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Abstract

As databases become larger and less structured, the JavaScript Object Nota-
tion (JSON) data format has risen in usage compared to other data formats like
XML. At the same time, while extracting data from these large datasets effi-
ciently is of obvious importance, there has been far less research regarding the
optimization of JSON queries than there has relating to the querying of XML
data. Thus a JSON Data Model and JSON Algebra (JAL) are proposed, as well
as a heuristic optimization algorithm, for the purpose of improving the efficiency
of queries of JSON data. We implement the proposed algorithm and compare the
efficiency gain that it provides in terms of both the theoretical and physical cost
of executing queries. We find that the algorithm significantly reduces query costs
compared to an unoptimized baseline. Additionally, we find that the efficiency
gain is considerably larger when querying databases with many documents than
those with relatively fewer documents.

Keywords: JSON, query optimization, JSONiq, databases

1 Introduction

As Big Data increasingly finds its way into the practices of companies across a widening
spectrum of industries, the interest in efficient data processing has increased substan-
tially [1]. Of particular importance is the extraction of desired information from large
datasets, where the use of queries can be especially costly when not done efficiently.

At present, there are two data transfer types in common usage, XML [2] and
JavaScript Object Notation (JSON) [3]. They share many similarities, as JSON was
proposed after XML. However, in recent years JSON has become more widespread
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compared to XML, a situation heightened by the increase in usage of Representational
State Transfer (REST) APIs. Such APIs depend on easy and fast data interchanges,
and as JSON is a lightweight, easy to read, and easy to parse data format, it is par-
ticularly suited to these APIs. Although JSON is becoming increasingly more popular
than XML, current literature still lacks the same depth of research as is available
for XML. XML is known for having powerful validation and schema features, with
an established set of query languages and resources. The querying of JSON is com-
paratively less consolidated, and there is still room for efficiency gain regarding the
execution of JSON queries.

The focus of this paper is the optimization of JSON queries through the algebraic
manipulation of queries, i.e., the logical optimization of queries. To that end, a JSON
data model, algebraic operators, equivalence rules, and a heuristic optimization algo-
rithm are defined. Rewriting a query into algebraic operators allows for the utilization
of equivalence rules following a heuristic algorithm, reducing the execution cost of the
query.

In order to reduce the number of computations required for query execution, appro-
priate equivalence expressions must be defined that allow for the removal of redundant
computations in the query tree. Using these rules, a query algorithm may then be pro-
posed to decrease the number of required computations for query execution, making
the query more efficient.

Similar objectives and strategies have been employed in relational database con-
texts [4], and XML databases [5]. Our contribution to the current state of the literature
is extending the propositions made in both of these contexts, in particular those
related to query optimization heuristics, into a JSON context. A broad variety of
JSON databases is utilized that allow us to make a fair comparison regarding both
theoretical (quantitative dimension) as well as physical (running time) computational
costs of a query, with and without the proposed optimization algorithm. We express
our queries in JSONiq [6], which is a well-known and extensive JSON query language.

Based on our results, we conclude that our proposed algorithm, making use of our
proposed data model, algebra, and equivalence rules, improves the execution of JSON
queries both in terms of theoretical cost as well physical cost. Especially when dealing
with databases that contain a large number of documents, a substantial difference can
be observed in costs between executing a query with and without our optimization
algorithm.

The remainder of this paper is structured as follows. Section 2 covers a literature
review of related research, discussing current research progress regarding JSON data
models, JSON query languages (QL), and JSON algebras. In Section 3 we describe
the five databases that we use to test our optimization algorithm. In Section 4 we
describe our methodology: we propose a JSON data model, define JSON algebraic
operators, define equivalence expressions, and derive an optimization algorithm. In
Section 5 we present our main findings. Last, in Section 6, we draw our conclusions
and make suggestions for future research.
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2 Related Work

This section begins with a discussion of JSON data models. Then, the current state of
the literature regarding JSON query languages and JSON algebra is evaluated. Last,
we discuss existing optimization approaches and their connections to our work.

2.1 JSON Data Model

Despite the prevalence of JSON in practical applications, there is no official stan-
dard for the modelling of JSON documents in the current state of the literature. In
most JSON-related research, JSON documents are modelled by trees, i.e., JSON trees,
where an important characteristic of the tree is that it is edge-labelled [7–9]. In [8],
the structure of a simple JSON tree is described. This structure is especially use-
ful when combined with the JSONPath query language, in which queries select the
nodes of a tree where specific path conditions are met. In [9], the authors describe a
JSON document through an object description that contains path-value pairs instead
of the key-value pairs that form the main structure of JSON. A path is defined as
the sequence of keys that leads to a specific value separated by dots, hence a path-
value pair is similar to a key-value pair. Converting a JSON document into an object
description results in a document like the one presented in Figure 1. In the object
description, nesting is no longer present due to the path-value pairs. For example, the
first name of a student represented in object description in Figure 1 is given by the
path name.first. As keys assure that a JSON document is deterministic, it follows
that a path is also well-defined. The presence of ordered data types, i.e., arrays, has

"id"

"name.first"

: 123456,

"courses.1"

{

}

: "Jane",

: "Smith""name.last"

"courses.2"

"courses.3"

"courses.4"

"courses.5"

"courses.6"

"courses.7"

"courses.8"

: "EN",

: "SP",

: "MA",

: "GEO",

: "PHY",

: "SC",

: "CS",

: "PE"

Fig. 1: An example of a JSON document expressed in object description notation
(paths followed by a colon and value)
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not yet been physically tested in this approach. However, in [7], a suggestion is pro-
vided as to how to deal with arrays when modelling a JSON document as a JSON
tree. The authors propose nodes for each element in an array where the edges are
labelled with their respective index position in the array. Figure 2 shows a JSON tree
that corresponds to the same JSON document as is depicted in Figure 1, displaying
this idea of edges denoted by the position of an element in an array.

"id"
"name"

"courses"

123456

"first" "last"

"Jane" "Smith" "EN" "SP" "MA" "GEO" "PHY" "SC" "CS" "PE"

1 2 3 4 5 6 7 8

Fig. 2: An example of a JSON tree representation

2.2 JSON Query Languages

There are currently several query languages for JSON data:
1. JSONPath [10]
2. JAQL [11]
3. JSONiq [6]
4. JSONQuery [12]
5. JMESPath [13]
6. ObjectPath [14]
7. JSONata [15]
8. SQL++ [16]
9. J-CO-QL+ [17]
The query language of JSONPath [10] is based on XPath [18], a well-known XML
QL. A notable power of this language is that it allows for the presence of arbitrary
recursion in documents, which is not uncommon in JSON documents. However, it does
not have official semantics and does not provide the ability to merge or join JSON
documents [19]. Furthermore, it is only functional for selecting and extracting values
from JSON, not providing any functions to create or update JSON documents. Should
we want to extract the last name of the JSON document represented in Figures 1 and
2, the query would be expressed in JSONPath as: $.name.last, where $ denotes the
root object. Hence, JSONPath uses dot notation for its path navigation.

The next relatively well-known query language for JSON documents is JAQL, a QL
originally devised by Google. It is mainly used for, but not limited to, the updating,
querying and construction of large-scaled semi-structured data, i.e., JSON documents
[11, 20]. Its main features are extensibility and parallelism, as it can not only run
locally, but also in parallel utilizing Hadoop’s Map-Reduce. Due to this scalability
property, JAQL is mainly used in applications related to Big Data. JAQL does allow
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for the presence of operators like joins and groupings [21], however, the join operation
is limited to conditions with equality signs (e.g., joins with a condition containing the
larger than logical operator are not allowed).

