be how one can apply existing visualization techniques in analyzing a given set of
data in a SWIS. As most of the considered data representations are RDF representations,
will ask this question in the context of RDF data.

3The user’s level of patience with SWIS is usually very limited, the user moves immediately to a different
SWIS if he experiences long response times.

1.3. OUTLINE OF THE DISSERTATION 5

1.3 Outline of the Dissertation

The dissertation has seven chapters. Each chapter starts with an abstract underlying the
main results that are presented. The first section of each chapter provides a motivational
introduction. Chapter 2, Chapter 3, and Chapter 4 do not have a related work section
because Chapter 2 describes the related work for both Chapter 3 and Chapter 4. Chapter 5
and Chapter 6 have separate sections that analyze the related work and its shortcomings.
After the introduction (Chapter 3 and Chapter 4) or the related work (Chapter 5 and
Chapter 6) the next sections focus on the proposed solution. The last section concludes a
chapter suggesting possible future work.

Chapter 2 and Chapter 3 answer research Question 1. Chapter 2 looks at existing
(S)WIS design methodologies and identifies their main characteristics. Based on these
characteristics and some additional ones that we consider useful we propose the Hera SWIS
design methodology. Chapter 3 describes the Hera SWIS design methodology. At the core
the Hera methodology there are different models that specify, based on the separation
of concerns principle, different aspects involved in the design of a SWIS. The concepts
involved have graphical representations and (usually) model specifications are diagrams.
Each diagram has an RDF(S) representation. The focus of this dissertation is on the design
of the presentation generation phase for SWIS.

Chapter 3 answers research Question 2. One of the main features of the presentation
generation phase of the Hera methodology is the adaptation support for the built hyperme-
dia presentations. The first type of adaptation that is supported is the static adaptation of
the presentation based on user preferences and device capabilities. This adaptation will be
performed before the user starts browsing the generated presentation. In order to better
personalize a SWIS we also support a second type of adaptation, i.e., dynamic adaptation
by means of forms. In this way the user is able to change the generated hypermedia pre-
sentation during the browsing session. Most of the functionality of the dynamic adaptation
is given by RDF queries. Parts of Chapter 3 have been previously published in [Frasincar
et al., 2001; Frasincar and Houben, 2002; Frasincar et al., 2002b; Houben et al., 2003;
Vdovjak et al., 2003; Houben et al., 2004; Fiala et al., 2004].

Chapter 2 and Chapter 4 answer research Question 3. Chapter 2 recalls the existing
design tools that support (S)WIS design methodologies. Chapter 4 describes the Hera
Presentation Generator (HPG), a CASE tool aiming at supporting the WIS designer that
uses the presentation generation phase of the Hera methodology. The HPG also produces in
an automatic way a SWIS based on the designer’s specifications. The chapter concentrates
on how the tool supports the design steps proposed by the presentation generation phase
of the Hera methodology.

Chapter 5 answers research Question 4. In order to support RDF query optimization
one can define an algebra composed of a data model and a set of operators that fulfill certain
equivalence laws. An example of such an RDF algebra is RAL. This algebra was developed
from a database perspective in the sense that it provides similar extraction operators
(with similar equivalence laws) as the ones found in relational algebra. Differently than
the relational algebra RAL provides construction operators for building new data elements.

6 CHAPTER 1. INTRODUCTION

Based on the identified algebra equivalence laws, a heuristic query optimization algorithm
is proposed. Chapter 5 was previously published as [Frasincar et al., 2004b]. It is based on
previous work published in [Frasincar et al., 2002c]. This chapter also appears in [Vdovjak,
2005].

Chapter 6 answers research Question 5. The input data and design specifications of
a SWIS built with the Hera methodology are RDF data. As RDF data has a graph
representation we were able to successfully apply a general purpose graph visualization
tool to analyze large sets of RDF data inside a SWIS. Based on the proposed visualization
techniques one can answer complex questions about this data and have an effective insight
into its structure. Chapter 6 will to be published as a book chapter [Frasincar et al., 2005].
It is based on previous work published in [Telea et al., 2003].

The last chapter, Chapter 7, gives a summary of the main results and indicates some
possible future research directions.

Chapter 2

Methodologies for Web Information
Systems Design

Modern Web Information Systems (WIS) are characterized as data-intensive
systems in which data integration and personalization aspects play important
roles. Designing such WIS is far from trivial: the good old software engineer-
ing principles need to be adapted to the peculiarities of the Web. With re-
spect to this researchers have proposed several WIS design methodologies among
which we mention the model-driven methodologies due to the advantages they
offer. Several WIS design methodologies and their accompanying tools are pre-
sented in this chapter. The emerging Semantic Web offers numerous bene-
fits/opportunities for the WIS designers. WIS that use Semantic Web technolo-
gies are called Semantic Web Information Systems (SWIS). In this chapter, we
also present some of the pioneering work in developing SWIS design method-
ologies. A brief comparison of the presented (S)WIS methodologies is given
emphasizing for each methodology its strong and weak points.

2.1 Introduction

The Web of today has more than ten trillion pages and around one billion users. Its
success lies in its very characteristics: it is unbound in space and time (it is available
everyday, around the clock, and around the world), it uses the hypermedia paradigm (it
provides flexible access to information according to the associative nature of the human
mind [Bush, 1945]), it is distributed (it uses the popular client/server architecture with
multiple clients and servers), and it is for free (there is no organization that owns the Web).
If the nineteenth century was dominated by the “industrial revolution”, the beginning of
this century is marked by the “information revolution” having the Web as its main engine.

A Web Information System (WIS) [Isakowitz et al., 1998] is an information system that
uses the Web to present data to its users. The first generation of WIS presented the data
in terms of carefully authored hypermedia documents. Typically, this involved the hand-

7

8 CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

crafting of a static collection of pages and links between these pages in order to convey
information to the users.

Due to its popularity there was an increasing need to make available on the Web more
data sources to present up-to-date information. As such the second generation of WIS
was characterized as data-intensive applications, that usually produced on-the-fly Web
presentations from data stored in databases. The databases connected to the Web form
the so-called “deep Web” as opposed to the “surface Web” composed of static pages. It
is the “deep Web” that is the most interesting one for WIS developers as it is 500 times
larger and offers much better quality than the “surface Web”.

The next generation Web, the Semantic Web, is an “extension of the current Web in
which information is given well-defined meaning, better enabling computers and people to
work in cooperation” [Berners-Lee et al., 2001]. One can view the Semantic Web as a large
decentralized global knowledge representation system. The third generation WIS are the
Semantic Web Information Systems (SWIS) , i.e., WIS that make use of the Semantic Web
technologies.

Some typical examples of Web Information Systems are: commerce sites, online newspa-
pers, educational sites, Web order tracking systems, etc. All these systems share a number
of characteristics. First of all, as indicated above, they are data-intensive applications. This
data can come from a single source or from different sources that need to be integrated.
Based on the (integrated) data a WIS automatically generates a hypermedia presentation.
The one-size-fits-all approach for traditional hypermedia is not suitable for delivering in-
formation dynamically to different users with different platforms (e.g., PC, PDA, WAP
phone, WebTV) and different network connections (e.g., dial-up modem, network copper
cable, network fiber optic cable). The personalization component in a WIS will take care
exactly of these user/platform features so that the user has a pleasant browsing experience.

The lack of rigor in developing WIS leads to serious problems (with respect to main-
tenance, evolution) when the complexity of these applications grows. Web Engineering,
a new discipline, is responsible for proposing a systematic approach to the successful de-
velopment of Web applications [Murugesan et al., 2001]. As in software engineering, Web
engineering emphasizes the need to carefully design your application before implementing
it. Also the existence of reusable components simplifies a lot the development of new Web
applications. Differently than the classical software engineering approach, Web engineering
needs to consider the peculiarities of Web applications, e.g., the navigational aspects of
these application.

The design of WIS is a highly complex task that needs to consider all WIS features
(e.g., data-intensive, data integration, automatic generation of the presentation, personal-
ization). It is the consideration of these WIS characteristics at an early stage in the WIS
development life-cycle, i.e., at design time, that, in our opinion, ensures the Web applica-
tion success. We also believe that a methodology that clearly identifies different steps for
coping with different WIS aspects will greatly reduce the WIS development effort.

Several design methodologies have been proposed to help the designer to specify WIS.
A distinguished group of methodologies are the model-driven methodologies, i.e., method-
ologies that use models to specify the different aspects of a WIS. A model-based approach

2.1. INTRODUCTION 9

for WIS design has numerous benefits: better communication and understanding of the
system among stakeholders, model reuse, improved system maintainability and evolution,
possibility for checking validity and consistency between models, etc.

Figure 2.1 shows on a timeline some of the most popular (S)WIS design methodologies.

2003

1995

1996

1997

1999

1998

2000

2001

2002

Semantic WebClassic Web

OOHDM

RMM

STRUDEL

OntoWebber

SEAL

OO−H

UWE
SiteLang

WebML

XWMF

Time

Araneus

WSDM

AMACONT
OOWS

OntoWeaver
SHDM

Figure 2.1: WIS methodologies.

Some of the most well-known WIS design methodologies are: RMM [Diaz et al., 1997],
OOHDM [Schwabe and Rossi, 1998], STRUDEL [Fernandez et al., 2000], Araneus [Mecca
et al., 1998], WSDM [De Troyer and Leune, 1998], WebML [Ceri et al., 2003], Site-
Lang [Thalheim and Dusterhoft, 2001], UWE [Koch et al., 2001], OO-H [Gomez and
Cachero, 2003], AMACONT [Fiala et al., 2004], and OOWS [Pastor et al., 2003].

There are few design methodologies that exploit the potential of the Semantic Web.
Some of the pioneering methodologies for designing SWIS are: XWMF [Klapsing and
Neumann, 2000], OntoWebber [Jin et al., 2001], SEAL [Maedche et al., 2002], SHDM [Lima
and Schwabe, 2003a], and OntoWeaver [Lei et al., 2003]. Common to all these systems is

10CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

the use of ontologies (as specifications of conceptualizations) [Gruber, 1993] for describing
models. These ontologies are supported by inference layers that use ontology rules (axioms)
to deduce new facts based on existing facts.

The main goal of using such an approach is application interoperability. By application
interoperability is meant not only the WIS interoperation at data level (the output of one
system is the input of another system) but also the ability to reuse existing WIS models in
building new WIS. Also the model verification of such systems becomes simpler (compared
with the verification of traditional WIS design models) as part of the verification is a direct
application of the ontology semantics. The semi-structured aspect of Web data asks for
the use of semi-structured representations (as opposed to the structured data present in
classical databases) which are supported by some of the Semantic Web languages.

The rest of the chapter is structured as follows. Section 2.2 presents some of the most
well-known methodologies for WIS design. Section 2.3 describes some pioneering method-
ologies for SWIS design. Section 2.4 gives a brief comparison of (S)WIS design method-
ologies emphasizing for each methodology its strong and weak points. Finally, section 2.5
concludes the chapter suggesting possible evolutions of SWIS design methodologies.

2.2 Methodologies for WIS Design

2.2.1 RMM

Methodology

The Relationship Management Methodology (RMM) [Isakowitz et al., 1995; Diaz et al.,
1997] uses a “relationship management” approach for modeling WIS. By “relationship
management” it is meant the management of relationships among information objects.
RMM is developed from a database perspective by using the popular Entity-Relationship
(E-R) diagram. At the core of the methodology there are four different activities: E-R
design, application design, user interface design, and construction/testing.

The E-R design produces an E-R diagram in order to depict the entities and rela-
tionships relevant to a particular application domain. Each entity has attributes that
describe its data characteristics. The relationships are associative relationships as they de-
pict associations between different entities. These associative relationships have cardinality
one-to-one or one-to-many. Similar to database modeling, many-to-many relationships are
decomposed into two one-to-many relationships.

The application design produces an application model. The application model has
two types of navigational elements: slices and access structures. The most significant
access structures are indexes, guided tours, and links. A slice groups information into a
meaningful presentation unit. The information is given by attributes of E-R entities. Slices
can be aggregated in order to form higher level slices. The slices that correspond to pages
are called top-level slices. The simple slices contain only one attribute. A slice can be the
anchor of a link which has as destination a top-level slice. A slice is owned by an entity from
the E-R model and as such can be viewed as an entity extension. Embedded slices need to

2.2. METHODOLOGIES FOR WIS DESIGN 11

specify the E-R relationship that associates the embedded slice owner with the embedder
slice owner, in case that the two owners are different. For one-to-many relationships the
application model designer can choose between indexes and guided tours, as corresponding
access structures.

The user interface design describes the presentation of each application model element.
This involves the layout of slices, anchors, indexes, and guided tours. RMM suggests the
use of the low-fidelity (paper and pencil) and high-fidelity prototyping methods. The paper
and pencil prototyping gives a high-level overview of how one views the application. The
working prototype was built in order to better understand application’s behavior. In an
interactive manner, based on the observations made available from the running prototype,
the application model might be readjusted.

The construction/testing phase, as in traditional software engineering projects, builds
and tests the WIS based on the previous specifications. Special care needs to be considered
for the testing of all navigational paths. More on the details of this phase (the WIS
construction) can be found in the next subsection.

Tools

RMCase [Diaz et al., 1995] is an environment to support the development of WIS using
RMM. The environment takes in consideration cognitive issues of hypermedia software de-
velopment. The three cognitive requirements used in RMCase are: feedback loops across
methodological phases, manipulation of design objects, and lightweight prototyping. The
tool supports: bottom-up, top-down, and middle-out software development styles. RMCase
has six contexts (views): E-R design context, application (navigation) context, node-link
conversion context, user interface context, hyperbase population, and prototyping (simula-
tion) context. One can recognize four of these contexts as corresponding to the four RMM
phases. The designer can easily navigate from one context to another by means of the tool
navigation bar.

In the E-R design context the user specifies the entities, attributes, and relationships
of the application domain. In the application context one builds an application model
composed of slices, links, indexes, and guided tours. In the node-link conversion context one
can automatically convert the application model to a node-link web. In the user interface
context the designer builds HTML templates that are associated to the previously generated
nodes. Each attribute or link anchor has an associated “slot” in the HTML template. In
the hyperbase population context one adds instances into the application database. These
instances can be “pumped” into the nodes (data hard-coded in the application) or queries
(SQL) can obtain data on-demand from the underlying database. The prototyping context
enables the application designer to test the capabilities of the future Web application by
means of an automatically generated prototype.

12CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

2.2.2 OOHDM

Methodology

The Object-Oriented Hypermedia Design Methodology (OOHDM) [Schwabe et al., 1996;
Schwabe and Rossi, 1998] uses an object-oriented approach for modeling WIS. The object-
oriented approach chosen for OOHDM is motivated by the fact that object orientation is
supported by successful standards (e.g., UML) and it offers powerful object view mech-
anisms. At the core of the methodology there are five different activities: requirements
specification, conceptual design, navigation design, abstract interface design, and imple-
mentation.

The requirements specification identifies the users of the system and the activities the
users would like to perform with the system. A user can play one role or multiple roles in
the system. Scenarios, provide narrative descriptions of user activities for a certain role.
Related scenarios are aggregated in a use case that informally describes the user interaction
with the system without considering the internal aspects of the application. A more formal
description of this interaction is provided in a user interaction diagram [Guell et al., 2000].
The user interaction diagram can be used for the derivation of the models specific to the
conceptual design and the navigation design of the application.

The conceptual design produces a conceptual schema using a notation very similar to
a UML class diagram. The conceptual schema captures the domain semantics as inde-
pendently as possible from the different types of users and tasks. Conceptual classes may
use different relationships like inheritance, aggregation, and association. In addition to
the well-known UML constructs, OOHDM proposes attribute perspectives, i.e., different
media types that can characterize a certain attribute (e.g., a building description can have
a text and an image associated to it).

The navigation design produces a navigation class schema complemented with a con-
text diagram. The original conceptual schema needs to be reorganized such that the
application fits the user needs. Different navigation models need to be built for different
applications using the same domain data. A navigational class schema has three types of
navigational elements: nodes, links, and access structures. Recognizing the need to group
class attributes from a presentation perspective, navigation classes (also called nodes) are
defined as views on the conceptual schema using an object-oriented query language. The
attributes perspectives are mapped to different navigational class attributes. Similar to
the class relationships between conceptual classes, links reflect navigational relationships
between navigational classes to be explored by users. For each link, some of the navigation
class attributes are marked as anchors. Access structures like indexes and guided tours are
other possible ways to access the navigation nodes.

In order to structure the navigation space one can define navigational contexts. A
navigational context is a set of navigational objects. There are five types of navigational
contexts: simple class derived (objects of a class that satisfy a property, e.g., buildings
with address Rio de Janeiro), class derived group (a set of simple class derived contexts,
where the defining property of each context is parameterized, e.g., building by location),

2.2. METHODOLOGIES FOR WIS DESIGN 13

simple link derived (all objects related to a given object, e.g., buildings designed by Oscar
Niemeyer), link derived group (a set of link derived contexts, where the the source of
the link is parameterized, e.g., buildings designed by architect), and enumerated (set of
elements explicitly enumerated). Associated to contexts there are access structures like
indices. A navigational context contains the specifications of its elements, an entry point,
and an associated access structure. If the elements of the context depend on the user
browsing behavior, the context is said to be dynamic (e.g., history and shopping basket).
“InContext” classes extend certain nodes with attributes when these classes are navigated
in a particular context.

The abstract interface design produces abstract data views (ADV) and abstract data
view charts (ADV-charts). ADVs are abstract in the sense that they represent the interface
and the state, and not the implementation. ADVs define the interface appearance of
navigational classes and access structures, and other useful interface objects (e.g., menus,
buttons, etc.). ADVs capture the statical part of the interface: the perception properties
and the interface’s events. The dynamical part of the interface is given by ADV-charts, a
derivative of the UML state charts that specify the system’s reaction to external events.

Among the object-oriented design patterns used in OOHDM we distinguish the ob-
server pattern for the navigational classes and ADVs, and the decorator pattern for the
“InContext” classes. From the UML notation we recognize the class diagrams for concep-
tual schemas and the state diagrams for the ADV-charts. Aggregation and inheritance are
used in both conceptual schemas and ADVs.

The implementation phase produces a WIS based on the previous OOHDM specifica-
tions. The designer has to decide on how to store the conceptual and navigational objects.
Also he needs to decide on how to realize the static and dynamic aspects of the interface
using HTML and some extensions. More on the details of this phase can be found in the
next subsection.

Tools

OOHDM-Web [Schwabe et al., 1999] is an environment to support the development of
WIS using OOHDM. It is based on the scripting language Lua [Ierusalimschy et al., 1996]
and the CGILua environment [Hester et al., 1997]. Navigational classes and contexts are
stored in relational databases. ADVs and ADV-charts are implemented by a combina-
tion of HTML templates (ADV structure) and OOHDM-Web library function calls (ADV
behavior). OOHDM-Web has three interfaces: the authoring environment, the browsing
environment, and the maintenance environment.

In the authoring environment the designer specifies the navigation schema generating
database definitions. OOHDM assumes that the navigation schema is given (no need
to translate it from a conceptual schema) and stores it in a relational database. Each
navigational class and link are implemented as tables. For navigational classes each column
stores an attribute and each arrow corresponds to an object of that class. All class tables
have an attribute “key” defined. The link tables define relations between the corresponding
object keys. Attribute perspectives are stored in a separate table. There is also a table

14CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

to store all context names and their types. Each context type has a corresponding table
that stores all context of this type. These tables refer to HTML templates. OOHDM also
provides functions to manipulate the state of different contexts.

In the browsing environment the designer specifies HTML templates according the
corresponding ADV specifications. An HTML template is combined with OOHDM-Web
function calls to return dynamically computed data. Examples of OOHDM-Web functions
are “Index”, “Attrib”, “PrevLink”, “NextLink”, etc. The different kind of events can be
handled by inserting scripting code in the HTML page.

In the maintenance environment the designer specifies interfaces to allow the inser-
tion/change of the instance data (nodes and contexts). Also by using summary screens
the environment allows one to check the design. For example one can see which are the
previously stored navigational classes and contexts.

OOHDM-Web is also supported by a CASE environment [Lyardet and Rossi, 1996]
that helps the designer to describe the conceptual, navigational, and interface models of
its application using the OOHDM notation. Based on the chosen run-time environment
the tool is able to generate appropriate implementations.

OOHDM-Java2 [Jacyntho et al., 2002] introduces a business model as a generalization
of the conceptual model and the application’s transactional behavior. In response to a user
request the business model is possibly updated based on the application’s business rules
(stored in the same business model). The navigational nodes and contexts are created
based on data stored in the business model. The requested page template is then popu-
lated with the data coming from navigational nodes and contexts. In this implementation
OOHDM models are stored in XML and the page templates are defined in JSP. The im-
plementation environment was Java2EE (Java 2 Enterprise Edition), a popular platform
for implementing robust distributed multi-tier architectures.

2.2.3 WSDM

Methodology

The Web Site Design Method (WSDM) is an audience-driven design methodology for build-
ing WIS [De Troyer and Leune, 1998]. An audience driven philosophy takes as a starting
point the explicit modeling of different target users, i.e., audiences and derives from it the
system’s navigation structure. WSDM consists out of five phases: mission statement, au-
dience modeling, conceptual design, implementation design, and implementation. Recently,
WSDM has been extended to support localization [De Troyer and Casteleyn, 2004] and
adaptive behavior [Casteleyn et al., 2003, 2004].

The mission statement expresses the purpose, the subject, and the intended audiences
for the WIS. The intention of this phase is to make clear from the very beginning what is
the goal of the WIS, what is the subject that is involved in realizing the goal, and that no
intended visitors are forgotten.

During audience modeling, the mission statement is taken as a starting point to classify
the different audiences into a hierarchy, based on their information and functional require-

2.2. METHODOLOGIES FOR WIS DESIGN 15

ments. Each group of visitors with similar functional and informational requirements form
an audience class. Visitors with extra requirements are subclasses, and appear under their
parent audience class in the audience class hierarchy. The top of the hierarchy is called
the visitor audience class: it groups the most general requirements that all visitors to the
website share. Furthermore, for each audience class, their specific characteristics, usabil-
ity and navigation requirements are specified. These are later taken into account when
deciding how to present information to these particular visitors.

The conceptual design phase consists out of two important sub-phases: task and data
modeling and navigation design.

During task and data modeling, for each requirement, a task model is specified. This
task model decomposes each high-level requirement specified during audience modeling
into elementary requirements. WSDM uses CTT (Concurrent Task Trees) [Paterno, 2000]
to specify the task models, which allows next to standard task decomposition, also the
specification of temporal relations between the different subtasks. Then, for each elemen-
tary task derived in the task models, a tiny data model, called an object chunk, is specified.
Such an object chunk formally describes the information and/or functionality needed to
fulfill the elementary requirement it covers. Currently, WSDM uses ORM (Object Role
Modeling) [Halpin, 1995] (with some extensions for functionality) to express object chunks,
but a shift to Web Ontology Language [Bechhofer et al., 2004] is being done at the time
of writing.

In the next sub-phase, the navigation design, the conceptual navigation structure for
the website is defined. This is done by constructing a graph of nodes with links between
them, and connecting the object chunks to the nodes. A node is thus a conceptual naviga-
tion entity, containing information/functionality (i.e., object chunks) that logically belongs
together. The basic navigation structure is derived from the audience class hierarchy, sub-
dividing the global site navigation space into different “sub-sites”, one for each audience
class. Each so-called audience track contains all but only the information/functionality
required for that particular audience class. Using the task models, and more particularly
the temporal relations specified between elementary tasks, each audience track is further
refined.

The implementation design phase consists out of three sub-phases: page design, pre-
sentation design, and data design.

During page design, the designer decides which conceptual navigation nodes from the
navigation design will be grouped into one page. To do so, the characteristics of the
audience classes are taken into account. Possibly, different site structures can be defined,
for example by targeting different browsing devices.

The presentation design defines the look-an-feel of the application. This is done again
by taking in consideration the different requirements of the audience classes. With this
respect for each page a template depicting the page layout (i.e., positioning of nodes and
chunks) is defined. In addition it is specified the style (e.g., font type, size, color, etc.) for
all pages.

In the data design, based on the conceptual schema defined by the object chunks, the
schema of the underlying database is specified.

16CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

Finally, taking as an input the object chunks, the navigation design, and the implemen-
tation design, the actual implementation can be generated in the chosen implementation
language. Both static and dynamic sites are supported. The transformation is performed
fully automatically.

Tools

The Audience Modeler is a CASE tool that supports the audience modeling phase of
WSDM. It allows the designer to graphically describe the different audience classes and
their requirements. Furthermore, the tool also support the audience class matrix algo-
rithm [Casteleyn and De Troyer, 2001], which automatically constructs the audience class
hierarchy based on a simple series of yes/no questions. Naturally, a combined approach,
generating the audience class hierarchy and afterward manually adjusting it, is also sup-
ported. This tool has been implemented using Java and Wx Windows (now renamed to
wxWidgets [Anthemion Software, 2004]) for the graphical parts.

The Chunk Modeler is a CASE tool that supports the data (i.e., information and
functional) modeling phase (part of the conceptual design) of WSDM. It allows the designer
to graphically model object chunks using ORM. The extensions to ORM needed to model
functionality are also supported. This tool has been implemented using C++ and Wx
Windows (now renamed to wxWidgets) for the graphical parts.

WSDM has also a prototype of the implementation generation phase. This proto-
type takes as inputs (in XML format) the object chunks, the navigation design, and the
implementation design of a WSDM design, and outputs an actual implementation. The
implementation is done using XSLT [Kay, 2005b] transformations.

2.2.4 WebML

Methodology

WebML (Web Modeling Language) [Ceri et al., 2000, 2003] is a high-level modeling lan-
guage for the specification of WIS. It uses conceptual modeling techniques for describing
hypertext. WebML concepts have visual representations and are serialized in XML. The
WebML design methodology comprises three main phases: data design, hypertext design,
and implementation.

The data design produces the data schema composed from several sub-schemas: core,
access, inter-connection, and personalization schema. In the same way as for RMM the
data schema is an E-R diagram. The core sub-schema identifies the main entities in the
application domain. The access sub-schema enriches the core sub-schema with access
entities. In this phase one can define the categories and localizations of the previously
identified entities. In the inter-connection schema the core entities can be connected using
relationships. The personalization schema adds to the data schema, entities depicting the
user and its preferences. In this phase, for example, the user will be associated to its
preferred language.

2.2. METHODOLOGIES FOR WIS DESIGN 17

The hypertext design defines the navigational structure of the application. The result of
this phase is the hypertext model. The hypertext model is based on the concepts of units
and links. WebML uses a hierarchical organization of data in units, pages, areas, and site
views. The most primitive element is the unit, an atomic piece of information. Units are
grouped into pages. A page provides information to be presented at once to the user in
order to achieve a certain communication purpose. Pages that deal with a homogeneous
subject are grouped in areas. At the top of the hierarchy there is the site view which can
contain areas and pages. A site view defines all the information accessible in a WIS by a
certain user.

There are five types of basic units: data units, multidata units, index units, scroller
units, and data entry units. Data units display information about one object. Multidata
and index units show information about a set of objects. Differently than the multidata
unit, the index units allow the selection of one object out of a set. Scroller units support
the scrolling (moving backward/forward) through a set of objects. Data entry units enable
the user to insert new data into the system. The first four types of units have associated
sources and selectors. Sources are used to identify the entity (type) providing the unit data.
Selectors define define predicates to select the object(s) (of source type) to be presented
by the unit.

Between units/pages one can define links which are directed connections. WebML dis-
tinguishes several types of links: navigational, automatic, and transport links. These links
can carry information from the source to the destination. The information is stored in
the link parameters. The link parameters are used in the unit selectors (selectors with
link parameters are called parametric selectors). The navigational links require user in-
tervention. Both automatic and transport links are traversed without user intervention.
For automatic links once the source is presented also the associated destination is showed.
The transport links do not define navigation and are solely used to transport information.
Besides the link parameters, which use a point to point communication, one can define also
global parameters. A global parameter is small piece of information extracted during user
navigation which will be made available to all units in the system. The global parameters
are accessed/modified using the get/set units.

In addition to the previous units, WebML defines operation units used to invoke dif-
ferent operations. These operations can be for example associated to data entry units in
order to process information entered by a user. There are some predefined units to model
the content management operations like create, delete, and modify units (for entities), and
connect and delete units (for relationships). Also one can use operation units in order to
call in a synchronous or asynchronous manner Web services. The hypertext model can be
organized, if necessary, in a workflow-driven hypertext [Brambilla et al., 2002]. With this
respect WebML defines a workflow data model (composed of processes, activities, etc.),
workflow-specific operations (like start activity, end activity), and workflow-specific units
(like switch unit).

The implementation comprises two phases: the data implementation and hypertext im-
plementation. In the data implementation phase the data schema is mapped to data sources
using standard database techniques. In the hypertext implementation phase WebML pages

18CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

are mapped to JSP page templates. Such a JSP page contains a query to retrieve the rel-
evant data and a layout template used to present this data. For contextual links besides
the fixed part of the URL one needs to provide also the parameters associated to the link.
The operations used in the hypertext model are implemented also as JSP templates. These
JSP templates will not present information but will have only a side-effect to implement a
particular operation.

Tools

WebRatio [Ceri et al., 2003] is an environment to support the development of WIS using
WebML. It is one of the most comprehensive CASE tools for WIS development that we
have encountered so far. WebRatio has three interfaces that help to graphically define the
application models: data and hypertext design, data mapping, and presentation design.

The data and hypertext design interface allows the construction of both the E-R model
and the hypertext model of the application. This interface has two work areas: one for
the E-R model and one for the hypertext model. The data mapping interface assists the
designer in connecting entities and relationships to tables. The presentation design inter-
face is used to define XSL stylesheets. In order to support style reuse (among units/pages)
these stylesheets refer to unit placeholders instead of the actual units.

After defining all the above models one can trigger the code generator to produce
implementations for different target platforms. In case that HTML is the language of the
target platform, the output of the code generator will be a set of JSP page templates. In
addition to the JSP template pages, the code generator will produce the operation actions
(Java), and a set of XML descriptors. These XML descriptors are used to specify the
properties of units, pages, and links. For example a unit descriptor will specify the query,
input and output parameters associated with a unit.

2.2.5 SiteLang

Methodology

SiteLang (Site Development Language) [Thalheim and Dusterhoft, 2001; Schewe and Thal-
heim, 2004] is an abstract language with a strong theoretical foundation for the specifi-
cation of WIS. The language is based on the integration of three approaches: extended
E-R (Entity-Relationship) modeling [Thalheim, 2000], theory of media objects [Schewe and
Thalheim, 2001], and website storyboarding [Thalheim and Dusterhoft, 2001]. SiteLang
proposes a codesign methodology for the integrated specification of structuring, function-
ality, distribution, and interactivity for WIS.

The extended E-R model, called High-Order Entity-Relationship Model (HERM)
[Thalheim, 2000] adds to the classical E-R model, behavior specification, i.e., generic op-
erations to support the update/retrieval of data. Also the database types are extended
hierarchically such that one can build higher-order types (a type of level k is a set of types
of level k − 1).

2.2. METHODOLOGIES FOR WIS DESIGN 19

Storyboarding is the activity of defining the application story. A WIS can be described
as an edge-labeled directed multi-graph in which nodes are scenes and edges are transitions
between scenes. Each transition has a label which denotes a certain user action. If the
label is absent the transition is based on simple link following. Actions have associated a
triggering event, a precondition, and a postcondition.

A scene is a conceptual location at which dialogues (between the user and the WIS)
occur. To each scene there are associated: a dialogue step expression, a media object, a
set of actors involved in it, a representation, and a context. The dialogue step expression
is defined by means of a dialogue step algebra, recently replaced by a story algebra. A
media object is an instance of a media type, i.e., a view of some database and a defining
query. The classical database view is extended to support the notion of a link. With this
respect the query is able to create object identifiers that links can reference. Additionally
a media objects has associated dynamic operations and adaptivity specifications for a
controlled form of information loss. The adaptivity with respect to the device is stored in
the representation associated to the media object (e.g., delete images for devices that are
not capable to display images). The context specifies the access channel (e.g., high-speed,
low-speed), device (e.g., PC, WAP phone), and browsing history of the user.

The storyboarding language is a story algebra [Schewe and Thalheim, 2004]. To each
action is associated a scene. Based on actions and scenes one can define inductively pro-
cesses which are the arguments of the story algebra. Some of the algebra operators are:
sequence, skip, parallel, choice, iteration, etc. Processes can have preguards and postguards
associated to them. It has been showed that the story algebra is in fact a Many-sorted
Kleene Algebra with Tests (MKAT) where the sorts are the scenes (bundles of actions
at a certain WIS location) and the tests are the guards associated to processes. In this
way a site can be expressed as a MKAT expression. MKATs can be used to formalize the
personalization and information needs of the user by means of equations. These equations
will result in a simplification of the original story space.

Tools

The Storyboard Editor [Thalheim et al., 2004] is an environment to support the develop-
ment of WIS using SiteLang. It has several interfaces, each covering a certain WIS design
aspect as specified by the SiteLang methodology. This editor is backed by a database that
stores the WIS structure and functionality. In addition the tool also supports the automatic
generation of the WIS each time the content, structure, and functionality of the system are
changed. The WIS specifications expressed in SiteLang are stored as XML documents. The
graphical representations built using the Storyboard editor can be automatically serialized
in XML.

20CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

2.3 Methodologies for SWIS Design

2.3.1 XWMF

Methodology

The eXtensible Web Modeling Framework (XWMF) [Klapsing and Neumann, 2000; Klaps-
ing et al., 2001] is a modeling framework for designing SWIS using RDF. The core of the
framework is the Web Object Composition Model (WOCM), a formal object based language
used to define the structure and content of a Web application.

WOCM is a directed acyclic graph with complexons as nodes and simplexons as leaves.
Complexons define the application’s structure while simplexons define the application’s
content. Components are a special kind of complexons representing a physical entity (e.g.,
a Web page). The representation of an WOCM is done in RDF(S).

By means of RDFS inheritance mechanism one can define different views on the sim-
plexon for different browsing devices (e.g., HTML or WML). Such an implementation (of
the view) uses variables to refer to the concrete instances having the same type as the
original simplexon. Using RDFS multiple resource classification mechanism, a simplexon
instance can be an instance of more than one simplexon class. In this way the same object
can have different implementations for different platforms. These implementations share
the same object, a property which fosters object reuse. Complexons are defined for a
specific view (e.g., HTML or WML) in case that the included simplexons are instances of
more than one class.

The RDF extensibility feature allows the integration of different schemas in the same
WOCM. For example, in a content management system the data will be annotated with the
property “expires” in order to determine if a certain piece of information became obsolete.

Tools

XWMF is supported by a tool suite in order to create, process, and analyze its models.
All tools are written in Extended Object Tcl (XOTcl) [Neumann and Nusser, 1993] and in
Prolog. As WOCM has an RDF representation a number of tools have been developed to
facilitate RDF editing and processing.

The RDF parser was implemented using TclXML parser. RDF Handle provides an
interface to query RDF models. Gramtor is a graphical RDF editor able to work with
both RDF/XML and RDF triple notation. The WebObjectComposer is able to store
WCOMs (in RDF) as XOTcl classes and objects, and to generate a corresponding Web
implementation.

The graphical user interfaces were done using the Motif version of Wafe [Neumann and
Zdun, 2000], a Tcl interface for XToolkit. For exploring RDFS representations an RDFS
parser on top of SWI-Prolog RDF parser [Wielemaker, 2000] was built. In addition to the
RDF rule set, one can define new rules to capture the semantics of user-specific predicates.

2.3. METHODOLOGIES FOR SWIS DESIGN 21

2.3.2 OntoWebber

Methodology

OntoWebber [Jin et al., 2001] is an ontology-driven design methodology for building SWIS.
Here, by ontology, is meant a set of terms (real-world or abstract objects) and their re-
lationships (with semantic significance). The system’s architecture is composed of three
layers: integration layer, composition layer, and generation layer.

In the integration layer, first the syntactic differences between the different data sources
are resolved. As a semi-structured data format for data representation was chosen RDF. In
the second phase, the semantic differences between the different data sources are resolved.
With this respect a reference ontology (domain ontology) is built for a specific domain. The
articulation ontology bridges the semantical gap by mapping the concepts and relationships
between data sources and the reference ontology.

The composition layer uses four ontologies that captures different aspects involved in
designing a WIS: the navigation ontology, the content ontology, the presentation ontology,
the personalization ontology, and the maintenance ontology. For a WIS, each ontology
will be instantiated with a corresponding site model. All site models are integrated in one
graph called the site-view.

The navigation model defines the basic elements of the site-view graph: cards, pages,
and links. A card is a minimal unit of information. Pages contain one or more cards and
correspond to the Web pages. Links connect cards in order to define the WIS navigational
structure. Cards are classified as dynamic (depend on the source data change) or static
(do not depend on source data change). There are four types of dynamic cards: fact cards
(one instance), list cards (index of instances), slide cards (guided-tour of instances), and
query cards (input properties).

The content model defines the data that will populate the navigation model. For static
cards the static elements (types text, image, or anchor) are defined. For dynamic cards an
entity from the domain model is specified. Also one needs to specify the entity properties
that will be presented for these cards. There are two types of links: foreign (link to an
external Web page) and native (link to a internal page). Native links are further classified
as: static (no information flow) or dynamic (with information flow). Dynamic links have
three properties associated: a query property, which produces the content of the destination
card, a binding variables property, which stores values of the source entity, and an initiating
property which defines the anchor in the source card. The queries are expressed in the
TRIPLE [Sintek and Decker, 2002] RDF query language.

The presentation model specifies the look-and-feel of the application. Both cards and
pages have associated style elements (font, color, etc.). Card style overrides the style of its
embedder (a page). There are three type of layouts: flow layout (one row), grid layout (a
table), and frame layout (composed of one static frame and one dynamic frame).

The personalization model supports both fine-grained (user) and coarse-grained (group)
adaptation. For a specific user/group a site view and user model are defined. The user
model contains the capacity property (e.g., name, age, gender, etc), interest property (the

22CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

navigation, content, and presentation models), and request property (triggers, e.g., site
view update, that will be fired if some conditions are fulfilled).

The maintenance model focuses mainly about content maintenance (maintenance of the
functionality is not considered here). It defines an administrator user and the maintenance
rules (triggers) associated with him. The administrator can update the source data and
the site view specifications (note that among these models is the personalization model
which he can rewrite for some users).

The generation layer has two phases: the constraint verification phase and the site view
instantiation phase. In the first phase the constraints imposed to the WIS are checked. As
ontologies are defined in RDFS some of the constraints are automatically verified by directly
applying the RDFS semantics. One can formulate additional constraints like structural
constraints (e.g., every dynamic card has an incoming link), semantic constraints (e.g.,
the query card should have the same entity associated with it as the destination card),
presentation constraints (e.g., suppress images for small devices). All these constraints are
expressed as TRIPLE rules. Based on the data sources and site view specifications a site
view instantiation is generated in the second phase of this layer.

Tools

OntoWebber is supported by an integrated development environment (IDE) in order to
develop WIS [Jin et al., 2002]. The main components of the environment are: Ontology
Builder, Site Builder, Site Generator, and Personalization Manager.

The Ontology Builder assists the WIS designer in developing the domain ontology.
The Site Builder is used to create the site view (graph) which is exported in three models:
navigation, content, and presentation model. Additionally the Site Builder is used to define
rules for checking integrity constraints on the site view. The verification of these rules is
done in the same tool component. The Site Generator instantiates the site view with
data. The Personalization Manager defines model-rewrite rules for the site views in order
to present personalized information to its users.

2.3.3 SEAL

Methodology

The Semantic PortAL (SEAL) [Maedche et al., 2002, 2003] is a domain ontology-driven
design methodology for building WIS that represent Web portals. By Web portal is meant
a WIS which has a large collection of information related to specific topics and often
organized in a hierarchical manner. SEAL proposes a number of steps for building a Web
portal: ontology design, data integration, site design, and implementation.

In the ontology design one creates the domain ontology in RDFS and refines it using
F-Logic [Kifer et al., 1995] axioms.

The next step, the data integration, lifts all the data sources to a common data
model, RDF. Several wrappers have been developed, e.g., for HTML, XML, and rela-

2.3. METHODOLOGIES FOR SWIS DESIGN 23

tional databases. Of course the RDF data present on the Web is ready to be used (no
need of wrapping). In addition SEAL can use data coming from an Edutella Peer-2-Peer
(P2P) network. Edutella provides in RDF the metadata infrastructure of P2P networks.
For the integration SEAL uses the warehouse approach to combine information coming
from different sources.

In the site design the navigation model, input model, and personalization model are
built. The navigation model defines the navigational structure over the warehouse. It is
generated by combined queries for schema (ontology) and content. First the users are
offered a view on the ontology by using different types of hierarchies (e.g., isA, partOf).
Second for each shown ontology part the corresponding content is presented. The input
model is used for knowledge acquisition by defining forms from the ontology. These forms
have associated queries that will update the warehouse with user entered data. In the
personalization model both navigation and input model are tailored for a specific user.

The last step is the implementation of the WIS using the above models. For the
presentation of different WIS pages specific templates are defined. More on the details of
this phase can be found in the next subsection.

Tools

SEAL is supported by a number of tools included in the KArlsruhe ONtology and Semantic
Web (KAON) [AIFB, University of Karlsruhe, 2004] tool suite, an ontology management
infrastructure.

OntoEdit [Storey et al., 2002] is a tool used for building the domain ontology. The
metadata (RDF) available on the Web can be collected by the KAON Syndicator. KAON
Reverse is a visual tool to map the logical schema of relational databases to the domain
ontology.

The KAON Portal Maker produces a WIS implementation based on the different SEAL
models. It uses the model-view-controller design pattern. In this pattern the models are
the SEAL specification models, the view is defined by the presentation template, and the
default controller provides standard application logic (update data, generate links to the
next objects to be presented). The default controller can be replaced with a custom-made
controller.

2.3.4 SHDM

Methodology

The Semantic Hypermedia Design Method (SHDM) [Lima and Schwabe, 2003a,b] is an
ontology-based SWIS design methodology. It extends the power of expression of OOHDM
(see subsection 2.2.2 for a brief OOHDM description) by defining ontologies for each of
the OOHDM models. These ontologies are specified in OWL [Bechhofer et al., 2004],
a more expressive language than RDFS. In the same way as OOHDM, SHDM identifies
four different phases: conceptual design, navigation design, abstract interface design, and

24CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

implementation.
The conceptual design builds the conceptual class schema for the application domain.

This schema is described in UML extended with a few new characteristics like the ability
to specialize relations. The UML diagram is mapped to an OWL model according to
some heuristics rules. In addition to the previously defined OWL classes one can define
new classes by using boolean expressions specifying necessary and sufficient conditions for
class membership. These last type of classes are called inferred classes and are represented
graphically by UML stereotypes.

The navigation design defines the navigational class schema and the navigational con-
text schema. The main navigational primitives are navigational classes (nodes), naviga-
tional contexts, and access structures. In the same way as for the conceptual class schema,
one can specialize navigational relations. The mappings between the conceptual schema
and navigational class schema are defined using RQL [Karvounarakis et al., 2002]. The
navigation context allows the description of sets of navigational objects. The new definition
for concepts is more expressive than the one from OOHDM. For example one can create
groups of contexts by using the subclassing mechanism. It is the user who will decide
which particular specializations he wants to see. Context have associated with them access
structures (e.g., indexes). SHDM introduces the powerful concept of facet (i.e., category)
access structure that simplifies a lot the description of navigational context schema. This
will represent any combination of the classes and their subclasses for navigation with the
restriction given by explicitly specified invalid facet combinations.

The abstract interface design defines the abstract widget ontology and concrete widget
ontology [Moura and Schwabe, 2004; Schwabe et al., 2004]. The abstract widget ontol-
ogy defines the following widgets: EventActivator (reacts to external events, e.g., link or
button), ElementExhibitor (presents some content type, e.g., image), VariableCapturer
(receives the value of some variables, e.g., input fields), and any composition of the above.
Abstract interface widgets must be mapped on concrete interface widgets in order to ap-
pear on the interface (e.g., an EventActivator can be mapped to a Link). Abstract interface
widgets must also be mapped to specific navigation elements (e.g., an ElementExhibitor is
associated to a certain navigational class attribute).

The implementation phase produces a SWIS based on the previous SHDM specifica-
tions. In this phase a converter from the UML representation to the OWL representation of
the models is needed. More on the details of this phase can be found in the next subsection.

Tools

SHDM is supported by several tools in building a WIS: an SHDM2OWL mapping tool, an
ontology editor, the Sesame storage, inference and query environment [Aduna, BV, 2005]
and a presentation builder.

The SHDM2OWL mapping tool [Lima and Schwabe, 2003b] is used to convert the
SHDM class schema, SHDM navigational class schema, and navigational context schema
into OWL representations. The OWL representations are subsequently stored in a Sesame
repository. Similar to OOHDM, SHDM defined templates for pages and the styles associ-

2.4. DISCUSSION 25

ated to pages. The OOHDM queries have been replaced by RQL queries.

The ontology editor [Lima and Schwabe, 2003b] allows the designer to directly build
one of the SHDM ontologies in OWL or to visualize the ontologies produced by the
SHDM2OWL mapping tool. One can also use as an ontology editor the Protege [Noy
et al., 2001] environment.

The presentation builder [Schwabe et al., 2004] has an architecture composed of the fol-
lowing components: Request Handler, Template Engine, View Manager, Navigation Man-
ager, Data Manager, Template Engine, and Output Postprocessor. The Request Handler
gets the user request specifying the view name with possibly some navigational parame-
ters. The Request Manager communicates with the View Manager, Navigation Manager,
and Data Manager (in this order) to get to the right data associated to a user requested
view. The page template associated to this view is given by the Template Engine that
is responsible for producing the final page. Optionally the Template Engine can call the
Output Postprocessor to convert the produced page (e.g., in XML) to a Web browsable
format (e.g., HTML).

2.4 Discussion

Model-driven methodologies have proven to fulfill the practical needs that the WIS designer
experiences. For example WebML was successfully used for projects inside Microsoft,
Cisco Systems, TXT e-solutions, and Acer Europe, and SiteLang was used for several city
information, learning, e-government, and community sites in Germany. Being at their
infancy SWIS design methodologies were merely used in research. For example SEAL was
used to develop the institute portal of AIFB, University of Karlsruhe and OntoWebber
was exploited for realizing the Semantic Web community portal.

In the rest of this section we use several comparison criteria in order to stress the strong
and weak points of some of the most representatives WIS and SWIS design methodologies.
These comparison criteria are:

• methodology: does the methodology provide design steps and guidelines for each step
in order to produce models?

• tools: is the methodology supported by CASE tools?

• automation: is there support to automatically build Web presentations based on
previously specified models?

• data integration: does the methodology consider the integration of data coming from
different heterogeneous sources?

• personalization: does the methodology support adaptation mechanisms in order to
realize the application personalization?

26CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

• user interaction: does the methodology support complex forms of user interaction
(e.g., by means of forms) with the system?

• task model: does the methodology explicitly model the tasks of the user in a separate
task model?

• presentation model: does the methodology explicitly model the presentation aspects
(the look-and-feel aspects, separate from navigation) of the application?

• verification: can the methodology models be easily verified for their validity and
consistency among each other?

• reuse: does the methodology support the design of reusable components?

Most of the (S)WIS design methodologies identify two models: the domain model, which
describes the application domain, and the navigation model, which depicts the navigation
(linking) aspects through the data.

Table 2.1 shows an overview of the characteristics of some WIS design methodologies
with respect to the previously selected criteria.

RMM OOHDM WSDM WebML SiteLang
Methodology Yes Yes Yes Yes Yes
Tools Yes Yes Partial Yes Yes
Automation Partial Yes Partial Yes Yes
Data integration No No No No No
Task model No Partial Yes Partial Yes
Personalization Partial Yes Yes Yes Yes
User interaction No Partial No Yes Yes
Presentation model No Yes No No No
Verification No No No No Yes
Reuse Yes Yes Yes Yes Partial

Table 2.1: WIS methodologies comparison.

The analyzed WIS design methodologies have a well-structured methodology and good
tool support. One of the tools is the code generator that builds in an automatic way a
Web presentation based on previously specified models. RMM and WSDM are examples
of methodologies that have tools that only partially support this automatic process.

The WIS requirements describing what the user actually wants to do with such a WIS
are very often neglected by WIS design methodologies. A notable exception is WSDM that
models the audience that the WIS targets. Its characteristic feature is that it proposes a
task model associated with a certain audience. The task model is subsequently used to
derive the navigation model in which a navigation track corresponds to a certain audience.
Similar to the task models are the storyboards used in SiteLang. An alternative approach

2.4. DISCUSSION 27

is proposed by OOHDM which models the interaction between the user and the system in
a user interaction diagram. The WSDM task model and the SiteLang storyboard are more
expressive than the user interaction diagram as they have complex task operators (like
concurrency, choice, iteration, etc.) which are not available in user interaction diagrams.

For all the examined WIS design methodologies the data integration issue was ignored.
This is mainly due to the lack of representation languages on the classic Web to express
data semantics. It is the Semantic Web with its support for expressing data semantics that
fosters application interoperability. Knowing the data semantics one can easily integrate
data coming from different sources.

In order to personalize a WIS, the designer identifies user profiles, which stores char-
acteristics of the user and his browsing platform. These user profiles can be aggregated
in group profiles which cluster the users with the same requirements. To a user profile
or group profile one can attach specific views. The conceptual model is augmented with
user-specific entities and relationships that can refer back to the application domain model.
In WebML these extensions form the so-called personalization sub-schema. In addition to
the above personalization techniques, OOHDM proposes the personalization of the entities
(attribute content of an entity) in the conceptual model and of the layouts in the interface
model (based on user preferences or selected devices).

Another feature neglected by the examined methodologies is the design support offered
for the presentation aspects (the look-and-feel aspects) of WIS. Most of the methodologies
refer to templates (for example XSL templates) that describe the styling information of the
systems. An exception is OOHDM which has an explicit presentation model. This model
does not only depict the static presentation characteristics of the system (e.g., layout) but
also the dynamic aspects of the system, i.e., what will be the system reaction to external
events.

Modern WIS allow the user to interact with the system in order to let him influence
the next page to be generated in the hyperspace. These systems need to make available
complex user interaction (e.g., by means of forms). WebML supports the modeling of
user input and its processing using data entry units and processing units, respectively.
SiteLang defines activities for gathering user input and variables to store the data input
by the system. These variables can be used by processing activities that will perform
computations based on user input. The results can be made available for display in the
scenes associated to the processing activities.

Verification is yet another aspect that was ignored by most of the WIS design method-
ologies that we analyzed. An exception is SiteLang, a WIS design methodology with strong
theoretical foundations. Having strong theoretical grounds SiteLang produces very concise
WIS representations by means of formulas. This formulas can be easily verified for well-
formedness. Moreover a SiteLang formula can be minimized (optimized) by considering the
equations that model certain user characteristics (like preferences or information needs).
In this way one can considerably reduce the complexity of a WIS specification.

All examined methodologies provide primitives that can be reused in the model specifi-
cation. Models can be refined by means of inheritance, enabling thus the reuse of existing
specifications. An object-oriented approach like the one used in OOHDM or the extended

28CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

E-R Modeling from SiteLang fosters also the reuse of the behavior specifications. In ad-
dition, object-oriented approaches benefit from the reuse of design patterns (e.g., observer
pattern, decorator pattern). The OOHDM team is also actively involved in defining nav-
igational patterns to support coarse-grained reuse in navigational models. With respect
to expressivity and fine-grained reuse in navigation specifications we found that WebML
has one of the most extended set of navigational primitives that satisfy most of the WIS
designer needs.

Table 2.4 shows an overview of the characteristics of some SWIS design methodologies
with respect to the previously selected criteria.

XWMF OntoWebber SEAL SHDM
Methodology Partial Yes Partial Yes
Tools Yes Yes Yes Yes
Automation Yes Yes Yes Yes
Task model No No No Partial
Data integration No Yes Yes No
Personalization No Partial No Yes
User interaction No No Partial Partial
Presentation model No Partial No Yes
Verification Partial Yes Partial Partial
Reuse Yes Yes Yes Yes

Table 2.2: SWIS methodologies comparison.

Less mature than the WIS design methodologies, many SWIS design methodologies fo-
cus less on the steps needed to build SWIS. These methodologies emphasize how ontologies
can be used for their model representations and their support tools. The representation lan-
guage ranges from RDF (in XWMF) to OWL (in SHDM). Having such a standardized mean
to express application semantics greatly improves system’s interoperability. SWIS design
methodologies (e.g., SHDM) that extend an existing WIS methodology (e.g., OOHDM)
benefit from the reuse of the methodological steps and are better structured than the rest
of the examined SWIS design methodologies.

Most of the examined SWIS design methodologies have good tool support. Tools for
automatic generation of WIS based on previously defined models do also exist. Being at an
early development stage most of these methodologies do not provide an integrated devel-
opment environment like the ones we found for WIS design methodologies (e.g., RMCase,
OOHDM-Web, WebRatio).

The SWIS specifications describing what the user tasks in a SWIS are neglected by most
of the examined SWIS design methodologies. SHDM is the only SWIS design methodology
that addresses this issue by means of the user interaction diagram that it inherits from
OOHDM. As SWIS design methodologies will become more mature and their applicability
will go beyond research laboratories we hope that more attention will be given to the
specification of user tasks.

2.5. CONCLUSIONS 29

Data integration is a topic of special interest for SWIS design methodologies. Having
the necessary technologies to describe the data semantics facilitates the integration of data
coming from different sources. Common to all these methodologies is the wrapping of the
data sources in a semantic representation. These semantic representations are mapped to
a common (application) data representation. The only methodology that doesn’t consider
data integration is XWMF, as the authors focus on the presentation aspects of a SWIS.

Most of SWIS design methodologies have defined models and ontologies to describe the
model semantics. Seen as an advanced feature few of these methodologies provide model
“hot-spots” to support system’s personalization. A notable exception is SHDM which
reuses the adaptation mechanisms from OOHDM. An interesting approach is provided by
OntoWebber which briefly sketches personalization by means of model re-write rules.

There is very little support in the analyzed SWIS design methodologies to model more
advanced forms of user interaction with the system than simple link following. SEAL offers
a limited form of user interaction by defining forms only for changing the system input
data not affecting thus the application’s hyperspace. The only form of user interaction
that OOHDM supports is the user selection of items from existing data.

As for WIS design methodologies, a feature also neglected in the examined SWIS design
methodologies is the design support offered for the presentation aspects (the look-and-feel
aspects) of SWIS. OntoWebber briefly sketches similar presentation specification mecha-
nisms.

Differently than WIS design methodologies, SWIS design methodologies support model
verification. This is largely due to the direct application of the model semantics as specified
in the associated ontologies. Besides the validation feature offered by the use of ontolo-
gies, some methodologies (e.g., OntoWebber) offer the possibility to express structural,
semantical, and presentational constraint verification.

SWIS design methodologies support reuse by inheritance mechanism not only at concept
level but also at property level in their models. This is due to the property-centric view
of the Semantic Web languages (e.g., RDF, OWL) that support property specialization.
XWMF also shows how the multiple instantiation mechanism can enable the reuse of the
same data object for different implementations. SHDM introduces the faceted navigation
structure that has a concise representation which reduces the effort of specifying navigation
models.

2.5 Conclusions

In this chapter we presented the current situation with respect to (S)WIS design method-
ologies. While WIS design methodologies did reach maturity, more research has to be
done for WIS methodologies that make use of Semantic Web technologies (the so-called
SWIS design methodologies). Realizing the benefits of the Semantic Web platform (e.g.,
interoperability, inference capabilities, increased reuse of the design artifacts, etc.) tradi-
tional WIS design methodologies like OOHDM or WSDM are now focusing on designing
SWIS. New methodologies like OntoWebber were specifically designed by considering the

30CHAPTER 2. METHODOLOGIES FOR WEB INFORMATION SYSTEMS DESIGN

Semantic Web peculiarities.
Realizing the importance of a personalized (S)WIS, during the last years a lot of at-

tention was given to the design of the (S)WIS adaptation aspects. Good results were
obtained for the static system adaptation (e.g., OOHDM, WebML), i.e., adaptation per-
formed before the user starts browsing the (S)WIS. More work has to be done for the
dynamic adaptation of these systems, i.e., adaptation performed during user browsing of
the (S)WIS. Research done in the adaptive hypermedia [De Bra et al., 1999] field can prove
to be useful for designing adaptive (S)WIS.

As the Semantic Web matures, we hope that the same will happen with SWIS design
methodologies. One of the main obstacles in building SWIS is also the absence of stan-
dardized query languages and the lack of data transformation languages for the Semantic
Web. By defining standards for integration, conceptual, navigational, presentation, and
personalization modeling one will greatly contribute for SWIS application interoperability.
Also by having the user profile defined in a standard way will enable the reuse of user
profiles among SWIS.

An important factor to assure the success of a WIS design methodology is the existence
of tool support. A powerful methodology that is not accompanied by adequate tools will
make the designer’s tasks very difficult to fulfill. Most of the WIS design methodologies
have powerful CASE tools. There are very few SWIS design methodologies with a good
tool support.

Chapter 3

The Presentation Generation Phase
of Hera

Hera is a model-driven methodology for designing Semantic Web Information
Systems (SWIS). The presentation generation phase of the Hera methodology
builds a Web presentation for some given input data. Based on the principle of
separation of concerns, Hera defines models to describe the different aspects of a
SWIS. These models drive the specification of the data transformations used in
the implementation of the Hera presentation generation phase. The Hera pre-
sentation generation phase has two variants: a static one that computes at once
a full Web presentation, and a dynamic one that computes one-page-at-a-time
by letting the user influence the next Web page to be presented. The dynamic
variant proposes, in addition to the models from the static variant, new models
to capture the data resulted from the user’s interaction with the system. The
implementation of the static variant is based on XSLT data transformations and
the implementation of the dynamic variant is based on Java data transforma-
tions.

3.1 Introduction

Hera is a SWIS design methodology. It proposes design steps that, based on the separation
of concern principle, specify different aspects of a SWIS. These specification aspects are
given by models that have graphical representations. The implementation of a SWIS using
the Hera methodology is based on data transformations driven by Hera models. Hera has
its origins in the RMM design methodology [Diaz et al., 1997]. Differently than RMM, Hera
specifies also other features of a SWIS like the look-and-feel aspects, the user interaction
with the system, or the presentation adaptation.

Figure 3.1 shows the main phases in Hera: data collection and presentation genera-
tion. The Hera methodology comes also with a straightforward implementation in which
the Hera’s main phases and the design steps corresponding to these phases are naturally

31

32 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

mapped to components in a pipeline software architecture. We point out that the software
based on this architecture is just one of the possible implementations of SWIS given the
specifications required by the Hera methodology.

Browsing Devices

. .
 .

Data Sources

. .
 .

Query

Hera

Query Data

Query

Presentation

Data
Collection

Generation
Presentation

Data

Session
Data

Figure 3.1: Hera’s main phases.

The data collection phase helps to make the data available from different sources, such
that in response to a user query a data result set is obtained. In this phase of the process
the integration model is defined that maps data from the different sources to a common
data representation. This mapping is needed whenever for a given query the instances that
compose the query result need to be retrieved. The data collection phase is outside the
scope of this thesis. More information on this phase can be found in [Vdovjak et al., 2003].

The presentation generation phase builds a hypermedia presentation for the retrieved
data. It is based on a sequence of data transformations driven by several models. These
models depict different application aspects that are relevant in this process: what is the
domain of the application, what is the navigation structure for data from this domain, how
to arrange and style the data on the user’s display, and how can we tailor the generated
presentation based on user preferences and user browsing platform. As can be seen from
Figure 3.1 the generated hypermedia presentations can target different platforms like PC,
WAP phone, PDA, etc.

The presentation generation phase has two variants: a static one in which the user is
unable to change the content of the generated hypermedia presentation and a dynamic one
which considers the user interaction with the system in the process of building the next
hypermedia page. In the static variant all pages are generated before the user browses
the presentation and in the dynamic variant one page is generated-at-a-time during the
browsing.

In order to better support the description of Hera’s presentation generation phase we
use a running example based on real data coming from the painting collection in a museum,
the Rijksmuseum in Amsterdam.

3.2. RDF(S) 33

The remainder of this chapter is structured as follows. Section 3.2 explains why we
chose RDF as a model representation language. Section 3.3 presents the static presentation
generation phase of Hera. Section 3.4 presents the dynamic presentation generation phase
of Hera. Section 3.5 concludes the chapter and presents future work.

3.2 RDF(S)

For the Hera specifications RDF(S) [Lassila and Swick, 1999; Brickley and Guha, 2004] is
used. RDF(S) is the foundation language of the Semantic Web. There are several reasons
for choosing RDF(S): it is flexible (it supports schema refinement and description enrich-
ment), it is extensible (it allows the definition of new resources/properties), and it fosters
Web application interoperability (it provides a framework to describe in a uniform way
the data semantics). As RDF(S) doesn’t impose a strict data typing mechanism it proved
to be very useful in dealing with semi-structured (Web) data. On top of RDF(S) high-
level ontology languages (e.g., DAML+OIL [Connolly et al., 2001], OWL [Bechhofer et al.,
2004]) are defined, which allows for expressing axioms and rules about the described classes
giving the designer a tool with larger expressive power. We believe that choosing RDF(S)
as the foundation for describing models enables a smooth transition in this direction.

Hera models are described in RDFS. An RDFS vocabulary is developed for each model
in order to define the model’s concepts (which are the classes and properties to be used
in a model). Model instances have an RDF representation which are validated against
their corresponding schema (model). Having such standards to express models enables
the model reuse between different applications. The use of RDFS allows us also to reuse
existing RDFS vocabularies for expressing for example domain models or user profiles.

In some applications built with Hera we successfully reused the domain model de-
veloped for museum descriptions in the TOPIA (Topic-based Interaction with Archives)
project [Rutledge et al., 2003] and the User Agent Profile (UAProf) [Wireless Application
Protocol Forum, Ltd., 2001], a Composite Capability/Preference Profiles (CC/PP) [Klyne
et al., 2004] vocabulary for modeling device capabilities and user preferences.

3.3 Presentation Generation (Static)

The typical structure of the static variant of the presentation generation phase is given
in Figure 3.2 in terms of three layers: the conceptual layer defines the content that is
managed in the SWIS, the application layer provides the navigation structure on the data,
and the presentation layer gives the presentation details that are needed for the generation
of the hypermedia presentations on a concrete platform. As can be noted from Figure 3.2,
in the static variant for the presentation generation phase the whole Web presentation is
produced at once in response to a user query.

The presentation generation phase distinguishes the following steps: the conceptual
design, the application design, the presentation design, and the implementation. Each

34 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Application LayerConceptual Layer Presentation Layer

Presentation Design

Presentation Model (PM)Application Model (AM)Conceptual Model (CM)

CM Adaptation Model AM Adaptation Model PM Adaptation Model

Conceptual Design Application Design

(External)

User/Platform Profile

Web page

Application Engine Presentation Engine
(incl. PM Adaptation)(incl. AM Adaptation)

CM Adaptation

Implementation

Engine
Data Collection

Figure 3.2: Presentation generation phase (static).

design step produces appropriate models that capture the design aspects specific to this
step. A model uses concepts from a model-specific vocabulary. In order to ease the
specification of the models the model concepts have associated graphical representations.
In this way a model can be showed as a diagram to facilitate the designer development and
understanding of a certain model.

Adaptation [Frasincar et al., 2004a] is not seen as a separate design phase because this
process is distributed through all the previously identified design steps. In the adaptation
design the user/platform profile (UP) is defined, i.e., it is determined which are the user
preferences and platform characteristics that can influence the Web presentation before
the user starts the browsing session. The adaptation model specifies adaptation conditions
(Boolean expressions) used to tailor the Hera models based on the UP attributes. An
excerpt of the UP vocabulary is given in Figure 3.3.

We present the adaptation model when we show the different design steps. If the
designer is not interested in adapting the system he can ignore the adaptation aspects
in the proposed methodological steps. The adaptation presented here is a fine-grained
adaptation. A coarse-grained adaptation is achieved by using group profiles, instead of
UPs. In this approach users with similar characteristics are assigned a group profile. One
of the advantages of coarse-level adaptation is the decrease in the system’s workload, as
the performed adaptation is relevant for several users.

3.3. PRESENTATION GENERATION (STATIC) 35

Hardware Platform
PC

WAP phone

User Preferences

Software PlatformProfile

type

imageCapable

client

. .
 .

levelOfExpertise

Boolean
No

Yes

PDA

Expertise

Client

Expert

Beginner

Normal

Vision
Normal

Poor
levelOfVision

component
property

Figure 3.3: User/platform vocabulary.

3.3.1 Conceptual Design

The conceptual design specifies the input data in a uniform manner, independent from the
input sources. The result of this activity is the conceptual model (CM). From a database
point of view, the CM defines the schema for the data that needs to be presented. The
CM serves also as the interface between the data collection phase and the presentation
generation phase of the Hera methodology.

Figure 3.4 shows the CM vocabulary. It defines the following notions: concept, concept
attribute, and concept relationship. A concept represents a certain entity in a particular
application domain. Concept attributes and concept relationships refer to media types
and other concepts, respectively, in order to describe the properties that characterize a
concept. As CM vocabulary we did use the standard RDFS concepts with three extensions:
one for modeling the cardinality of the concept relationships, one for representing the
inverse of the concept relationships, and one for depicting the media types, the so-called
media vocabulary. Similar to database modeling, many-to-many concept relationships are
decomposed into two one-to-many concept relationships. In this way we have only two
types of cardinalities: one-to-one and one-to-many.

Figure 3.5 shows the type hierarchy in the media vocabulary. In the same way as
AMACONT [Fiala et al., 2003], we base our media vocabulary on a subset of the MPEG-7
standard [Martinez, 2003]. The basic media types are: Text, Image, Audio, and Video.
The figure also shows the attributes of the media types, for example the nrChars of a text
or the width and height of an image. For the refinement of the Text media types the XML

36 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

ConceptMedia

Concept Relationship

MultipleSingle

type
property

concept attribute concept relationship

Cardinality
cardinality inverse

Figure 3.4: Conceptual model vocabulary.

Schema Datatypes (e.g., String or Integer) are used (not shown in the figure). One of the
focus points of the Hera methodology is to reuse as much as possible the existing Web
standards providing thus a higher degree of application interoperability.

TimeMedia

Image

FrameMedia

Literal Literal Literal Literal

Literal

Literal
Literal

Media Literal

duration

bitsPerPixel

Video Audio

frameHeight

frameWidth

Text

nrChars frameRate samplingRate

mediaURL

property
subClassOf

Figure 3.5: Media vocabulary.

Media adaptation selects the most appropriate media items for the technical system
parameters provided by different network environments and client devices. Figure 3.6 shows
a few media adaptation examples. For devices that are not able to display images (like
certain WAP phones), the images are removed from the presentation. Based on display
size, large strings and images are selected for PC, and small versions of the same strings
and images are selected for PDA.

Figure 3.7 shows am excerpt of the CM for the running example. Concepts are rep-
resented as ovals and media types as rectangles. There are three concepts: Technique,

3.3. PRESENTATION GENERATION (STATIC) 37

Image

LargeImage SmallImageLargeString

subClassOf

condition

String

SmallString

up:imageCapable = Yes

up:client = PC up:client = PDA

Figure 3.6: Media adaptation.

Artifact, and Creator. A Creator has two concept attributes attached to it, cname, for the
creator’s name, and biography for the creator’s biography, both depicted by String items. A
Creator is associated using the concept relationship creates to an Artifact. The cardinality
of this concept relationship is one-to-many, i.e., one creator creates many artifacts. The
inverse of the creates concept relationship is the created by concept relationship. Note that
both concept relationships and concept attributes are denoted as concept properties.

String
Integer

String
String

Image

String String

exemplified_by
year

exemplifies *1 *

description

tname
1 cname

biographyaname

picture

Creator

property

Technique Artifact creates
created_by

Figure 3.7: Conceptual model.

The conceptual model presented in Figure 3.7 depicting any creator, artifact, or tech-
nique can be refined to a specific artistic domain. Figure 3.8 shows the specialization (in
a type hierarchy) of the previous conceptual model to the painting domain. Concepts
are specialized by the subClassOf property and concept relationships are specialized by
the subPropertyOf property. For example, the Creator is specialized as a Painter and the
creates relationship is specialized as paints.

CM adaptation selects concepts or concepts attributes from the CM to be used in the
presentation. Figure 3.9 shows an adaptation example in the conceptual model. In this
example the description of the painting technique is removed from the whole presentation
if the user is not an Expert. This is the so-called context-independent adaptation, i.e., adap-
tation that affects the entire presentation. An example of context-dependent adaptation,

38 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

String
Integer

String

String

String

Image

String

String

*1 * 1
Technique CreatorArtifact

1*
PainterPainting

subPropertyOf
subClassOf
property

description

tname

exemplified_by
exemplifies

aname

picture

year
created_by

creates

biography

painted_by

area
paints

cname

Figure 3.8: Specialization in the conceptual model.

i.e., adaptation that affects only a certain situation in a presentation, is provided in the
next section.

String

String

property

description

tname

Technique

condition

up:levelOfExpetise = Expert

Figure 3.9: Adaptation in the conceptual model.

3.3.2 Application Design

The application design defines the navigational aspects of the presentation that is gener-
ated. A CM does not suffice to model a Web application [Rossi et al., 1999]: one needs
to define the navigational view over the CM. The result of this activity is the application
model (AM). From a database point of view, the AM is a view over the CM extended with
navigation primitives.

Figure 3.10 shows the AM vocabulary. It defines the following notions: slice, slice at-
tribute, and slice relationship. A slice [Isakowitz et al., 1998] is a meaningful presentation
unit that fulfills a certain communication purpose. Slice attributes are used to refer to

3.3. PRESENTATION GENERATION (STATIC) 39

media types. There are two types of slice relationships, slice aggregation and slice navi-
gation. The first type of slice relationship facilitates the inclusion of a slice into another
slice and the second type of slice relationship is used to define navigation between slices.
An empty slice1 is a slice that has its content defined at design-time. Such a slice has only
one attribute that refers to a media type added at design-time. A non-empty slice has its
content defined at run-time. In order to know from where the content is to be extracted at
run-time slices have associated to them an owner concept from CM. The owner attribute
for an empty slice can be any concept, as the slice content is defined at design-time.

Media

Empty SliceMedia Set

Slice

Slice AggregationSlice Navigation

Slice Relationship

Concept Attribute

Complex SliceSimple Slice
slice aggregation

slice attribute

slice attribute

Non−Empty Slice
slice

slice navigation

owner

navigation
External Page

Concept

slice aggregation

concept attribute

Concept Relationshipconcept relationship

subPropertyOf
subClassOf
property

Figure 3.10: Application model vocabulary.

The definition of a non-empty slice is recursive: a slice can be a simple slice or can con-
tain other slices2. A simple slice has only one slice attribute that refers to the same media

1Dealing with data-intensive applications, by ‘empty’ is meant that there is no content that will populate
this type of slice at run-time.

2Due to their nested nature, slices are also called M-slices where ’M’ stands for Matryoshka, the Russian
doll [Diaz et al., 1997].

40 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

as the concept attribute of the owner concept from CM. A slice that aggregates other slices
is called a complex slice. The recursion is defined by utilizing the slice aggregation relation-
ship. The aggregation relationship between two slices that have two different owners needs
to specify the concept relationship (or a relationship derived from the CM by relationship
chaining) between the two owner concepts from the CM that made such an embedding
possible. In case that the cardinality of this concept relationship is one-to-many the Set
construct needs to be used. A top-level slice corresponds to a Web page. Using a slice
navigation relationship, a slice (the anchor) can be linked to a top-level slice. Additionally
a slice can be linked to an external Web page.

Figure 3.11 shows an excerpt of the AM for the running example. Slices are depicted
(as their name suggests) by pizza-slice shapes. There are two slices, the main slice owned
by Technique and the main slice owned by Artifact. We use the convention to denote
the slice (long) name by Slice.<concept name>.<slice short name>, in order to distin-
guish them from concept names or slices with the same short name but owned by dif-
ferent concepts. The name of the slice owned by Technique is thus Slice.Technique.main.
The slice Slice.Technique.main aggregates (by means of slice aggregation relationships)
two simple slices and one complex slice. The simple slices Slice.Technique.tname and
Slice.Technique.description are owned by Technique. The complex slice that aggregates
Slice.Artifact.picture is owned by a different concept, i.e., Artifact. The aggregation re-
lationship used for this embedding refers to the exemplified by concept relationship be-
tween Technique and Artifact. As the cardinality of exemplified by is one-to-many the
Set construct is also inserted. In a similar manner the slice Slice.Artifact.main is de-
fined. As created by has cardinality many-to-one (inverse of creates), the Set construct
is not used in this case. The slice navigation relationship connects the picture of an ar-
tifact Slice.Artifact.picture with the slice giving detailed information about that artifact
Slice.Artifact.main.

picture

aname
year

created_by

Creator
cname

description

exemplified_by

picture
Artifact

Set

Artifact

mainmain

tname

Technique

aggregation (with CM property name)
navigation

Figure 3.11: Application model.