JSONiq is a JSON QL based on the fundamentals of SQL [4] and XQuery [22]. SQL
is the most popular QL in relational databases and XQuery is a well-known, extensive,
and productive QL for XML that is also platform-independent. The foundation behind
JSONiq is the use of advancements from relational database systems and the utiliza-
tion of semi-structured data. It allows for the construction, querying, and updating of
nested, heterogeneous, and semi-structured data [6]. The construction of new JSON
objects works by utilizing a syntax closely related to JSON itself. JSONiq has several
useful properties [1]. Among others, it is a language that can process sets of JSON
objects, consisting of possibly nested and heterogeneous data, at once, where expres-
sions are fully composable. These expressions are the building blocks behind JSONiq.
The expressions are ordered set-oriented, hence both input and output are sequences.
The most powerful types of expressions in JSONiq are the For, Let, Where, Order

by, Return (FLWOR) expressions. They are similar to SQL’s select-from-where

but are not bound to a particular order, except for the requirement that each either
starts with a for or let clause and ends with a return clause [23]. There are seven
available clauses in total, namely the count, for, group by, let, order by, return,
and where clauses. It allows for, among others, selections, joins (of heterogeneous
data), and projections. These expressions form the basis for query optimization. Fur-
ther, like JAQL, JSONiq may also be run in parallel contexts, though we focus on its
local capabilities and leave extensions to parallel computing as future research.

There are also lesser-known proposals. JSONQuery is an example of such, providing
a superset of the functionality provided in JSONPath, extending it through operators
such as mapping, sorting (not limited to array sorting as is the case in JSONPath),
and the ability to perform inner-joins [12]. Two other JSON QLs that are derived from
JSONPath are JMESPath, which is a JSON QL for processing (manipulating) and
updating JSON data [13, 24] and ObjectPath, which again is a QL for processing JSON
data [14]. Then, there is JSONata, a lightweight processing and updating language for
JSON documents. It is extensible and can handle complex queries with minimal syntax
[15]. In addition there is SQL++, which is a JSON QL that is to a large extent back-
wards compatible with SQL making it easy to use by people familiar with SQL [16].
Last, there is J-CO-QL [17], which is a JSON QL for geographical data represented
in the J-CO platform [25]. In Table 1 we provide an overview of the functionalities
supported by each of the aforementioned query languages. The functionalities we con-
sider are the abilities to process JSON documents, create JSON documents, update
a (value in a) JSON document, perform join-type operations, and sort a collection of
JSON documents. OK signifies that the QL supports a given functionality, and an
empty field indicates that the QL has no support for said functionality. An L indi-
cates that there is limited support for the functionality. The most limited JSON QL is
JSONPath, as join-type operations, creating JSON documents, and updating JSON
documents are not allowed. To our knowledge, the JSON QL that is most expressive
dedicated to semi-structured data (in the current state of literature) is JSONiq.
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Processing Create Update Join Sort

JSONPath OK L
JAQL OK OK OK L OK
JSONiq OK OK OK OK OK
JSONQuery OK L OK
JMESPath OK OK OK
ObjectPath OK OK
JSONata OK OK OK
SQL++ OK OK OK OK OK
J-CO-QL+ OK OK OK

Table 1: Functionality overview for the nine discussed query languages

2.3 Optimization and JSON Algebraic Operators

Query optimization decreases a system’s memory and storage usage as well as simul-
taneously reducing execution time while executing a query, all desirable effects in
practical applications. Query optimization can be divided into two categories: logical
optimization and physical optimization.

Logical optimization relates to the translation of a query into corresponding
algebraic operators, defining conceptually how they operate and finding equivalent
representations for said operators such that a query written solely in algebraic oper-
ators can be rewritten into a computationally cheaper form. Translating a query into
its algebraic counterpart allows for its representation by a query tree [26]. In this tree,
each leaf node represents the input data and each internal node refers to an algebraic
operator. The root node of the tree denotes the query result. Utilizing logical opti-
mization equivalence rules, a query tree can be rewritten without changing the root
node, hence obtaining an identical output more efficiently. This concept is described
in a relational context in [4].

An optimization algorithm utilizing heuristics and statistics can then be defined,
where the most powerful heuristic is that of moving projections and selections as
far down a query tree as possible. Performing these operations as early as possible
reduces the magnitude of the intermediate results, in turn decreasing the number
of required computations further up the tree. Heuristics, however, do not guarantee
optimality. For example, if we are dealing with a multiple selection problem it is not
always known which selection is the most restrictive in real-time. We can only make
an approximation, as done in [27], through a selectivity heuristic.

The above concepts have been applied in an XML context in [5]. There, an alge-
bra is proposed for XML query optimization specific to the XML data model. It
is concluded that this strategy provides efficient transformations such that a sig-
nificant reduction in the number of computations is possible. As XML describes
semi-structured data, as does JSON, we explore the same strategy applied to a JSON
context.

Physical optimization then relates to the physical implementation of each algebra
operator. Physical optimization describes for each operator which algorithm should be
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used for the implementation of the operator [4, 28]. There are several ways to imple-
ment each operator, and there is not generally a clear indication as to which results in
the best performance. Therefore, in physical optimization one needs to compare these
different implementations by their I/O costs dynamically.

In the current state of the literature, there are only a few (preliminary) speci-
fications for algebraic operators applicable to JSON. PostgreSQL [29] offers several
functions and operators for the processing and creation of JSON documents. In [30]
several operators are also defined for the processing of JSON data. However, neither
of these specifications offer any optimization rules nor an optimization algorithm.
Queries of document based, non-relational databases have also been expressed in the
form of relational algebra itself, such as in [31], where a benchmarking approach is
proposed for use in gauging query performance in both relational and non-relational
databases. This sort of query expression in relational algebra is, however, only possible
for some JSON queries, with their non-relational nature generally preventing a direct
relational representation. Additionally, other approaches to aid in the optimization of
JSON queries in certain applications have been proposed, such as the JSON Tiles in
[32]. There, the authors find that a more granular view of JSON document structure
in relational contexts can allow for a more efficient evaluation of query expression
costs, in turn enabling the construction of more efficient queries. This approach again,
however, does not specify optimization rules, instead aiding in query optimization on
existing relational engines with JSON support.

The main contributions of this work are as follows. To the best of our knowledge
we are among the firsts to propose an algebra for JSON query optimization. After
devising the algebra operators, we propose an algorithm for query optimization. While
both algebra and optimization algorithm are inspired by the relational counterparts,
they also contain elements specific to the semi-structured nature of JSON. Last, we
have shown the usefulness of the algebra and optimization algorithm by applying these
to query optimization for JSONiq, a popular and versatile query language for JSON,
over several existing JSON databases.

3 Data

In this section the datasets, on which the proposed optimization algorithm is tested, are
presented. Each subsection describes a database, for which we define the constituent
datasets, the size of the datasets (in number of JSON documents), the keys within the
datasets, as well as the schema of each document in the JSound schema language [33].

3.1 Dataset Sizes

The different datasets and the size of each dataset in bytes are provided in Table 2.
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Case Dataset Bytes Size
Pokémon Pokemons.json 81,997
Airports AirportDelays.json 4,964,702

Bike sharing station-information.json 26,277
station-status.json 16,479

Rick and Morty characters.json 358,734
episodes.json 58,746
locations.json 53,540

Nobel prize Prizes.json 218,948
Laureates.json 470,676
Countries.json 4,615

Table 2: Dataset Sizes

3.2 Pokémon

Our first database relates to Pokémon, a Japanese media franchise starring mystical
creatures. It contains the information of 151 Pokémon, hence there are 151 documents
present in this database [34]. Each document contains the following keys:

• id : the id of the Pokémon;
• name: the name of the Pokémon;
• height : the height of the Pokémon in meters;
• weight : the weight of the Pokémon in kilograms;
• weaknesses: an array containing the weakness of the Pokémon (e.g., Fire).

JSound schema for documents in Pokemons.json

{

"id": "integer",

"name": "string",

"height ":" string",

"weight ": "string",

"weaknesses ": [ "string" ]

}

We refer to this collection in the queries using the name pokemon.