The AM presented in Figure 3.11 depicting the main slices for techniques and ar-

3.3. PRESENTATION GENERATION (STATIC) 41

tifacts can be refined to a specific artistic domain. Figure 3.12 shows the specializa-
tion (in a type hierarchy) of the previous AM to the painting domain. Slices are spe-
cialized by the subClassOf property. For example, the slice Slice.Creator.main is spe-
cialized by the slice Slice.Painting.main. Slice.Painting.main inherits all the slice rela-
tionships of Slice.Technique.main and adds three new slice relationships to it: two slice
aggregations and one slice navigation. The aggregation relationships refer to the slice
Slice.Technique.area and Slice.Technique.tname. The navigation relationship links back-
wards the Slice.Technique.tname with the Slice.Technique.main.

exemplifies

Technique
tname

created_by

Creator
cname

picture

aname
year

tname

description

exemplified_by

picture
Artifact

Set

Technique Artifact

mainmain

Painting

emain

area

subClassOf

navigation
aggregation (with CM property name)

Figure 3.12: Specialization in the application model.

The AM adaptation [Frasincar and Houben, 2002] is based on two typical adaptation
mechanisms: conditional inclusion of fragments (fragments are slices in our context) and
link hiding [Brusilovsky, 2001] (links are slice navigation relationships in our context). A
link is hidden when its destination slice has an invalid condition.

Figure 3.13 shows an adaptation example in the AM. In this example the description
of the painting technique is removed from the main slice of this technique if the user is
not an Expert. Later on in the presentation, the description of the painting technique can

42 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

description

exemplified_by

picture
Artifact

Set

Technique

main

tname

aggregation (with CM property name)
condition

up:levelOfExpertise = Expert

Figure 3.13: Adaptation in the application model.

appear also for users that are not Experts (at that point in the presentation, the system
can consider that the user is now ready to digest more advanced information). This is the
so-called context-dependent adaptation, i.e., adaptation that affects only the current slice
(by current slice is meant the top-level slice that contains the slice with the condition).
Slices that have attached conditions outside the scope of a container slice have a context-
independent adaptation, i.e., these slices will be removed from the whole presentation,
no matter where they appear. This is similar to the context-independent adaptation for
conceptual model adaptation showed in Figure 3.9. Note that the removal of a concept or
concept attribute from a presentation has as its consequence the removal of all associated
slices (i.e., slices for which the concept is an owner) and of the slice that refers to that
concept attribute, respectively.

3.3.3 Presentation Design

The presentation design specifies the look-and-feel aspects of the presentation that is gener-
ated, independent from the implementation. The result of this activity is the presentation
model (PM). It describes the layout and style information of the presentation. Both aspects
are not to be neglected because they might have an immediate impact on the user choice
for a certain application among applications offering similar functionality.

Figure 3.14 shows the PM vocabulary. It defines the following notions: region, region
attribute, and region relationship. A region is an abstraction for a rectangular part of the
display area where the content of a slice will be displayed. Each region is associated to
a slice, the so-called region owner, from which the region content will be derived. The
definition of region is very similar to that of a slice with a few simplifications and some
additions. Region attributes are used to refer to media types. There are two types of
region relationships, region aggregation and region navigation. The first type of region
relationship facilitates the inclusion of a region into another region and the second type

3.3. PRESENTATION GENERATION (STATIC) 43

of region relationship is used to define navigation between regions. The classification
empty/non-empty does not apply for regions as regions get their content from the slice
owner always at run-time.

The definition of regions is recursive: a region can be a simple region or can contain
other regions. A simple region has only one region attribute that refers to the same media
as the slice attribute of the corresponding simple slice from AM. Differently than for slices,
one doesn’t need to specify a corresponding concept attribute. A region that aggregates
other regions is called a complex region. The recursion is defined by utilizing the region
aggregation relationship. Another difference from slices is that for aggregation relationships
there is no need to specify concept relationships. The Set construct, aggregation, and
navigation relationships are copied for a region from the corresponding (by the owner
relationship) slice. A top-level region corresponds to a Web page and is owned by a top-
level slice.

Region Navigation

Region Relationship

Media

TimeLayout

FlowLayout

BoxLayout

TableLayout

Set
Style

External Page

Complex Region

Slice

owner

Simple Region
region aggregation

region attribute

RegionLayout
region navigationlayout

region

style

region

navigation

region aggregation

Region Aggregation

subPropertyOf
subClassOf
property

Figure 3.14: Presentation model vocabulary.

A region has a particular layout manager and style associated with it. There are four
abstract layout managers: BoxLayout, TableLayout, FlowLayout, and TimeLayout. The
layout managers describe the spatial/temporal arrangements of regions embedded into
another region. The list of layout managers can be easily extended with other layouts like
BorderLayout, OverlayLayout, GuidedTourLayout, etc.

[Frasincar et al., 2001] presents an alternative way of defining layouts by using quali-
tative and quantitative constraints for regions. These constraints are associated to region

44 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

relationships which are further classified as temporal, navigational, and spatial. Temporal
relationships express the notion of time, navigational relationships represent (hyper)links,
and spatial relationships define the spatial arrangements in presentations.

The layout managers were inspired from the abstract user interface (XML) representa-
tions from AMACONT [Fiala et al., 2004], UIML, and XIML [Souchon and Vanderdonckt,
2003]. These layout managers describe client-independent layouts that allow to abstract
from the exact features of the browser’s display. Note that because regions can be aggre-
gated, layouts can also be aggregated (by means of regions), and thus one is able to build
complex layouts.

The style information describes the colors, fonts, backgrounds to be used in a region,
etc. Regions that do not have explicitly associated style information associated with them
inherit the style of their container. In this way the designer is not forced to specify style
information if that is not necessary.

The BoxLayout arranges the inner regions on one row or one column. Table 3.1 sum-
marizes the possible attributes of the BoxLayout. The height, width, border, and space
attributes have integer values that represent number of pixels.

Attribute Meaning Usage Values
axis orientation of the layout required “x”|“y”
rows number of rows optional integer
columns number of columns optional integer
height height of the layout optional integer|percentage
width width of the layout optional integer|percentage
border size of the layout border optional integer
space space between content and border optional integer

Table 3.1: BoxLayout attributes.

TableLayout arranges the inner regions in a table. Though it can be realized by nested
BoxLayouts, we implemented it separately because SWISs often present dynamically re-
trieved sets of data in a tabular way. Table 3.2 summarizes the possible attributes of the
TableLayout. Due to the dynamic nature of SWIS applications, the number of items in
a complex region that uses the Set construct is not known at design-time. In such cases
one should use only one of the dimensions: rows or columns. The missing dimension is
automatically computed at run-time.

FlowLayout arranges the inner regions in the same way as words on a page: the first
line is filled from left to right, then does the same for the lines below. Table 3.3 summarizes
the possible attributes of the FlowLayout.

TimeLayout shows the inner regions in a time sequence that produces a slide show.
Table 3.4 summarizes the possible attributes of the TimeLayout. The duration attribute
has a float value that represents number of seconds. TimeLayout is used for platforms that
support time sequences for presenting media items, e.g., Timed Interactive Multimedia

3.3. PRESENTATION GENERATION (STATIC) 45

Attribute Meaning Usage Values
rows number of rows optional integer
columns number of columns optional integer
height height of the layout optional integer|percentage
width width of the layout optional integer|percentage
border size of the layout border optional integer
space space between content and border optional integer

Table 3.2: TableLayout attributes.

Attribute Meaning Usage Values
border size of the layout border optional integer
space space between content and border optional integer

Table 3.3: FlowLayout attributes.

Extensions for HTML (HTML+TIME) [Schmitz et al., 1998] and Synchronized Multimedia
Integration Language (SMIL) [Ayars et al., 2005].

Attribute Meaning Usage Values
duration play time for a sequence element optional integer
repeat number of times to repeat one sequence optional “indefinite”|integer

Table 3.4: TimeLayout attributes.

Table 3.5 summarizes the possible layout-related attributes for a region used inside a
BoxLayout, TableLayout, or FlowLayout. These attributes describe how each referenced
region has to be arranged in its surrounding layout. For example, the regions embedded in a
layout form a sequence for which the order needs to be specified. For this purpose the order
attribute is used. Note that for the TableLayout, the cell elements are counted from left
to right and from top to bottom. The sort attribute specifies the sorting criteria for region
instances. For example alpha(Slice.Technique.tname,ascending) specifies an alphabetical
sorting in ascending order based on the name of artistic techniques. Besides the existing
sorting functions like alpha and num, for alphabetical and numerical sorting, one can use
its own sorting function (e.g., a multi-sort for data with different facets). If the sort criteria
is not provided, the regions will be arranged in the order in which region content (data) is
given by the data collection phase.

Even though most attributes are platform-independent, there are platform-dependent
attributes in order to consider the specific card-based structure of WML presentations.
The optional attribute wml visible determines whether in a WML presentation a region
should be shown on the same card. If not, it is put onto a separate card that is accessible

46 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

by an automatically generated hyperlink, the text of which is defined in wml description.
The wml description attribute can refer to a constant string or one of the simple slices that
give some of the content for a region. Note that this kind of content separation provides
scalability by fragmenting the presentation according to the small displays of WAP phones.

Attribute Meaning Usage Values
valign vertical alignment optional “left”|“center”|“right”
halign horizontal alignment optional “top”|“center”|“bottom”
ratio space to be filled optional percentage
order order in the sequence optional integer
sort sorting criteria optional string
wml visible show on same card optional boolean
wml description anchor description optional string

Table 3.5: Layout-related region attributes inside BoxLayout/TableLayout.

Table 3.6 summarizes the possible layout-related attributes for a region used inside a
FlowLayout. It is a subset of the previous set of attributes.

Attribute Meaning Usage Values
order order in the sequence optional integer
sort sorting criteria optional string
wml visible show on same card optional boolean
wml description anchor description optional string

Table 3.6: Layout-related region attributes inside FlowLayout.

Table 3.7 summarizes the possible attributes for a region used inside a TimeLayout.
The begin, duration, and end attributes have float values that represent the number of
seconds.

Attribute Meaning Usage Values
begin (absolute) start time optional float
duration play time optional float
end (absolute) end time optional float

Table 3.7: Layout-related region attributes inside TimeLayout.

Table 3.8 presents some of the possible style attributes. These attributes refer to the
font characteristics (e.g., size, color), background, link colors, etc. The definition of these
attributes is inspired from Cascading Style Sheets (CSS) [Bos et al., 2004].

3.3. PRESENTATION GENERATION (STATIC) 47

Attribute Meaning Usage Values
font-family the family of a font optional “times”|“helvetica”| ...
font-style the style of a font optional “normal”|“italic”
font-size the size of a font optional “small”|“medium”|“large”
font-color the color of a font optional “red”|“green”|...
font-weight the weight of a font optional “normal”|“bold”|...
background-color the color of the background optional “red”|“green”|...
link-color the color of a not-visited link optional “red”|“green”|...
visited-color the color of a visited link optional “red”|“green”|...
...

Table 3.8: Style attributes.

The layout managers need to be instantiated in order to be used in the PM. The layout
manager instances are used for complex regions. Also when referencing a region (or set of
regions) one needs to define values for the layout-related region attributes corresponding
to the layout associated to the container region.

Figure 3.15 shows an excerpt of the PM for the running example. Regions are de-
picted as rectangles. There are two top-level regions: RegionFullT and RegionFullA. Re-
gionFullT and RegionFullA are owned by Slice.Technique.main and Slice.Artifact.main,
respectively. We use the convention to denote the region (long) name by Region.<Slice full
name>.<Region short name>. The short name of a region can be omitted from its full
name, if the full name unambiguously identifies the region. The full name of RegionFullT
is Region.Slice.Technique.main.RegionFullT. As the full names are quite long in the rest of
the explanation it is used the short name of regions when these short names are available.

The region RegionFullT aggregates (by means of slice aggregation relationships) three
regions: one contains the technique name, one contains the technique description and, one
contains the set of pictures that exemplify a painting technique. As simple regions, the first
two regions do not need a layout. The third region, a complex region, has a TableLayout
specified for arranging the set of pictures. All three regions are arranged using a BoxLayout
specified in the RegionFullT. The style information is given by the DefaultStyle. As can be
seen from the figure the inner regions do not have the style information explicitly defined
which means that they inherit the style information from the container region. In a similar
manner is defined the region RegionFullA. The region navigation relationship connects
RegionBottomA with RegionFullA.

Figure 3.16 shows some of the layout attributes and layout-related region attributes
for our running example. RegionFullT has a BoxLayout with two attributes defined: axis
with value y which indicates that this layout has a vertical arrangement and width with
value 100% which means that this layout will completely fill the width of its container.
As RegionFullT is a top-level region, the container is the user’s display. In BoxLayout1
there are three regions embedded in the order specified by the order attribute. All three
regions have the halign layout-related attribute defined in order to specify that their hor-

48 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

picture

aname
year

picture
Artifact

Set

Technique Artifact

mainmain

tname

description

cname
Creator

navigation

RegionFullA (BoxLayout2, DefaultStyle)RegionFullT (BoxLayout1, DefaultStyle)

RegionBottomA (TableLayout1)

Figure 3.15: Presentation model.

izontal alignment will be centered. The third layout, RegionBottomA has two attributes
defined: cols with value 3 which indicates that this layout has three columns and width
with value 100% which means that this layout will completely fill the width of its container.
The container is in this case RegionFullT. RegionBottomA contains pictures for which the
horizontal alignment is centered.

picture
Artifact

Set

Technique

main

tname

description

axis
width

halign

halign

halign

halign

cols

width

order

order

order

property

RegionFullT (BoxLayout1, DefaultStyle) y

100%

center

center

center

center

RegionBottomA (TableLayout1)
3

100%

1

2

3

Figure 3.16: Layout and layout-related region attributes.

The PM presented in Figure 3.15 depicting the main regions for techniques and artifacts
can be refined to a specific artistic domain. Figure 3.17 shows the specialization (in a type
hierarchy) of the previous PM to the painting domain.

Regions are specialized by the subClassOf property. For example, the region Region-
FullA is specialized by the region RegionFullP. RegionFullP inherits all the region relation-

3.3. PRESENTATION GENERATION (STATIC) 49

picture

aname
year

picture
Artifact

Set

Technique Artifact

mainmain

tname

description

Creator
cname

Painting

emain

area

Technique
tname

subClassOf
navigation

RegionFullA (BoxLayout2, DefaultStyle)RegionFullT (BoxLayout1, DefaultStyle)

RegionBottomA (TableLayout1)

RegionFullP (BoxLayout2r, DefaultStyle)

RegionBottomT

Figure 3.17: Specialization in the presentation model.

ships of RegionFullA and adds three new region relationships to it: two region aggrega-
tions and one region navigation. The aggregation relationships refer to the regions Re-
gion.Slice.Painting.area and RegionBottomT. As RegionFullP contains more regions than
RegionFullA, the BoxLayout2 is replaced with BoxLayout2r which among other things
specifies in which order the added regions are placed. The navigation relationship links
backwards the RegionBottomT with RegionFullT.

PM adaptation selects layouts or styles from PM to be used in the presentation. Fig-
ure 3.18 shows two adaptation examples in PM. In one example, depending on the size
of the screen, the RegionBottomA uses a BoxLayout for PDA and a TableLayout for PC.
The small screen size of the PDA requires a vertical arrangement of the data. In the other
example the DefaultStyle uses medium fonts for a user with a average level of vision and
large fonts for a user with a low level of vision. Other possible adaptation examples are:
increasing the font of links for users with limited manual dexterity, eliminate colors for

50 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

color-blind users, etc.

picture
Artifact

Set

Technique

main

tname

description

DefaultStyle

property
condition

RegionBottomA (TableLayout1)
RegionBottomA (BoxLayout3)

RegionFullT (BoxLayout1, DefaultStyle)

large

font−weight

font−weight

medium

up:client = PDA

up:client = PC

up:levelOfVision = Normal

up:levelOfVision = Poor

Figure 3.18: Adaptation in the presentation model.

3.3.4 Implementation

The implementation of the static variant of the Hera presentation generation phase is
based on several data transformations specified by XSLT [Kay, 2005b] stylesheets. These
transformations operate on the RDF/XML [Beckett, 2004] serialization of the RDF mod-
els. The XSLT processor used for interpreting XSLT stylesheets is Saxon [Kay, 2005a].
Figure 3.19 shows the transformation steps for the static variant of the Hera presentation
generation phase. Each transformation step has a label associated with it. Some of these
transformations have substeps which are labeled using a second digit notation.

In Figure 3.19 there are two types of dashed arrows: “is used by” to express that an
RDFS model is used by another RDFS model and “has instance” to denote that an RDFS
model has as instance an RDF model. A model vocabulary, a model, a model instance, and
the generated presentations are depicted by rectangles. The transformation specifications
are represented by ovals.

There are three types of model/transformation specifications: application-independent,
application-dependent, and query-dependent. The application-independent specifications

3.3. PRESENTATION GENERATION (STATIC) 51

application model
instance
(rdf)cmi2ami

(xsl)

rdfs2rdf
(xsl)

presentation model
vocabulary
(rdfs)

HTML+TIME

AU
pmi2html+time

(xsl)

SMIL

RT

AU

(xsl)
pmi2smil

WML

HTML

(xsl)
pmi2wml

pmi2html
(xsl)

Query−dependent

Application−independent

Application−dependent

(rdfs)

media
vocabulary

vocabulary

conceptual model
instance
(rdf)

application model
(rdfs)

application model

(rdfs)

conceptual model
(rdfs)

has instance

is used by

(rdfs)

3.21

has instance

vocabulary

application model
unfolded
(rdf)

application model
unfolded, adapted
(rdf)

adaptation
(xsl)(xsl)

rdf2xsl3.1 2.2

2.1

ami2pmi
(xsl)

presentation model
instance
(rdf)

presentation model
unfolded
(rdf)

presentation model
unfolded, adapted
(rdf)

adaptation
(xsl)(xsl)

rdf2xsl5.1 4.2

4.1

5.2

presentation model
(rdfs)

(rdfs)
has instance

CC/PP user/platform

user/platform profile
(rdf)

vocabulary

vocabulary

(rdfs)
is used by

user/platform profile

has instance

data
collection

is used by is used by

is used by

6

6

6

6

is used by

conceptual model

has instance has instance
has instance

Figure 3.19: Presentation generation using XSLT.

do not refer to SWIS models (CM, AM, and PM), the application-dependent specifica-
tions refer to SWIS models, and query-dependent specifications refer to the SWIS models
and the retrieved data (e.g., model instances). One can note that the query-dependent
transformations are also application-dependent transformations. Transformations that are
application-independent are also called generic transformations. Transformations that are
application-dependent are also called specific transformations.

The input to the presentation generation phase is the conceptual model instance (CMI),
i.e., the data retrieved in response to a user query. This data is produced in the data
collection phase from a given set of input sources. This is step 1 in the figure and is not
described here. More information on step 1 can be found in [Vdovjak et al., 2003]. At the
current moment CM and media adaptation are carried on in the AM adaptation. Future
implementations will separate the CM and media adaptation from the AM adaptation.

52 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Step 2, the AM generation, builds an adapted AM template. This step contains two
substeps: the AM unfolding and the AM adaptation.

Step 2.1, the AM unfolding, generates the AM template. The AM template represents
the structure of an AM instance (RDF) based on the AM schema (RDFS). Such a template
will ease the specification of an XSLT stylesheet used to convert a CM instance (CMI) to
an AM instance (AMI). By unfolding the AM we mean repeating the process of adding
properties inside the subject classes until slice references or media items are reached. In this
way one obtains an AM template which will be filled later on with appropriate instances.

Step 2.2, the AM adaptation, executes the adaptation specifications on the AM tem-
plate. The transformation stylesheet of this step has two inputs: the AM template and
the UP. The UP attributes are replaced in the conditions by their corresponding values.
The slices that have the conditions not valid are discarded and the hyperlinks pointing to
these slices are disabled.

Step 3, the AMI generation, instantiates the AM with the retrieved data. This step is
composed of two substeps: the AMI transformation generation and the AMI creation.

Step 3.1, the AMI transformation generation, builds the transformation stylesheet that
will convert a CMI to an AMI. This step uses an XSLT stylesheet that will generate
another XSLT stylesheet. One should note that an XSLT stylesheet is a valid XML file
that can be produced by another XSLT stylesheet. This technique was also successfully
used in the previous version of the implementation which was XML-based [Frasincar and
Houben, 2001]. This transformation is based on the owner of a slice and the concept
attribute of a simple slice. The following name convention is used: a slice instance name
(e.g., Slice.Painting.main ID1) is obtained from the slice name (e.g., Slice.Painting.main)
concatenated with the suffix (e.g., ID1) of the associated concept instance identifier (e.g.,
Painting ID1). The implemented algorithm is straightforward: instantiate all slices for all
the corresponding retrieved concept instances and each time a slice is referenced add its
identifier based on the above name convention.

The transformation used in this phase is a generic one, but the output that it produces
is used for a specific transformation (the next step).

Step 3.2, the AMI creation, converts the CMI to an AMI. The XSLT stylesheet obtained
in the previous substep is applied to the CMI to yield an AMI. As opposed to the previous
transformations, this stylesheet will operate for inputs and outputs that are both query-
dependent. For each query, Hera will dynamically instantiate the AM with the query
result, i.e., a CMI.

The PM-related transformation steps (steps 4 and 5) are realized in a similar manner
as the AM-related transformation steps (steps 2 and 3).

Step 4, the PM generation, builds a PM template. This step contains two substeps:
the PM unfolding and the PM adaptation.

Step 4.1, the PM unfolding, generates the PM template. The PM template represents
the structure of a PM instance (RDF) based on the PM schema (RDFS). Such a template
will ease the specification of an XSLT stylesheet used to convert an AM instance (AMI)
to a PM instance (PMI). By unfolding the PM we mean repeating the process of adding
properties inside the subject classes until slice references or media items are reached. In this

3.3. PRESENTATION GENERATION (STATIC) 53

way, one obtains a PM template which will be filled later on with appropriate instances.
Step 4.2, the PM adaptation, executes the adaptation specifications on the PM tem-

plate. The transformation stylesheet of this step has two inputs: the PM template and the
UP. The UP attributes are replaced in the conditions by their corresponding values. The
layouts and styles that have the conditions not valid are discarded.

Step 5, the PMI generation, instantiates the PM with data from the AMI. This step is
composed of two substeps: the PMI transformation generation and the PMI generation.

Step 5.1, the PMI transformation generation, builds the transformation stylesheet that
will convert an AMI to a PMI. As in step 3.1, an XSLT stylesheet that will generate another
XSLT stylesheet is used. This transformation is based on the owner of a region and the fact
that simple regions are associated to simple slices. The following name convention is used: a
region instance name (e.g., Region.Slice.Painting.main.RegionFullA ID1) is obtained from
the region name (e.g., Region.Slice.Painting.main.RegionFullA) concatenated with the suf-
fix (e.g., ID1) of the associated slice instance identifier (e.g., Slice.Painting.main ID1). The
implemented algorithm is straightforward: instantiate all regions for all the corresponding
slice instances and each time a region is referenced add its identifier based on the above
name convention.

Step 5.2, the PMI creation, converts the AMI to a PMI. The XSLT stylesheet obtained
in the previous substep is applied to the AMI to yield a PMI. As opposed to the previous
transformations, this stylesheet will operate for inputs and outputs that are both query-
dependent.

Step 6, the presentation data generation, transforms the PMI into code specific for the
user’s browser. Note that a set of Web pages is generated at-a-time. Some of supported
formats are: HTML, HTML+TIME, WML, and SMIL. For each type of serialization a
specific stylesheet is used. The stylesheets used for the HTML, HTML+TIME, and SMIL
use the ability of XSLT 2.0 [Kay, 2005b] to generate multiple outputs (this feature is not
supported in XSLT 1.0 [Clark, 1999]). In order to generate multiple outputs the XSLT 2.0
result-document() function was used.

For HTML(+TIME), BorderLayout and TableLayout are implemented using tables.
An HTML presentation is composed from the index.html document (starting point of the
presentation) and a set of HTML pages each corresponding to a top-level slice.

The FlowLayout is supported by any HTML browser (the content of a table cell
is automatically wrapped if it doesn’t fit one line). TimeLayout is supported only by
HTML+TIME and SMIL browsers.

For WML, there is only one layout supported, i.e., the BorderLayout with a vertical
alignment. Because lists are not available in WML, they are implemented as simple se-
quences of items without any visual cues. To each top-level region corresponds a WML
card. A WML presentation is composed from a single WML document, a deck that contains
a set of cards. The first card is the starting point of the presentation.

For SMIL, there is an explicit part to describe the layout of a document. As tables/flow
are not supported in SMIL, one needs always to fully define the layout information for
BoxLayout, TableLayout, and FlowLayout. The TimeLayout was defined using the seq
container for regions. Hera regions are implemented as SMIL regions. A SMIL presentation

54 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

is composed from a main SMIL document (starting point of the presentation), a set of SMIL
documents each corresponding to a top-level region, a set of RealText (RT) clips, one per
each text media, and a set of audio clips (AU), one per each audio media.

3.4 Presentation Generation (Dynamic)

Recently the Hera methodology has been extended in order to accommodate more complex
forms of user interaction in addition to simple link-following, e.g., interaction by means of
forms in which the user can enter data [Houben et al., 2004]. In this way the user can better
personalize the SWIS according to his needs, specially regarding the dynamics within a
browsing session. Figure 3.20 shows the “loop” with which we extended the presentation
generation to support this additional dynamics and to allow the user to influence the
generation of the Web presentation. Note that in response to a user query only one page is
generated at-a-time instead of the full Web presentation as is the case for the static variant
of the presentation generation phase. Generating one-page-at-a-time allows the system to
consider the user input before generating the next Web page. The request contains the
(owner) concept instance identifier and the slice type of the next slice to be generated (i.e.,
the one corresponding to the next Web page).

Application LayerConceptual Layer Presentation Layer

Presentation Design

Presentation Model (PM)Application Model (AM)Conceptual Model (CM)

CM Adaptation Model AM Adaptation Model PM Adaptation Model

Conceptual Design Application Design

(External)

User/Platform Profile

Request

User Session (Navigation Data Model, User/Platform Model, Form Models, and Variables)

Web page

Application Engine Presentation Engine
(incl. PM Adaptation)(incl. AM Adaptation)

CM Adaptation

Implementation

Engine
Data Collection

Web Browser

Figure 3.20: Presentation generation phase (dynamic).

3.4. PRESENTATION GENERATION (DYNAMIC) 55

In order to illustrate the dynamic version of the presentation generation the running
example is extended such that it allows the visitor to buy posters of the paintings in the
museum. For simplicity we didn’t model explicitly the posters, assuming a one-to-one
correspondence with the depicted painting. Also, after buying a certain painting, the user
will not be presented with the same painting again.

In addition to the data from CM, AM, and PM, interaction requires a support for
creating, storing, and accessing data that emerges while the user interacts with the sys-
tem. This support is provided by means of the user session (US). US is composed of the
navigation data model, user/platform model, form models, and variables.

The purpose of the navigation data model (NDM) is to complement the CM with a
number of auxiliary concepts that do not necessarily exist in the CM (although this is the
decision of the designer in concrete applications) and which can be used in the AM when
defining the behavior of the application and its navigation structure.

The user/platform model (UM) stores user preferences and device capabilities that
change during user browsing (e.g., network connection speed, user knowledge on some of
the displayed topics, etc.). In Section 3.3 the UP was defined. The UP-based adaptation
is done at the beginning of the user browsing session in order to adapt the CM, AM, and
PM. In a similar way the UM is used to adapt the CM, AM, and PM. Differently than for
UP, the UM-based adaptation is done before each Web page is generated.

The form models (FM) describe the data that is entered by the user by means of
forms. Each form has a so-called form model associated with it. The data input by the
user in a form populates the associated form model. Similar to XForms [Dubinko et al.,
2003], a form separates presentation from content. FM describes the form content. The
presentation-related issues of forms are given in the AM.

The session variables are the concept instance identifier, i.e., instanceid, and the slice
type, i.e., slicetype, of the previous slice (the one from which a request originated), and a
number of variables to store temporary data created during a user browsing session (e.g.,
for storing the URIs of newly created resources).

We remark that from the system perspective the concepts in the NDM can be divided
into two groups. The first group essentially represents views over the concepts from the
CM, the second group corresponds to a locally maintained repository. A concept from the
first group can be instantiated only with a subset of instances of a concept existing in the
CM, without the possibility to change the actual content of the data. A concept from the
second group is populated with instances based on the user’s interaction, i.e., the data is
created, updated, and potentially deleted on-the-fly. The AM can refer to the concepts
from NDM as if they were representing “real” data concepts.

The NDM of our example is depicted in Figure 3.21; it consists of the following con-
cepts: SelectedPainting, Order, and Trolley. The SelectedPainting concept is a subclass of
the Painting concept from the CM. It represents those paintings which the user selected in
a selection form. The Order concept models a single ordered item consisting of a selected
painting (the property includes) and the quantity represented by an Integer. The Trol-
ley concept represents a shopping cart containing a set of orders linked by the property
contains.

56 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

subClassOf
property

Integer

1* contains

contained_by

11

cm:Painting

quantity

Order TrolleySelectedPainting
included_by

includes

Figure 3.21: Navigation data model.

In the example the SelectedPainting concept belongs to the group of view concepts
whereas both the Order and the Trolley are updatable concepts with the values determined
at run-time. This is reflected also in the navigational data model instance (NDMI) depicted
in Figure 3.22 that results from the user’s desire to buy 1 poster of the selected painting.
The instance Painting1 comes from the CM, i.e., it is not (re)created: what is created
however, is the type property associating it with the SelectedPainting concept. Both
instances Order1 and Trolley1 are created during the user’s interaction; they, as well as
their properties, are depicted in bold in Figure 3.22.

Integer

1* contains

contained_by
1SelectedPainting

property
type

quantity

Order Trolley

Order1 Trolley1
includes

1

included_by

includes 1

Painting1
included_by contained_by

contains

Figure 3.22: Navigation data model instance.

The application model vocabulary from Figure 3.10 was extended in order to support
forms. Figure 3.23 shows these extensions, inspired by the XForms standard. Similar to
XForms, a form separates presentation from content. The presentation-related issues of
forms are associated to the AM. In AM, a form is a particular type of slice which has
controls associated with it. Some of the supported form controls (as in XForms) are:
Select1 (S1), selects one instance from a set; SelectN (SN), selects several instances from a
set; Input (I), accepts one line of input text, etc.

3.4. PRESENTATION GENERATION (DYNAMIC) 57

IntegerSlice Navigation

subClassOf
property

Slice

Form

Select1 SelectN Input

Query order

query query

slice navigation

Control
control

. . .
querySelect

query

query queryEnable

Figure 3.23: Extended application model vocabulary.

The dynamics of the application is given by a set of AM queries used for selection,
deleting, or updating of data. These queries can be attached to:

• slices, to express user-independent updates (e.g., creation of a trolley),

• form controls, to get values for these controls (e.g., select all names of paintings that
are not in the trolley),

• forms, (1) to enable/disable a form (e.g., if the user has already added all paintings
to his trolley, there is no painting left to be offered to the user for the next selection,
and therefore the selection form is disabled) or (2) to select the concept instance for
the next slice (e.g., after selecting a painting, the main slice of the selected painting
is presented),

• slice navigation, to express user-dependent updates (e.g., create order and add it to
the trolley).

By a query that enables/disables a form it is actually meant a condition that uses
some query results for enabling/disabling a form. The identification of the query with
the condition is done because the condition usually is a very simple one (in most of the
encountered cases it is a comparison of the query result with ‘0’). An element from AM
can have attached a single query or a sequence of queries. The order in which the sequence
queries will be executed is given by the order attribute.

The content of the form is based on a form model (FM), i.e., the schema of the data
associated with a certain form. The data of the form that populates (at run-time, based on
user actions) the FM is the so-called form model instance (FMI). The mappings (bindings)

58 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

of the data provided by the form controls to the form model instance is outside the scope
of this description as this is done by an external XForms processor. Figure 3.24 shows an
example of a form model and its instance.

Integer
quantity

quantity

property
type

1

BuyForm

BuyForm1
Form model instance

Form model

Figure 3.24: Form model and form model instance.

Figure 3.25 shows two form slices that can be embedded in an AM. The short names of
the forms are SelectForm and DeleteForm and the long names are Slice.Painting.SelectForm
and Slice.Trolley.DeleteForm, respectively. The owner of the SelectForm is Painting and
the owner of the DeleteForm is Trolley. Two queries are used to enable/disable the forms:
QEnableSF and QEnableDF. Both forms have one control field defined S1 (selects one
instance from a set). The values from which the user makes one selection are given by
the queries QSelectSFPn and QSelectDFPn. The first form has QSelectP a query that
selects a painting instance identifier based on the user’s choice. The second form has a
slice navigation relationship with an update query defined, i.e., QDeleteO.

Painting

DeleteForm
s1 aname

SelectForm
s1 aname

Trolley

QSelectDFPn
QDeleteO

QEnableDFQEnableSF

QSelectP

QSelectSFPn

Figure 3.25: Form in application model.

Figure 3.26 shows the application model extended with forms. The main slice of a
painting depicts information related to the painting. It also contains the BuyForm, a form
that allows the user to make an order by specifying the quantity of desired posters for the
presented painting. In order not to produce too much visual clutter, we do not show in
the figure the concept owner of the form (this is the same as the owner of the destination
slice when one navigates from that form). The main slice of the trolley displays the orders
contained in the trolley. Note that when the user makes an order, this order is immediately
added to the trolley. In addition the main slice of the trolley has two other forms SelectForm
and DeleteForm. SelectForm is used to select paintings by their name, paintings which do
not have posters in the trolley. DeleteForm is used to delete orders from the trolley.

3.4. PRESENTATION GENERATION (DYNAMIC) 59

BuyForm
i quantity

content

Trolley

includes

Order

quantity

main

aname

Painting

Trolley

contains
Set

main

Order

content

year
aname

Painter
cname

painted_by

main

SelectForm
s1

DeleteForm
s1

main

Trolley

picture

Painting

aname aname

aggregation (with CM property name)
navigation

QEnableSF QEnableDF

QSelectSFPn QSelectDFPn

QDeleteO

QCreateT

QCreateOP
QCreateOU

QSelectP

Figure 3.26: Extended application model.

Because models are represented in RDF(S), the AM queries are described using an RDF
query language. As an RDF query language it was chosen SeRQL [Aduna, BV, 2005], one
of the most expressive RDF query languages that supports not only the selection of RDF
data but also the creation of new RDF data. In the rest of this section several queries
are presented in their SeRQL syntax. Due to the fact that SeRQL doesn’t support nested
queries some queries are expressed in RQL [Karvounarakis et al., 2002]. In the rest of this
section the queries from Figure 3.26 are presented.

Figure 3.27 shows QCreateT a query attached to the main slice of a painting. It is used
to create a trolley for the user. The SeRQL was extended with the new() function that is
able to create a URI (identifier) unique in the application for a new resource. The newly
created URI is stored in the user session variable trolleyid.

CONSTRUCT {new()}<rdf:type><ndm:Trolley>

Figure 3.27: QCreateT (create trolley).

60 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

QCreateOU and QCreateOP are a sequence of queries attached to the slice navigation
from BuyForm to the main slice of the trolley. Figure 3.28 depicts QCreateOU, a query
that creates a new order. The newly created URI is stored in the user session variable
orderid.

CONSTRUCT {new()}<rdf:type><ndm:Order>

Figure 3.28: QCreateOU (create order).

Figure 3.29 shows QCreateOP, a query that fills the order properties and adds the
order to the trolley. Note that the order is captured in NDM, the owner concept instance
identifier of the current slice and the newly generated order identifier are user session
variables, and the user input (the poster’s quantity) is captured in BuyForm1, the form
model instance of the form BuyForm.

CONSTRUCT

{x}<ndm:contains>{y},

{y}<ndm:contained_by>{x},

{y}<ndm:includes>{z},

{z}<ndm:included_by>{y},

{y}<ndm:quantity>{v}

FROM

{session}<var:trolleyid>{x},

{session}<var:instanceid}{z},

{session}<var:orderid>{y},

{BuyForm1}<bf:quantity>{v}

Figure 3.29: QCreateOP (add order to trolley).

Figure 3.30 shows QEnableSF, a query attached to the SelectForm form in order to
enable/disable this form. If all paintings have orders associated with them, the SelectForm
is disabled, as there are no paintings left for user selection. SeRQL was extended with
aggregation functions like the count() function.

(SELECT count(x)

FROM {x}<rdf:type><cm:Painting>

WHERE NOT x IN SELECT y

FROM {session}<var:trolleyid>{v},

{v}<ndm:contains>{w},

{w}<ndm:includes>{y}) > 0

Figure 3.30: QEnableSF (condition that enables/disables SelectForm).

Figure 3.31 shows QSelectSFPn, a query attached to the control of the form SelectForm
in the main slice of trolley. Note that QSelectSFPn is a nested query: first the paintings
included in the order are computed and the result is subtracted from the set of all the
paintings. The query returns the name of the paintings that are not in the trolley.

3.4. PRESENTATION GENERATION (DYNAMIC) 61

SELECT xname

FROM {x}<rdf:type><cm:Painting>,

{x}<cm:aname>{xname}

WHERE NOT x IN SELECT y

FROM {session}<var:trolleyid>{v},

{v}<ndm:contains>{w},

{w}<ndm:includes>{y}

Figure 3.31: QSelectSFPn (select paintings (names) that are not in the trolley).

Figure 3.32 shows QSelectP, a query attached to the SelectForm in order to select
the concept instance that owns the next slice to be presented (i.e., the main slice of a
painting). In the future we would like to exploit this selection feature (based on queries)
at a more general level, i.e., in the navigation between any two slices and not just between
forms (form slices) and slices. In this way the restriction that slice navigation relationships
connect slices that have the same owner will be eliminated. Nevertheless one should ensure
that only one instance of the destination slice is created.

SELECT x

FROM {SelectForm1}<sf:aname>{yname},

{x}<cm:aname>{yname}

Figure 3.32: QSelectP (select painting).

Figure 3.33 shows QEnableDF, a query attached to DeleteForm in order to enable/disable
this form. If the trolley is empty, DeleteForm is disabled, as there are no orders to delete.

(SELECT count(x)

FROM {session}<var:trolleyid>{y},

{y}<ndm:contains>{x}) > 0

Figure 3.33: QEnableDF (condition that enables/disables DeleteForm).

Figure 3.34 shows QSelectDFPn, a query attached to the control of the form DeleteFrom
in the main slice of trolley. The query returns the name of the paintings that are in the
trolley.

SELECT xname

FROM {session}<var:trolleyid>{y},

{y}<ndm:contains>{x},

{x}<cm:aname>{xname}

Figure 3.34: QSelectDFPn (select paintings (names) that are in the trolley).

Figure 3.35 shows the query QDeleteO associated to DeleteForm used to delete a se-
lected painting order from trolley. The SeRQL query language was extended with the
DELETE construct. Basically it is a deletion of statements from an RDF model. The dele-
tion of resources from an RDF model can be easily done by deleting statements of the form

62 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

{x}<rdf:type>{rdf:Resource}, where x is the URI of a resource. A garbage collector
will make sure that the properties of the deleted resources will be also removed from the
model.

DELETE

{x}<ndm:contains>{y},

{y}<ndm:contained_by>{x},

{y}<ndm:includes>{z},

{z}<ndm:included_by>{y},

{y}<ndm:quantity>{a}

FROM

{session}<var:trolleyid>{x},

{DeleteForm1}<df:aname>{yname},

{y}<cm:aname>{yname},

{y}<ndm:includes>{z},

{y}<ndm:quantity>{a}

Figure 3.35: QDeleteO (delete selected order from trolley).

In the above queries we did need to extend Se(RQL) with new constructs like URI
generators, aggregation functions, and DELETE statements. We do hope that future RDF
query languages will be equipped with all these constructs.

3.4.1 Implementation

The implementation of the dynamic variant of the Hera presentation generation phase
is based on several data transformations realized in Java. The Se(RQL) queries are ex-
ecuted by Sesame [Aduna, BV, 2005] and the data transformations are implemented in
Jena [Hewlett-Packard Development Company, LP, 2005]. In this way the data transfor-
mations exploit more of the RDF(S) semantics given by the Hera models than the ones
based on XSLT. A transformation language for XML documents like XSLT cannot use the
full RDF semantics stored in the RDF/XML serialization of an RDF model.

Figure 3.36 shows the transformation steps for the dynamic variant of the Hera pre-
sentation generation. Each transformation step has a label associated with it. Some of
these transformations have substeps which are labeled using a second digit notation. In
Figure 3.36 there are two types of dashed arrows: “is used by” to express that an RDFS
model is used by another RDFS model and “has instance” to denote that an RDFS model
has as instance a certain RDF model. A model vocabulary, a model, a model instance, and
the generated presentations are depicted by rectangles. The transformation specifications
are represented by ovals. In the same way as for the static variant of the implementa-
tion models and transformation specifications are classified as application-independent,
application-dependent, and query-dependent.

3.4. PRESENTATION GENERATION (DYNAMIC) 63

Web
page
(html)

application model
adapted
(rdf)

presentation model
vocabulary
(rdfs)

conceptual model
(rdfs)

navigation data model
(rdfs)

(rdfs)
form models

Query dependent

Application independent

Application dependent

(rdfs)

media
vocabulary

conceptual model
instance
(rdf)

1
data

variables

form models instances

(rdf)

(rdf)

navigation data model
instance
(rdf)

user session

collection

region
instance
(rdf)

slice
instance
(rdf)

requestslice
instance
creation

user
session
update
(java)

conceptual model
vocabulary

application model
(rdfs)

application model

(rdfs)

is used by

(rdfs)
vocabulary

is used by presentation model
(rdfs)

(rdfs)
has instance

CC/PP user/platform

user/platform profile
(rdf)

vocabulary

vocabulary

(rdfs)
is used by

user/platform profile

presentation model
adapted
(rdf)

is used by is used by

2.1

2.2

3.1

3.2 4

have instance

has instance

application model
adaptation

(java)
adaptation

(java)

presentation model

region
instance
creation
(java)

creation
(java)

Web
page

is used by is used by

is used by

has instance

has instance has instance
has instance

Figure 3.36: Presentation generation using Java.

Step 1, the data collection phase, is the same as in the static variant of the implemen-
tation. The result of this step is the CMI, i.e., the data retrieved in response to a user
query. More information on step 1 can be found in [Vdovjak et al., 2003].

Step 2, the slice instance generation, computes a top-level slice instance in response to
a user request. This step contains two substeps: the AM adaptation and the slice instance
creation.

Step 2.1, the AM adaptation, executes the adaptation specifications on the AM. This
transformation has two inputs: the AM and the UP. The UP attributes are replaced in

64 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

the conditions by their corresponding values. The slices that have the conditions not
valid are discarded and the hyperlinks pointing to these slices are disabled. This step
is executed only once at the beginning of a user session. In the current version of the
implementation, AM adaptation based on the user model is not performed. Future versions
of the implementation, that will make use of the user model will execute this step at each
user request.

Step 2.2, the slice instance creation, creates the next slice instance. The user request
provides: the slice type and the concept instance identifier of the slice instance correspond-
ing to the next Web page to be computed, and possibly form model information, in case
that request originates from a form. The first user request in a session specifies also the
Hera models that will be used in the current session. The queries associated with the
slice navigation that initiated the request and the queries associated to the slice to be
computed are executed in the user session update. Besides updating the NDMI, the user
session update also stores in the user session the form models and the value of the variables
associated to queries.

Step 3, the region instance generation, computes the top-level region instance corre-
sponding to the previously computed slice instance. This step contains two substeps: the
PM adaptation and the region instance creation.

Step 3.1, the PM adaptation, executes the adaptation specifications on the PM. This
transformation has two inputs: the PM and the UP. The UP attributes are replaced in the
conditions by their corresponding values. The layouts and styles that have the conditions
not valid are discarded. Similar to step 2.1, this step is executed only once at the beginning
of a user session. In the current version of the implementation, PM adaptation based on
the UM is not performed. Future versions of the implementation, that will make use of
the UM, will execute this step at each user request.

Step 3.2, the region instance creation, creates the region instance for the previously
computed top-level slice instance.

Step 4, the Web page creation, transforms the region instance generated in the previous
step into code specific to the user’s browser. Note that only one Web page is generated
at-a-time. At the current moment only HTML is supported by the implementation.

3.5 Conclusions

Hera is a model-driven methodology for designing Semantic Web Information Systems.
The presentation generation phase of the Hera methodology builds a Web presentation for
some given input data. The Hera presentation generation phase has two variants: a static
one that computes at once a full Web presentation, and a dynamic one that computes
one-page-at-a-time by letting the user influence the next Web page to be presented. The
design of both variants uses models that are specified in RDF. The implementation of
the static variant is based on XSLT data transformations and the implementation of the
dynamic variant is based on Java data transformations.

As future work we would like to improve the design and implementation of the Hera

3.5. CONCLUSIONS 65

presentation generation phase. For the static variant we would like to implement the
CM and media adaptation as given in the design specifications as a separate (from AM
adaptation) data transformation. The design of the dynamic variant can be extended
by adding specifications for UM-based adaptation. With respect to this we anticipate to
reuse some of the work done in the adaptive hypermedia field [De Bra et al., 1999]. The
implementation of the dynamic variant needs to be extended with other code generators
like HTML+TIME, WML, and SMIL.

Also we would like to investigate the use of a declarative RDF transformation language
(similar to XSLT but exploiting better than XSLT the RDF semantics). In [van Ossen-
bruggen et al., 2005] it is proposed the use of XSLT stylesheets in combination with SeRQL
queries (for selections) as a possible RDF transformation language. This hybrid solution
is easy to implement and it exploits more of the RDF semantics than XSLT. Nevertheless
it relies on the RDF/XML serialization of RDF models and it is less elegant than a solu-
tion based on the RDF data model. Lacking an RDF data transformation language based
on the RDF data model, we plan investigate the definition and implementation of such a
language.

At the current moment Hera doesn’t support the requirements phase of the development
life cycle of a SWIS. We would like to extend our methodology with a task (activity) model
that will specify the activities that can be performed by a user with the system. Once
devising a task model one can generate the navigation structure of the application from
the task model eliminating the design effort for defining new application models. The task
models can be assigned to a particular user or to a group of users (users that share the
same task model) facilitating thus the definition of coarse-grained adaptation at navigation
level.

66 CHAPTER 3. THE PRESENTATION GENERATION PHASE OF HERA

Chapter 4

Hera Presentation Generator

The Hera Presentation Generator (HPG) is the integrated development environ-
ment that supports the Hera methodology. It is based on a number of software
tools created for the Hera methodology that we integrated into one common envi-
ronment. The HPG fills the existing gap for development environments support-
ing SWIS design. There are two versions of HPG: HPG-XSLT and HPG-Java.
HPG-XSLT corresponds to the static variant of the Hera presentation gener-
ation phase and HPG-Java corresponds to the dynamic variant of the Hera
presentation generation phase. A comparison of the two implementations based
on their advantages and disadvantages is given. We also present a distributed
architecture for the HPG based on Web Services.

4.1 Introduction

The success of a WIS design methodology is often depending on the existence of software
tools that support the proposed methodologies. As shown in Chapter 2, many of the model-
driven methodologies for SWIS design do not provide integrated development environments
(IDE) similar to ones found for WIS design (e.g., RMCase, WebRatio) in order to help the
design and construction of SWIS. An IDE has the advantage of supporting all design steps
of a methodology from a single tool.

In Chapter 3 it was presented the presentation generation phase of Hera, a SWIS
design methodology. The presentation generation phase has two variants: a static variant
in which the user is unable to influence the generated hypermedia presentation, and a
dynamic variant that considers user input before each hypermedia page is generated. The
static variant uses XSLT data transformations and the dynamic variant uses Java data
transformations.

The Hera Presentation Generator (HPG) is an IDE to support the development of
SWIS using the Hera methodology. Based on the two Hera implementation variants, two
versions of the HPG were realized: HPG-XSLT which corresponds to the static variant,
and HPG-Java which corresponds to the dynamic variant.

67

68 CHAPTER 4. HERA PRESENTATION GENERATOR

The remainder of this Chapter is structured as follows. Section 4.2 describes HPG-
XSLT. Section 4.3 presents HPG-Java. The two version of HPG are compared in Section 4.4
Section 4.5 shows a Web Service-Oriented Architecture for HPG. Section 4.6 concludes the
chapter and presents future work.

4.2 HPG-XSLT

HPG-XSLT is an IDE that assists the designer of the static variant of the Hera presentation
generation phase. It integrates several tools built during the last couple of years in the
Hera project into one common environment. Besides its practical purpose, HPG-XSLT
has also an explanatory purpose as it offers an explicit view over the data flow in the Hera
presentation generation phase.

HPG-XSLT has the following graphical interfaces: CM design interface, AM design
interface, PM design interface, UP design interface, and implementation interface, that
correspond to the design steps in the presentation generation phase of Hera. For building
(and visualizing) the CM, AM, and PM several Visio solutions were implemented. We
chose to build the Hera models using Visio because: (1) Visio is widely used in industry,
(2) it provides a graphical interface to build model specific shapes, (3) it is based on a
simple programming language, i.e., Visual Basic, which makes it easy for one to define
the behavior of the application. A solution is composed of a stencil (which has the model
shapes) and a template (which has the load/export feature for the RDF/XML serialization
of models). At the current moment the adaptation conditions are not supported by the
Visio solutions, the designer has to insert them after a model is exported.

Each model needs to fulfill a set of model constraints. In case that the designer uses
the HPG-XSLT interfaces to develop models these constraints are automatically fulfilled
as they are enforced during model construction. Nevertheless, in case that the designer
uses a different tool to build models, the resulted specifications need to be checked if they
fulfill their associated constraints. For this purpose a separate Java program based on
Jena [Hewlett-Packard Development Company, LP, 2005] was developed for checking the
constraints of a model.

4.2.1 CM Design Interface

HPG-XSLT provides a graphical interface for building CM. Figure 4.1 shows a snapshot of
the CM design interface. On the left-hand side there is the stencil that contains shapes for
all CM elements. On the right-hand side there is the drawing frame in which a CM is built.
For all drawn shapes one can set specific properties to them (e.g., for a concept relationship
shape there are attributes that specify the inverse and cardinality of this relationship).

Some of the CM constraints that this interface enforces are: (1) only the media types
defined in the media vocabulary can be used for attributes, (2) all concept relationships
need to have a domain and a range , (3) every concept relationship needs to have its inverse

4.2. HPG-XSLT 69

Figure 4.1: Conceptual model interface.

relationship defined, (4) every concept relationship needs to have its cardinality specified,
etc.

4.2.2 AM Design Interface

HPG-XSLT provides a graphical interface for building AM. Figure 4.2 shows a snapshot
of the AM design interface. On the left-hand side there is the stencil that contains shapes
for all AM elements. On the right-hand side there is the drawing frame in which an AM is
built. For all drawn shapes one can set specific properties to them (e.g., for a slice shape
there is an attribute that specifies the name of the owner concept).

Some of the AM constraints that this interface enforces are: (1) only concepts defined
in the associated CM can be used as owners of slices, (2) all region relationships need to
have a source and a destination, (3) slices related by slice aggregation relationship need to
specify a valid concept relationship between the slice owners, if the owners are different,
(4) all slices can be reached from the start main slice, etc.

4.2.3 PM Design Interface

HPG-XSLT provides a graphical interface for building PM. Figure 4.3 shows a snapshot
of the PM design interface. On the left-hand side there is the stencil that contains shapes
for all PM elements. On the right-hand side there is the drawing frame in which a PM

70 CHAPTER 4. HERA PRESENTATION GENERATOR

Figure 4.2: Application model interface.

is built. For all drawn shapes one can set specific properties to them (e.g., for a region
shape there is an attribute that specifies the name of the owner slice). The layout and
style information are associated to a region by means of shape attributes.

Some of the PM constraints that this interface enforces are: (1) only the slices defined
in the associated AM can be used as owners of regions, (2) all region relationships need
to have a source and a destination, (3) complex slices need to have the layout information
specified, (4) all regions need can be reached from the start region, etc.

4.2.4 UP Design Interface

HPG-XSLT supports also the specification of a UP definition and of a UP instantiation.
As shown in the previous chapter, the UP is used in the adaptation conditions in AM and
PM. Taking this in consideration the UP was split in two parts, one relevant for AM and
another part relevant for PM.

The profile definition is a CC/PP vocabulary [Klyne et al., 2004]. It defines three com-
ponents: HardwarePlatform, SoftwarePlatform, and User (preferences). Each component
has a number of attributes for which the types are also specified. Among the supported

4.2. HPG-XSLT 71

Figure 4.3: Presentation model interface.

types are Boolean, Integer, String, and Enumeration. The instantiation of this profile is
done by means of an interface automatically generated from a profile definition.

Figure 4.4 shows the UP definition and instantiation for AM. In this UP, imageCapable
is defined as a HardwarePlatform attribute with an Boolean type. For the instantiation
of this attribute one can check the associated radio button to indicate the value True
(otherwise the value is False). In the current example this attribute was set to True.

Figure 4.5 shows the UP definition and instantiation for PM. In this UP, client is defined
as a HardwarePlatform attribute with an enumerated type PC, PDA, or WAP phone. For
the instantiation of this attribute one can select only one of the three values of the attribute
type. In the current example this attribute was set to PC.

4.2.5 Implementation Interface

Figure 4.6 shows the advanced-designer view in HPG-XSLT. Inexperienced designers will
be presented with another interface which follows the popular wizard paradigm (in which
the more complex user interface is split into a sequence of smaller, easy-to-use interfaces).
As one can notice from Figure 4.6, this advanced view shows two important parts: a left-
hand side responsible for converting a CM instance into an AM instance based on the AM

72 CHAPTER 4. HERA PRESENTATION GENERATOR

Profile definition

Profile instance

Figure 4.4: The user/platform profile for AM.

and a right-hand side accountable for converting this AM instance into a Web presentation
based on a PM.

Each step in this advanced HPG view has associated with it a rectangle labeled with
the step’s name (e.g., Conceptual Model, Unfolding AM, Application Adaptation, etc.). In
each step there are a number of buttons connected with within-step arrows and between-
step arrows that express the data flow. Such a button represents a transformation or
input/output data depending on the associated label (e.g., Unfold AM is a transformation,
Unfolding sheet AM is an input, and Unfolded AM is an output). The arrows that enter
into a transformation (left, right, or top) represent the input and the ones that exit from
an transformation (bottom) represent the output. The transformation steps that can be
triggered at a given moment (all inputs are present) have their buttons enabled while the
inhibited transformation steps (not all inputs are present) have their buttons disabled.
These visual cues in the advanced view are extremely useful for the understanding and
good functioning of the whole transformation process.

All models are represented in RDFS and model instances are represented in RDF;
both models and model instances have corresponding RDF/XML serializations. In HPG-
XSLT we use XSLT transformations in order to convert one RDF/XML file into another
RDF/XML file. The XSLT stylesheet that drives such a transformation process is one of
the transformation’s inputs. All models and transformation specifications are available for
inspection: the View button is used to display models, or specific buttons labeled with the

4.2. HPG-XSLT 73

Profile instance

Profile definition

Figure 4.5: The user/platform profile for PM.

name of the model (AM Instance, PM Instance, etc.) or the name of the transformation
(e.g., Unfolding sheet AM, Adaptation sheet AM, XML2XSL sheet AM, etc.) are used to
display models or transformations. The basic inputs for HPG are a CM, an AM, a PM,
and UP (input specifications), and a CM instance (input data). The output is a Web
presentation for the input data that fulfills all the input specifications.

The transformation process starts with the selection of a CM. In case that such a
CM doesn’t exist the designer can create one using the Visio solution as described in
Section 4.2.1. After selecting a CM, the user can choose an AM from the available AMs
that correspond to the chosen CM. Again, if such an AM doesn’t exist the designer is
offered the possibility to build one using the Visio solution presented in Section 4.2.2. The
unfolding step is a preparation step in the sense that it restructures the AM in a format
more fit (than the original AM) for the next transformation step.

Based on the UP for AM selection, the original AM is adapted. Slices with conditions
invalid are discarded and the hyperlinks (slice relationships) referring to these slices are
disabled. For example, if the user is not an Expert he will not see the painting technique
description.

All transformations that we have seen so far are generic. Unless otherwise specified a
transformation refers to a generic transformation. Based on the adapted AM one can use a
generic transformation to produce a specific transformation (CMI to AMI sheet) that will
convert a CMI to an AMI.

74 CHAPTER 4. HERA PRESENTATION GENERATOR

Figure 4.6: The HPG-XSLT interface.

Until now we have presented the transformations at AM level (left-hand side of Fig-
ure 4.6). Similar to the above transformations, there are PM-driven transformations (right-
hand side of Figure 4.6). Again as a technical convenience, the unfolding mechanism is
also used with the PM.

Based on the UP for PM selection, the original PM is adapted. For example, for
presenting an index of paintings images one would use a TableLayout for a PC and a
BoxLayout for a PDA or WAP phone. The PM has not only information on the layout but
also on the style of the Web presentation. If the user has a poor vision, a style with large
fonts will be used instead of the default style with medium-size fonts.

In a similar way as for the AM but this time based on the adapted PM one can use a
generic transformation to produce a specific transformation (AMI to PMI sheet) that will
convert a particular AMI to a PMI.

The last transformation generates code in the format suitable to the user’s browser
(HTML, HTML+TIME, SMIL, or WML). If the browser supports CSS also a CSS stylesheet
is generated according to the style given in the adapted PM. The designer is offered the
choice of specifying the directory where the Web presentation will be generated. Note that
such a presentation can include thousands of files that might require a lot of disk memory.

4.2. HPG-XSLT 75

Figure 4.7 presents the four different snapshots for four different browsing platforms:
HTML for PC, SMIL for PC, HTML for PDA, and WML for WAP phone. These presen-
tations are in accordance with the adaptation with respect to the user browsing device,
i.e., the client in the UP, as given in the design specifications. Note that, as described in
the PM adaptation, the paintings images have a TableLayout for HTML on PC, are ar-
ranged using TimeLayout for SMIL, and a BoxLayout (on the vertical axis) for the HTML
for PDA and WML presentations. According to the media adaptation, the PDA and the
WAP phone use a shorter text version for the painting technique description compared
with the one on the PC. Also, the WAP phone presentation doesn’t contain pictures. In a
similar way, the presentation can be further adapted by considering other attributes from
UP, e.g., the level of expertise of the user, the user visual capabilities, etc.

HTML for PC SMIL

HTML for PDA WML

Figure 4.7: Presentations in different browsers.

The first XSLT processor used to carry out the transformations specified by the differ-

76 CHAPTER 4. HERA PRESENTATION GENERATOR

ent XSLT stylesheets was Xalan 1.2D02 [Apache Software Foundation, 2004]. Since this
processor supported only XSLT 1.0 [Clark, 1999] it was replaced with Saxon [Kay, 2005a],
a more powerful XSLT processor that supports XSLT 2.0 [Kay, 2005b]. In order to speed-
up the execution of these stylesheets (note that the used museum data has about 1000 art
objects with their relations) several XSLT keys have been defined.

4.3 HPG-Java

HPG-Java supports the development of the dynamic variant of the Hera presentation
generation phase. The design tools integrated in HPG-XSLT for the CM, AM, PM, and
UP building can be used also for HPG-Java. HPG-Java doesn’t have a graphical user
interface similar to the implementation interface of HPG-XSLT.

One of the disadvantages of HPG-XSLT was the fact that it used XSLT stylesheets
to transform RDF models. In this way it was difficult to make use of full semantics of
a model as given by the model’s RDFS-closure. HPG-Java eliminates this shortcoming
by defining Java transformations based on Jena [Hewlett-Packard Development Company,
LP, 2005]. For querying and updating models it is used the (Se)RQL implementation of
Sesame [Aduna, BV, 2005].

4.3.1 Designing HPG-Java

Being a dynamic system able to react to user actions, HPG-Java was developed based
on Java servlet technology. It runs as a Java servlet on an Apache Tomcat Web server.
Figure 4.8 shows an excerpt of the class association diagram of HPG-Java.

The main class that receives user requests is the HeraServlet, which extends the Java
HttpServlet class.

In order to build robust and flexible applications we used several design patterns. A
servlet specific pattern is the delegation event model. All request handlers implement the
RequestHandler interface. The request handlers are registered in the HeraServlet. Based on
the value stored in a hidden field for the GET request, the HeraServlet is able to identify
the particular request handler responsible for this event. Examples of events are login,
logout, link following, each one having a corresponding request handler. In this way one
avoids the building of complex RequestHandlers able to solve all request.

The façade pattern was used to hide from the HeraServlet the complexity of the dif-
ferent data transformations. Four classes were defined to perform data transformations:
AMController, SessionUpdater, PMController, and PresentationConverter. The AMCon-
troller and PMController are responsible for adapting and creating instances of the AM,
respectively PM. The AMController has associated the SessionUpdater which manages the
Session. The Session class is an extension of the Java HttpSession class. The Session
class stores information that persist between user requests: the navigational data model,
form models, variables (including the user name and password). SessionUpdater is used
for updating the Session data as part of the process of generating the new slice instance.

4.3. HPG-JAVA 77

ModelController

adapt()
create()

RequestHandler

handleRequest()

Session

init()
getValue()
setValue()

HeraSerlvet

init()
doGet()

HTMLConverter HTML+TIMEConverter SMILConverter WMLConverter

PresentationConverter

createPresentation()

AMController PMController

conceptID
sliceType

init()

Controller

run()

addRequestHandler()

LoginRequestHandler LogoutRequestHandler AppRequestHandler

deleteUser()addUser()

SessionUpdater

update()

Figure 4.8: HPG-Java class association diagram.

As both slices and regions have a recursive structure we used the composite pattern to
define them. In order to build a slice or region the create() function is used. Based on the
UP the AM and PM will be adapted using the adapt() function. Based on the same UP
a specific PresentationGenerator is chosen. The createPresentation() function is used to
produce a presentations interpretable by the user browsing platform.

Figure 4.9 presents the exchange of messages between different class instances in re-
sponse to a user query.

Suppose the HeraServlet receives a doGet() function call. In case that the request is orig-
inating from a link-following request, the handleRequest() function of AppRequestHandler
is called. Next, the Controller run() function is called to manage the whole data transfor-
mation process.

Depending if the current session is a new session, the AM and PM are adapted by calling
the adapt() function of their associated controllers. Note that at the present moment we
support only static adaptation of the system, that is why the adaptation is performed at
the beginning of the user session. With the AM and PM adapted the create() function calls
will build a new slice instance and a region instance, respectively for the current page. Note
that in the create function of the AMController the update() function of the SessionUpdater

78 CHAPTER 4. HERA PRESENTATION GENERATOR

ControllerApplRequestHandler AMController PMController PresentationConverter

Session is new

HeraSerlvet

doGet()

handleRequest()

run()

SessionUpdater

update()

update()

adapt()

adapt()

create()

create()

doGet()

handleRequest()

run()

createPresentation()

createPresentation()

adapt()

adapt()

create()

create()

Figure 4.9: HPG-Java message sequence chart.

is called in order to update the Session content. The region instance is based on the
previously generated slice instance. The last function is the createPresentation() which
transforms the region instance into a Web page.

4.3.2 Using HPG-Java

Several applications were built using HPG-Java: a review system for the Hera papers, a
shopping site for vehicles, a portal for a virtual paintings museum (without user interac-
tion), and a shopping site for posters depicting paintings (with user interaction)1. We will
use the example of the shopping site for posters in order to better illustrate the HPG-Java
page generation process. Figure 4.10 (left) shows one page generated with HPG-Java.

Suppose the user wants to buy a poster of the shown painting. Based on such a user
request, the next page to be displayed is computed. Let us have a closer look at what
happens when the user presses the Add order button.

1Examples of applications built using HPG-Java are available from http://wwwis.win.tue.nl:8090/

Hera2WebApp.

4.4. HPG-XSLT VS. HPG-JAVA 79

Previous slice Current slice

Figure 4.10: Pages generated by HPG-Java.

In order to be able to construct the next slice instance one needs to know the concept
instance identifier that owns this slice instance and the slice type of this slice instance.
These two elements, the concept instance identifier and the slice type are encoded in the
user request.

In our example, there are two queries (attached to the current slice) that are triggered
when the user presses the Add order button. The first query creates a new order. The
second query fills the order properties and adds the order to the trolley. Based on the user
request and AM specifications, a new slice instance is produced. This slice shows the list
of ordered paintings and contains two forms: one for selecting the next painting and one
for deleting an order from the trolley. The current slice instance is converted to a region
instance by adding layout and style information to the slice as specified in the PM. In the
last step, the region instance is converted to the next page (in this case a HTML page) to
be presented to the user. Figure 4.10 (right) shows the next generated page.

4.4 HPG-XSLT vs. HPG-Java

HPG-XSLT and HPG-Java have both their advantages and disadvantages. Figure 4.1
compares the characteristic features of HPG-XSLT and HPG-Java.

80 CHAPTER 4. HERA PRESENTATION GENERATOR

HPG-XSLT HPG-Java
generation of full Web
presentation

generation of one page
at-at-time

+ user interface − no user interface
+ deployable on any Web

server
− can be deployable only on

Web servers supporting
Java servlets

− no form-support + form-support

Table 4.1: HPG-XSLT vs. HPG-Java.

The generation of the full presentation in HPG-XSLT requires usually a long time for
computing the whole presentation. If one decides to deploy the resulted pages on a Web
server this high computational time does not influence the system response time to a user.
The user can browse the presentation at a reasonable speed if his network connection allows
it because there is no computation performed on the server. The generation of one page
at-a-time in HPG-Java has as consequence a longer response time than for a presentation
generated with HPG-XSLT. Nevertheless if the HPG-XSLT presentation is built at run-
time, the time needed for computing the whole presentation is higher than the computing
of only one page at the beginning of the browsing process.

HPG-XSLT has a user interface that helps the designer for building models. It also
allows the generation and execution of the data transformations based on previously defined
models. At the current moment HPG-Java does not have such interfaces. It is planned
in the future to build a graphical console for HPG-Java which will look similar to the
implementation interface of HPG-XSLT.

The resulted Web pages from HPG-XSLT can be deployed on any Web server. Due
to its dynamic nature, HPG-Java can be deployed only on Web servers that support Java
servlets. Modern Web server (like Apache) do support Java servlets.

HPG-XSLT has no support for user interaction besides simple link-following. The user
of a generated presentation cannot influence the content of the presentation. HPG-Java
does allow for more advanced forms of user interaction (e.g., forms) as a way to let the
user influence the content of the presentation. This is an extremely useful feature if the
built application will be used for example, as a shopping site or as a review system.

Performing the data transformations in XSLT or Java have both advantages and dis-
advantages. Figure 4.2 compares the characteristic features of XSLT transformations and
Java transformations used in HPG-XSLT and HPG-Java, respectively.

XSLT is a declarative programming language and Java is an imperative programming
language. Depending on the programmer’s preference one way of programming can be
easier than the other one. As for many declarative languages, XSLT is supported by
interpreters. Java is supported by many compilers that generate code interpretable directly
by the machine. As such the execution time of the code generated by compilers is smaller
than the time required by an interpreter to perform the same computations.

4.4. HPG-XSLT VS. HPG-JAVA 81

XSLT stylesheets Java code
declarative imperative

+ loosely-coupled, changing
the system can be done by
changing one stylesheet

− strongly-coupled, internal
dependencies makes the
system harder to change

+ easy to understand − more difficult to
understand

− no IDEs + many IDEs
− limited exploitation of

models’ RDFS semantics
+ full exploitation of models’

RDFS semantics
− XSLT processor offers little

support for optimization
leading to poorer
performance

+ custom software can be
optimized better leading to
better performance

− introduces extra steps + no need of extra steps

Table 4.2: XSLT stylesheets vs. Java code.

Changing the system can be done by changing only one XSLT stylesheet due to the
nice separation of concerns provided by stylesheets. A similar change done for Java code
might be harder to achieve due to the internal dependencies between software components.
The use of design patterns can alleviate this problem in the Java code.

XSLT stylesheets are easy to learn, one can write fairly complex transformations after
learning some of the basic XSLT concepts. Java code is harder to produce, the learning
curve is usually higher than for XSLT programming.

At the current moment there is a lack of IDEs to assist the XSLT programmer. For
Java, a more mature language, there is a huge number of developing IDEs that provide
very advanced debugging facilities.

XSLT is a language for transforming XML documents. As there is no data transfor-
mation language for RDF it was decided to use XSLT for transforming the RDF/XML
serialization of RDF models. Clearly these XSLT transformations have limitations as they
are not able to exploit the full RDFS semantics of a model as given by the model RDF(S)-
closure. The Java code is based on Jena and Sesame, two Java libraries that can fully
exploit the RDFS semantics of models.

While developing HPG-XSLT it was noticed that there is very little support to optimize
a data transformation. By optimization it is seeked the reduction of the time needed by a
data transformation. The performance of HPG-XSLT is based on the performance of the
data structures used by the XSLT processor. The Java code offers more room for optimizing
the data transformations as one can define its own data structures and processing facilities.

HPG-XSLT introduces several extra steps, for unfolding models. These steps were
developed in order to prepare an RDF/XML document in an XML format suitable for the
next transformation step. These steps were not needed for HPG-Java as the Java code

82 CHAPTER 4. HERA PRESENTATION GENERATOR

directly operates on RDF models.

4.5 A Web Service-Oriented Architecture for HPG

HPG integrates several software components that together form one centralized application.
In this section it is presented a distributed architecture for HPG in which components are
mapped to Web Services (WS). The loosely coupled Hera WSs realize the plug-and-play
software vision in the context of SWISs. For example, it is possible to generate a SWIS
by composing a WS which provides up-to-date data, a WS that knows how to present
this data, and a WS that is able to perform adaptation of the presentation based on user
preferences and device capabilities.

It was decided for a WS solution for realizing the distributed Hera architecture be-
cause WSs have clear advantages compared to their predecessors CORBA, J2EE, and
DCOM [O’Toole, 2003]. First of all WSs are based on the XML document paradigm, a
human readable language that abstracts from the implementation details. WS interfaces
are specified in a universally accepted Web Service Description Language (WSDL) [Chris-
tensen et al., 2001], an XML-based language. Last but not least, Web services use the
popular HTTP protocol as the carrier of exchanged messages.

In the rest of this section we will mainly focus on HPG-XSLT, but one can implement
similar services for HPG-Java that produces a single Web page at-a-time instead of a full
Web presentation as is the case for HPG-XSLT. For this reason we will not distinguish
between the two HPGs and we will refer to them with only one term, i.e., HPG.

Figure 4.11 presents a Web service-oriented architecture (WSOA) for HPG based on
two WSs: the Data Service and the Presentation Service. The Data Service is responsible
for delivering up-to-date data for which the Presentation Service will make a hypermedia
presentation. A Client placed at a Web Server location will orchestrate the communication
with the two services. The proposed WSOA has a star topology, with the Client in the
middle. The communication between Client and services is done at SOAP [Box et al., 2000]
level which resides on top of HTTP while the communication between the Web Browser
and the Web Server is done in plain HTTP.

First the Client asks the Data Service to provide the data. Once the data is received
it is passed to the Presentation Service. After receiving the data, the Presentation Service
constructs a hypermedia presentation which is passed back to the Client. The Web Server
that hosts the Client uses this presentation in providing pages to the Web Browser. The
underlying assumption here is that the Data Service and the Presentation Service share
the same CM.

Note that a service-based solution provides a lot of flexibility for such a system. Differ-
ent Presentation Services (with different AMs and PMs) can be plugged into the system
to produce different presentations for the same data. Moreover one Presentation Service
may produce an HTML presentation, while another one can provide a WML presentation,
ensuring thus the ubiquity of the built SWIS. Also different Data Services can be used in
the same manner (assuming the fact that they agree with the Presentation Service on the

4.5. A WEB SERVICE-ORIENTED ARCHITECTURE FOR HPG 83

CM

CMICMI

presentation (SOAP/HTTP)

HTML

UPPMAM

Client

Web Server

Presentation ServiceData Service

is used by

Web Browser

data (SOAP/HTTP)

data (SOAP/HTTP)

request (HTTP) page (HTTP)

is used by

Figure 4.11: Web service-oriented architecture.