3.3 Monthly Airline Delays by Airport

The second database contains the monthly airline delays at airports in the United
States [34]. The database includes data from the period beginning in 2003 up until and
including 2016. This collection covers 4,408 documents, where each document contains
the following keys:

• Airport : an object containing the Name and Code of the airport (e.g., an airport
with Name “Los Angeles, CA: Los Angeles International” and with Code “LAX”);
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• Time: an object containing the keys: Label, Month, Month Name, and Year (e.g.,
October 2003 has as label “2003/10”, Month 10, Month Name “October”, and Year
2003);

• Statistics: an object containing another 3 objects:

1. # of Delays: this object contains the keys Carrier, Late Aircraft, National Avia-
tion System, Security, and Weather. Each key represents a cause for a delay. The
object’s values then denote how many delays were caused by the reason given in
each key (e.g., 5 delays were caused due to a late aircraft).

2. Flights: this object contains the keys Cancelled, Delayed, Diverted, On Time, and
Total. Each key describes how many flights meet that category (e.g., 10 flights
were diverted).

3. Minutes Delayed : this object contains the keys Carrier, Late Aircraft, National
Aviation System, Security, Weather, and Total. Each of their values represent
how many minutes of delay were caused by that reason (e.g., 400 minutes of
delay were caused by the weather).

JSound schema for documents in Airport Delays.json

{

"Airport ": {

"Name": "string",

"Code": "string"

},

"Time": {

"Label": "string",

"Month": "integer",

"Month Name": "string",

"Year": "integer"

},

"Statistics ": {

"# of Delays ": {

"Carrier ": "integer",

"Late Aircraft ": "integer",

"National Aviation System ": "integer",

"Security ": "integer",

"Weather ": "integer"

},

"Flights ": {

"Cancelled ": "integer",

"Delayed ": "integer",

"Diverted ": "integer",

"On Time": "integer",

"Total ": "integer"

},

"Minutes Delayed ": {

"Carrier ": "integer",

"Late Aircraft ": "integer",
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"National Aviation System ": "integer",

"Security ": "integer",

"Weather ": "integer",

"Total": "integer"

}

}

}

We refer to this collection in the queries using the name airportMonth.

3.4 Bike Share At Stations

Our third database contains information about bike sharing and their locations (at
stations) [35]. The database consists of two datasets:

1. Stations, consisting of 95 JSON documents, each one related to a station. Each
document contains the following keys:

• station id : the id of the station (e.g., “hub 299”);
• name: the name of the station;
• region id : the id of the region the station is located in (e.g., “region 80”);
• address: the address of the station.

JSound schema for documents in station-information.json

{

"station_id ": "string",

"name": "string",

"region_id ": "string",

"address ": "string",

}

2. Statuses, consisting of 95 documents, hence each document contains the informa-
tion of a single station. Each document contains the following keys:

• station id : the id of the station;
• num bikes available: the number of bikes that are currently available for renting
at the station;

• num bikes disabled : the number of disabled bikes at the station;
• num docks available: the number of bike storage racks currently available at the
station.

JSound schema for documents in station-status.json

{

"station_id ": "string",

"num_bikes_available ": "integer",

"num_bikes_disabled ": "integer",

"num_docks_available ": "integer",

}
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In the queries we refer to these 2 collections using the names station and status for
the Stations and Statuses datasets, respectively.

3.5 Rick and Morty

Our fourth database is related to the cartoon TV-show “Rick and Morty” [34]. This
database contains the following three datasets:

1. Characters, consisting of 671 JSON documents, each one related to a character
of the cartoon. For each character we may know the following information:

• id : the id of the character;
• name: the name of the character;
• url : a string containing a url refering to a website containing more information
about the character;

• status: denoting the status (e.g., dead or alive) of the character;
• species: denoting what type the character is;
• gender : the gender of the character;
• origin: an object containing the name of the character’s birthplace and a url
referring to a website containing more information about the origin location;

• location: an object containing the name of the character’s current location and
a url referring to a website containing more information about the location.

JSound schema for documents in characters.json

{

"id": "integer",

"name": "string",

"url": "anyURI",

"status ": "string",

"species ": "string",

"gender ": "string",

"origin ": {

"name": "string",

"url": "anyURI"

},

"location ": {

"name": "string",

"url": "anyURI"

}

}

2. Episodes, consisting of 41 JSON documents, each one related to an episode. For
each episode we may know the following information:

• id : the id of the episode;
• name: the name of the episode;
• episode: the episode code (e.g., “S01E01”);
• characters: an array containing the url ’s for each character that appears in the
episode;
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• url : a string containing a url referring to a website that contains more information
about the episode.

JSound schema for documents in episodes.json

{

"id": "integer",

"name": "string",

"episode ": "string",

"characters ": [ "anyURI" ],

"url": "anyURI"

}

3. Locations, consisting of 108 JSON documents, each one related to a location. For
each location we may know the following information:

• id : the id of the location;
• name: the name of the location;
• type: the type of location (e.g., “Planet”);
• url : a string containing a url referring to a website containing more information
about the location.

JSound schema for documents in locations.json

{

"id": "integer",

"name": "string",

"type": "string",

"url": "anyURI"

}

In the queries we refer to these 3 collections using the names character, episode, and
location for the Characters, Episodes, and Locations datasets, respectively.

3.6 Nobel Prize

Our fifth database describes all awarded Nobel prizes and their laureates within the
period from 1901 until 2020 [34]. This database consists of three datasets:

1. Prizes, consisting of 652 JSON documents, each one related to a prize. Each
document contains the following keys:

• year : the year the prize was awarded;
• category : the research field the prize is awarded in;
• laureates: an array of objects covering the winners of the prize, where each object
contains the id and motivation of the winner.

JSound schema for documents in Prizes.json

{
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"year": "string",

"category ": "string",

"laureates ": [

{

"id": "string",

"motivation ": "string"

}

]

}

2. Laureates, consisting of 955 JSON documents, each one related to a laureate.
Each document contains the following keys:

• id : the id of the laureate;
• firstname: the laureate’s first name;
• surname: the laureate’s surname;
• bornCountryCode: the country code of the country the laureate was born in;
• diedCountryCode: the country code of the country the laureate died in;
• gender : the gender of the laureate.

JSound schema for documents in Laureates.json

{

"id": "string",

"firstname ": "string",

"surname ": "string",

"bornCountryCode ": "string",

"diedCountryCode ": "string",

"gender ": "string"

}

3. Countries, consisting of 135 JSON documents, each one related to a country. Each
document contains the following keys:

• code: the country code;
• name: the name of the country.

JSound schema for documents in Countries.json

{

"code": "string",

"name": "string"

}

In the queries we refer to these 3 collections using the names prize, laureate, and
country for the Prizes, Laureates, and Countries datasets, respectively.
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4 Methodology

This section describes our methodology, beginning with a brief description of JSON
and a formal description of our JSON data model, as well as the underpinnings and
basic definitions of our JSON Algebra, JAL. We then expand on the key equivalences
that enable optimization and last describe our actual optimization approach.

4.1 JSON Data Model

"id"

"name"

: 123456,

"courses"

: {

{

}

"first": "Jane",

"last": "Smith"

},

: ["EN", "SP", "MA", "GEO", "PHY", "SC", "CS", "PE"]

Fig. 3: An example of a JSON document

We begin with an overview of JSON and its general structure. JSON is a light-
weight, schema-less, human-readable, and machine-readable data-interchange format
built as a subset of the JavaScript Programming Language (using conventions seen in
JavaScript). JSON can be characterised by two data structures: objects and arrays.
Objects are unordered sets of key-value pairs, where each key should be of type string
and the corresponding value can be any of the following data types: string, number,
array, Boolean, null, or again an object. Each object is denoted by curly brackets with
data-fields as key-value pair(s) inside the brackets: {key: value}. Note that each JSON
document is enclosed by these brackets as well, as a JSON document is itself an object.
The second data structure encountered in JSON documents are arrays. These ordered
sequences of values can again contain a mix of all the aforementioned data types, e.g.,
[value1, value2, value3], where, for instance, value1 is an integer, value2 is a string,
and value3 is an object. A simple example of a JSON document can be seen in Figure
3. The document contains the id, denoted by a number, the name of the student,
split into an object containing the first and last name, and the courses the student
follows denoted as (string) abbreviations contained in an array. These standard data
structures simplify the process of machine reading of documents, especially useful from
the perspective of data-interchange.