CM). In this way data that comes from two different sources but sharing the same domain
can benefit from presentation capabilities from the same Presentation Service.

4.5.1 Web Service Descriptions

The interface of a WS is given in a WSDL specification. In addition to the service interface,
such specifications give also the data types used by the service messages and the location
of the service. In this subsection it is described only the interface as we only use existing
XML Schema Datatypes [Thompson et al., 2001; Biron and Malhotra, 2001] (we did not
need to define our own types) and the service location can be defined anywhere on the
Web.

Figure 4.12 depicts an excerpt from the Data Service WSDL specification. First it
specifies which are the messages, their embeddings, and the type of data that messages
will carry. The getDataRequest message is an empty message. This message is used just to
trigger the response from the service. The getDataResponse message has a <wsdl:part>

containing the requested data string. The <wsdl:portType> associates the request and
response messages with the getData operation of the Data Service. It also specifies the
type of the message as input or as output for the operation. The data string returned is
the CMI that the Data Service holds.

Figure 4.13 depicts an excerpt from the Presentation Service WSDL specification. The
request message getPresentationRequest has a <wsd:part> named in0 (this is the de-
fault naming convention used by our SOAP server for the operation arguments) con-
taining one string. The response message getPresentationResponse will contain also
a string. The <wsdl:portType> associates the request and response messages with the

84 CHAPTER 4. HERA PRESENTATION GENERATOR

<wsdl:message name="getDataRequest">

</wsdl:message>

<wsdl:message name="getDataResponse">

<wsdl:part name="getDataReturn"

type="xsd:string"/>

</wsdl:message>

<wsdl:portType name="DataService">

<wsdl:operation name="getData">

<wsdl:input message="impl:getDataRequest"

name="getDataRequest"/>

<wsdl:output message="impl:getDataResponse"

name="getDataResponse"/>

</wsdl:operation>

</wsdl:portType>

Figure 4.12: Excerpt from Data Service WSDL.

getPresentation operation of the Presentation Service. As for the Data Service, it also
specifies the type of the message as input or as output for the operation. The input data
string is the CMI and the data string returned from the operation is the encoded (in one
string) presentation.

<wsdl:message name="getPresentationRequest">

<wsdl:part name="in0"

type="xsd:string"/>

</wsdl:message>

<wsdl:message name="getPresentationResponse">

<wsdl:part name="getPresentationReturn"

type="xsd:string"/>

</wsdl:message>

<wsdl:portType name="PresentationService">

<wsdl:operation name="getPresentation"

parameterOrder="in0">

<wsdl:input message="impl:getPresentationRequest"

name="getPresentationRequest"/>

<wsdl:output message="impl:getPresentationResponse"

name="getPresentationResponse"/>

</wsdl:operation>

</wsdl:portType>

Figure 4.13: Excerpt from Presentation Service WSDL.

4.5.2 SOAP Messages

After we have defined the service interface we can have now a closer look at the actual
representation of the service messages. Despite its name the Simple Object Access Protocol

4.5. A WEB SERVICE-ORIENTED ARCHITECTURE FOR HPG 85

(SOAP) is not a classic (communication) protocol. It is rather a one-way message exchange
paradigm (or some others prefer to say a lightweight protocol to exchange information in
a distributed system). A SOAP message is an XML message containing a SOAP envelope.
A SOAP envelope has an optional SOAP header and a required SOAP body. It is the
SOAP body that contains the data carried in a message. The current implementation uses
SOAP RPC which means that all message communication is done synchronously.

Figure 4.14 presents a snapshot of Client-services communication, namely the SOAP
messages exchanged between the Client and the Data Service. The SOAP Request window
displays the getDataRequest message, an empty message as we already saw from the
interface description. The SOAP Response window shows the getDataResponse message
containing in its getDataReturn part an actual CMI. Note that <, > are escaped as we
encoded the data as a string.

Figure 4.14: SOAP messages.

4.5.3 Tools

In order to experiment with the proposed architecture a Java-based Hera tool was devel-
oped. Tomcat 4.1 [Apache Software Foundation, 2005a] was used as the Web server that
supports servlets. On this Web server we installed Axis 1.1 (Apache eXtensible Interaction

86 CHAPTER 4. HERA PRESENTATION GENERATOR

System) [Apache Software Foundation, 2005b], a SOAP 1.1 engine. By SOAP engine we
mean a tool that supports both a SOAP server and SOAP clients. We did deploy on the
SOAP server two services Data Service and Presentation Service. For their deployment we
used appropriate Axis Web Service Deployment Descriptors. The SOAP Client that com-
municates with these services was installed on the Web server, outside the SOAP server.
The WSDL specifications were generated by the Java2WSDL emitter. Both Java2WSDL
and the SOAP Monitor are part of the Axis distribution kit. Tomcat and Axis are Java-
based and freely available from the Apache Software Foundation. The services and the
client were written in Java. All software is running on the Java 1.4 platform.

It is important to notice that when developing WSs with Axis, the programmer doesn’t
need to bother about making WSDL interfaces or the actual encoding of the SOAP mes-
sages. All these will be automatically done by the system. Making all WS details transpar-
ent to the programmer enables him to focus only on the application logic implementation
in Java and makes thus the system less error-prone.

4.5.4 Adaptation in HPG Web Service-Oriented Architecture

Figure 4.15 presents a WSOA based on four services: Data Service, Presentation Service,
Profile Service, and Adaptation Service. Note that this architecture doesn’t have a star
topology as the Client only communicates with three of the four services. In order to
denote the order in which the messages will be passed we added a label to the continuous
arrows. This label should be read in the increasing number order or alphabetical order.
The two sequences (1, 2, 3) and (a, b) can be done in parallel. Step 4 is performed after
completion of steps 3 and b.

is used by

AM PM

is used by

AM PM

aPM

nUP
Profile Service

is used by

UP

oUP

HTML
CMI

CMI

CM

Client

Presentation ServiceData Service

1 2
3

a

4

aAM

Adaptation Service

b5

Figure 4.15: Extended Web service-oriented architecture.

The steps 1, 2, and 5 were already discussed in the beginning of this section. In step
a the nUP (‘n’ stands for new) provided by the Client is sent to the Profile Service. The
Profile Service can be viewed as a shared memory service for user profiles. By a shared
memory service we simulate shared memory between services using one service. The profile
attributes that are not defined in the nUP will be taken from the oUP (‘o’ stands for old),
the old profile of the user, and result in a merged UP. In the request message sent to the

4.6. CONCLUSIONS 87

Profile Service the user may also specify if an update of the oUP with the UP should be
done. The UP is sent to the Adaptation Service. Also, the Adaptation Service receives
the AM and PM from the Presentation Service. After receiving these two messages (3 and
b) the Adaptation Service computes the aAM and aPM (‘a’ stands for adapted) and sends
them to the Presentation Service. In this WSOA the Presentation Service will use the
aAM, instead of the AM, and the PM, instead of the aPM, to compute the presentation.

4.6 Conclusions

The Hera tool suite aims at supporting the design of SWISs using the Hera methodology.
There are two versions of the software tools for the presentation generation in Hera: HPG-
XSLT and HPG-Java. The XSLT stylesheets from HPG-XSLT are replaced in HPG-Java
with Java code able to better cope with the RDF(S) semantics of the Hera models. Com-
pared with HPG-XSLT, HPG-Java extends the functionality of a generated WIS with user
interaction support. Nevertheless, HPG-Java lost the declarativity, simplicity, and reuse
capabilities of the XSLT transformation templates. A declarative transformation language
dedicated to RDF(S), which to our knowledge doesn’t exist at the present moment, would
probably be the best option for Hera transformations.

HPG has also a distributed architecture based on WS. We chose for a WS-oriented
solution due to the popularity and easy-to-implement features of WSs. In this way WISs
can be seamlessly built by composing appropriate WSs. The Axis distribution kit proved
to be a very flexible set of tools to support WS development, deployment, and monitoring.
We have also shown examples of WSDL specifications used to describe WSs and of SOAP
messages exchanged with WSs.

As future work, a user interface (servlet console) will be developed for HPG-Java, very
similar to the user interface in HPG-XSLT, in order to better trace and configure the Hera
servlet activities. In both HPGs, the user interfaces for designing the CM, AM, and PM
will be extended with adaptation specification support (for the appearance conditions).
Depending on the future existence of a declarative RDF transformation language the Java
code will be replaced with RDF transformation templates which will combine the best
features of the two HPG versions: declarativity, simplicity, and reuse of templates as in
HPG-XSLT, and the full RDF(S) semantics exploitation for the Hera models as in HPG-
Java.

We would also like to extend the Web service-oriented architecture of the HPG with new
services like a data query service, a data integration service, or a service able to generate
adaptive hypermedia presentations.

88 CHAPTER 4. HERA PRESENTATION GENERATOR

Chapter 5

Query Optimization in Hera

While RDF and RDFS are widely acknowledged as a standard means for describ-
ing Web metadata, a standardized language for querying RDF metadata is still
an open issue. Research groups coming both from industry and academia are
presently involved in proposing several RDF query languages. Due to the lack
of an RDF algebra such query languages use APIs to describe their semantics
and optimization issues are mostly neglected. This chapter proposes RAL (an
RDF algebra) as a reference mathematical study for RDF query languages and
for performing RDF query optimization. We define the data model, we present
the operators to manipulate the data, and we address the application of RAL for
query optimization. RAL includes: extraction operators to retrieve the needed
resources from the input RDF model, loop operators to support repetition, and
construction operators to build the resulting RDF model.

5.1 Introduction

The Resource Description Framework (RDF) [Lassila and Swick, 1999; Brickley and Guha,
2004] is intended to serve as a metadata language for the Web and together with its
extensions lays a foundation for the Semantic Web. It has a graph notation, which can be
serialized in a triple notation (subject, predicate, object) or in an XML syntax [Beckett,
2004].

Compared to XML, which is document-oriented, RDF takes into consideration a knowl-
edge oriented approach that is designed specifically for the Web and that is extremely useful
for the Semantic Web. One of the advantages of RDF over XML is that an RDF graph
depicts in a unique form the information to be conveyed while there are several XML
documents to represent the same semantic graph. The central concept that RDF uses in
modeling the metadata is that of resource: resources act as the objects or entities that are
considered in the metadata. RDF’s purpose to express metadata is met by its ability to de-
fine statements that assign values to properties of resources. In this way RDF expressions
describe how resources are related to each other and to (concrete) values.

89

90 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Object-oriented systems are object-centric in the sense that properties are defined in a
class context. On the contrary, RDF is property-centric, which makes it easy for anyone to
“say anything about anything” [Berners-Lee, 1998], one of the architecture principles of the
Semantic Web. In RDF, concepts from E-R modeling are being reused for the modeling of
Web ontologies. The concept of ontology is used to express a common understanding of re-
sources that allows application interoperability [Decker et al., 2000]: identifying a common
structure of resources supports the uniform understanding and treatment of metadata.

The language of RDF is composed from different parts. RDF Schema (RDFS) [Brickley
and Guha, 2004] can be used to define application specific vocabularies. These vocabularies
define taxonomies of resources and properties such that they subsequently can be used by
specific RDF descriptions. RDFS is designed as a flexible language to support distributed
description models. Unlike XML DTD or XML Schema [Thompson et al., 2001; Biron and
Malhotra, 2001], RDFS does not impose a strict typing on descriptions: for example, one
can use new properties that were not present in the schema, a resource can be an instance
of more than one class, etc. The set of primitive data types in RDF is left on purpose
poorly defined as RDFS reuses the work done for data typing in XML Schema [Klyne and
Carroll, 2004]. We do hope that future versions of RDFS will bring clarification regarding
RDF shortcomings of the present specification (e.g., missing set collection, difficult literals
handling, etc.).

In order to use metadata for application interoperability it is not sufficient to just
have a language to describe the metadata. A language for describing queries on that data
is also needed. In the XML world there is already a winner in the quest for the most
appropriate XML query language, i.e., XQuery [Boag et al., 2005]. As the Semantic Web
initiative started recently, its supporting technologies are still in their infancy. Research
groups coming from both industry and academia are presently involved in proposing several
RDF query languages (see the next section). We observe that such query languages often
use APIs to describe their semantics. Clearly, for a proper understanding and a sound
theoretical foundation of these query languages there is a lack of an algebra in the spirit of
the one we know from the relational model. As we also observe that optimization issues are
mostly neglected, an algebra for RDF could help to build a platform for finding efficient
rewritings of queries. This chapter identifies this need and proposes RAL, an RDF algebra
suitable for defining (and comparing) the semantics of different RDF query languages and
(at a later stage) for performing algebraic optimizations.

The remainder of this chapter begins with discussing the related work on RDF query
languages. In Section 5.3 the definition of RAL starts by considering its data model. Sec-
tion 5.4 presents the definition of the basic operators of the algebra, while some additional
algebra features are presented in the next section. Section 5.5 also shows how the algebra
can be used to express queries from other query languages like RQL. Section 5.6 discusses
RAL equivalence laws and their application for query optimization. Section 5.7 concludes
the chapter and indicates further research.

5.2. RELATED WORK 91

5.2 Related Work

In the previous section we addressed the role of an algebra for the definition and comparison
of query languages and for query optimization. At present, there already exist a few
RDF query languages but to our knowledge there is no full-fledged RDF algebra. The
only algebraic description of RDF that we encountered so far is the RDF data model
specification from Stanford [Melnik, 1999]. This specification is based on triples and it
provides a formal definition of resources, literals, and statements. Despite being nicely
defined, the specification does not include URIs, neglects the RDF graph structure, and
does not provide operations for manipulating RDF models. Another formal approach,
which aims not only at formalizing the RDF data model but also at associating a formal
semantics to it, is the RDF Semantics (RS) [Hayes, 2004]. However, it does not qualify
as an algebraic approach but rather, as a model-theoretic one. As RS is currently being
considered a main reference when it comes to RDF semantics, we tried to make our algebra
(especially the data model part) compatible with RS.

As implementation of RDF toolkits started before having an RDF query language,
there are a lot of RDF APIs present today. Three main approaches for querying RDF
(meta)data have been proposed.

The first approach (supported in the W3C working group by Stanford) is to view RDF
data as a knowledge base of triples. Triple [Sintek and Decker, 2002], the successor of
SiLRI (Simple Logic-based RDF Interpreter) [Decker et al., 1998], maps RDF metadata
to a knowledge base in Horn Logic (replacing Frame Logic). A similar approach is taken
in Metalog [Marchiori and Saarela, 1998], which matches triples to predicates in Datalog,
a subset of Horn Logic. In this way one can query RDF descriptions at a high level of
abstraction: the querying takes place at a logical layer that supports inference [Guha et al.,
1998].

The second approach (proposed by IBM) builds upon the XML serialization of RDF.
In the “RDF for XML” project (recently removed), an RDF API is proposed on top of the
IBM AlphaWork’s XML 4 Java parser. In the context of the same project a declarative
query language for RDF (RDF Query) [Malhotra and Sundaresan, 1998] was created for
which both input and output are resource containers. One of the nice features of this query
language is that it proposes operators similar to the relational algebra, leaving the possibil-
ity to reuse some of the 25 years experience with relational databases. Unfortunately, the
language fails to include the inference rules specific to RDF Schema, loosing description
semantics.

Stefan Kokkelink goes even further with the second approach proposing RDF query
and transformation languages that extend existing XML technologies. Similarly to XPath,
he defines RDFPath [Kokkelink, 2001] for locating information in an RDF graph. The
location step and the filter constructs were present also in XPath, but the primary selection
construct is new in this language. With the RDF graph being a forest, one needs to specify
from which trees the selection will be made. RDFT is an RDF declarative transformation
language a la XSLT [Kay, 2005b], while RQuery, an RDF query language, is obtained
by replacing XPath [Berglund et al., 2005] with RDFPath in XQuery [Boag et al., 2005].

92 CHAPTER 5. QUERY OPTIMIZATION IN HERA

However, this approach is not using the features specific for RDF, as the RDF Schema is
being completely neglected.

The third approach (coming from ICS-FORTH in Greece) uses the RDF Graph Model
for defining the RDF query language RQL [Karvounarakis et al., 2002]. It extends previous
work on semistructured query languages (e.g., path expressions, filtering capabilities, etc.)
[Catell et al., 2000] with RDF peculiarities. Its strength lies in the ability to uniformly
query both RDF descriptions and schemas. Compared to the previous approach it exploits
the inference given in the RDF Schema (e.g., multiple classification of resources, taxonomies
of classes and properties, etc.) making it the most advanced RDF query language proposed
so far.

Other query languages for RDF have been proposed during the last years: we name Al-
gae [Prud’hommeaux, 2002] (W3C) and rdfDB Query Language [Guha, 2000] (Netscape) as
graph matching query languages. RDF query languages similar to rdfDB Query Language
are: RDFQL [Intellidimension Inc, 2002], David Allsop’s RDF query language [Allsopp
et al., 2002], SquishQL [Miller, 2002], and RDQL [Seaborne, 2001] (HP Labs) an imple-
mentation of SquishQL on top of the Jena RDF API [McBride, 2001] (HP Labs). Some
other proposed RDF APIs are: Wilbur [Lassila, 2001] (Nokia), the RDF API from Stan-
ford [Melnik, 2001], and Redland [Beckett, 2003]. DAML Query Language (DQL), a query
language for ontology knowledge expressed in DAML+OIL [Connolly et al., 2001] (built
on top of RDF), is currently under development.

We mention one characteristic aspect of all the languages. The proposed approaches
disregard the (re)construction of the output: they leave the output as a “flat” RDF con-
tainer of input resources. The focus is on the extraction of the proper resources for the
given query, not on building a new RDF data structure. For the purpose of an RDF al-
gebra we need to take into account also the construction part: deriving from the input
data structure a new RDF data structure as the consequence of the query implies that
the resulting RDF graph can contain new vertices and edges not present in the original
RDF graph. To express RDF queries both the extraction and construction parts should
be covered. The optimization of queries can be achieved not only in the extraction part,
finding efficient ways of extracting the relevant resources, but also in the construction part
when the actual output is produced.

5.3 Data Model

In this section we discuss the data model used with our algebra. We describe how the
RDF data structures are represented in the input or output of the expressions formulated
in RAL. We start by considering the concept of RDF model.

5.3.1 RDF Model

An RDF model is similar to a directed labeled graph (DLG) [Lassila and Swick, 1999].
However, it differs from a classical DLG since its definition allows for multiple edges between

5.3. DATA MODEL 93

two nodes. It also differs from a multigraph because the different edges between two
nodes are not allowed to share the same label. The graph does not necessarily have to be
connected and it is allowed to contain cycles.

The nodes in the graph are used to represent resources or literals. Literals (strings)
are used to denote content that is not processed further by the RDF processor. The nodes
that represent resources can be further classified as nodes representing URI references or
blank nodes. URI references are used as universal identifiers in RDF. Each blank node,
also called an anonymous resource, is considered to be unique in the graph despite the
fact that it has no (explicit) label associated to it. The non-blank nodes are (explicitly)
labeled with resource identifiers (URIs) or string values. The edges in the graph represent
properties. These edges are labeled by property names. Edges between different pairs of
nodes may share the same label and the same property can be applied repetitively on a
certain resource. This RDF feature enables multiple classification of resources, multiple
inheritance for classes, and multiple domains/ranges for properties. Both resources and
properties are first class citizens in the proposed RDF data model.

We identify the following sets: R (set of resources), U (set of URI references), B (set
of blank nodes), L (set of literals), and P (set of properties). At RDF level the following
holds for these sets: R = U ∪ B, rdf :Property ∈ U , P ⊂ R, rdf :type ∈ P , and U, B, and
L are pair-wise disjoint.

The property rdf :type defines the type of a particular resource instance. At RDF
level any resource can be the target of an rdf :type property. RDF supports multiple
classification of resources, because rdf :type (as any other property) can be repeated on a
particular resource.

Definition 1 An RDF model M is a finite set of triples (also called statements)

M ⊂ R × U × (R ∪ L)

Each triple or statement in an RDF model contains a resource, a URI reference (which
stands for a property), and a resource or literal.

Definition 2 The set of properties of an RDF model M is

P = { p | (s, p, o) ∈ M ∨ (p, rdf :type, rdf :Property) ∈ M}

The properties in an RDF model are the middle element of a triple in the model, or
they are a resource with an rdf :type property to the rdf :Property resource.

Definition 3 Formally the data model (graph model) corresponding to an RDF model M
is

G = (N, E, lN , lE)

lN = N → R ∪ L

lE = E → P

94 CHAPTER 5. QUERY OPTIMIZATION IN HERA

using the following construction mechanism (N and E denote the nodes and edges, lN and
lE their labels). For each (s, p, o) ∈ M , add nodes ns, no to N (different only if s 6= o) and
label them as lN(ns) = s, lN(no) = o, and add ep to E as a directed edge between ns and
no and label that as lE(ep) = p. In the case that s and/or o are in B, then lN(ns) and/or
lN(no) are not defined: blank nodes do not have labels.

The function lN(.) is an injective partial function, while lE(.) is a (possibly non-injective)
total function: nodes that have a label have a unique one, edges always have a label but
can share it with other edges.

We use quotes for strings that represent literal nodes to make a syntactical distinc-
tion between them and URI nodes. A URI can be expressed using qualified names (e.g.,
s:Painting) or in absolute form (e.g., http://example.com/schema#Painting). Blank
nodes do not have a proper identifier which implies that they can be queried only through
a property related to them. Compared to XML, which defines an order between subele-
ments, in RDF the properties of a resource are unordered unless they represent items in
a sequence container. We remark that not having the burden of preserving element order
eases the definition of algebra operators and their associated laws.

5.3.2 Nodes and Edges

As we describe in Table 5.1 each node has three basic properties. The id of a node represents
the (identification) label associated to it. The nodes from the subset of resources that
represent the blank nodes do not have an id associated to them. There are two types of
nodes: rdfs:Resource and rdfs:Literal. The nodeID gives the unique internal identifier
of each node in the graph. nodeID has the same value as id for the nodes that have a
label, but in addition it gives a unique identifier to the blank nodes. The internal identifier
nodeID is not available for external use, i.e., it is not disclosed for querying.

Basic property Result for Result for
resource u ∈ U literal l ∈ L

id lN(u) lN(l)
type rdfs:Resource rdfs:Literal
nodeID internal ID internal ID

Table 5.1: Basic properties for nodes.

Each edge has three basic properties as described in Table 5.2. Compared with nodes,
which have unique identifiers, edges have a name (label), which may be not unique. There
can be several edges sharing the same name but connecting different pairs of vertices. The
name of an edge is (lexically) identified with the id of the resource corresponding to the
property associated with the edge. The subject of an edge gives the resource node from
which the edge is starting. object returns the resource or literal node where the edge ends,
i.e., the value of the property.

5.3. DATA MODEL 95

Basic property Result for
edge e
from r ∈ R to o ∈ R ∪ L

name lE(e)
subject r
object o

Table 5.2: Basic properties for edges.

Definition 4 Two non-blank nodes are considered to be equal if they have the same id.
Two blank nodes are considered to be equal if they have the same (RDF) properties and
the corresponding (RDF) property values are equal (in case of loops, pairs of blank nodes
already visited are not further tested for equality).

All non-blank nodes that are considered equal are internally mapped into one node in the
graph.

Definition 5 Two graphs are considered to be equal if they differ only by re-naming the
nodeIDs of their blank nodes.

Note that two graphs for which all their nodes are equal (in terms of node equality)
may be not equal themselves (in terms of graph equality) if some corresponding non-blank
nodes have different properties and/or different property values.

5.3.3 RDFS

RDF Schema (RDFS) [Brickley and Guha, 2004] provides a richer modeling language on
top of RDF. RDFS adds new modeling primitives by introducing RDF resources that
have additional semantics (in the previous section we already mentioned rdfs:Resource
and rdfs:Literal). If one chooses to discard this special semantics, RDFS models can be
viewed as (plain) RDF models.

The RDFS type system is built using the following primitives: rdfs:Resource, rdf :type,
rdf :Property, rdfs:Class, rdfs:Literal, rdfs:subClassOf , rdfs:subPropertyOf , rdfs:do-
main, and rdfs:range. The distinction between rdf and rdfs namespaces to be used for
different resources is more due to historical reasons (RDF was developed before RDFS)
than due to semantical ones. Figure 5.1 depicts graphically these RDF/RDFS primitives.

The inheritance mechanism incorporated in RDFS supports taxonomies at class level
(using the rdfs:subClassOf property) and at property level (using the rdfs:subPropertyOf
property). It also defines constraints: names to be used for properties, domain and range
for properties, etc. These constraints need to be fulfilled by RDF descriptions (later on
called instances) in order to validate these instances according to the associated schema.

Every resource that has the rdf :type property equal to rdfs:Class represents a type (or
class) in the RDF(S) type system. Types can be classified as primitive types (rdfs:Resource,

96 CHAPTER 5. QUERY OPTIMIZATION IN HERA

rdfs:Resource

rdf:Property rdfs:Class

rdf:type

rdfs:Literal

rdfs:subClassOf

rdfs:subPropertyOf rdfs:range

rdfs:domain

rdfs:subClassOf
rdf:type

Figure 5.1: RDF/RDFS primitives.

rdf :Property, rdfs:Class, or rdfs:Literal) or as user-defined types (those are resources
defined explicitly by a particular RDF model to have the rdf :type property equal to
rdfs:Class). The type of the resource rdfs:Class is defined reflexively to be rdfs:Class.
The resource rdfs:Class contains all the types, which is not the same thing as saying that
it includes all the values (instances) represented by these types.

We extend the data model with the set C (set of classes). At RDFS level the following
holds: C ⊂ R, rdfs:Resource ∈ C, rdf :Property ∈ C, rdfs:Class ∈ C, and rdfs:Literal ∈
C.

Definition 6 The set of classes of an RDF model M is

C = { c | (c, rdf :type, rdfs:Class) ∈ M}

The most general types are rdfs:Resource and rdfs:Literal which represent all re-
sources and literals, respectively. According to the data model these types are disjoint.
Subclasses of the class rdfs:Resource are rdfs:Class and rdfs:Property, rdfs:Class rep-
resenting all types (already stated above), and rdfs:Property containing all properties.
The distinction between properties and resources is not a clear cut one as properties are
resources with some additional (edge) semantics associated to them. A property (edge)
can be used repetitively between nodes (similar in a way to repeating a particular type in
the definition of its instances) which justifies the existence of an extent function (defined
later on) for properties, as well as for classes. Moreover, property instances can have the
rdfs:subPropertyOf property defined in the same way as one can use the rdfs:subClassOf
property for classes.

The most important properties (each instance of rdf :Property) are: rdfs:subClassOf ,
rdfs:subPropertyOf , rdfs:domain, and rdfs:range. The properties rdfs:subClassOf and

5.3. DATA MODEL 97

rdfs:subPropertyOf are used to define inheritance relationships between classes and prop-
erties, respectively. Based on the RDF Test Cases [Grant and Beckett, 2004] the properties
rdf :subClassOf and rdf :subPropertyOf can produce cycles, a useful mechanism if we
think about class or property equivalence. A resource of type rdf :Property may define the
rdfs:domain and the rdfs:range associated to that property: the type of the subject and
object nodes of the property edge. Inspired by ontology languages, like OWL [van Harme-
len et al., 2003], rdfs:domain and rdfs:range can be multiply defined for one particular
property and will have conjunctive semantics.

There is one particular class called rdfs:Literal that represents all strings. Note that
the RDF Semantics [Hayes, 2004] identifies two types of literals: plain literals and type
literals. A plain literal is a 2-tuple (lexical form, language identifier) and a typed literal is
a 3-tuple (lexical form, language identifier, datatype URI). The datatype URI is an XML
Schema datatype [Biron and Malhotra, 2001] or rdf :XMLLiteral for XML content. In
the data model we simplify the literal definition considering just the character string (the
lexical form) for literals. Note that literals are not resources, i.e., one cannot associate
properties to them. On the other hand, there are resources that have type rdfs:Literal
and thus can have properties attached to them. Nevertheless one cannot say which literal
this resource denotes. RDF defines also the container classes rdf :Seq, rdf :Bag, and rdf :Alt
to model ordered sequences, sets with duplicates, and value alternatives. The properties
rdf :rdf 1, rdf :rdf 2, rdf :rdf 3, etc., refer to container members.

5.3.4 Class and Property Nodes

As shown in Table 5.3 each node representing a class has three schema properties. Schema
properties associated to nodes are short notations (like a macro) for expressions doing the
same computation based only on basic properties. The type of a class node is rdfs:Class.
The set of superclasses (classes from which the current class node is inheriting prop-
erties) is given by subClassOf . RDFS allows multiple inheritance for classes because
rdfs:subClassOf (as any other property) can be repeated on a particular class. The
extent of a class node is the set of all instances of this class.

Schema property Result
type rdfs:Class
subClassOf S with S ⊂ C
extent R′ with R′ ⊂ R

Table 5.3: Schema properties for class nodes.

Each node representing a property has five schema properties as shown in Table 5.4.
The type of a property node is rdf :Property. The set of superproperties (properties which
the current property is specializing) is given by subPropertyOf . Note that the domain or
range of a superproperty should be superclasses for the current property’s domain or range,
respectively. The domain and range return sets of classes that represent the domain and

98 CHAPTER 5. QUERY OPTIMIZATION IN HERA

the range, respectively, of the property node. The extent of a property node is the set of
resource pairs linked by the current property: this set of pairs is a subset of the Cartesian
product between the associated domain and range extents.

Schema property Result
type rdf :Property
subPropertyOf S with S ⊂ P
domain D with D ⊂ C
range R with R ⊂ C
extent E with E ⊂ ∩d∈domainextent(d) × ∩r∈rangeextent(r)

Table 5.4: Schema properties for property nodes.

One should note that we assume in the data model that there can be several edges
having the same name but linking different pairs of resources. All these properties can be
seen as “instances” (abusing the term “instance” previously referring to resource instances
of a particular class) of the property node with the id value equal to their common name.

In absence of a schema, all RDF properties have type rdf :Property, domain R, and
range R∪L. In this way one can define the extent of an RDF property even if the property
is not explicitly defined in a schema. In a schemaless RDF graph all resources are assumed
to be of type rdfs:Resource.

5.3.5 Complete Models

The RDF Semantics [Hayes, 2004] defines the RDF-closure and RDFS-closure of a certain
model M by adding new triples to the model M according to a collection of given infer-
ence rules. We refer to the original model M as the extensional data and to the newly
generated triples as the intensional data. There are two inference rules for RDF-closure
and nine inference rules for RDFS-closure. The inference rules for RDF-closure add for
all properties in the model the rdf :type property (pointing to rdf :Property). Examples of
inference rules for RDFS-closure are the transitivity of rdfs:subClassOf , the transitivity
of rdfs:subPropertyOf , and the rdf :type inference for an rdf :type edge that follows after
an rdfs:subClassOf edge. One should note that the resulting output of applying these
inference rules may trigger other rules. Nevertheless the rules will terminate for any RDF
input model M , as there is only a finite number of triples that can be formed with the
finite vocabulary of M .

Definition 7 An RDF model M is complete if it contains both its RDF-closure and RDFS-
closure.

In the proposed data model we consider complete models and we neglect reification and
the properties rdfs:seeAlso, rdfs:isDefinedBy, rdfs:comment, and rdfs:label without
loosing generality.

5.4. BASIC RAL OPERATORS 99

5.4 Basic RAL Operators

The purpose of defining RAL is twofold: to provide a reference mathematical study for
RDF query languages and to enable algebraic manipulations for RDF query optimization.
RAL is an algebra for RDF defined from a database perspective, some of its operators
being inspired by their relational algebra counterparts. We used a similar approach in
developing XAL [Frasincar et al., 2002a], an algebra for XML query optimization.

During the presentation of RAL operators we will use the RDF data from the example
in Figure 5.2 as input for the operators. It is assumed that all operators know about the
complete RDF model as it was defined in Definition 7. That means that they all have the
complete knowledge (both extensional and intensional data) present in the given model.
Variants of the proposed operators can be defined using the suffix “ˆ” which will make
the operators neglect the intensional data, i.e., data derived by applying RDF(S) inference
rules to the input model is neglected (similar to RQL’s “strict interpretation”).

Technique Artifact

Painting

CreatorLiteral

Literal Literal

r2http://example.com/sb.jpg

schema

creates

created_byexemplified_by

paints

painted_by

exemplifies Literal

Painter

Image

"Self Portrait""Stone Bridge" "1628""1638"

r3 http://example.com/sp.jpg

"Rembrandt"

image

name

instance

image

paints

rdfs:subClassOf
rdfs:subPropertyOf

year year

year

rdf:Property

image

r1"Chiaroscuro"
exemplified_by

r4
paintsexemplified_by

inferred rdf:type
rdf:type

tname

tname

cname

cname

aname aname

aname

Figure 5.2: Example schema and instance.

Figure 5.2 is an excerpt from the RDF schema and RDF instance of some Web data
describing different painting techniques. For reasons of simplicity we consider only one

100 CHAPTER 5. QUERY OPTIMIZATION IN HERA

painting technique (“Chiaroscuro”), one painter (“Rembrandt”), and two paintings of
the same painter (“StoneBridge” and “SelfPortrait”). The figure does not present the
RDFS primitives rdfs:Resource, rdf :Property, rdfs:Class, and rdfs:Literal from which
all the resources and literals are derived. In order to simplify Figure 5.2 we chose to present
only the extensional data and just one intensional data element given by the inferred edge
rdf :type between r4 and Creator. For the same reasons we omit from the figure edges
representing the inverse properties exemplifies and painted by between instances (e.g.,
the edge labeled painted by between r2 and r4) that are nevertheless part of the data
model.

We define RDF collections to be sets of nodes (resources/literals). A collection is de-
noted as {e1, e2, ...en} where e1, e2, ...en are the nodes in the collection. A node, a unique
element in the RDF graph, is also a unique element in a collection that contains it. The
collections (sets) of nodes are closed under all operators, which implies that RAL expres-
sions can be easily composed. The collection concept is similar to the monad concept from
mathematics [Wadler, 1992]. A monad is defined over a certain type M . In contrast to the
monad, RAL collections are more liberal in the sense that they are not restricted to a par-
ticular type M . A RAL collection can contain both literals and resources of different types.
A monad is defined as a triple of functions (mapM, unitM, joinM). RAL also has the map
operation defined and the monad join operation is equivalent to RAL’s union operation.
In RAL there is no unit operation as the singleton collection {n} is written in the same
way as the single node n. Based on the similarities between monads and RAL collections,
one can reuse the three monad laws (left unit law, right unit law, and associativity law)
as equivalence rules in RAL (see the first three RAL laws from Section 5.6). The fact that
RAL collections are not ordered enables the commutativity law of some binary operations
(e.g., Law 11 from Section 5.6). In comparison with the relational algebra, RAL is more
powerful as binary operations like union do not have to meet the “compatibility” condition
from the relational algebra.

RAL operators come in three flavors: extraction operators retrieve the needed resources
from the input RDF model, loop operators support repetition, and construction operators
build the resulting RDF model. The RAL philosophy is based on the fact that the collection
of nodes represents a collection of graph components that contain these nodes. Using
the extraction operators a subgraph of the original graph is selected. The construction
operators build a new model by creating nodes/edges as well as reusing old nodes (possibly
without some edges) and old edges.

The general form of the operators is

o[f](x1, x2, . . . xn : expression)

Informally, this form represents the following. For each binding of x to a tuple from the
input collections, f(x) is computed. A tuple is formed by taking one element from each
input collection: x1, x2, . . . xn. Note that x1, x2, . . . xn are algebra expressions that return
collections. f is a function that may use basic/derived properties or one of the proposed
operators. Based on the semantics of operator o a partial result for the application of o to

5.4. BASIC RAL OPERATORS 101

f(x) is computed for each binding x. The operator result is obtained by combining (through
set union) all partial results. All unary operators use this implicit union mechanism, the
map operator, to compute the result. In the operator’s general form, the function f is
optional. For readability reasons we use for binary operators the infix notation.

RAL operators are defined to work on any RDF description, with or without an ex-
plicit schema. Note that implicitly there is always a default schema based on the follow-
ing RDFS primitives: rdfs:Resource, rdf :Property, rdfs:Class, and rdfs:Literal. These
RDFS primitives can be used to retrieve a particular schema in case that such information
is not known in advance. Once the application schema is known, one can formulate queries
to return instances from the input model.

5.4.1 Extraction Operators

The extraction operators retrieve the resources/literals of interest from the input collection
of nodes. If the operator is not defined on nodes that represent literals, these nodes are
simply neglected.