We now describe the formal specification of our JSON data model. From Section
2.1, it can be concluded that the literature does not know a standard for a JSON
data model, although most formalizations share similarities between them. The JSON
data model presented in this paper is inspired by the JSON data models and notation
described in [5, 7–9, 36]. Each JSON document d is in itself a JSON object and each
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JSON object can be represented by a tree-shaped structure. A tree is a connected,
directed, and acyclic graph. A JSON tree T is an edge-labelled tree, meaning that the
edges are labelled with the keys from a JSON document and the nodes represent the
corresponding values. Following JSON’s compositional structure, each node, n, has
exactly one parent node except for the root node that denotes the entire document
d. The formal definition of the JSON data model is as follows:

T = (root, E ,N ), where root = d

E = Estr ∪ Eint

N = Ninternal ∪Nleaf

A JSON tree T consists of three components: a root node, a set of edges E , and a
set of nodes N . The set E represents two types of edges, namely the string edges (Estr)
and the integer edges (Eint). The former denotes the edges that are labelled with a key
k. As keys in JSON documents are always of type string, each edge e from this set is
of type string, that is ∀e ∈ Estr, type(e) = string. The set Eint then denotes the edges
that are labelled with an integer value. The inclusion of such edges is required for the
representation of an array value in a tree. As order is not present in a tree, arrays can
not be directly represented in a tree. Therefore, elements of an array are represented
by nodes, where each node can be accessed by an edge labelled with its corresponding
position i in the array, e.g., the edge leading to the first element index = 1 of an array
will be labelled with the number 1 (e.g., the manner in which the courses are displayed
in Figure 2). Naturally, it follows that each edge e from this set is of type integer, that
is ∀e ∈ Eint, type(e) = N. Hence, the values of the natural numbers themselves are not
important, only the order they represent is. Each edge e has five properties, as can be
seen in Table 3. Each property can be accessed by an accessor function, denoted by
their property name (e.g., the function label(e) returns the label belonging to edge e).

Property Definition
label the name of the edge, either a key or a number
parent the source node of the edge
child the target node of the edge
type the type of edge
identifier a unique number that refers only to a particular edge

Table 3: Properties for an edge in a JSON tree

The set N represents two types of nodes, namely the leaf nodes (Nleaf ) and the
internal nodes (Ninternal). A leaf node represents an atomic value v. Atomic values
are defined as:

• string: v = “s”, if “s” is a sequence of Unicode characters;
• numbers: v = m, if m ∈ D, the set of decimal numbers;

15



• boolean: v = b, if b ∈ {true, false};
• empty: v = ∅, if ∅ represents “null”.

The internal nodes represent complex values. Complex values are the two other
data types that JSON documents allow: arrays and objects. Formally, complex values
are defined as:

• arrays: v = [v1, v2, . . . , v|v|], hence an array consists of |v| elements where each
element of v can either be an atomic value or again a complex value;

• object: v = {k1 : v1, k2 : v2, . . . , k|v| : v|v|}, hence an object consists of |v| key-value
pairs where each key k is of type string and each value v is either an atomic value
or again a complex value.

Thus, complex values allow for the presence of an arbitrary level of nesting, hence
the name complex values. Each node has four properties, depending on its type, as
can be seen in Table 4. The outgoingEdges property is required when the node type
is complex. Atomic nodes can not have outgoingEdges. The value of a node depends
on its type: if the node is complex, the value of the node is equal to its identifier and
if the node is atomic, the value of the node is equal to its actual atomic value (i.e.,
a string, boolean, number, or empty). An accessor function can access each property.
Again the accessor functions are denoted by their property name.

Property Definition
value the value represented by the node
outgoingEdges the edges that go out of the node
type the type of node
identifier a unique number that refers only to a particular node

Table 4: Properties for a node in a JSON tree

If there are several JSON trees, T1, T2, . . . , Tn, then we speak of a collection of trees.
To simplify notation, we sometimes identify a tree by its root node (the nodes and
edges accessible from this root node form the set of nodes and set of edges associated
with the tree), allowing us to speak of collections of nodes. Formally, a collection C is
defined as follows: C = [n1, . . . , n|C|], where |C| denotes the number of nodes in the
collection C. The nodes ni, i = 1, ..., |C|, could be a leaf node or an internal node. Note
that a collection is in essence an array type of structure, hence order of the nodes is
technically present. However, as we are dealing with JSON data, this order can be
ignored in contexts where order is unnecessary.

4.2 JAL: a JSON Algebra

As we are dealing with schema-less, heterogeneous data, there are several requirements
which must be in place to be able to process such data: basic operators should be robust
to variations in data types and recursion should be present to deal with arbitrary
nesting in the JSON objects. Here we are inspired by [5], whose XML algebra (XAL)
addressed these same concerns in the context of XML query optimization.
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We distinguish 3 types of operators: extraction, meta, and construction operators.
Extraction operators cover a set of operators that can retrieve specific information
from a node. Meta-operators deal with controlling the evaluation of the operators.
Construction operators are responsible for the creation of new nodes, edges, or even
documents. Important to note is that operators can either be unary or binary. As
binary operators allow for the comparison of two nodes, node equality needs to be
defined. Two leaf nodes are considered equal if and only if their node value is equal,
with leaf nodes not possessing a unique identifier. Two internal nodes, on the other
hand, are considered equal if they have the same identifier. The binary operators are
defined similarly as to those seen in relational algebra. For optimization purposes,
all binary operators are required to have multiset variants such that commutativity
(a× b = b× a) can be used, where order is not important. These binary operators are
not set operators, but multiset operators, as their operands are unordered collections
where duplicates are allowed. We may thus choose to ignore the ordering present in
the JSON data model of Section 4.1 for the sake of improved query optimization.

We define a general form for both unary as well as binary operators. They are
given as follows:

Unary operator general form: o[f ](x : expression)

Binary operator general form: (x : expression) o[f ] (y : expression),

The (x : expression), and similar (y : expression), components retrieve each node (x
or y) following from a collection characterized by an expression, hence they form the
input for the operator. An expression can be an entire collection or a query involving
an arbitrary composition of operators. This is possible due to the closedness property
of the operators, i.e., the input of an operator is a collection (or set of collections)
and the output is as well. The o[f ] component computes (based on the semantics
of o) for each node the partial result of applying f and concatenates the obtained
results to each other, hence it follows that these general forms are another way of
denoting a collection. The function f operates on nodes. Note that f is optional in
case o operators act directly on x, y. As mentioned in [5], this notation is similar to list
comprehensions seen in functional programming and monads seen in mathematics. A
list comprehension is given in the general form [37]:

[< expression > | < qualifier >; . . . ;< qualifier >]

where the output is an array. The expression defines the characterizing properties for
the output, or put differently, it transforms the data into the desired output, e.g., if
that is a Cartesian product of two collections, an expression will take on the form (x, y).
The x and y follow from the qualifiers, more specifically from the generator type of
qualifier. The other type of qualifier is a filter that puts additional conditions on
the data from the generator (e.g., only keep the even values from the generator). A
monad is a triplet of functions over a category (which is comparable with a collection)
defined generally as [38]:

(M,η, µ)
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where M is similar to XAL’s f function (which comes down to being a map operator),
η defines how the partial result is returned, and µ can be seen as the aggregator of
the partial results. These similarities allow us to use equivalent expressions proposed
for both concepts.

Our operators are defined as follows, where each example is based on the running
example in this paper, hence a collection C with one JSON tree like the one given in
Figure 2:
A: Extraction operators

1. Projection
The projection operator is used to reduce a collection to another collection of
specific data. The operator takes as input a collection of nodes , returning as output
a collection of nodes with edges that are annotated with the given label(s) and refer
to the original targets.

The general form of the projection operator is given by:

π[label](x : expression)

where [label] is an array composed of one or more labels.
Example:
If we want to extract all nodes linked solely to edges with label id from the collection
C, we can employ: π[id](x : C). This operator will return a new collection consisting
of nodes which have edges labelled id and their original targets.

2. Selection
The selection operator reduces a collection to a subcollection of itself. However,
instead of selecting data based on edge labels like the projection operator, a selec-
tion operator uses a selection condition c and returns only the data that fulfills said
condition. The general form of the selection operator is defined as:

σc(x : expression)

A condition c can be formulated as a statement starting with a label, followed by
a comparison operator p and a value, where p ∈ {=, ̸=, >,≥, <,≤}. To formulate
a more complex condition, one or more logic operators l can be used, l ∈ {∧,∨, !}.
We limit ourselves to these operators and leave the inclusion of a more complete
set of operators (e.g., arithmetic operators) to future research.
Example:
If we want to extract all nodes that have an attribute id with the value 123456, we
may utilize: σid=123456(x : C).

3. Unorder
If a collection is sorted and it is desired to transform the collection into an unordered
one, the unorder operator can be utilized. After applying the unorder operator, a
collection is randomly ordered. The general form of the unorder operator is defined
as:

χ(x : expression)
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Example:
If we are dealing with an input collection C = [n1, n2, n3], a potential output col-
lection resulting from use of the unorder operator may appear as: χ(x : C) =
[n2, n1, n3]. While the output collection still has an ordering present, any meaning
behind said ordering is lost and the collection may now be treated as unordered.

4. Distinct
As described in Section 4.1, a collection has an array structure allowing for
the presence of duplicate nodes within a single collection. The distinct operator
removes such duplicates while maintaining the input order, preserving the first
instance of any duplicate nodes and discarding all subsequent instances. Distinc-
tions are made between nodes in the input collection on the basis of a unique
identifying value found by following the top-level edge indicated by a single pre-
specified label. The general form of the distinct operator is defined as:

δlabel(x : expression)

Example:
If we are dealing with an input collection, C = [n1, n2, n1], the output collection
following from the distinct operator will be: δid(x : C) = [n1, n2]. The unique
identifying attribute in this case is id, which in our running example refers to a
student number.

5. Sort
The sort operator orders a collection based on some value expression. The general
form of the sort operator is:

Σvalue expression(x)(x : expression)

where the value expression(x) can be defined as any function operating over some
node x and returning a value. If the sole input of this function is simply a set of
leaf nodes, the collection will be sorted according to their values without needing
to specify a value expression(x). If the same value is encountered more than once,
the nodes are ordered according to their relative order in the input collection (the
system order is used for unordered collections).
Example:
The output for the sort operator Σπ[last](x)(x : C) orders all nodes alphabetically
based on the child node value targeted by the edge with label last, hence it orders
all nodes based on the last name of a student (we assume the input collection has
nodes with the label last).

6. Join
A join operator combines data that meet a specific condition c from two collections
into a single collection. The join operator is defined as follows:

(x : expression) ▷◁c (y : expression)

For each node of the first collection and each node of the second collection, selected
by way of an external loop through the first collection and internal loop through the
second collection, a new joined node is created and added to the output collection.
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This is done by first creating a new root node, to which all the edges of the node
from the first collection are added, before adding the edges of the node from the
second collection. Once all joined nodes have been created from all pairs of nodes
from the input collections, the condition c is then applied on the resulting collection
in the same manner as in the selection operator. Should the input collections be
unordered, the multiset variant of this operator is applied with a resulting output
collection that is similarly unordered. If, however, the input collections are ordered,
the output will be similarly ordered, following the order of the first input collection.
Example:
Suppose we have the collection of students C1 (the running example) and a new
collection of average grades C2. The latter collection contains a node for each student
containing their average grades and their id. A join of these collections, conditioned
on the id attribute, will look like: (x : C1) ▷◁π[id](x:C1)=π[id](y:C2) (y : C2).

7. Cartesian Product
A Cartesian product is the cross-product of all possible node pairs based on two
input collections. It is a special case of the join operator, where the join condition
is always true. The Cartesian product operator is defined as follows:

(x : expression)× (y : expression)

8. Union
A union operator merges data from two collections into a single collection. The
data does not have to meet a specific condition like we have seen for the join
operator. The inputs for the union operator are two collections, with as output a
single collection containing all nodes (and edges) from both collections. The general
form of a union operator is defined as follows:

(x : expression) ∪ (y : expression)

As with the join (and by extension Cartesian product) operator, should the union
operator be applied to unordered input collections, a multiset variant is used which
results in an unordered output. Should the inputs be ordered, the output collection
is ordered as the first input collection followed by the second input collection,
maintaining the order within each.
Example:
Suppose we have two collections C1 and C2, C1 = [n1, n2, n3] and C2 = [n3, n4, n5].
The union operator (x : C1) ∪ (y : C2) will then result in [n1, n2, n3, n3, n4, n5].

9. Intersection
An intersection operator finds the common nodes between two collections. The
input for this operator are two collections, returning a single collection as output.
The general form of an intersection operator is defined as:

(x : expression) ∩ (y : expression)

As with the other binary operators, a multiset variant of the intersection operator is
used when the input collections are unordered, resulting in an unordered output. In
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the case of ordered input collections, the output collection maintains the ordering
of the first input collection.
Example:
Suppose we have two collections C1 and C2, C1 = [n1, n2, n3] and C2 = [n3, n4, n5].
The intersection operator (x : C1) ∩ (y : C2) will then result in [n3].

10. Difference
A difference operator returns all nodes that are present in the first collection but are
not present in the second collection. It takes as input two collections and outputs
a subcollection of the first collection. The general form of a difference operator is:

(x : expression)− (y : expression).

The difference operator behaves the same way as the intersection operator with
regard to ordering. Should the input collections be unordered, the output is
unordered; if the input collections are ordered, the output collection follows the
order of the first input collection.
Example:
Suppose we have two collections C1 and C2, C1 = [n1, n2, n3] and C2 = [n3, n4, n5].
The difference operator (x : C1)− (y : C2) will then result in [n1, n2].

B: Meta-operators

1. Map
A map operator applies a specific function f to each tree in a collection. It takes
as input a collection and the function f , where f can be any unary operator, and
returns as output a modified input collection by applying f to each element of the
input collection. The general form of the map operator is given by:

mapf (x : expression)

Example:
mapidentifier(x : C) where C represents the collection of all nodes in the input,
determines the identifiers of all the nodes in the input, i.e., the values referred by
the identifier property.

2. Kleene Star
A Kleene Star operator repeats a specific function an arbitrary number of times on
a collection. It takes as input a collection and some function f . The general form
of the Kleene Star operator is given by:

∗f (x : expression) = x+ f(x) + f(f(x)) + f(f(f(x))) + ...

The recursion can be of arbitrary depth, as termination is reached when an iter-
ation’s output is equal to its input. If it is desired to assure that the operator
terminates after a certain amount of iterations, a pre-defined number q, q ∈ N, can
be passed on to the operator (i.e., ∗f,q(x : expression)).
Example:
Suppose that the collection described in our running example is extended with some
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arbitrary number of trees with a similar structure as the first tree, hence each tree
describes a student profile. Additionally, assume that each tree can contain an edge
labelled parent that points to a node(s) that describes that student’s parent(s) that
also attend or have attended the same school, each of which may themselves have
a parent. The names of the parents can then be retrieved using the Kleene Star
operator as follows: π[name](∗π[parent](x)(x : C).