In the examples that illustrate the operators we will use expressions that return col-
lections of resources from the example RDF model m of Figure 5.2. The expression c
represents the collection (set) of all resources present in model m.

Projection

π[re name](e : expression)

The input of the projection is a collection of nodes (specified by the expression e) and
the projection operator computes the values (objects) of the properties with a name given
by the regular expression re name over strings. The symbol # represents the wildcard
that matches any string.

Example 1 π[exemplified by](r1) returns the collection of artifacts that exemplify the
painting technique r1 from the input model (depicted in Figure 5.2): r2 and r3.

Example 2 π[(P |p)aint[s]#](r4) returns the collection of paintings painted by r4: r2 and
r3.

Example 3 π[rdf :type](r4) returns the collection of resources representing a type of r4:
Painter, Creator, and rdf :Resource.

Selection

σ[condition](e : expression)

In a selection the condition is a Boolean function that uses as constants URIs and/or
strings. The operators allowed in the condition are RAL operators, the usual comparison
operators (=, >=, <=, <, >, <>), and logical operators (and, or, not). The input of the

102 CHAPTER 5. QUERY OPTIMIZATION IN HERA

selection is a collection of nodes and the operator selects only the nodes that fulfill the
condition.

Example 4 σ[π[tname] = “Chiaroscuro”](c) is a selection operation applied to the col-
lection c of all resources in the input model. The expression returns the resource(s) repre-
senting the painting technique with the name “Chiaroscuro” (i.e., r1).

Example 5 σ[π[rdf :type] = Creator]({r3, r4}) returns resources from the input model
with the value of rdf :type being Creator: r4, since r4 is a resource of type Painter and
Painter is a subclass of Creator.

Example 6 σˆ[π[rdf :type] = Creator]({r3, r4}) (different from the selection in the pre-
vious example, as “ˆ” implies the use of only the extensional data) returns the empty
collection, as the inferred rdf :type of r4 (i.e., Creator) from the input model will not be
available to the operator.

Cartesian Product

(x : expression) × (y : expression)

The Cartesian product takes as input two collections of nodes on which it performs
the set-theoretical Cartesian product. Each pair of nodes is used to build an anonymous
resource that has all the properties of the original resources. Thus, this newly built re-
source will have all the types of the original two resources (RDF multiple classification of
resources). The final output is the collection of all those anonymous resources.

Example 7 σ[π[rdf :type] = Technique](c) × σ[π[rdf :type] = Painter](c) where c repre-
sents the collection of all resources in the input model, returns one anonymous resource
having all the properties of the only technique r1 and the only painter r4. As a consequence
this anonymous resource has both types Technique and Painter.

Join

(x : expression) ./ [condition] (y : expression)

The join expression is defined to be a Cartesian product followed by a selection, so
equivalent to

σ[condition](x × y)

The expression has as input two collections of resources that have their elements paired
only if they fulfill the condition (referring to the left and right operands). Anonymous
resources are built for each such pair. The output is the collection of all those anonymous
resources.

Example 8 (t := σ[π[rdf :type] = Technique](c)) ./ [π[exemplified by](t) = π[paints](p)]
(p := σ[π[rdf :type] = Painter](c)) where c represents the collection of all resources in the
input model, returns an anonymous resource having all the properties of r1 and r4. Note
that in this expression r1 and r4 are paired because there is a painting (e.g., r2) that
exemplifies r1 and is painted by r4.

5.4. BASIC RAL OPERATORS 103

Union

(x : expression) ∪ (y : expression)

The union operator combines two input collections of nodes reflecting the set-theoretical
union.

Difference

(x : expression) − (y : expression)

The difference operator returns the nodes present in the first input collection but not
in the second input collection.

Intersection

(x : expression) ∩ (y : expression)

The intersection operator returns the nodes present in both input collections.

5.4.2 Loop Operators

Loop operators are used in RAL to control the repetitive application of a function or
operator. They express repetition at input and/or function/operator level.

Map

map[f](e : expression)

The map operator is defined as

∪(f(e1), f(e2), ...f(en))

if the collection e contains the elements e1, e2, ...en. So, the map operator expresses repe-
tition at input level. The results of applying the function/operator f to each element in
the input collection are combined (through set union) to obtain the final result. All unary
extraction operators have an implicit map operator associated with them.

Example 9 map[id](c) where c represents the collection of all resources in the input model,
computes the labels of all the non-blank nodes in the input model, i.e., the labels of all
resources having an id property.

104 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Kleene Star

∗[f](e : expression)

The Kleene star operator is defined as

e ∪ f(e) ∪ ...f(f(...(f(f(e)))...)) ∪ ...

So, the Kleene star operator expresses repetition at function/operator level. It repeats the
application of the function/operator f on the given input for possibly an infinite number
of times. For each iteration the result is obtained by combining (through set union) the
output of applying the function/operator on the input with the input. If after an iteration
the result is the same as the input, a fixed point is reached and the repetition stops. In order
to ensure termination, a variant of this operator that specifies the number of iterations n
is defined below:

∗[f, n](e : expression)

Note that the map operator does not include the input in the result, while the Kleene
star operator does.

Example 10 map[id](∗[π[rdfs:subClassOf]](Painting)) gives the id of all ancestor classes
in the type hierarchy starting with Painting. For our example the result will contain three
labels denoting the types Painting, Artifact, and rdfs:Resource. If there would have been
loops made by the rdfs:subClassOf property in the input model, the above example would
still have terminated. The fact that the input model has a finite number of classes implies
that at a certain moment a fixed point is reached (we obtain the same output collection as
for the previous iteration) and thus the Kleene star operator terminates.

5.4.3 Construction Operators

Querying an RDF model implies not only extracting interesting nodes from the input model
but also constructing an output model by deleting nodes/edges from the extracted graph
and by creating new nodes/edges.

Before actually committing a construction operation, the RDF constraints are checked
on the output model. If these constraints are not met, the operation aborts. Examples of
RDF constraints are: resource identifiers have to be unique, the value of rdf :type cannot
be a literal, literals cannot have properties, etc.

Create Node

cnode[type, id]()

The create node operator possibly adds a new node to the graph. The input collection
is not used in the operator semantics. The type of the new node, specified by type, is
a resource of type rdfs:Class. The id is a resource identifier if the node represents a

5.4. BASIC RAL OPERATORS 105

resource, or a string if the node represents a literal. The id is used as input in the system’s
new id generator (nig) skolem function. This function returns the unique nodeID. The
nodeID is equal to id if id is given or it is a new unique identifier if id is empty. In the
first case an old node identifier is returned if id is already used as a nodeID in the data
model. In the second case a blank node is assigned a new nodeID. Note that the function
nig is injective. As a side effect of this operator, an edge representing the type property
is added between the newly created resource and its associated type resource. The create
node operator returns the created node (a collection containing one node).

Example 11 cnode[Painter]() creates a blank node of type Painter, while cnode[Literal,
“Caravagio”]() creates a Literal node representing the string “Caravagio”.

Create Edge

cedge[name, subject](object : expression)

The create edge operator possibly adds new edges (properties) to the graph. The name
(label) of the edges, as specified by name, is the id of a resource of type rdf :Property (the
id of a property resource). The subject and the object must have types complying with
the domain and the range of the property resource indicated by name. If there is already
an edge between subject and object with the label given by name then there is no need to
create a new edge. Recall that the RDF semantics doesn’t allow the presence of two edges
that share the same label between the same two nodes.

The subject is one node (or singleton collection) in the graph. The object can be
a collection of nodes. Note that in the above description object denotes a node from
the input collection. The edges are created between the subject node and the object
node(s). The create edge operator returns the subject node (a collection containing one
node). This operation can be generalized after introducing variables in RAL as shown in
Subsection 5.5.1.

Example 12 If n1 and n2 are the two nodes constructed in Example 11, n1 denoting the
blank node and n2 denoting the literal node, cedge[name, n1](n2) creates an edge labeled
name between the nodes n1 and n2.

Delete Node

dnode(e : expression)

The delete node operation deletes nodes from the graph. The input collection gives the
nodes that are removed. The operation returns the empty collection. As a side effect the
edges connected to these nodes as subject or object are also deleted.

Example 13 dnode({r2, r3}) deletes the nodes r2 and r3, and all the edges connected to
r2 or r3. For the given model this implies the elimination of the two resources representing
paintings and their associated edges.

106 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Delete Edge

dedge[re name, subject](object : expression)

The delete edge operation deletes edges from the graph. The edges that are deleted
have to start in the subject node and to end in one of the nodes from the object collection.
The name (label) of the edges to be deleted is given by the regular expression re name,
a regular expression over strings. If the subject and/or the object expressions are empty
the edges to be deleted are identified by the remaining input arguments. The operation
returns the subject input.

Example 14 dedge(#, r1)({r2, r3}) deletes the edges between r1 and r2, and between r1
and r3, irrespective of their name. In the concrete example the information that two
paintings exemplify the painting technique (r1) is removed.

5.5 Additional RAL Features

5.5.1 Variables

A variable is a substitute for a collection of nodes (possibly) resulting from an evaluation
of an algebraic expression. A variable thus serves as a shortcut of such an expression
that can be used in more complex algebraic expressions. There are several reasons for
introducing variables. First, as we already saw in the definition of the join operator, the
join’s selection condition may need a reference mechanism for the two operands (input
collections). Second, variables can be very useful in expressing complex expressions in
which a collection is used repeatedly. The third reason is related to the fact that query
languages like RQL give their results in terms of a table that has as columns variables
and as rows bindings of these variables. If one would like to use RAL to implement RQL
expressions this compatibility feature should be met.

Example 15 y := π[paints](x := r4) instantiates x with r4 and y with r2 and r3. If one
wants to export these variables, the result will be a table, similar to a table returned by
RQL, with two columns x and y, and two rows: the first row contains r4 and r2 and the
second row contains r4 and r3.

The last reason for having variables is the fact that it has a nice application for the
construction operators. If the extracted nodes are bound to variables, these variables can be
elegantly used in the construction part of RAL. The create edge operation can be extended
by allowing a collection of nodes not only in the object part but also in the subject part
by representing both parts with variables. The semantics of this construction operator is
that for each variable binding an edge will be created between the corresponding nodes.

Example 16 Consider the variable bindings from the previous example y := π[paints](x :=
r4). The expression cedge[peind, x](y) will add two edges with the label peind (the French
translation of paints) to the model, one between r4 and r2, and one between r4 and r3.

5.5. ADDITIONAL RAL FEATURES 107

y1

x1

p1

z3

z2

z1

p2 y2

z4

p x y

e2
e1

e3

e1 e2

e3

e3

e3

e3

z

Figure 5.3: Variable bindings.

As shown in the previous example the value of the inner variable (x) is associated with
two values of the outer variable (y). The two pairs (r4,r2) and (r4,r3) created by the
projection operator can be seen as two 2-tuples similar to those from the relational model.

Generalizing this we can say that n-1 nested projections create a set of sets of sets ...
of sets (n times) of variable bindings or in other words they generate n-tuples.

Example 17 To illustrate the above consider the tuple bindings for the following expres-
sion operating over the RDF graph depicted in Figure 5.3: z := π[e3](y := π[e2](x :=
x1)). The resulting bindings are the following 3-tuples: (x1,y1,z1), (x1,y1,z2), (x1,y1,z3),
(x1,y2,z3), and (x1,y2,z4).

Note that by generating these tuple bindings we possibly generate duplicates at the
variable level (the variable x is bound five times to the same value x1 in the above example).
These duplicates are removed prior to applying variable bindings as input for an operator
in order to assure “duplicate-free” collections.

In order to be able to compare results with RDF query languages that use as their
output tables of tuples, RAL provides a mechanism to export tuple bindings. This is
achieved simply by specifying the variable names participating in the tuple, separated by
“,”. For instance x,y,z exports the five tuples from the previous example. Note that if we
export only one variable, say x, there will still be five 1-tuples (five times x1), i.e., export
does not remove duplicates.

So far we discussed only variables which were bound during the multiple application of
the projection operator, i.e., they occurred on the same path in the graph. These variables
are dependent in the sense that the value of the next variable(s) depends on the binding of
the previous ones. There might be, however, variables that do not depend on each other,
i.e., they do not appear on the same path in the graph. In case of exporting independent
variables export performs a cross product of their bindings.

108 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Example 18 The variable p from p := π[e1](x1) is independent from the variables in-
troduced in the previous example. Exporting p, y, z results in the following tuple bind-
ings: (p1,y1,z1), (p1,y1,z2), (p1,y1,z3), (p1,y2,z3), (p1,y2,z4), (p2,y1,z1), (p2,y1,z2),
(p2,y1,z3), (p2,y2,z3), and (p2,y2,z4).

5.5.2 Additional Operators

Sort

Σ[value expression(e)](e : expression)

The sort operator orders alphabetically a collection based on value expression. This
value expression is an expression that returns a collection of strings (literals or URI ref-
erences). The value expression is applied for each node in the input collection and the
original nodes are ordered alphabetically based on the computed values.

Note that RAL collections are sets, i.e., they are not ordered. Nevertheless it is useful
to be able to output ordered collections, as a last operator to be possibly used in a RAL
expression.

Example 19 Σ[π[name]](π[paints](r4)) orders alphabetically the resources representing
r4’s paintings based on their names.

5.5.3 RQL and RAL

RQL [Karvounarakis et al., 2002] is the most advanced RDF(S) query language to date
and RAL was designed taking into consideration RQL’s power of expression. RQL path
expressions from the FROM clause and RQL conditions from the WHERE clause can easily be
converted in RAL expressions using RAL operators. The vice versa conversion is not always
possible as there are RAL expressions (e.g., expressions with construction operators) that
are not expressible in RQL. Unlike RAL, RQL is not a closed query language; it takes as
input an RDF graph and it returns a table of variable bindings. Since this table does not
represent an RDF graph (just values of some variables) it cannot be used again as input
for the next query. As a consequence, views are not supported. Nevertheless, RQL offers
some degree of nesting queries in the FROM and WHERE clauses.

Example 20 Find the name of all painting techniques and the name of the painters who
used these techniques. In RQL this query looks as follows:

SELECT Xtn, Zcn

FROM {X:Technique}exemplified_by.painted_by{Z}.cname{Zcn},

{M}tname{Xtn}

WHERE X=M

5.6. RAL EQUIVALENCE LAWS 109

In our concrete example this query returns two identical rows. The pair Chiaroscuro,
Rembrandt appears twice as a result since there are two paintings (r2 and r3) that exem-
plify the Chiaroscuro technique and are painted by Rembrandt (r4).

The following RAL program exports the same variable bindings of Xtn and Zcn as the
above RQL query:

z := π[painted by](π[exemplified by](x := σ[π[rdf :type] = Technique]
(c))); Xtn := π[tname](x); Zcn := π[cname](z); Xtn, Zcn

Instead of just outputting variable values in a table-like fashion the construction oper-
ators of RAL allow for constructing a full-fledged RDF graph. For instance the following
expression connects all painters from the previous query to the techniques they were using
by adding a ptechnique edge: cedge[ptechnique, z](x).

5.6 RAL Equivalence Laws

One of the advantages of using an algebra expression for a query is the ability to rewrite
this expression in a form that satisfies certain needs. For example an automatic translator
from RQL to RAL can use RAL equivalence laws to rewrite algebra expressions for query
optimization purposes.

The proposed set of equivalence laws is inspired by the monad laws [Wadler, 1992], and
the relational algebra’s equivalence laws [Ullman, 1989]. In [Beeri and Kornatzky, 1993] it
was shown how relational equivalence laws can be reused (redefined) in an object-oriented
context.

Law 1 (Left unit) If e1 is of unit type (singleton collection), i.e., e1 = {n}, then

e2(e1) = e2(n)

Law 2 (Right unit) If e2 is the identity function, i.e., e2(e) = e, then

e2(e1) = e1

Law 3 (Empty collection) If e2 is the empty function, i.e., e2(e) = (), then

e2(e1) = ()

Law 4 (Decomposition of ./)

e1 ./ [condition] e2 = σ[condition](e1 × e2)

Law 5 (Decomposition of π) If name is a regular expression that can be decomposed
in several regular expressions name1, ... namen then

π[name](e) = π[name1](e) ∪ ...π[namen](e)

110 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Law 6 (Cascading of σ)

σ[c1 ∧ ...cn](e) = σ[c1](...(σ[cn](e))...)

Law 7 (Commutativity of σ)

σ[c1](σ[c2](e)) = σ[c2](σ[c1](e))

Law 8 (Commutativity of σ with π) If the condition c involves solely nodes that have
incoming edges named by the regular expression name, then

π[name](σ[c(π[name])](e)) = σ[c](π[name](e))

Law 9 (Commutativity of σ with ×) If the condition c involves solely nodes from e1,
then

σ[c](e1 × e2) = σ[c](e1) × e2

Law 10 (Commutativity of σ with ∪, ∩, −) If θ is one of the operators ∪, ∩, and −,
then

σ[c](e1 θ e2) = σ[c](e1) θ σ[c](e2)

Law 11 (Commutativity of ∪, ∩, ×) If θ is one of the operators ∪, ∩, and × then

e1 θ e2 = e2 θ e1

Law 12 (Commutativity of π with ×) If name is a regular expression that can be de-
composed in two regular expressions name1 and name2, and if name1 involves solely nodes
in e1, and name2 involves solely nodes in e2, then

π[name](e1 × e2) = π[name1](e1) × π[name2](e2)

Law 13 (Commutativity of π with ∪)

π[name](e1 ∪ e2) = π[name](e1) ∪ π[name](e2)

Law 14 (Associativity of ∪, ∩, ×) If θ is one of the operators ∪, ∩, and × then

(e1 θ e2) θ e3 = e1 θ (e2 θ e3)

In order to illustrate the usefulness of the above laws for query optimization we use an
example. The query optimization heuristics is based on pushing the selections/projections
down as far as possible and applying the most restrictive selections first as it was done
similarly in the relational algebra context. The example schema is given in Figure 5.4.
It is a slightly modified example compared to the one from Figure 5.2 in the sense that
the properties between concepts are replaced by literal (value) properties that function as
concept identifier locators. This new example comes from a Web data integration exercise

5.6. RAL EQUIVALENCE LAWS 111

Painting

Literal

Technique

LiteralLiteralLiteralLiteral Literal

Painter

Image

tname painting painter cname nationalityimage aname

Figure 5.4: Example schema.

z := σ[π[rdf :type] = Technique](a)

×

×

π[nationality]

σ[π[tname] = “Chiaroscuro”]

y := σ[π[rdf :type] = Painting](a)

Σ

x := σ[π[rdf :type] = Painter](a)

σ[π[cname](x) = π[painter](y) ∧ π[aname](y) = π[painting](z)]

Figure 5.5: First (initial) query tree.

in which different schemas need to be merged “by value”. We chose this schema example
as it better (compared with the example from Figure 5.2) illustrates the proposed query
optimization.

The query under investigation is: Return in alphabetical order the nationalities of the
painters that used the Chiaroscuro painting technique. A query parser will produce the
initial query tree given in Figure 5.5. In all query trees a represents the collection of all
resources in the input model classified under the schema from Figure 5.4.

A query execution module will process a node in a query tree as soon as the operands
are available. Such a node will be replaced by the collection that results from executing the
node’s associated expression. The execution terminates when the root node is processed.
The final query result is the collection obtained from processing the root node.

In the example, during the execution of the initial query tree a very large Cartesian
product between all painters, paintings, and techniques is generated. By pushing the
selections down (using Law 6, Law 7, and Law 9) one can get the query tree in Figure 5.6.

A further improvement is obtained by applying the most restrictive selections first
(using Law 7, Law 9, Law 11, and Law 14). The resulting query tree is given in Figure 5.7.

112 CHAPTER 5. QUERY OPTIMIZATION IN HERA

σ[π[rdf :type] = Technique](a)

z := σ[π[tname] = “Chiaroscuro”]

π[nationality]

σ[π[aname](w) = π[painting](z)]

×

×

Σ

x := σ[π[rdf :type] = Painter](a) y := σ[π[rdf :type] = Painting](a)

w := σ[π[cname](x) = π[painter](y)]

Figure 5.6: Second query tree.

So, with the aid of RAL laws three equivalent query trees were obtained.

z := σ[π[tname] = “Chiaroscuro”]

π[nationality]

σ[π[rdf :type] = Technique](a)

σ[π[cname](x) = π[painter](w)]

w := σ[π[painting](z) = π[aname](y)]

×

×

Σ

y := σ[π[rdf :type] = Painting](a)

x := σ[π[rdf :type] = Painter](a)

Figure 5.7: Third query tree.

5.7. CONCLUSIONS 113

In order to better understand why it is more efficient to execute the last query tree,
we will give a quantitative dimension to our example. Suppose that the instance of the
proposed schema example has 5 painting techniques, 100 painters, and 1000 paintings.
Only 100 of all paintings use the Chiaroscuro painting technique. Let’s compute now the
number of elements generated by the Cartesian products for each query tree. For the
first query tree we have 100 x 1000 + 5 x 100 x 1000 = 600,000 elements, for the second
query tree 100 x 1000 (painters are matched to their paintings) + 1000 x 1 (paintings
are matched to the Chiaroscuro painting technique) = 101,000 elements, and for the last
query tree 1 x 1000 (paintings are matched to the Chiaroscuro painting technique) + 100 x
100 (paintings that use the Chiaroscuro technique are matched to their painters) = 11,000
elements. The most efficient to execute is the last query tree as its Cartesian products
produce the smallest number of elements.

5.7 Conclusions

RAL is an RDF algebra defined to support the formal specification of an RDF query
language. It presents a set of operations to be used in both the extraction and construction
parts of a formally defined RDF query language. It is one of the first RDF algebras
developed from a database perspective. Compared with existing RDF query languages,
the construction phase is not neglected and is part of the language specification.

Besides being a reference language for RDF query languages, RAL can also be used for
RDF query optimization. Based on RAL equivalence laws we propose a heuristic algorithm
for RDF query optimization inspired by the one found in relational algebra (i.e., pushing the
selections/projections down as far as possible and applying the most restrictive selections
first).

As future work we will analyze the expressive power of RAL with respect to existing
RDF query languages. Comparing the expressive power of RAL to that of other algebras,
like relational algebra or object algebra, gives some insight into the real strength of the
language, but the true test is the comparison with other existing query languages for RDF.

We would like to further investigate optimization laws that enable algebraic manipu-
lations for query optimization. The lack of order (between resources) in RDF models and
RAL collections, as well as the simplicity and composability of RAL operators (similar
to the relational algebra ones) seem to foster the definition of RAL optimization laws. A
translator from a popular RDF query language (e.g., RQL) to RAL and a RAL engine will
enable us to experiment with different aspects of RDF query optimization.

114 CHAPTER 5. QUERY OPTIMIZATION IN HERA

Chapter 6

Data Visualization in Hera

A common and natural representation for RDF data is a directed labeled graph.
Although there are tools to edit and/or browse RDF graph representations, we
found their architecture rigid and not easily amenable to producing effective
visual representations, especially for large RDF graphs. We discuss here how
GViz, a general purpose graph visualisation tool, allows the easy construction
and fine-tuning of various visual exploratory scenarios for RDF data. GViz’s
extended ability of customizing the visualization’s icons showed to be very use-
ful in the context of RDF graph structures visualisation. We demonstrate our
approach by applying the developed visualization techniques for the RDF data
models used in the Hera methodology. Based on the proposed visualization tech-
niques one can answer complex questions about this data and have an effective
insight into its structure.

6.1 Introduction

RDF is intended to describe the Web metadata so that the Web content is not only machine
readable but also machine understandable. In this way one can better support the inter-
operability of Web applications. RDF Schema (RDFS) is used to describe different RDF
vocabularies (schemas), i.e., the classes and properties of a particular application domain.
An instantiation of these classes and properties form an RDF instance. It is important to
note that both an RDF schema and an RDF instance have RDF graph representations.

Realizing the advantages that RDF offers, in the last couple of years, many tools were
built in order to support the browsing and editing of RDF data. Among these tools we
mention Protégé [Noy et al., 2001], OntoEdit [Sure et al., 2003], and RDF Instance Creator
(RIC) [Grove, 2002]. Most of the text-based environments are unable to cope with large
amounts of data in the sense of presenting them in a way that is easy to understand and
navigate [Card et al., 1999]. The RDF data we have to deal with describes a large number
of Web resources, and can thus easily reach tens of thousands of instances and attributes.
We advocate the use of visual tools for browsing RDF data, as visual presentation and nav-

115

116 CHAPTER 6. DATA VISUALIZATION IN HERA

igation enables users to effectively understand the complex structure and interrelationships
of such data. Existing visualization tools for RDF data are: IsaViz [Pietriga, 2002], On-
toRAMA [Eklund et al., 2002], and the Protégé visualization plugins like OntoViz [Sintek,
2004] and Jambalaya [Storey et al., 2002].

The most popular textual RDF browser/editor is Protégé [Noy et al., 2001]. The
generic modeling primitives of Protégé enable the export of the built model in different
data formats among which is also RDF/XML. Protégé distinguishes between schema and
instance information, allowing for an incremental view of the instances based on the selected
schema elements. One of the disadvantages of Protégé is that it displays the information in
a hierarchical way, i.e., using a tree layout [Sugiyama et al., 1981], which makes it difficult
to grasp the inherent graph structure of RDF data.

In this chapter, we advocate the use of a highly customizable, interactive visualization
system for the understanding of different RDF data structures. We implemented an RDF
data format plugin for GViz [Telea et al., 2002], a general purpose visual environment for
browsing and editing graph data. The largest advantage that GViz provides in comparison
with other RDF visualization tools is the fact that it is easily and fully customizable. GViz
was architected with the specific goal in mind of allowing users to define new operations
for data processing, visualization, and interaction to support application specific scenarios.
GViz also integrates a number of standard operations for manipulation and visualization
of relational data, such as data viewers, graph layout tools, and data format support. This
combination of features has enabled us to produce, in a short time, customized visualization
scenarios for answering several questions about RDF data. We demonstrate our approach
to RDF data visualization by using a real dataset example of considerable size.

In the next section, we describe the real-world dataset we use, and show the results
obtained when visualizing it with several existing RDF tools. Our visualization tool, GViz,
is presented in Section 6.3. Section 6.4 presents several visualization scenarios we built with
GViz for the used RDF dataset, and details various lessons learned when building and using
such visualizations. Finally, Section 6.5 concludes the chapter proposing future directions
for visualizing RDF information.

6.2 Related Work

Throughout this chapter, we will use an example based on real data made available by the
Rijksmuseum in Amsterdam, the largest art and history museum in the Netherlands. In
the example there is a museum schema used to classify different artists and their artifacts.
The museum instance describes more than 1000 artists and artifacts.

Figure 6.1 depicts the museum schema in Protégé. As can be noticed from this figure
such a text-based representation cannot nicely depict the structure of a large amount of
data. More exactly, a text-based display is very effective for data mining, i.e., posing
targeted queries on a dataset once one knows what structure one is looking for. However,
text-based displays are not effective for data understanding, i.e., making sense of a given
(large) dataset of which the global structure is unknown to the user.

6.2. RELATED WORK 117

Figure 6.1: Museum schema in Protégé (text-based).

In order to alleviate the above limitation, Protégé offers a number of built-in visualiza-
tion plugins. Figure 6.2 shows the graph representation generated by the OntoViz plugin
for two classes from the museum schema. The weak point of OntoViz is the fact that it is
not able to produce good layouts for graphs that have more than 10 nodes.

Figure 6.2: Museum schema in Protégé (with OntoViz plugin).

IsaViz [Pietriga, 2002] is a visual tool for browsing/editing RDF models. IsaViz uses
AT&T’s GraphViz package [Gansner et al., 2002; North, 2002] for the graph layout. Fig-
ure 6.3 shows the same museum schema using IsaViz. The layout produced by the tool is
much better than the one generated with OntoViz. However, the directed acyclic graph
layout used [Sugiyama et al., 1981] becomes ineffective when the dataset at hand has

118 CHAPTER 6. DATA VISUALIZATION IN HERA

roughly more than hundred nodes, as can be seen from Figure 6.3. IsaViz has a 2.5D
GUI with zooming capabilities and provides numerous operations like text-based search,
copy-and-paste, editing of the geometry of nodes and arcs, and graph navigation.

Figure 6.3: Museum schema in IsaViz.

For all these reasons, we believe that IsaViz is a state of the art tool for browsing/editing
RDF models. However, its rigid architecture makes it difficult to define application-
dependent operations others than the standard ones currently provided by the tool. Ex-
perience in several communities interested in visualizing relational data in general, such
as software engineering and web engineering, and our own experience with RDF data in
particular, has shown that tool customization is extremely important. Indeed, there is
no “silver bullet” or best way to visualize large graph-like datasets. The questions to be
answered, the data structure and size, and the user preferences all determine the “visual-
ization scenario”, i.e., the kind of (interactive) operations the users may want to perform
to get insight in the data and answers to their questions. It is not that each separate
application domain demands a specific visualization scenario. Users of the same domain
and/or even the same dataset within the same domain may require different scenarios.
Building such scenarios often is responsible for a large part of the complete time spent in
understanding a given dataset [Telea, 2004]. This clearly requires the visualization tool in
use to be highly (and easily) customizable.

6.3. GVIZ 119

6.3 GViz

In our attempt to understand RDF data through visual representations, an existing tool
was used. We implemented an RDF data format plugin for GViz [Telea et al., 2002],
a general purpose visual environment for browsing and editing graph data. The largest
advantage that GViz provides in comparison with other RDF visualization tools is the fact
that it is easily and quickly customizable. One can seamlessly define new operations to
support application specific scenarios, making thus the tool more amenable for the user
needs. In the past, GViz was successfully used in the reverse engineering domain, in order
to define application specific visualization scenarios. Figure 6.4 presents the architecture
of GViz based on four components: selection, mapping, editing, and visualization. In
the next section we describe the data model used in GViz. Next, we outline the operation
model describing the tasks that can be defined on the graph data. We finish the description
of the GViz architecture with the visualization component which we illustrate using the
museum schema dataset. The GViz core implementation is done in C++ while the user
interface and scripting layer were implemented in Tcl [Raines, 1998] to take advantage
of the run-time scripting and weak typing flexibility that this language provides. All the
GViz customization code developed for the RDF visualization scenarios presented in this
chapter was done in Tcl.

Selection Data Visual Data

Graph Layout

Graph Editing

Splat Mapper

Glyph Mapper

Mapping

Viewing

Interaction
andGraph Data

write

readwrite

Operations

reference

read

read

selection/editing events

Figure 6.4: GViz architecture.

6.3.1 Data Model

The data model of GViz consists of three elements:

• graph data: this is the RDF graph model, i.e., a labeled directed multi-graph in which
no edges between the same two nodes are allowed to share the same label. Nodes
stand for RDF resources/literals and edges denote properties. Each node has a type
attribute which states if the node is a NResource (named resource), an AResource
(anonymous resource), or a Literal. The label associated to a node/edge is given
by the value attribute. The labels for NResource nodes and edges are URIs. The

120 CHAPTER 6. DATA VISUALIZATION IN HERA

label for Literals is their associated string. The value of an AResource is an internal
identifier with no RDF semantics. Note that the type and value attributes are GViz
specific attributes that should not be confused with their RDF counterparts. Since
GViz’s standard data model is an arbitrary attributed graph, with any number of
(name, value) type of attributes per node and edge, the RDF data model is directly
accommodated by the tool.

• selection data: selections are subsets of nodes and edges in the graph data. Selections
are used in GViz to specify the inputs and outputs of its operations; their use is
detailed in Section 6.3.2.

• visual data: this is the information that GViz ultimately displays and allows the user
to interact with. Since GViz allows customizing the mapping operation, i.e., the way
graph data is used to produce visual data, the latter may assume different look-and-
feel appearances. Section 6.4 illustrates this in the context of our application.

6.3.2 Operation Model

As shown in Figure 6.4, the operation model of GViz has three operation types: selection,
graph editing, and mapping. Selection operations allow users to specify subsets of interest
from the whole input graph. In the RDF visualization scenarios that we built with GViz,
we defined different complex selections based on the attributes of the input model. These
selections can perform tasks like: “extract the schema from an input set of RDF(S) data
(which mixes schema and instance elements)”. Custom selections are almost always needed
when visualizing relational data, since a) the user doesn’t usually want to look at too
many data elements at the same time, and b) different subsets of the input data may have
different semantics, thus have to be visualized in different ways. A basic example of the
latter assertion is the schema extraction selection mentioned above.

Graph editing operations enable the modification, creation, and deletion of nodes/edges
and/or their attributes. For our RDF visualization scenarios, we did not create or delete
nodes or edges. However, we did create new data attributes, as follows. One of the key
features of GViz is that it separates the graph layout, i.e., computing 2D or 3D geomet-
rical positions that specify where to draw nodes and edges, from the graph mapping, i.e.,
specifying how to draw nodes and edges. The graph layout is defined as a graph edit-
ing operation which computes position attributes. Among the different layouts that GViz
supports we mention the spring embedder, the directed (tree), the 3D stacked layout, and
the nested layout [Telea et al., 2002]. Although based on the same GraphViz package as
IsaViz, the layouts of GViz are relatively more effective, as the user can customize their
behavior in detail via several parameters.

Mapping operations, or briefly mappers, associate nodes/edges (containing also their
layout information) to visual data. The latter is implemented using the Open Inventor
3D toolkit, which delivers high quality, efficient rendering and interaction with large 2D
and 3D geometric datasets [Wernecke, 1993]. GViz implements two mappers: the glyph
mapper and the splat mapper.

6.3. GVIZ 121

The glyph mapper associates to every node/edge in the input selection a graphical
icon (the glyph) and positions the glyphs based on the corresponding node/edge layout
attributes. Essentially, the glyph mapper produces the “classical” kind of graph drawings,
e.g., similar to those output by IsaViz. However, in contrast to many graph visualization
tools, the glyph mapper in GViz allows full customization of the way the nodes and edges
are drawn. The user can specify, for example, shapes, sizes, and colors for every separate
node and edge, if desired, by writing a small Tcl script of 10 to 20 lines of code on the
average. We used this feature extensively to produce our RDF visualizations described
in Section 6.4. The splat mapper produces a continuous two-dimensional splat field for
the input selection. For every 2D point, the field value is proportional to the density of
nodes per unit area at that point. Essentially, the splat mapper shows high values where
the graph layout used has placed many nodes, and low values where there are few nodes.
Given that a reasonably good layout will cluster highly interconnected nodes together, the
splat mapper offers a quick and easy way to visually find the clusters in the input graph
(Figure 6.9, Section 6.4). For more details on this layout, see [van Liere and de Leeuw,
2003].

A final way to customize the visualizations in GViz is to associate custom interaction
to the mappers. These are provided in the form of Tcl callback scripts that are called by
the tool whenever the user interactively selects some node or edge glyph with the mouse,
in the respective mapper windows. These scripts can initiate any desired operation using
the selected elements as arguments, for example showing some attributes of the selected
arguments. Examples of this mechanism are discussed in Section 6.4.

As explained above, GViz allows users to easily define new operations. For the in-
cremental view of RDF(S) data, we defined operations as: extract schema, select classes
and their corresponding instances, select instances and their attributes. As for the glyph
mappers, these operations have been implemented as Tcl scripts of 10 to 25 lines of code.
The usage of the custom selection, layout, and mapping operations for visualizing RDF(S)
data is detailed in the remainder of this chapter.

6.3.3 Visualization

Figure 6.5 presents the museum data schema in GViz. We use here a radial tree layout,
also available in the GraphViz package, instead of the directed tree layout illustrated in
Figure 6.3 for IsaViz. As a consequence, the structure of the schema is easier to understand
now.

In the above picture the edges with the label rdf :type are depicted in blue. There are
two red nodes to which these blue edges connect, one with the label rdfs:Class and the
other with the label rdf :Property, shown near the nodes as balloon pop-up texts. We chose
to depict the property nodes (laid out in a large circular arc around the upper-left red node)
in orange and the class nodes (laid out in a smaller circle arc around the lower-right red
node) in green. As it can be noticed from the picture there are a lot of orange nodes which
is in accordance with the property-centric approach for defining RDFS schemas. In order
to express richer domain models we extended the RDFS primitives with the cardinality

122 CHAPTER 6. DATA VISUALIZATION IN HERA

Figure 6.5: Museum schema in GViz (2D).

of properties, the inverse of properties, and a media type system. These extensions are
showed in yellow edges and yellow spheres (positioned at the right end of the image). The
yellow edges that connect to orange nodes represent the inverse of a property. The yellow
edges that connect an orange node with the yellow rectangle labeled multiple (positioned
at the middle of the figure bottom) state that this property has cardinality one-to-many.
The default cardinality is one-to-one. Note that there are not many-to-many properties as
we had previously decomposed these properties in two one-to-many properties. The three
yellow spheres represent the media types: String, Integer, and Image. The light gray thin
edges denote the domain and the range of properties. Note that only range edges can have
a media node at one of its ends. As these edges are a) not so important for the user and
b) quite numerous and quite hard to lay out without many overlaps, we chose to represent
them in a visually inconspicuous way, i.e., make them thin and using a background-like,
light gray color.