C: Construction operators

1. Node
The node operator creates a new node, taking as input the value and type of the
node. Note that it is possible to create a node of complex type. If the node to be
created is complex, we use as value the id returned by the new id generator nig(),
which returns a new node id in the current context. The general form of the node
operator is defined as:

node[value,type]()

Example:
Suppose we want to construct a new atomic node. Then node[‘EUR′,atomic]() creates
an atomic node with the value ‘EUR′.

2. Edge
The edge operator creates a new edge. The operator takes as input a a label, parent
node, type, and child node. The general form of the edge operator is:

edge[label,parent,type](child)

Example:
Suppose we have constructed the node from the previous example, and we would
like to add an edge between this node and some parent node n. As the node contains
the name of a school, the label on the edge should be equal to the string ‘school ’.
Hence we construct an edge with label ‘school ’, with parent node n, child node nc,
and that is of type string. Thus this is defined as edge[‘school′,n,string](nc).

3. Copy
Just as in XAL, we permit copying an edge, node, or even an entire tree. The

copy operator depends on the node and edge creation operators presented above.
To further clarify this dependency, we present the following examples:
Copying a node:
Suppose we want to copy the node presented in the example for node creation
and suppose this node is called n. This would then look like node[value(n),type(n)](),
where value() and type() are accessor functions. Hence it is simply the node oper-
ator as seen in the aforementioned example.
Copying an edge:
Suppose we want to copy the edge presented in the example for edge creation
and suppose this edge is called e, with child node n. This will be possible through
the operator: edge[label(e),parent(e),type(e)](nc), where label(), parent(), and type()
are accessor functions.
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4.3 JSON Algebra Equivalent Expressions

In this section, several equivalent expressions for the defined algebraic operators are
presented. The equivalence expressions aim to enable a more efficient execution of
a given expression. The rules are based upon the propositions made in [4]. There,
equivalence rules are defined in a relational context. However, in [5] it is shown that
these rules can be extended into the non-relational domain.

Rule 1: Cascade of σ

σc1∧c2∧···∧cn(C) = σc1(σc2(. . . σcn(C) . . . ))

Rule 2: Commutativity of σ

σc1(σc2(C)) = σc2(σc1(C))

Rule 3: Cascade of π
If labeli−1 is a subset of labeli for i = 2, ...,m, then

π[label1](π[label2](. . . π[labelm](C))) = π[label1](C)

Rule 4: Commuting of σ with π
If the condition c solely requires nodes that are targeted by the labels in label, then

π[label](σc(C)) = σc(π[label](C))

Rule 5: Commuting of σ with ×
If all the labels in the selection condition c are strictly of C1, then

σc(C1 × C2) = σc(C1)× C2

Rule 6: Commuting of ∪, ∩, ▷◁, and ×
If the ordering of collections is ignored, and therefore, multiset usage of binary
operators is allowed, then

C1 ∪ C2 = C2 ∪ C1

C1 ∩ C2 = C2 ∩ C1

C1 ▷◁c C2 = C2 ▷◁c C1

C1 × C2 = C2 × C1
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Rule 7: Commuting of σ with ∪,∩, or −
If all labels in the selection condition c are strictly of C1, then

σc(C1 ∪ C2) = σc(C1) ∪ C2

σc(C1 ∩ C2) = σc(C1) ∩ C2

σc(C1 − C2) = σc(C1)− C2

Rule 8: Commuting of π with ∪

π[label](C1 ∪ C2) = π[label](C1) ∪ π[label](C2)

Rule 9: Selection on a Cartesian product can be written as a conditional join

σc(C1 × C2) = C1 ▷◁c C2

Rule 10: Associativity of ▷◁,∪,∩, and ×

(C1 ▷◁c C2) ▷◁c C3 = C1 ▷◁c (C2 ▷◁c C3)

(C1 ∪ C2) ∪ C3 = C1 ∪ (C2 ∪ C3)

(C1 ∩ C2) ∩ C3 = C1 ∩ (C2 ∩ C3)

(C1 × C2)× C3 = C1 × (C2 × C3)

Rule 11: Empty collection
Any operator over an empty collection returns an empty collection.

Rule 12: Decomposition of π

π[label1,label2,...labeln](C) = π[label1]C ∪ π[label2]C ∪ · · · ∪ π[labeln]C

Rule 13: Commuting of π with ×
If label1 strictly contains labels belonging to C1 and label2 strictly contains labels
belonging to C2, then

π[label1,label2](C1 × C2) = π[label1](C1)× π[label2](C2)
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Rule 14: Commuting of σ with ▷◁
If all labels in the selection condition are strictly of T1, then

σc1(C1 ▷◁c2 C2) = σc1(C1) ▷◁c2 C2

Rule 15: Decomposition of π over ▷◁
If label1 strictly contains labels belonging to T1 and label2 strictly contains labels
belonging to T2, then

π[label1,label2](C1 ▷◁c C2) = π[label1](C1) ▷◁c π[label2](C2)

4.4 JSON Query Optimization Algorithm

Based on the above equivalence expressions, a heuristic optimization algorithm can
be defined to rewrite parts of a query and make the query more efficient from the
point of view of execution. A query can internally be represented by a query tree,
where leaf nodes represent the input data and internal nodes represent the algebraic
operators, hence a query tree is executed bottom-up. This structure allows a heuristic
algorithm to interchange nodes and thus optimize the way a query is executed while
guaranteeing that the query output will be identical to the output without optimiza-
tion. In [4] principles for algebraic manipulation and an optimization algorithm for
relational expressions are proposed. The principles should be interpreted heuristically
as optimality can not be guaranteed. These principles are also recurring in the opti-
mization algorithm proposed in [5]. Both these algorithms, as well as [39, 40], form
the inspiration behind the following optimization algorithm:

Algorithm 1 JAL Query Optimization

INPUT: A JAL Query
OUTPUT: An Optimized JAL Query

1: Remove empty operations using Rule 11.
2: Decompose joins using Rule 9.
3: Separate any selections with conjunctive conditions and move them as far down

into the query tree as possible using Rules 1, 2, 4, 5, 7, and 14.
4: Perform the most restrictive selections (smallest output) as early as possible using

Rules 6 and 10.
5: Decompose projections and move projections as far down the query tree as possible

using Rules 3, 8, 12, 13, and 15.
6: Combine cascades of selections and projections into a single selection, single

projection, or a selection followed by a projection.

The primary heuristic of this algorithm is reducing the size of the intermediate
output as early as possible. Therefore, the order of evaluation should be flexible, which
requires the operators to be commutative. Projections and selections should be moved
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down the query tree as much as possible, thus reducing the number of iterations
further up the tree. Down the tree, the selection and projection operations that are
most restrictive are to be performed first, thus reducing the amount of memory and
storage required to perform a query while still returning the correct query output.
The most restrictive projection is the projection that keeps the fewest edges, hence
resulting in the smallest JSON document. As there is no way of knowing what the
most restrictive selections will be in real-time, we propose the following heuristic rules
for the determination of the restrictivity of a condition, from most restrictive to least
restrictive: Furthermore, if there are several conditions that fall into the same category,

Algorithm 2 JAL Conditions Restrictivity

1: If a condition has the comparison operator = and is only bound to comparisons
over one collection, we consider this condition as most restrictive.

2: If a condition is only bound to comparisons over one collection, and the comparison
is not =, but one of the other operators {≠, >,≥, <,≤}.

3: If a condition makes comparisons over more than one collection, and the compar-
ison is =.

4: If a condition makes comparisons over more than one collection, and the compari-
son operator is not =, but one of the other operators {̸=, >,≥, <,≤}, we consider
this condition to be the least restrictive condition.

shorter conditions take precedence over longer conditions. This means that if, for
example, we have a condition containing a single comparison and a condition composed
of several or statements, all containing the equal comparison operator, the former is
considered more restrictive than the latter. Also of note is that we make use of general
comparison semantics in all instances, evaluating a comparison condition between two
sequences to be true if at least one element of the first sequence satisfies the condition
when compared with at least one element of the second sequence.

4.5 Use Cases

To validate the proposed heuristic optimization algorithm, we execute several different
queries with and without the proposed heuristic. Comparing these queries in terms
of theoretical and physical cost then displays the benefits of optimization compared
to an unoptimized baseline. The theoretical cost denotes the quantitative dimension
created by the query (i.e., how many elements are created through the presence of a
join-type operation), as seen in [5]. The physical cost is expressed as the execution
time needed to execute the query. Each query is formulated in some high-level lan-
guage. In this paper, we solely use the JSONiq query language for the formulations
of queries. The reasoning behind this decision is three-fold. Firstly, JSONiq supports
FLWOR expressions that bear significant similarity with operators used in the alge-
braic context. Secondly, JSONiq’s primary focus is querying, which allows for high
optimizability compared to the other query languages mentioned in Section 2.2. Last,
it is the JSON variant of XQuery, which is the QL used in [5], which inspired our work.
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Lexer Rules

Rule Name Rule (written in RegEx)

ASSIGNMENT
let \$.+(:=)

PROJECTION for \$.+? in .+?(?=for|where|return|for|let|order by)

CONDITION where \$.*?(?=for|return|for|let|order by|where)

RETURN return .+?(?=return)

SORT order by .*?(?=return|for|let|order by)

VARIABLE

Table 5: The grammar used in our lexer for the lexical analysis of JSONiq queries

Starting with a JSONiq query, the query is then translated to its JSON algebraic
counterpart, such that the heuristic optimization algorithm can be applied to this
intermediate form of the query. This is done by a compiler consisting of a lexing and a
parsing component. For the lexer function we adjusted a public domain lexer, while we
built the parser ourselves. For the lexical analysis of the JSONiq queries, we specified
a grammar consisting of 6 rules. These rules are expressed in RegEx notation and
capture the semantics of a JSONiq query that are relevant for the translation to JAL.
These rules are formulated in Table 5, with a further elaboration in Appendix A.

The parser returns a query tree that can be executed and optimized. The processing
of an optimized query can be seen in Figure 4. Each query is run with and without

Query in JSONiq

Query in JSON Algebra

Optimized query

Translate the query into algebraic operators 

Use heuristic optimization algorithm

Query output

Execute the optimized query

Fig. 4: Processing of a query with optimization

optimization in order to compare its theoretical (based on the number of joins) and
physical (based on execution time) costs. We make comparisons based on several
databases that vary in total database size and the number of intermediately linked
keys. We expect that complex queries on large-scaled data will have a significantly
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higher computation time than complex queries on smaller, less extensive datasets.
Queries in such databases should especially benefit from the proposed optimizations.

4.6 JSONiq

As we solely express our queries in JSONiq, we provide the reader in this section with
the need-to-know JSONiq syntax for the understanding of our queries. The complete
JSONiq specification can be found in [6]. Here, we intentionally conflate the tuple
streams produced by FLWOR operations with tree sequences, thus in this context
make use of the JSONiq and XQuery terminology of “variable” as opposed to our use
of “key” in more general JSON contexts.

• How to input datasets?
There are two ways to input JSON data:

1. Internal input: it is possible to create a collection of JSON documents
in JSONiq itself. This is done by either copy-and-pasting an external col-
lection or by simply writing, in an array, each JSON document. Gener-
ally, this will follow the syntax let $collectionName := [{JSONdocument},
{JSONdocument}, {JSONdocument}, ...]. A let binding assigns to a variable
one or more values, in this case, a collection. To indicate the variable name in
such a binding the name should start with $ (note that $ is not part of the actual
variable name). To then assign a value, the variable name should be followed
by := and the concerned value, respectively. In case of the value being a collec-
tion, each JSON document is enclosed in curly brackets { }, where the syntax
for object notation as described in Section 2 holds. All the JSON documents are
comma-separated and enclosed by square brackets [ ], which forms the actual
collection.
Example:
A simple collection named student that contains one JSON document (as seen
in Figure 3) can be created in JSONiq as follows:
let $student := [{"ID": 123456, "name":{"first": "Jane", "last":

"Smith"}, "courses": ["EN", "SP", "MA", "GEO", "PHY", "SC", "CS",

"PE"]}].
2. External input: if data comes from an external source (e.g., locally saved file),

it can be accessed in JSONiq by using the collection() function. The file-name
or path-name of the collection is placed in-between the braces.
Example:
Loading in the pokemon collection from our first database in JSONiq is done
through: let $pokemon := collection("pokemon").

All of our queries start with let $result :=. We assign the output of the query to
the variable result such that we can return the output of the query in a collection by
return [$result]. It is possible in JSONiq to return the result of a query in other
structures than a collection (e.g., a single document). However, due to the closedness
of our JAL operators, we require all queries to return the query result in a collection.
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Within our let-and-return clause, we allow for an arbitrary level of recursion of the fol-
lowing functions: for, where, and order by. Visualization for this syntax is provided
in Figure 5. It can be seen that the query begins with a let statement, followed by an
arbitrary level of recursion of the three aforementioned functions, and ends with two
return statements. The first return describes how each JSON document looks in the
query result, i.e., if it is desired to project only certain keys from the JSON document
this can be requested in this first return. The second and final return statements
collect all the JSON documents from the first return statement and aggregate them
into a collection. This difference will be further clarified in the example at the end of
this section.

let

for

where

order by

return return

Fig. 5: Construction of a JSONiq query suitable for our implementation

• for function
The for function loops over the documents of a collection. In its simplest form, this
looks like for $pokemon in $pokemon[], where $pokemon[] iterates over the col-
lection with name pokemon and $pokemon is a JSON document (an iteration over the
collection). A single for function can iterate over multiple collections, subsequently,
by means of comma separation. For instance, such a for function over the bike-
sharing data (Database 3) is modeled by: for $station in $station[], $status
in $status[]. Similarly, this can also be expressed as subsequent for functions as
expressed by: for $station in $station[] for $status in $status[]. Iterat-
ing over multiple collections is equivalent to a join-type operation in relational
algebra.

• where function
The where function specifies the conditions used for filtering the documents of a
collection. It is equivalent to the selection operation familiar in relational alge-
bra. A where function can consist of one or more conditions using comparison
({=, ! =, >,>=, <,<=}) and logical operators (and, or, not). A condition starts
with the key (or path as seen in Section 2.1) to a value in a JSON document, fol-
lowed by a comparison operator, and ends with either an atomic value or another
key to a value in a JSON document. If the key leads to a value of type array, and
it is desired to check if a certain element is present in that array, JSONiq uses the
jn:members(key) function (equivalent to using key[]) to iterate over all elements
such that comparison is possible.
Example 1:
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This query asks to retrieve all the pokemon that weigh more than 10.0 kg and
are smaller than 1.0 m from the collection pokemon. The where function in
this JSONiq query is expressed as: where $pokemon.weight > ‘‘10.0 kg’’ and

$pokemon.height < ‘‘1.0 m’’.
Example 2:
This query asks to retrieve all the pokemon which have as one of their weaknesses
Fire from the collection pokemon. Note that the ‘weaknesses’ key leads to an array
containing all of the weaknesses of the pokemon. The where function in this JSONiq
query is expressed as: where $pokemon.weaknesses[] = ‘‘Fire’’.

• order by function
The order by function is followed by a key (from a JSON document) and the word
ascending or descending. If it is desired to order a collection on several keys, the
order by function can be extended by key + ascending or descending statements
separated by commas.
Example:
If it is desired to order the pokemon collection by name alphabetically, the order by

function in JSONiq query is expressed as: order by $pokemon.name ascending.