The tailoring of the graph visualization presented above is only one example. One can
define some other visualizations depending on ones needs. Figure 6.6 presents a 3D view of

6.4. APPLICATIONS 123

the same museum schema example. Here, we used a spring embedder layout, also available
from the GraphViz package, to position all schema nodes in a 2D plane. Next, we designed
a custom operation that selects the two rdfs:Class and rdf :Property nodes and offsets
them away from the 2D layout plane, in opposite directions. This creates a 3D layout,
which allows the user to better distinguish the different kinds of edges. For example, the
edges labeled rdf :type (colored in blue) are now clearly separated, as they reach out of the
2D plane to the offset nodes.

Figure 6.6: Museum schema in GViz (3D).

6.4 Applications

In order to better understand the context in which we developed our visualization applica-
tions we now briefly describe the Hera project [Vdovjak et al., 2003]. Hera is a methodology
for designing and developing Web Information Systems (WISs) on the Semantic Web. All
the system specifications are represented in RDFS. For the scope of this chapter it is im-
portant to have a look at two of these specifications: the conceptual model (domain model)
and the application model (navigation model).

The conceptual model describes the types of the instances that need to be presented.
An example of the conceptual model we already saw in Figure 6.5. A conceptual model is
composed of concepts and concept properties. There are two kinds of concept properties:
relationships (properties between concepts) and attributes (properties that refer to media
types).

124 CHAPTER 6. DATA VISUALIZATION IN HERA

The application model defines the navigation over the data, i.e., a view on the concep-
tual model that contains appropriate navigation links. The application model is an overlay
model over the conceptual model, a feature exploited in the definition of the transforma-
tions of the conceptual model instances into application model instances. An application
model is composed of slices and slice properties. A slice contains concept attributes (not
necessarily from the same concept) as well as other slices. There are two kinds of slice
properties: compositional properties (aggregations) and navigational properties (links).
The owner relationship is used to associate a slice to a concept. Each slice has a title
attribute related to it.

A conceptual model instance and an application model instance are represented in
RDF (which should be valid according to the corresponding RDFS specifications, i.e., the
conceptual model and the application model, respectively). In the WIS application it is
only the application model instance that will be visible to the user.

We consider now four types of RDF(S)-related visualization scenarios that are relevant
in the support of the WIS application designer:

• conceptual model visualization

• conceptual model instance visualization

• application model visualization

• application model instance visualization

In Section 6.3.3 we already showed how one can visualize conceptual models. A second
similar scenario for the conceptual model visualization is described next.

6.4.1 Conceptual Model Visualization

The conceptual model visualization enables one to better understand the structure of the
application’s domain. It answers questions like: what are the concepts?, what are the
properties?, what are the relationships between concepts and properties? what are the
most referenced concepts?, what are the most referenced media types?, etc.

Figure 6.7 shows the extracted schema from an RDF file that contains both the schema
and its associated instance. The extraction is done by a custom selection operation, as
described in Section 6.3.2. The picture is very similar to the one from Figure 6.5. However,
there are two differences between this picture and the one from Figure 6.5. First, we now
use a different layout, i.e., a spring embedder instead of a radial tree. Secondly, we now
depict also the direction of the edges. The edges are fading out towards the start node. A
direction effect is created: the edges get brighter as they approach the end node. We found
this representation of the edge direction much more effective than the arrow representation
when visualizing large graphs, as the drawing of arrows produces too much visual clutter
in this case. Moreover, the edge fading glyph is faster to render than an arrow glyph, as it
involves a single (shaded) line primitive.

6.4. APPLICATIONS 125

From Figure 6.7 we can deduce that the most used media type is String (the text-based
descriptions are the most popular for this domain specification) and the most referenced
concept is the Artifact (it has the most relationships). Each artifact is classified by some
museum terms (e.g., Self Portraits). There is a hierarchy of museum terms, terms are
grouped in broader terms (e.g., Portraits), and broader terms are grouped in top terms
(e.g., Paintings).

Figure 6.7: Museum extracted conceptual model.

6.4.2 Conceptual Model Instance Visualization

The conceptual model instance visualization answers questions like: what are the instances
of a certain concept?, what are the relations between two selected concept instances?, what
are the most referenced instances?, what are the attributes of a selected instance?, etc.

In most of the encountered situations, there are (much) more concept instances than
concepts. For example, our museum dataset contains tens of thousands of instances. It is
easy to imagine other applications where this number goes up to hundreds of thousands,
or even more. Drawing all these instances simultaneously is neither efficient nor effective.
Indeed, no graph layout we were able to test could produce an understandable image
of an arbitrary, relatively tightly connected graph with tens of thousands of nodes in a

126 CHAPTER 6. DATA VISUALIZATION IN HERA

reasonable amount of time (e.g., tens of seconds). In order to keep the instance visualization
manageable, we decided for an incremental view scenario on the RDF(S) data. First, the
user selects the subpart of the schema for which he wants the corresponding instances to
be visualized. Next, we use a custom interaction script (Section 6.3.2) of about ten lines
of code to separately visualize the instances of the selected items. For example, when the
user selects the Artist and Artifact concepts from Figure 6.7, the GViz tool automatically
shows the instances of these concepts and their relations in another window, using a spring
embedder layout (Figure 6.8). In Figure 6.8 we used a custom glyph mapper to depict the
artifacts with blue rectangles and the artists with green rectangles. The relations between
these instances are represented by fading white edges. One can note that there are more
artifacts than artists, as expected.

Figure 6.8: Artists/artifacts properties in the conceptual model instance.

Figure 6.9 shows the same selected data (artists and artifacts) but using a splat map-
per instead of the classical glyph mapper. The scalar density function (splat field) is
constructed as outlined in Section 6.3.2. We visualize the splat field using a blue-to-red
colormap that associates cold hues (blue) to low values and warm hues (yellow, red) to
medium and high values. Figure 6.9 (left) shows the splat field as seen from above. Fig-
ure 6.9 (right) shows the same splat field, this time visualized using an elevation plot that
shows high density areas also by offsetting these points in the Z (vertical) direction. A
red/yellow color in Figure 6.9 (left and right) or a high elevation point in Figure 6.9 (right)
indicate that there are a lot of relations for a particular instance or group of instances. In
this way one can notice from Figure 6.9 which are the artists with the most artifacts. The

6.4. APPLICATIONS 127

artists with the most artifacts are the unknown artists (potter, goldsmith, bronzesmith,
etc.) that show up as the singular peak in the left of Figure 6.9 (left). On the average,
these artists have several tens (up to 60) artifacts. They are followed by Rembrandt and
the unknown painters, who show up as the other two higher peaks to the right of Fig-
ure 6.9 (left). This can be explained by the fact that in the 17th century, for which the
Rijksmuseum has a special focus, there were a lot of artifacts done by unknown artists.

Figure 6.9: Conceptual model instance splatting (left: 2D; right: elevation plot).

We have further customized our visualization scenario, as follows. When the user selects
one instance of Figure 6.8, we use a custom interaction script on the mapper of Figure 6.8
to pop up another window to display the instance attributes. The selected instance is
shown as having the balloon pop-up label in Figure 6.8. Figure 6.10 shows the attributes
of the selected instance, in this case Rembrandt.

Figure 6.10: Attributes of a selected concept instance.

128 CHAPTER 6. DATA VISUALIZATION IN HERA

6.4.3 Application Model Visualisation

The application model visualization enables one to better understand the navigation struc-
ture of a hypermedia presentation. It answers questions like: what are the application
model slices?, what are their links?, what are the slice owners?, what are the slice titles?,
what slices are navigation hubs?, what are possible navigation paths from a certain slice?,
etc.

Figure 6.11 depicts the application model for the museum example. We chose to present
here the top-level slices (slices that correspond to web pages) and the links between them in
order to decrease the complexity of the picture. A new glyph shape was designed in order
to represent the pizza slice shape for slices (as defined in the application model’s graphical
representation language). The blue thick edges represent links between slices. Each slice
has associated with it two attributes. We use a custom layout to place these nodes right
above the top of the slice node. The slice nodes themselves are laid out using the spring
embedder already discussed before. The two attributes of each slice are visualized by using
two custom square glyphs, as follows: the yellow glyph (left) stands for the name of the
slice and the green glyph (right) denotes the concept owner of the slice (remember that the
concept owner is a concept from the conceptual model). In the center of the picture is the
Slice.artefact.main slice which has the most links associated with it, i.e., it is a navigation
hub. The figure also shows the designer’s choice to present the museum information based
of the terms hierarchy: top terms, broader terms, and terms.

Figure 6.11: Museum application model.

6.4. APPLICATIONS 129

6.4.4 Application Model Instance Visualisation

The application model instance visualization answers questions like: what are the instances
of a certain slice?, what are the slice instances reachable from a certain slice instance?, what
are the most referenced slice instances?, what are the attributes of a selected slice instance?,
etc.

As there are more slice instances than slices, in order to keep the visualization manage-
able we used the same visualization scenario as for conceptual model instances, i.e., to use
incremental views. The user can select from the mapper in Figure 6.11 the slices for which
he wants the corresponding instances to be visualized. For example, after selecting the
Slice.topterm.main, Slice.broaderterm.main, and Slice.term.main slices from Figure 6.11,
we use the same mechanism of a custom interaction script (Section 6.3.2) to pop up another
window that shows the instances of these slices and their associated links. Figures 6.12
and 6.13 show the corresponding slice instances, as described below.

For the visualizations in Figures 6.12 and 6.13, we use yellow sphere glyphs for nodes
labeled Slice.topterm.main, green sphere glyphs for nodes labeled Slice.broaderterm.main,
and blue rectangle glyphs for nodes labeled Slice.term.main. The chosen colors and shapes
are motivated by the need to produce an expressive, easy to understand picture when
presenting a large number of instances coming from three slices linked in a hierarchical
way, as follows. We did give up the pizza slice glyph for these visualizations as we found
out that this glyph produces too much visual clutter for large graphs. Next, we chose colors
of increasing brightness (blue, green, and yellow) to display items of increasing importance
(terms, broader terms, and top terms, respectively). The size of the glyphs used for these
items also reflects their importance (the top term glyphs are the largest, whereas the term
glyphs are the smallest). A final significant cue is the shape: the more important top
and broader terms are drawn as 3D shaded spheres, whereas the less important terms are
drawn as 2D flat squares. For the edges connecting these glyphs in the visualization, we
used a varying color and size scheme that varies both line color and line thickness along the
edge between the end nodes’ colors and sizes respectively. Summing up, the combination of
above choices produces a visualization where the overall structure of top terms and broader
terms “pops” into the foreground, whereas the less important terms and their links “fade”
into the background. As a comparison, we were unable to get the same clear view of the
structure by just varying the layout parameters and using the same glyph for all nodes.

After selecting the slice instance corresponding to the Paintings top term, we obtain in
Figure 6.12 the broader term slice instances accessible after one step, showed in red. By
this, we mean the terms that a user of the web site (whose design our dataset captures)
can access after one navigation step. This translates to nodes which are directly connected
(via an edge) to the selected slice instance in our RDF dataset.

In Figure 6.13 we visualize the term slice instances accessible from the same Paintings
top term instance slice after two steps, also drawn in red. These correspond to web pages
that the user of the web site can access after two navigation steps. An example for the
second step is the navigation from the broader term Portraits.

130 CHAPTER 6. DATA VISUALIZATION IN HERA

Figure 6.12: Broader term slice instances accessible from the Paintings slice instance.

Figure 6.13: Term slice instances accessible from the Paintings slice instance.

6.5 Conclusions

In this chapter we have shown how a general purpose graph visualization tool, GViz, can
be used for the visualization of large RDF graphs produced from real-world data. All
experiments were performed in the context of the Hera project, a project that investigates
the designing and developing of Web Information Systems on the Semantic Web. The
visualization of large amounts of RDF input data and RDF design specifications enabled
us to answer complex questions about this data and to give an effective insight into its
structure.

6.5. CONCLUSIONS 131

Several ingredients were crucial for obtaining these results. First, the amount of cus-
tomizability of the GViz tool (layouts, selections, node and edge drawing, choice between
glyph and splat mappers, and custom user interaction) was absolutely necessary to pro-
duce the desired visualization scenarios. We found all these elements to be necessary to
create the desired results. We have actually experimented with customizing just the lay-
out but not the glyphs and/or the interaction. In all cases, the results were not flexible
enough to give the users the desired look-and-feel that would make the scenario effective
for answering the relevant questions. Secondly, the script-based customization mechanism
of GViz allowed a user experienced with Tcl scripting to produce the scenarios described
here (which were imagined by a different user, inexperienced with Tcl) in a matter of
minutes. Thirdly, we found that using several visual cues (shape, color, size, and shading)
together to enhance a single attribute, as for example described in Section 6.4.4, is much
more effective than using a single cue. Finally, we mention that none of the investigated
RDF visualization tools (Section 6.2) showed the high degree of customization of GViz
needed for our scenarios.

In the future, we would like to explore the GViz 3D visualization capabilities for RDF
data, possibly getting an even better insight into the data structure. Another research
direction would be to use GViz in conjunction with a popular RDF query language (like
RQL for example). Our purpose is here twofold: to use the RDF query language as a
selection operation implementation for GViz when visualizing RDF data and to support
the RDF query language with the visualization of the input and resulted set of RDF data.
Finally, as it is planned in the Hera project to use OWL instead of RDF for the future
input data/design specifications we would like also to conduct visualization experiments
on the more semantically rich OWL data.

132 CHAPTER 6. DATA VISUALIZATION IN HERA

Chapter 7

Concluding Remarks

Realizing the benefits that Semantic Web technologies offer, many traditional WIS design
methodologies as well as newly proposed WIS design methodologies use Semantic Web
technologies for modeling WIS. Hera is a new design methodology that targets SWIS design.
It distinguishes two phases: the data collection phase and the presentation generation
phase. The first phase makes available data coming from different, possibly heterogeneous
data sources. The second phase produces Web presentations tailored to the user and its
browsing platform. In this dissertation we have presented the presentation generation phase
of Hera. Section 7.1 sums up our results. Section 7.2 suggests future research directions
based on our results.

7.1 Conclusions

At the beginning of the dissertation, in Chapter 1, we did ask five research questions. In
the rest of this section we will summarize our findings and give the answers to the five
research questions that we came up with in the different chapters of this dissertation.

Question 1: How to design the presentation generation for SWIS?
In Chapter 2 we studied several (S)WIS design methodologies. Among the found character-
istics of these methodologies we mention: data integration, user interaction, presentation
modeling, presentation personalization etc. At the current moment SWIS design method-
ologies are at their infancy, as we found no SWIS design methodology that has (all) the
previously identified characteristics. In order to fill this gap, in Chapter 3 we proposed
Hera, a SWIS methodology that has many of the features identified in Chapter 2. This
dissertation concentrates on the presentation generation phase of the Hera methodology.

The presentation generation phase of the Hera methodology identifies the following
design steps:

• conceptual design: constructs the conceptual model (CM), a uniform representa-
tion of the application’s data. It defines the concepts and the concept relationships
that are specific to the application’s domain.

133

134 CHAPTER 7. CONCLUDING REMARKS

• application design: constructs the application model (AM), the navigational struc-
ture over the application’s data. It defines slices and slice relationships. A slice is
a meaningful presentation unit of some data. There are two types of slice relation-
ships: slice navigation, used for links between slices, and slice aggregation, used for
embedding a slice into another slice.

• presentation design: constructs the presentation model (PM), the look-and-feel
specifications of the presentation. It defines regions and region relationships. As for
slices, there are two types of region relationships: region navigation, used for links
between regions, and region aggregation, used for embedding a region into another
region. Regions have associated layout (positioning of inner regions inside a region)
and style (fonts, colors etc.) information.

For the model representations we used RDF, the foundation language of the Semantic
Web. Some of the advantages of using RDF as a representation language are: it is able to
describe semi-structured Web data, it enables the reuse of previously defined vocabularies
(e.g., the CC/PP UAProf vocabulary to represent user preferences and device capabilities),
it allows the exchange of data between applications in a uniform format etc.

Question 2: How can we support adaptation during the design of the presen-
tation generation for SWIS?

In Chapter 3 we have identified two types of adaptation that can be supported in the
presentation generation phase of Hera:

• static adaptation: adaptation performed before the user starts browsing the pre-
sentation. The static adaptation is specified by appearance conditions, for elements
in the CM, AM, and PM. These conditions use data from a user profile (UP) which
stores the static user preferences and device capabilities. Elements for CM, AM, and
PM that have the associated conditions not satisfied are removed from the specifica-
tions.

• dynamic adaptation: adaptation performed during the user browsing before each
page is generated. The dynamic adaptation uses AM queries in order to update the
User Session (US). US stores dynamic data, i.e., data created during user browsing
based on user’s input. The presentation generation phase uses data from US in a
similar way as the CM.

Based on these two types of adaptation, in Chapter 3, we have presented two variants
of Hera’s presentation generation phase: the static variant and the dynamic variant. In
the specifications of the dynamic variant we use (Se)RQL one of the most expressive RDF
query languages. At the current moment W3C started to work at the RDF query language
called SPARQL [Prud’hommeaux and Seaborne, 2005]. When this language will become
more mature we plan to use it also in Hera as a replacement for (Se)RQL.

7.1. CONCLUSIONS 135

Question 3: What CASE tools can support the design of the presentation
generation for SWIS?
One of the characteristics of SWIS design methodologies identified in Chapter 2 was the
tool support. SWIS design methodologies are not well supported by CASE tools. In order
to better sustain the design activities proposed in the presentation generation phase of the
Hera methodology we have implemented a CASE tool, the Hera Presentation Generator
(HPG), which is described in Chapter 4. It integrates several tools built in the last couple
of years in the Hera project: builders for CM, AM, and PM, a prototyping tool based on
previously defined models, and a data transformations visualization tool.

There are two variants defined for HPG: HPG-XSLT, which corresponds to the static
variant of the Hera presentation generation phase, and HPG-Java, which corresponds to
the dynamic variant of the Hera presentation generation phase. HPG-XSLT implements
the data transformations using XSLT stylesheets, and HPG-Java implements the data
transformations in Java using Jena and Sesame libraries. HPG-Java exploits more of the
RDF model semantics than HPG-XSLT. Nevertheless, HPG-Java lost the declarativity,
simplicity, and reuse capabilities of the XSLT transformation templates. A distributed
architecture of the HPG based on Web Services is also provided.

Question 4: How can one realize query optimization inside a SWIS?
The dynamic variant of Hera’s presentation generation phase uses RDF queries. The
execution time of these RDF queries by a query engine is an important factor in the SWIS
response time to a user request. In Chapter 5 we have proposed RAL, an RDF algebra that
can be used for RDF query optimization. It defines a data model and a set of operators.
The collections (sets) of nodes are closed under all operators. There are two types of
operators: extraction operators, which retrieve nodes of interest from an input collection,
and construction operators that build an output model possibly using also the extracted
nodes. Some of the extraction operators were inspired by the ones found in relational
algebra.

RAL operators satisfy equivalence laws, some of them resembling the relational algebra
equivalence laws. We propose a heuristic algorithm for RDF query optimization similar
to the one given in the relational algebra (i.e., pushing the selections/projections down as
far as possible, and applying the most restrictive selections first). A translator from an
RDF query language like (Se)RQL to RAL and a RAL engine that implements this query
optimization algorithm can be a replacement of the currently used RDF query engines that
do not support query optimization.

Question 5: What are suitable visualization techniques for the data used by a
SWIS?
All Hera models and their instances are described in RDF. Model instances and to some
extent even models do form large graphs for which visualization techniques can be useful
to get a better insight into the model properties. In Chapter 6 it is described how one
can apply a general-purpose graph visualization engine, GViz, for the visualization of the
models used in the presentation generation phase of Hera. We did visualize conceptual
models, conceptual model instances, application models, and application model instances.

136 CHAPTER 7. CONCLUDING REMARKS

One of the main advantages of GViz compared with other graph visualization tools is
its customization facilities. We did define for example specific glyphs and layouts, for the
visualization of the Hera models. Based on the script-based customization mechanism we
were able to produce in a matter of minutes model-specific visualization scenarios.

7.2 Future Research

This dissertation describes the presentation generation phase of a SWIS design methodol-
ogy. There are several directions in which this work can be extended.

One research direction is to extend the presented methodology with new steps and
models. The following extensions are possible:

• To extend the proposed SWIS design methodology with a requirements gathering
phase. Previous work done for WIS design methodologies based on use case spec-
ifications, user interaction specifications (OOHDM [Guell et al., 2000]), and task
modeling (WSDM [De Troyer and Casteleyn, 2004]) can be useful for this purpose.
By devising an interaction digram or a task model one can automatically generate
the navigation structure of the application eliminating the design effort of building
AMs. The generated AM can be further customized by the designer.

• To extend the dynamic adaptation in such a way that a SWIS produces adaptive
hypermedia. We have published some ideas in this direction in [Vdovjak et al.,
2003]. Based on these ideas one could dynamically build the User Model, Domain
model, and Adaptation Model of AHAM. In this way one could also reuse existing
adaptive hypermedia engines (like AHA! [De Bra et al., 2000]) inside an adaptive
SWIS.

• To define a declarative RDF transformation language to be used for the data transfor-
mation specifications in the proposed methodology. We envisage that this language
will be based on templates similar to XSLT but applied to the RDF context.

• To extend the Web service-oriented architecture of the HPG with new services like a
data query service, a data integration service, or a service able to generate adaptive
hypermedia presentations.

• To use richer Semantic Web languages for model specifications. The RDF extensions
that we added for the conceptual model vocabulary (like the inverse and cardinality
of relationships) are already part of the OWL language. In this way the applications
built with the Hera methodology would have an even higher degree of interoperability
with other applications.

Another research direction is related to RAL. The following research activities are
possible:

7.2. FUTURE RESEARCH 137

• To build a translator from (Se)RQL or SPARQL to RAL and a RAL engine that
implements our query optimization heuristics. The experiences that we could gain
by using these two tools can help us in refining RAL so that it better meets practical
needs.

• To explore new equivalence laws possibly involving also the construction operators.
In addition, one could also use for query optimization the semantic equivalence laws
that are valid in specific RDF models.

Another possible direction is related to the RDF graph visualization techniques. Some
possible research activities are:

• To explore 3D visualization of RDF data, possibly getting an even better insight into
its structure. The previous experiences with using GViz [Telea et al., 2002] for the
3D visualization of the graphs involved with software (re)engineering might be also
useful in the RDF context.

• To use RDF graph visualization in conjunction with an RDF query language (like
SPARQL) for depicting graphically the input and output sets of an RDF query. This
will help for example the user to visually identify which input nodes and edges were
used in the output of a query.

• To conduct visualization experiments with other Semantic Web languages like OWL.
As indicated previously we plan to user richer (than RDF) Semantic Web languages
for model specifications. As such it will be interesting to visualize the Hera models
represented in these languages.

138 CHAPTER 7. CONCLUDING REMARKS

Bibliography

Aduna, BV (2005). openrdf.org ... home of sesame. http://www.openrdf.org/.

AIFB, University of Karlsruhe (2004). Karlsruhe ontology and semantic web tool suite.
http://kaon.semanticweb.org/.

Allsopp, D., Beautement, P., Carson, J., and Kirton, M. (2002). Towards semantic in-
teroperability in agent-based coalition command systems. In The First Semantic Web
Working Symposium. IOS Press.

Anthemion Software (2004). wxwidgets. http://www.wxwidgets.org/.

Apache Software Foundation (2004). Xalan-java. http://xml.apache.org/xalan-j/.

Apache Software Foundation (2005a). Apache tomcat. http://jakarta.apache.org/

tomcat/.

Apache Software Foundation (2005b). Webservices - axis. http://ws.apache.org/axis/
java/user-guide.html.

Ayars, J., Bulterman, D., Cohen, A., Day, K., Hodge, E., Hoschka, P., Hyche, E., Jour-
dan, M., Kim, M., Kubota, K., Lanphier, R., Layaida, N., Michel, T., Newman, D.,
van Ossenbruggen, J., Rutledge, L., Saccocio, B., Schmitz, P., and ten Kate, W. (2005).
Synchronized multimedia integration language (smil 2.0) - [second edition]. W3C Rec-
ommendation 07 January 2005. http://www.w3.org/TR/SMIL/.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A. (2004). Owl web ontology language reference. W3C
Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/.

Beckett, D. (2003). Redland rdf application framework. http://www.redland.

opensource.ac.uk.

Beckett, D. (2004). Rdf/xml syntax specification (revised). W3C Recommendation 10
February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.

Beeri, C. and Kornatzky, Y. (1993). Algebraic optimization of object-oriented query lan-
guages. Theoretical Computer Science, 116(1&2):59–94.

139

140 BIBLIOGRAPHY

Berglund, A., Boag, S., Chamberlin, D., Fernandez, M. F., Kay, M., Robie, J., and Simeon,
J. (2005). Xml path language (xpath) 2.0. W3C Working Draft 04 April 2005. http:

//www.w3.org/TR/xpath20/.

Berners-Lee, T. (1998). What the semantic web can represent. W3C 1998. http://www.

w3.org/DesignIssues/RDFnot.html.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific
American, 284(5):34–43. http://www.scientificamerican.com/2001/0501issue/

0501berners-lee.html.

Biron, P. V. and Malhotra, A. (2001). Xml schema part 2: Datatypes. W3C Recommen-
dation 02 May 2001. http://www.w3.org/TR/xmlschema-2/.

Boag, S., Chamberlin, D., Fernandez, M. F., Florescu, D., Robie, J., and Simeon, J.
(2005). Xquery 1.0: An xml query language. W3C Working Draft 04 April 2005.
http://www.w3.org/TR/xquery/.

Bos, B., Celik, T., Hickson, I., and Lie, H. W. (2004). Cascading style sheets, level 2
revision 1 css 2.1 specification. W3C Candidate Recommendation 25 February 2004.
http://www.w3.org/TR/CSS21/.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S., and Winer, D. (2000). Simple object access protocol (soap) 1.1. W3C Note
08 May 2000.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P., and Manolescu, I. (2002). Model-
driven specification of web services composition and integration with data-intensive web
applications. IEEE Data Engineering Bulletin, 25(4):53–59.

Brickley, D. and Guha, R. (2004). Rdf vocabulary description language 1.0: Rdf schema.
W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-schema/.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction,
11(1-2):87–110.

Bush, V. (1945). As we may think. The Atlantic Monthly, 176(1):101–108.

Card, S. K., Mackinlay, J. D., and Shneiderman, B. (1999). Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann.

Casteleyn, S. and De Troyer, O. (2001). Structuring web sites using audience class hier-
archies. In Conceptual Modeling for New Information Systems Technologies (ER 2001
Workshops), volume 2465, pages 1222–1228. Springer.

Casteleyn, S., De Troyer, O., and Brockmans, S. (2003). Design time support for adaptive
behaviour in web sites. In 18th ACM Symposium on Applied Computing (SAC 2004),
pages 1222–1228. ACM.

BIBLIOGRAPHY 141

Casteleyn, S., Garrigos, I., and De Troyer, O. (2004). Using adaptive techniques to validate
and correct an audience driven design of web sites. In Web Engineering - 4th Interna-
tional Conference (ICWE 2004), volume 3140 of Lecture Notes in Computer Science,
pages 55–59. Springer.

Catell, R. G. G., Barry, K. D., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow,
O., Stanienda, T., and Velez, F. (2000). The Object Data Standard: ODMG 3.0. Morgan
Kaufmann.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling language (webml): a mod-
eling language for designing web sites. Computer Networks, Ninth International World
Wide Web Conference, 33:137–157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M. (2003).
Designing Data-Intensive Web Applications. Morgan Kaufmann.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web services
description language (wsdl) 1.1. W3C Note 15 March 2001.

Clark, J. (1999). Xsl transformations (xslt) version 1.0. W3C Recommendation 16 Novem-
ber 1999. http://www.w3.org/TR/xslt.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F.,
and Stein, L. A. (2001). Daml+oil (march 2001) reference description. W3C Note 18
December 2001. http://www.w3.org/TR/daml+oil-reference.

De Bra, P., Aerts, A., Houben, G. J., and Wu, H. (2000). Making general-purpose adap-
tive hypermedia work. In WebNet 2000 World Conference on the WWW and Internet
(WebNet 2000), pages 117–123. AACE.

De Bra, P., Houben, G. J., and Wu, H. (1999). Aham: A dexter-based reference model for
adaptive hypermedia. In 10th ACM conference on Hypertext and Hypermedia (Hyper-
text’99), pages 147–156. ACM.

De Troyer, O. and Casteleyn, S. (2004). Designing localized web sites. In 5th International
Conference on Web Information Systems Engineering (WISE 2004), volume 3306, pages
547–558. Springer.

De Troyer, O. and Leune, C. (1998). Wsdm: A user-centered design method for web sites.
Computer Networks, Seventh International World Wide Web Conference, 30:85–94.

Decker, S., Brickley, D., Saarela, J., and Angele, J. (1998). A query and inference service for
rdf. In The W3C Query Languages Workshop. http://www.w3.org/TandS/QL/QL98/

pp/queryservice.html.

142 BIBLIOGRAPHY

Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., Erdmann,
M., and Horrocks, I. (2000). The semantic web: The roles of xml and rdf. IEEE Internet
Computing, 4(5):63–74.

Diaz, A., Isakowitz, T., Maiorana, V., and Gilabert, G. (1995). Rmc: A tool to design
www applications. In Fourth International World Wide Web Conference (WWW 4).

Diaz, A., Isakowitz, T., Maiorana, V., and Gilabert, G. (1997). Extending the capabilities
of rmm: Russian dolls and hypertext. In 30th Hawaii International Conference on
System Sciences (HICSS-30), volume 6, pages 177–186. IEEE Computer Society.

Dubinko, M., Klotz, L. L., Merrick, R., and Raman, T. V. (2003). Xforms 1.0. W3C
Recommendation 14 October 2003. http://www.w3.org/TR/xforms/.

Eklund, P. W., Roberts, N., and Green, S. (2002). Ontorama: Browsing rdf ontologies
using a hyperbolic-style browser. In 1st International Symposium on Cyber Worlds (CW
2002), pages 405–411. IEEE Computer Society.

Fernandez, M. F., Florescu, D., Levy, A. Y., and Suciu, D. (2000). Declarative specification
of web sites with strudel. VLDB Journal, 9(1):38–55.

Fiala, Z., Frasincar, F., Hinz, M., Houben, G. J., Barna, P., and Meissner, K. (2004).
Engineering the presentation layer of adaptable web information systems. In Web Engi-
neering - 4th International Conference (ICWE 2004), volume 3140 of Lecture Notes in
Computer Science, pages 459–472. Springer.

Fiala, Z., Hinz, M., Meissner, K., and Wehner, F. (2003). A component-based approach
for adaptive, dynamic web documents. Journal of Web Engineering, 2(1-2):58–73.

Frasincar, F., Barna, P., Houben, G. J., and Fiala, Z. (2004a). Adaptation and reuse in
designing web information systems. In International Conference on Information Tech-
nology: Coding and Computing (ITCC 2004), pages 387–291. IEEE Computer Society.

Frasincar, F. and Houben, G. J. (2001). Xml-based automatic web presentation generation.
In WebNet 2001 World Conference on the WWW and Internet (WebNet 2001), pages
372–377. AACE.

Frasincar, F. and Houben, G. J. (2002). Hypermedia presentation adaptation on the
semantic web. In Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2002),
volume 2347 of Lecture Notes in Computer Science, pages 133–142. Springer.

Frasincar, F., Houben, G. J., and Pau, C. (2002a). Xal: an algebra for xml query opti-
mization. In Database Technologies 2002, Thirteenth Australasian Database Conference
(ADC 2002), volume 5 of Conferences in Research and Practice in Information Tech-
nology, pages 49–56. Australian Computer Society Inc.

BIBLIOGRAPHY 143

Frasincar, F., Houben, G. J., and Vdovjak, R. (2001). An rmm-based methodology for
hypermedia presentation design. In Advances in Databases and Information Systems
(ADBIS 2001), volume 2151 of Lecture Notes in Computer Science, pages 323–337.
Springer.

Frasincar, F., Houben, G. J., and Vdovjak, R. (2002b). Specification framework for en-
gineering adaptive web applications. In The Eleventh International World Wide Web
Conference, WWW 2002, Web Engineering Track (WWW 2002). http://www2002.

org/CDROM/alternate/682/index.html.

Frasincar, F., Houben, G. J., Vdovjak, R., and Barna, P. (2002c). Ral: an algebra for
querying rdf. In 3rd International Conference on Web Information Systems Engineering
(WISE 2002), pages 173–181. IEEE Computer Society.

Frasincar, F., Houben, G. J., Vdovjak, R., and Barna, P. (2004b). Ral: An algebra for
querying rdf. World Wide Web Journal, 7(1):83–109.

Frasincar, F., Telea, A., and Houben, G. J. (2005). Visualizing the Semantic Web, chapter
9: Adapting graph visualization techniques for the visualization of RDF data. Springer.

Gansner, E., Koutsofios, E., and North, S. (2002). Drawing graphs with dot. http:

//www.graphviz.org/Documentation/dotguide.pdf.

Gomez, J. and Cachero, C. (2003). Information Modeling for Internet Applications, chapter
OO-H Method: extending UML to model web interfaces, pages 144–173. Idea Group
Publishing.

Grant, J. and Beckett, D. (2004). Rdf test cases. W3C Recommendation 10 February
2004. http://www.w3.org/TR/rdf-testcases/.

Grove, M. (2002). Rdf instance creator. http://www.mindswap.org/∼mhgrove/RIC/RIC.

shtml.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220.

Guell, N., Schwabe, D., and Vilain, P. (2000). Modeling interactions and navigation in web
applications. In Conceptual Modeling for E-Business and the Web (ER 2000) Workshops,
volume 1921 of Lecture Notes in Computer Science, pages 115–127. Springer.

Guha, R. V. (2000). Rdfdb query language. http://www.guha.com/rdfdb/query.html.

Guha, R. V., Lassila, O., Miller, E., and Brickley, D. (1998). Enabling inferencing. In The
W3C Query Languages Workshop. http://www.w3.org/TandS/QL/QL98/pp/enabling.
html.

144 BIBLIOGRAPHY

Halpin, T. (1995). Model-Based Design and Evaluation of Interactive Applications.
Prentice-Hall.

Hayes, P. (2004). Rdf semantics. W3C Recommendation 10 February 2004. http://www.
w3.org/TR/rdf-mt.

Hester, A. M., Borges, R., and Ierusalimschy, R. (1997). Xi brazilian software engineering
symposium (sbes 1997). In CGILua: A Multi-paradigmatic Tool for Creating Dynamic
WWW Pages.

Hewlett-Packard Development Company, LP (2005). Jena - a semantic web framework for
java. http://jena.sourceforge.net/.

Houben, G. J., Barna, P., Frasincar, F., and Vdovjak, R. (2003). Hera: Development of
semantic web information systems. In Web Engineering - 3th International Conference
(ICWE 2003), volume 2722 of Lecture Notes in Computer Science, pages 529–538.

Houben, G. J., Frasincar, F., Barna, P., and Vdovjak, R. (2004). Engineering the presenta-
tion layer of adaptable web information systems. In Web Engineering - 4th International
Conference (ICWE 2004), volume 3140 of Lecture Notes in Computer Science, pages 60–
73. Springer.

Ierusalimschy, R., de Figueiredo, L. H., and Filho, W. C. (1996). Lua-an extensible exten-
sion language. Software: Practice and Experience, 26(6):635–652.

Intellidimension Inc (2002). Rdfql query language reference. http://www.

intellidimension.com/RDFGateway/Docs/querying.asp.

Isakowitz, T., Stohr, E. A., and Balasubramanian, P. (1995). Rmm: A methodology for
structured hypermedia design. Communications of the ACM, 38(8):34–44.

Isakowitz, T., Bieber, M., and Vitali, F. (1998). Web information systems. Communications
of the ACM, 41(1):78–80.