Suppose we have the collections provided in the bike-sharing data from Section 3, and
this query asks to retrieve all the station ids and region ids in ascending order of the
stations that currently have more than 5 bikes available and that have 3 or less dockers
available. The entire query expressed in JSONiq is given by:

let $stations := collection("station")

let $statuses := collection("status")

for $station in $stations,
$status in $statuses

where $station.station id = $status.station id

and $status.num bikes available > 5

and $status.num docks available <= 3

order by $station.region id ascending,

$station.station id ascending

return jn:project($station, ("region id", "station id"))

The first two lines are used to load and assign names to the input collections. In the
next line, the actual query is stated, starting with a nested for function that indicates
that we are dealing with some join-type operation. The for function is followed by a
where function (containing multiple conditions) indicating that we are dealing with
a join operation (follows from the first condition). In relational algebra, this boils
down to a join of the two collections based on the three conditions. From the JSON
documents that meet all the conditions, we solely want to project the region id and
station id in ascending order, and return these documents in a collection. The output
of this query is given by:

[{‘‘station id’’: ‘‘hub 1267’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 299’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 309’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 321’’, ‘‘region id’’: ‘‘region 80’’},
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{‘‘station id’’: ‘‘hub 3228’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 359’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 365’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 3793’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 5418’’, ‘‘region id’’: ‘‘region 80’’},
{‘‘station id’’: ‘‘hub 2456’’, ‘‘region id’’: ‘‘region 81’’},
{‘‘station id’’: ‘‘hub 2457’’, ‘‘region id’’: ‘‘region 81’’},
{‘‘station id’’: ‘‘hub 2459’’, ‘‘region id’’: ‘‘region 81’’},
{‘‘station id’’: ‘‘hub 2460’’, ‘‘region id’’: ‘‘region 81’’},
{‘‘station id’’: ‘‘hub 2529’’, ‘‘region id’’: ‘‘region 81’’}].

Hence, a collection of JSON documents projecting only the desired keys “sta-
tion id” and “region id”.

4.7 Implementation

For the implementation of our proposed algorithm, we used Jupyterlab, hence Python
as our programming language. For the parsing of JSONiq queries, we use Rumble,
a query execution engine for JSON running on top of Apache Spark, on a public
server [41]. All code is processed on a computer with a 2.9 GHz Quad-Core Intel Core
i5 processor and 16 GB 1600 MHz DDR3 memory. Our code and used queries are
available at https://github.com/AnneJasmijnLangerak/JAL.

5 Results

This section describes the results that follow from our implementation. This section
is divided into two parts. In the first part, we describe our use cases and give the
theoretical and physical costs, as defined in Section 4.5, with and without optimization
for each use case. In the second part, we provide an overview of the costs of all queries
and make comparisons.

5.1 Use Cases

This section formulates our use cases. For each use case, we describe what the query
looks like expressed in JSONiq, the translation to JAL displayed in query tree format,
the query tree after applying our heuristic optimization algorithm, as well as the
theoretical and physical costs of executing the query with and without optimization.
This section is divided into five subsections, where each subsection describes two use
cases belonging to one of the five databases that are presented in Section 3 and with
physical costs determined using the code and system described in Section 4.7. We start
with our smallest database in the first subsection, and end with our largest database
in the last subsection.

5.1.1 Pokémon (Database 1)

Use case 1: Retrieve all pokemon names in alphabetical order that weigh 9.5 kg and
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have weaknesses Ground and/or Psychic.
For our first use case, the query expression in JSONiq takes on the following form:

let $pokemons := collection("pokemon")

for $pokemon in $pokemons
where $pokemon.weight = "9.5 kg"

and ($pokemon.weaknesses[] = "Ground"

or $pokemon.weaknesses[] = "Psychic")

order by $pokemon.name ascending

return { "name": $pokemon.name }
Translating this query into JAL results in the query tree displayed in Figure 6a.

The theoretical cost of executing this query is 0, as there are no joins or Cartesian
products present in the query. The physical cost of executing this query is 0.03 seconds.
Optimizing this query results in the query tree in Figure 6b. It can be seen that
the selection is decomposed into two selections. Following our heuristic optimization
algorithm described in Section 4, the condition $pokemon.weight = ‘‘9.5 kg’’ is
executed first as this is the most restrictive condition. The other condition contains
an or statement, hence the first condition takes precedence over the second condition.
Again there is no theoretical cost. The physical cost of executing this optimized query
is 0.01 seconds.

σpokemon.'weight='9.5 kg'
(pokemon.'weaknesses'='Ground' 
pokemon.'weaknesses'='Psychic')

pokemon

pokemon.'name' ascending

π[pokemon.'name']

a Query tree before optimization

σpokemon.'weaknesses'='Ground' 
pokemon.'weaknesses'='Psychic'

σpokemon.'weight'='9.5 kg'

pokemon

 
pokemon.'name' ascending

π[pokemon.'name']

b Query tree after optimization

Fig. 6: Query tree for use case 1 before and after optimization

Use case 2: Retrieve all pokemon ids in ascending order of pokemon that weigh 2.5
kg or more, have height 0.5 m or less and have weaknesses Electric and/or Flying.
For our second use case, the query expression in JSONiq looks as follows:

let $pokemons := collection("pokemon")

for $pokemon in $pokemons
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where $pokemon.weight >= "2.5 kg"

and $pokemon.height <= "0.5 m"

and ($pokemon.weaknesses[] = "Electric"

or $pokemon.weaknesses[] = "Flying")

order by $pokemon.id ascending

return { "id": $pokemon.id }

Translating this query into JAL results in the query tree displayed in Figure 7a.
The theoretical cost of executing this query is 0, as there are no joins or Cartesian
products present in the query. The physical cost of executing this query is 0.04 sec-
onds. Optimizing this query results in the query tree in Figure 6b. It can be seen that
the selection is decomposed into three selections. Following our heuristic optimization
algorithm described in Section 4, the condition $pokemon.
weaknesses[]) = "Electric" or $pokemon.weaknesses[] = "Flying" is executed
first. Although it contains an or operator, it is still the most restrictive condition as
all the comparison operators are equal operations. The other two conditions can be
considered to be in the same category, as they both do not contain the equal operation
and both do not contain the or operator. Hence, there is no way of knowing which
restriction should be performed first. Again there is no theoretical cost. The physical
cost of executing this optimized query is 0.03 seconds.

pokemon.'id' ascending

pokemon

π[pokemon.'id']

σpokemon.'height'<='0.5 m'
pokemon.'weight'>='2.5 kg'

(pokemon.'weaknesses'='Electric' 
pokemon.'weaknesses'='Flying')

a Query tree before optimization

σpokemon.'weaknesses'='Electric' 
pokemon.'weaknesses'='Flying'

σpokemon.'weight'>='2.5 kg'

pokemon

pokemon.'id' ascending 

π[pokemon.'id']

σpokemon.'height'<='0.5 m'

b Query tree after optimization

Fig. 7: Query tree for use case 2 before and after optimization

5.1.2 Monthly Airline Delays by Airport (Database 2)

Use case 3: The retrieval of the airport codes in alphabetical order of all airports that
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experienced more than 200,000 minutes delay in October of 2003.
The query expression in JSONiq of our third case takes on the following form:

let $airportMonths := collection("airportMonth")

for $airportMonth in $airportMonths
where $airportMonth.Statistics."Minutes Delayed".Total >= 200000

and $airportMonth.Time."Month Name" = "October"

and $airportMonth.Time.Year = 2003

order by $airportMonth.Airport.Code ascending

return { "Code": $airportMonth.Airport.Code }
Translating this query into JAL results in the query tree displayed in Figure 8a.

The theoretical cost of executing this query is 0, as there are no joins or Carte-
sian products present in the query. The physical cost of executing this query is 0.4
seconds. Optimizing this query results in the query tree in Figure 8b. It can be
seen that the selection is decomposed into three selections. There are two conditions
that both contain an equal operation and do not contain an or operator. Again,
we can not know in real-time which condition should be performed first. Following
our heuristic optimization algorithm, we do know that the selection with condition
$airportMonth.Statistics."Minutes Delayed".Total >= 200000 should be per-
formed after the other two conditions, as this condition does not contain the equal
operation. Again there is no theoretical cost. The physical cost of executing this
optimized query is 0.3 seconds.

σairportMonth.'Statistics'.'