Jacyntho, M. D., Schwabe, D., and Rossi, G. (2002). A software architecture for structuring
complex web applications. Journal of Web Engineering, 2(1-2):37–60.

Jin, Y., Xu, S., and Decker, S. (2001). Ontowebber: Model-driven ontology-based web site
management. In 1st International Semantic Web Working Symposium (SWWS 2001),
pages 529–547. Stanford University.

Jin, Y., Xu, S., and Decker, S. (2002). Managing web sites with ontowebber. In 8th
International Conference on Extending Database Technology (EDBT 2002), volume 2287
of Lecture Notes in Computer Science, pages 766–768. Springer.

Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., and Scholl, M. (2002).
Rql: a declarative query language for rdf. In Eleventh International World Wide Web
Conference (WWW2002), pages 592–603. ACM.

BIBLIOGRAPHY 145

Kay, M. (2005a). Saxon (the xslt and xquery processor). http://saxon.sourceforge.net.

Kay, M. (2005b). Xsl transformations (xslt) version 2.0. W3C Working Draft 11 February
2005. http://www.w3.org/TR/xslt20/.

Kifer, M., Lausen, G., and Wu, J. (1995). Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, 42(1):741–843.

Klapsing, R. and Neumann, G. (2000). Applying the resource description framework to
web engineering. In First International Conference on Electronic Commerce and Web
Technologies (EC-Web 2000), pages 229–238. Springer.

Klapsing, R., Neumann, G., and Conen, W. (2001). Semantics in web engineering: Apply-
ing the resource description framework. IEEE MultiMedia, 8(2):62–68.

Klyne, G. and Carroll, J. J. (2004). Resource description framework (rdf): Concepts and
abstract syntax. W3C Recommendation 10 February 2004. http://www.w3.org/TR/

rdf-concepts/.

Klyne, G., Reynolds, F., Woodrow, C., Hidetaka, O., Hjelm, J., Butler, M. H., and Tran,
L. (2004). Composite capability/preference profiles (cc/pp): Structure and vocabularies
1.0. W3C Recommendation 15 January 2004.

Koch, N., Kraus, A., and Hennicker, R. (2001). The authoring process of the uml-based
web engineering approach. In First International Workshop on Web-Oriented Software
Technology (IWWOST 2001).

Kokkelink, S. (2001). Transforming rdf with rdfpath. Working Draft. http://zoe.

mathematik.Uni-Osnabrueck.DE/QAT/Transform/RDFTransform.pdf.

Lassila, O. (2001). Enabling semantic web programming by integrating rdf and common
lisp. In The First Semantic Web Working Symposium (SWWS 2001), pages 403–410.
Stanford.

Lassila, O. and Swick, R. R. (1999). Resource description framework (rdf) model and
syntax specification. W3C Recommendation 22 February 1999. http://www.w3.org/

TR/1999/REC-rdf-syntax-19990222.

Lei, Y., Motta, E., and Domingue, J. (2003). Design of customized web applications with
ontoweaver. In International Conference on Knowledge Capture (K-CAP 2003), pages
54–61. ACM.

Lima, F. and Schwabe, D. (2003a). Application modeling for the semantic web. In 1st
Latin American Web Congress (LA-WEB 2003), pages 93–102. IEEE Computer Society.

Lima, F. and Schwabe, D. (2003b). Designing personalized web applications. In Web
Engineering, International Conference (ICWE 2003), volume 2722 of Lecture Notes in
Computer Science, pages 417–426. Springer.

146 BIBLIOGRAPHY

Lyardet, F. and Rossi, G. H. (1996). Enhancing productivity in the development of hy-
permedia applications. In Workshop on Next Generation CASE Tools (NGCT 1996),
CAiSE 1995.

Maedche, A., Staab, S., Stojanovic, N., Studer, R., and Sure, Y. (2003). Semantic portal:
The seal approach. In Spinning the Semantic Web Bringing the World Wide Web to Its
Full Potential [outcome of a Dagstuhl seminar], pages 317–359. MIT Press.

Maedche, A., Staab, S., Studer, R., Sure, Y., and Volz, R. (2002). Seal - tying up in-
formation integration and web site management by ontologies. IEEE Data Engineering
Bulletin, 25(1):10–17.

Malhotra, A. and Sundaresan, N. (1998). Rdf query specification. In The W3C Query
Languages Workshop. http://www.w3.org/TandS/QL/QL98/pp/rdfquery.html.

Marchiori, M. and Saarela, J. (1998). Query + metadata + logic = metalog. http:

//www.w3.org/TandS/QL/QL98/pp/metalog.html.

Martinez, J. M. (2003). Mpeg-7 overview. Version 9, ISO/IEC JTC1/SC29/WG11/N5525
March 2003.

McBride, B. (2001). Jena: Implementing the rdf model and syntax specification. In
Second International Workshop on the Semantic Web (SemWeb 2001), volume 40 of
CEUR Workshop Proceedings, pages 23–28.

Mecca, G., Atzeni, P., Masci, A., Merialdo, P., and Sindoni, G. (1998). The araneus
web-base management system. In SIGMOD Conference, pages 544–546.

Melnik, S. (1999). Algebraic specification for rdf models. Working Draft. http:

//www-diglib.stanford.edu/diglib/ginf/WD/rdf-alg/rdf-alg.pdf.

Melnik, S. (2001). Rdf api draft. http://www-db.stanford.edu/∼melnik/rdf/api.html.

Miller, L. (2002). Inkling: Rdf query using squishql. http://swordfish.rdfweb.org/

rdfquery.

Moura, S. S. D. and Schwabe, D. (2004). Interface development for hypermedia applications
in the semantic web. In 1st Latin American Web Congress (LA-WEB 2004), pages 106–
113. IEEE Computer Society.

Murugesan, S., Deshpande, Y., Hansen, S., and Ginige, A. (2001). Web engineering: A
new discipline for development of web-based systems. In Web Engineering, volume 2016
of Lecture Notes in Computer Science, pages 3–13. Springer.

Neumann, G. and Nusser, S. (1993). Wafe - an x toolkit based frontend for application pro-
grams in various programming languages. In USENIX Winter, pages 181–192. USENIX
Association.

BIBLIOGRAPHY 147

Neumann, G. and Zdun, U. (2000). Xotcl, an object-oriented scripting language. In The
7th USENIX Tcl/Tk Conference, pages 163–174. USENIX Association.

North, S. C. (2002). Drawing graphs with neato. http://www.graphviz.org/

Documentation/neatoguide.pdf.

Noy, N. F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. W., and Musen, M. A.
(2001). Creating semantic web contents with protege-2000. IEEE Intelligent Systems,
16(2):60–71.

O’Toole, A. (2003). Web service-oriented architecture: The best solution to business
integration. Cape Clear Software. http://www.capeclear.com/clear thinking/Web

Service Oriented Architecture2.pdf.

Pastor, O., Fons, J., and Pelechano, V. (2003). Oows: A method to develop web applica-
tions from web-oriented conceptual models. In International Workshop on Web-Oriented
Software Technology (IWWOST 2003), pages 65–70.

Paterno, F. (2000). Model-Based Design and Evaluation of Interactive Applications.
Springer.

Pietriga, E. (2002). Isaviz: a visual environment for browsing and authoring rdf models.
The Eleventh International World Wide Web Conference (WWW 2002), Developer’s
day.

Prud’hommeaux, E. (2002). Algae howto. W3C. http://www.w3.org/1999/02/

26-modules/User/Algae-HOWTO.html.

Prud’hommeaux, E. and Seaborne, A. (2005). Sparql query language for rdf. W3C Working
Draft 17 February 2005.

Raines, P. (1998). Tcl/Tk Pocket Reference. O’Reilly & Associates.

Rossi, G., Schwabe, D., and Lyardet, F. (1999). Web application models are more than
conceptual models. In International Workshop on the World-Wide Web and Concep-
tual Modeling (WWWCM 1999), ER 1999, volume 1727 of Lecture Notes in Computer
Science, pages 239–253. Springer.

Rutledge, L., Alberink, M., Brussee, R., Pokraev, S., van Dieten, W., and Veenstra, M.
(2003). Finding the story: Broader applicability of semantics and discourse for hyper-
media generation. In ACM Conference on Hypertext and Hypermedia (Hypertext 2003),
pages 67–76. ACM.

Schewe, K.-D. and Thalheim, B. (2001). Modeling interaction and media objects. In
Natural Language Processing and Information Systems (NLDB 2000), volume 1959 of
Lecture Notes in Computer Science, pages 313–324. Springer.

148 BIBLIOGRAPHY

Schewe, K.-D. and Thalheim, B. (2004). Reasoning about web information systems using
story algebras. In Advances in Databases and Information Systems (ADBIS 2004),
volume 3255 of Lecture Notes in Computer Science, pages 54–66. Springer.

Schmitz, P., Yu, J., and Santangeli, P. (1998). Timed interactive multimedia exten-
sions for html (html+time). W3C Note 18 September 1998. http://www.w3.org/TR/

NOTE-HTMLplusTIME.

Schwabe, D., Rossi, G., and Barbosa, S. D. J. (1996). Systematic hypermedia application
design with oohdm. In The Seventh ACM Conference on Hypertext (Hypertext 1996),
pages 116–128. ACM.

Schwabe, D., de Almeida Pontes, R., and Moura, I. (1999). Oohdm-web: an environment
for implementation of hypermedia applications in the www. ACM SIGWEB Newsletter,
8(2):18–34.

Schwabe, D. and Rossi, G. (1998). An object oriented approach to web-based application
design. Theory and Practice of Object Systems, 4(4):207–225.

Schwabe, D., Szundy, G., Moura, S. S. D., and Lima, F. (2004). Design and implementation
of semantic web applications. In WWW Workshop on Application Design, Development
and Implementation Issues in the Semantic Web (WE-SW 2004), volume 105 of CEUR
Workshop Proceedings, pages 275–284.

Seaborne, A. (2001). Rdql - a data oriented query language for rdf models. HP Labs.
http://www.hpl.hp.com/semweb/rdql.html.

Sintek, M. (2004). Ontoviz tab: Visualizing protégé ontologies. http://protege.

stanford.edu/plugins/ontoviz/ontoviz.html.

Sintek, M. and Decker, S. (2002). Triple - an rdf query, inference, and transformation
language. In First International Semantic Web Conference (ISWC 2002), volume 2342
of Lecture Notes in Computer Science, pages 364–378. Springer.

Souchon, N. and Vanderdonckt, J. (2003). A review of xml-compliant user interface descrip-
tion languages. In International Workshop on Design, Specification and Verification of
Interactive Systems (DSV-IS 2003), volume 2844 of Lecture Notes in Computer Science,
pages 377–391. Springer.

Storey, M.-A. D., Noy, N. F., Musen, M. A., Best, C., Fergerson, R. W., and Ernst, N.
(2002). Ontoedit: Multifaceted inferencing for ontology engineering. In International
Conference on Intelligent User Interfaces (IUI 2002), pages 239–239. ACM.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods for visual understanding of
hierarchical system structures. IEEE Transactions on Systems, 11(2):109–125.

BIBLIOGRAPHY 149

Sure, Y., Angele, J., and Staab, S. (2003). Ontoedit: Multifaceted inferencing for ontology
engineering. Journal on Data Semantics, 1:128–152.

Telea, A. (2004). Managing Corporate Information Systems Evolution and Maintenance,
chapter 9: An Open Architecture for Visual Reverse Engineering, pages 211–227. Idea
Group Inc.

Telea, A., Frasincar, F., and Houben, G. J. (2003). Visualisation of rdf(s)-based infor-
mation. In Seventh International Conference on Information Visualization (IV 2003),
pages 294–299. IEEE Computer Society.

Telea, A., Maccari, A., and Riva, C. (2002). An open toolkit for prototyping reverse
engineering visualization. In IEEE EG VisSym ’02, pages 241–250. Eurographics.

Thalheim, B. (2000). Entity-Relationship Modeling. Springer.

Thalheim, B. and Dusterhoft, A. (2001). Sitelang: Conceptual modeling of internet sites.
In Conceptual Modeling (ER 2001), volume 2224 of Lecture Notes in Computer Science,
pages 179–192. Springer.

Thalheim, B., Schewe, K.-D., Romalis, I., Raak, T., and Fiedler, G. (2004). Website mod-
eling and website generation. In Web Engineering - 4th International Conference (ICWE
2004), volume 3140 of Lecture Notes in Computer Science, pages 577–578. Springer.

Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N. (2001). Xml schema
part 1: Structures. W3C Recommendation 02 May 2001. http://www.w3.org/TR/

xmlschema-1/.

Ullman, J. D. (1989). Principles of Database and Knowlwdge-Base Systems, volume 1&2.
Computer Science Press.

van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., and
Stein, L. A. (2003). Web ontology language (owl) reference version 1.0. W3C Working
Draft 21 February 2003. http://www.w3.org/TR/owl-ref/.

van Liere, R. and de Leeuw, W. (2003). Graphsplatting: Visualizing graphs as continuous
fields. IEEE Transactions on Visualization and Computer Graphics, 9(2):206–212.

van Ossenbruggen, J., Hardman, L., and Rutledge, L. (2005). Combining rdf semantics
with xml document transformations. International Journal of Web Engineering and
Technology, 2(4). To appear (guest editors: Frasincar, F., Houben, G. J., and van
Ossenbruggen, J.).

Vdovjak, R. (2005). A Model-driven Approach for Building Distributed Ontology-based
Web Applications. PhD thesis, Eindhoven University of Technology.

150 BIBLIOGRAPHY

Vdovjak, R., Frasincar, F., Houben, G. J., and Barna, P. (2003). Engineering semantic
web information systems in hera. Journal of Web Engineering, 2(1-2):3–26.

Wadler, P. (1992). Comprehending monads. Mathematical Structures in Computer Science,
2(4):461–493.

Wernecke, J. (1993). The Inventor Mentor: Programming Object-Oriented 3D Graphics
with Open Inventor. Addison-Wesley.

Wielemaker, J. (2000). Swi-prolog rdf parser. http://www.swi-prolog.org/packages/

rdf2pl.html.

Wireless Application Protocol Forum, Ltd. (2001). Wireless application group: User agent
profile. 20 October 2001.

Index

adaptation design, 34
Adaptation Service, 87
additional operators, 108

sort operator, 108
AM adaptation, 41
AM design interface, 69
AM instance visualization, 129
AM queries, 57
AM visualization, 128
application design, 38
application model

slice, 38
slice aggregation, 39
slice navigation, 39

application model (AM), 38

basic edge properties, 94
basic node properties, 94
basic RAL operators, 99

class association diagram, 76
class node properties, 97
CM adaptation, 37
CM design interface, 68
CM instance visualization, 125
CM visualization, 124
complete model, 98
conceptual design, 35
conceptual model

concept, 35
concept attributes, 35
concept relationships, 35

conceptual model (CM), 35
conditional inclusion of fragments, 41
construction operators, 104

create edge operator, 105

create node operator, 104
delete edge operator, 106
delete node operator, 105

Data Service, 82
dynamic presentation generation, 54

equivalence laws, 109
export variables, 107
extraction operators, 101

Cartesian product operator, 102
difference operator, 103
intersection operator, 103
join operator, 102
projection operator, 101
selection operator, 101
union operator, 103

form controls, 56
form models (FM), 55

glyph mapper, 121, 126
GViz, 119
GViz data model, 119

graph data, 119
selection data, 120
visual data, 120

GViz operation model, 120
graph editing, 120
mapping operations, 120
selection, 120

Hera, 31
data collection, 32
presentation generation, 32
RDF(S), 33

HPG, 67

151

152 INDEX

HPG-Java, 76
HPG-XSLT, 68

implementation interface, 71
IsaViz, 117

layout managers, 43
BoxLayout, 44
FlowLayout, 44
TableLayout, 44
TimeLayout, 44

link hiding, 41
loop operators, 103

Kleene star operator, 104
map operator, 103

media types, 35
message sequence chart, 77

navigation data model (NDM), 55

OntoViz, 117
OntoWebber, 21

Ontology Builder, 22
Personalization Manager, 22
Site Builder, 22
Site Generator, 22

OOHDM, 12
OOHDM-Java2, 14
OOHDM-Web, 13

PM adaptation, 49
PM design interface, 69
presentation design, 42
presentation model

layout managers, 43
region, 42
region aggregation, 42
region navigation, 42
style, 43

presentation model (PM), 42
Presentation Service, 82
Profile Service, 86
property node properties, 97
Protégé, 116

query optimization heuristics, 110
query tree, 111

RAL data model, 92
RAL variables, 106
RDF, 92
RDF(S), 89
RDFS, 95
RMM, 10

RMCase, 11
RQL, 59, 108

SEAL, 22
KAON, 23

Semantic Web, 8
SeRQL, 59
session variables, 55
SHDM, 23
SiteLang, 18

Storyboard Editor, 19
SOAP, 85
splat mapper, 121, 126
static presentation generation, 33
SWIS, 8

UP design interface, 70
user session (US), 55
user/platform model (UM), 55
user/platform profile (UP), 34

Web Engineering, 8
Web Services (WS), 82
WebML, 16

WebRatio, 18
WIS, 7
WSDL, 83
WSDM, 14

Audience Modeler, 16
Chunk Modeler, 16

WSOA, 82

XSLT, 50
XWMF, 20

Summary

Due to Web popularity many information systems have been made available through the
Web, resulting in so-called Web Information Systems (WIS). Due to the complex require-
ments that WIS need to fulfill, the design of these systems is not a trivial task. Design
methodologies provide guidelines for the construction of WIS such that the complexity of
this process becomes manageable. Based on the separation-of-concerns principle some of
these methodologies propose models to specify different aspects of WIS design.

Model-driven WIS design methodologies have been recently influenced by emerging
technologies like the ones provided by the Semantic Web. We call WIS that use Seman-
tic Web technologies Semantic Web Information Systems (SWIS). Hera is a SWIS design
methodology that employs RDF, the foundation language of the Semantic Web, for its
model representation. Using a standardized language to represent models fosters appli-
cation interoperability. There are two main phases in Hera: the data collection phase,
which makes available data coming from different possibly heterogeneous sources, and the
presentation generation phase, which builds Web hypermedia presentations based on the
previously integrated data. This dissertation concentrates on the presentation generation
phase of the Hera methodology.

Chapter 1 introduces the research questions and provides an outline of the dissertation
content. Chapter 2 gives an overview of existing model-driven (S)WIS design methodologies
and their support tools. It also identifies a number of desired (S)WIS design methodology
features that are used as a comparison criteria for the analyzed methodologies. Chapter 3
describes the presentation generation phase of Hera, a model-driven SWIS design method-
ology. Differently than many of the analyzed SWIS design methodologies, Hera has most
of the desired features of a SWIS design methodology like data integration support, pre-
sentation personalization, and user interaction. All Hera models and their instances are
described in RDF.

The presentation generation phase of the Hera methodology identifies the following
design steps:

• conceptual design: constructs the conceptual model (CM), a uniform representation
of the application’s data. It defines the concepts and the concept relationships that
are specific to the application’s domain.

• application design: constructs the application model (AM), the navigational struc-
ture over the application’s data. It defines slices and slice relationships. A slice is a

153

154 SUMMARY

meaningful presentation unit of some data. There are two types of slice relationships:
navigation relationships, used for links between slices, and aggregation relationships,
used for embedding a slice into another slice.

• presentation design: constructs the presentation model (PM), the look-and-feel spec-
ifications of the presentation. It defines regions and region relationships. A region is
an abstraction for a rectangular area on the user display where the contents of a slice
are presented. As for slices, there are two types of region relationships: navigation
relationships, used for links between regions, and aggregation relationships, used for
embedding a region into another region. Regions have associated layout (positioning
of inner regions inside a region) and style (fonts, colors, etc.) information.

There are two types of presentation adaptation supported in the presentation generation
phase of Hera: static adaptation, i.e., adaptation performed before the user starts browsing,
and dynamic adaptation, i.e., adaptation performed while the user is browsing. The static
adaptation is based on appearance conditions for elements in the CM, AM, and PM.
These conditions use data from a user profile (UP) which stores the static user preferences
and device capabilities. The dynamic adaptation uses AM queries in order to update the
user session (US). US stores dynamic data, i.e., data created during user browsing based on
user’s input. The presentation generation process uses data from US in a similar way as the
CM. Based on these two types of adaptation there are two variants of Hera’s presentation
generation phase: the static variant and the dynamic variant.

Chapter 4 describes a CASE tool, the Hera Presentation Generator (HPG), that sup-
ports the presentation generation phase of Hera. There are two variants of the HPG, HPG-
XSLT, which corresponds to the static variant of Hera’s presentation generation phase,
and HPG-Java, which corresponds to the dynamic variant of Hera’s presentation genera-
tion phase. HPG-XSLT implements the data transformations using XSLT stylesheets, and
HPG-Java implements the data transformations in Java using Jena and Sesame libraries.
HPG-Java exploits more of the RDF model semantics than HPG-XSLT. A distributed
architecture of the HPG based on Web Services is also provided.

Chapter 5 proposes RAL, an RDF algebra that can be used for RDF query optimization.
It defines a data model and a set of operators. The collections (sets) of nodes are closed
under all operators. There are two types of operators: extraction operators, which retrieve
nodes of interest from an input collection, and construction operators that build an output
model possibly using also the extracted nodes. The extraction operators satisfy equivalence
laws resembling to the ones found in relational algebra. We propose a heuristic algorithm
for RDF query optimization similar to the one given in relational algebra.

Chapter 6 shows how one can apply a general-purpose graph visualization engine, GViz,
for the visualization of the models used in the presentation generation phase of Hera. Com-
pared with other visualization tools GViz has the advantage of being easily customizable.
As Hera models have the tendency to be rather large, we define visualization scenarios in
order to get a better insight into the model properties. We did use GViz for the visualiza-
tion of conceptual models, conceptual model instances, application models, and application
model instances.

Samenvatting

Dankzij de populariteit van het Web zijn veel informatiesystemen beschikbaar via het
Web, wat resulteert in zogeheten Web Informatie Systemen (WIS). Door de complexe
eisen waaraan een WIS moet voldoen is het ontwerp van deze systemen geen triviale taak.
Ontwerpmethoden geven richtlijnen voor de constructie van een WIS zodat de complexiteit
van dit ontwerpproces beheersbaar wordt. Gebaseerd op het principe van separation-of-
concerns stellen sommige van deze methoden modellen voor om de verschillende aspecten
van het WIS-ontwerp te specificeren.

Model-gedreven WIS-ontwerpmethoden zijn recent bëınvloed door nieuwe technieken
zoals het Semantic Web die biedt. We noemen WIS die Semantic Web-technieken gebruiken
Semantic Web-informatiesystemen (SWIS). Hera is een SWIS-ontwerpmethode die gebruik
maakt van RDF, de basistaal van het Semantic Web, om de modellen uit te drukken. Het
gebruik van een standaardtaal voor de representatie van modellen bevordert de uitwissel-
baarheid tussen toepassingen. Er worden in Hera twee belangrijke fasen onderscheiden:
de data-collectie fase, die gegevens beschikbaar maakt uit verschillende, mogelijk hetero-
gene informatiebronnen, en de presentatie-generatie fase, die Web-hypermediapresentaties
genereert op basis van de eerder gëıntegreerde gegevens. Dit proefschrift legt de nadruk
op de presentatie-generatie fase van de Hera methode.

Hoofdstuk 1 presenteert de onderzoeksvragen en geeft een overzicht van de inhoud van
het proefschrift. Hoofdstuk 2 geeft een overzicht van bestaande model-gestuurde ontwerp-
methoden voor (S)WIS, en bepaalt een aantal gewenste eigenschappen voor zulke ontwerp-
methoden die gebruikt worden als criteria om de methoden te vergelijken. Hoofdstuk 3
beschrijft de presentatie-generatie fase van Hera, een model-gestuurde SWIS-ontwerpmetho-
de. Anders dan veel van de in hoofdstuk 2 beschouwde methoden, heeft Hera de meeste
van de in hoofdstuk 2 beschouwde eigenschappen zoals de ondersteuning van de integratie
van gegevens, de personalisatie van de presentatie en de interactie met de gebruiker. Alle
modellen van Hera en hun instanties worden beschreven in RDF.

De presentatie-generatie fase in Hera onderscheidt de volgende ontwerpstappen:

• conceptueel ontwerp: bouwt een conceptueel model (CM), een uniforme represen-
tatie van de gegevens die in de toepassing gebruikt worden. Deze stap definieert de
concepten en de verbanden ertussen die in het toepassingsdomein relevant zijn.

• toepassingsontwerp: bouwt een toepassingsmodel (AM), een navigatiestructuur over
de gegevens in het CM. Deze structuur definieert “slices” en verbanden daartussen.

155

156 SAMENVATTING

Een slice is een eenheid van presentatie die bepaalde gegevens aan de gebruiker toont.
Tussen slices bestaan twee soorten verbanden: navigatie verbanden om verwijzingen
(hyperlinks) uit te drukken, en aggregatie verbanden om een slice binnen een andere
op te nemen.

• presentatieontwerp: bouwt het presentatiemodel (PM), de specificaties van de “look-
and-feel” van de uiteindelijke presentatie. Het PM definieert gebieden en verbanden
daartussen. Een gebied is een abstractie van een rechthoek op het scherm waarbinnen
de inhoud van een slice wordt weergegeven. Zoals voor slices bestaan er twee soorten
verbanden: navigatie verbanden om doorverwijzingen uit te drukken, en aggregatie
verbanden om een gebied in een ander op te nemen. Een gebied heeft informatie
over opmaak (de positionering van deelgebieden binnen het gebied) en stijlinformatie
(lettertypen, kleuren, etc.).

De presentatie kan in deze fase van Hera op twee manieren worden aangepast: statisch,
d.w.z. voordat de gebruiker begint te bladeren, en dynamisch, d.w.z. tijdens het bladeren.
Statische aanpassing wordt bepaald door weergavevoorwaarden die aan elementen in het
CM, het AM en het PM gesteld kunnen worden. Deze voorwaarden maken gebruik van
gegevens uit een gebruikersprofiel (UP) waarin de statische gebruikersvoorkeuren en de
mogelijkheden van de weergaveapparatuur worden opgeslagen. Dynamische aanpassing
ondervraagt het AM en houdt een gebruikerssessie (US) bij. De US bevat dynamische
gegevens, d.w.z. gegevens die tijdens het bladeren uit de invoer van de gebruiker worden
afgeleid. Het presentatie-generatie proces gebruikt de gegevens uit het US op eenzelfde
manier als die uit het CM. Wegens deze twee soorten adaptatie zijn er twee varianten van
de presentatiefase in Hera: de statische en de dynamische.

Hoofdstuk 4 beschrijft een CASE-tool, Hera Presentation Generator (HPG), die de
presentatiefase van Hera ondersteunt. Er bestaan twee varianten van HPG: HPG-XSLT,
die overeenkomt met de statische variant van de fase, en HPG-Java, die met de dynamische
variant overeenkomt. HPG-XSLT voert de data-transformaties uit met behulp van XSLT-
stylesheets, terwijl HPG-Java ze in Java uitvoert, met behulp van de Jena- en Sesame-
bibliotheken. HPG-Java benut de semantiek van de RDF-modellen beter dan HPG-XSLT.
Verder wordt er een gedistribueerde architectuur voor HPG gegeven, gebaseerd op Web
Services.

Hoofdstuk 5 presenteert RAL, een algebra voor RDF die gebruikt kan worden voor de
optimalisatie van queries (vragen). Een datamodel wordt gedefinieerd en een verzameling
operatoren op het datamodel. De verzamelingen knopen zijn gesloten onder alle operatoren.
Er zijn twee soorten operatoren: extractie-operatoren, die relevante knopen uit een invoer-
verzameling halen, en constructie-operatoren, die een uitvoermodel opbouwen, mogelijk
met gebruikmaking van de opgevraagde knopen. De extractie-operatoren voldoen aan
equivalenties vergelijkbaar met die van de relationele algebra. We stellen een heuristisch
algoritme voor query-optimalisatie voor dat lijkt op dat voor de relationele algebra.

Hoofdstuk 6 laat zien hoe GViz, een algemeen hulpmiddel voor graafvisualisatie, ingezet
kan worden om de modellen te presenteren die bij de presentatie-generatie fase van Hera

SAMENVATTING 157

worden ingezet. In vergelijking met andere hulpmiddelen is GViz gemakkelijk instelbaar.
Omdat Hera-modellen behoorlijk groot kunnen worden, gebruiken we visualisatie-scenario’s
om een beter inzicht te krijgen in de eigenschappen van modellen. GViz is toegepast op
conceptuele modellen, toepassingsmodellen, en instanties van beide.

158 SAMENVATTING

Curriculum Vitae

Flavius Frasincar was born on 14th November 1971 in Bucharest, Romania. After com-
pleting his pre-university education at “Gheorghe Lazar” high-school, profile mathematics-
physics, he started in the same year to study at “Politehnica” University of Bucharest, Ro-
mania. During the six years of faculty study, he received four three-months scholarships:
one at Tampere University of Technology, Finland, one a at University of Sunderland,
United Kingdom, and two at Eindhoven University of Technology, the Netherlands. He
graduated in 1997 with a master in Computer Science.

After graduation he worked as a teaching assistant (courses Programming Techniques,
Introduction to Object-Oriented Programming, and Parallel Algorithms) at the same uni-
versity for one year. In 2000 he joined the software technology program of Stan Ack-
ermans Institute at Eindhoven University of Technology. After two years he received a
Professional Doctorate in Engineering (PDEng). He started his PhD research in 2000 in
Databases and Hypermedia Group, Department of Mathematics and Computer Science at
Eindhoven University of Technology. From 2004 he is also part-time assistant professor
(courses Databases, Java Programming, and Web Information Systems) in the same group.
His research interests are: Web information systems, Semantic Web, Web query languages,
Web data visualization, databases, and software engineering.

159

160 CURRICULUM VITAE

SIKS Dissertatiereeks

====

1998

====

1998-01 Johan van den Akker (CWI)

DEGAS - An Active, Temporal Database of Autonomous Objects

1998-02 Floris Wiesman (UM)

Information Retrieval by Graphically Browsing Meta-Information

1998-03 Ans Steuten (TUD)

A Contribution to the Linguistic Analysis of Business Conversations

within the Language/Action Perspective

1998-04 Dennis Breuker (UM)

Memory versus Search in Games

1998-05 E.W. Oskamp (RUL)

Computerondersteuning bij Straftoemeting

====

1999

====

1999-01 Mark Sloof (VU)

Physiology of Quality Change Modelling; Automated modelling of

Quality Change of Agricultural Products

1999-02 Rob Potharst (EUR)

Classification using decision trees and neural nets

1999-03 Don Beal (UM)

The Nature of Minimax Search

1999-04 Jacques Penders (UM)

The practical Art of Moving Physical Objects

1999-05 Aldo de Moor (KUB)

Empowering Communities: A Method for the Legitimate User-Driven

Specification of Network Information Systems

161

162 SIKS Dissertatiereeks

1999-06 Niek J.E. Wijngaards (VU)

Re-design of compositional systems

1999-07 David Spelt (UT)

Verification support for object database design

1999-08 Jacques H.J. Lenting (UM)

Informed Gambling: Conception and Analysis of a Multi-Agent

Mechanism for Discrete Reallocation

====

2000

====

2000-01 Frank Niessink (VU)

Perspectives on Improving Software Maintenance

2000-02 Koen Holtman (TUE)

Prototyping of CMS Storage Management

2000-03 Carolien M.T. Metselaar (UVA)

Sociaal-organisatorische gevolgen van kennistechnologie;

een procesbenadering en actorperspectief

2000-04 Geert de Haan (VU)

ETAG, A Formal Model of Competence Knowledge for User Interface

Design

2000-05 Ruud van der Pol (UM)

Knowledge-based Query Formulation in Information Retrieval

2000-06 Rogier van Eijk (UU)

Programming Languages for Agent Communication

2000-07 Niels Peek (UU)

Decision-theoretic Planning of Clinical Patient Management

2000-08 Veerle Coup (EUR)

Sensitivity Analyis of Decision-Theoretic Networks

2000-09 Florian Waas (CWI)

Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)

Image Database Management System Design Considerations,

Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)

Scalable Distributed Data Structures for Database Management

SIKS Dissertatiereeks 163

====

2001

====

2001-01 Silja Renooij (UU)

Qualitative Approaches to Quantifying Probabilistic Networks

2001-02 Koen Hindriks (UU)

Agent Programming Languages: Programming with Mental Models

2001-03 Maarten van Someren (UvA)

Learning as problem solving

2001-04 Evgueni Smirnov (UM)

Conjunctive and Disjunctive Version Spaces with Instance-Based

Boundary Sets

2001-05 Jacco van Ossenbruggen (VU)

Processing Structured Hypermedia: A Matter of Style

2001-06 Martijn van Welie (VU)

Task-based User Interface Design

2001-07 Bastiaan Schonhage (VU)

Diva: Architectural Perspectives on Information Visualization

2001-08 Pascal van Eck (VU)

A Compositional Semantic Structure for Multi-Agent Systems Dynamics

2001-09 Pieter Jan ’t Hoen (RUL)

Towards Distributed Development of Large Object-Oriented Models,

Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)

Modeling and Simulating Work Practice

BRAHMS: a multiagent modeling and simulation language for

work practice analysis and design

2001-11 Tom M. van Engers (VUA)

Knowledge Management:

The Role of Mental Models in Business Systems Design

====

2002

====

2002-01 Nico Lassing (VU)

Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)

Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)

Database Optimization Aspects for Information Retrieval

164 SIKS Dissertatiereeks

2002-04 Juan Roberto Castelo Valdueza (UU)

The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)

The Private Cyberspace Modeling Electronic

Environments inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)

Applied legal epistemology; Building a knowledge-based ontology

of the legal domain

2002-07 Peter Boncz (CWI)

Monet: A Next-Generation DBMS Kernel For Query-Intensive

Applications

2002-08 Jaap Gordijn (VU)

Value Based Requirements Engineering: Exploring Innovative

E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)

Integrating Modern Business Applications with Objectified Legacy

Systems

2002-10 Brian Sheppard (UM)

Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)

Agent Based Modelling of Dynamics: Biological and Organisational

Applications

2002-12 Albrecht Schmidt (Uva)

Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)

A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)

Agent Interaction: Abstract Approaches to Modelling, Programming

and Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)

Semantics and Verification of UML Activity Diagrams for Workflow

Modelling

2002-16 Pieter van Langen (VU)

The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)

Understanding, Modeling, and Improving Main-Memory Database

Performance

SIKS Dissertatiereeks 165

====

2003

====

2003-01 Heiner Stuckenschmidt (VU)

Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)

Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)

Human-Computer Interaction and Presence in Virtual Reality Exposure

Therapy

2003-04 Milan Petkovic (UT)

Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)

Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)

Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)

Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)

Repair Based Scheduling

2003-09 Rens Kortmann (UM)

The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)

Electronic Business Negotiation: Some experimental studies on the

interaction between medium, innovation context and culture

2003-11 Simon Keizer (UT)

Reasoning under Uncertainty in Natural Language Dialogue using

Bayesian Networks

2003-12 Roeland Ordelman (UT)

Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)

Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)

Freezing Language: Conceptualisation Processes across ICT-Supported

Organisations

2003-15 Mathijs de Weerdt (TUD)

Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)

Feature Grammar Systems - Incremental Maintenance of Indexes to

Digital Media Warehouses

166 SIKS Dissertatiereeks

2003-17 David Jansen (UT)

Extensions of Statecharts with Probability, Time, and Stochastic

Timing

2003-18 Levente Kocsis (UM)

Learning Search Decisions

====

2004

====

2004-01 Virginia Dignum (UU)

A Model for Organizational Interaction: Based on Agents, Founded

in Logic

2004-02 Lai Xu (UvT)

Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)

A Theoretical and Empirical Analysis of Approximation in Symbolic

Problem Solving

2004-04 Chris van Aart (UVA)

Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)

Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)

The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)

Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar

abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)

Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale

politiele gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)

For the Sake of the Argument; explorations into argument-based

reasoning

2004-10 Suzanne Kabel (UVA)

Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)

Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)

Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)

Using Multiple Models of Reality: On Agents who Know how to Play

SIKS Dissertatiereeks 167

2004-14 Paul Harrenstein (UU)

Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)

Multi-Relational Data Mining

2004-16 Federico Divina (VU)

Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)

Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)

Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)

Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)

Learning from Design: facilitating multidisciplinary design teams

====

2005

====

2005-01 Floor Verdenius (UVA)

Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))

AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)

A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)

Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)

Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)

Adaptive Game AI

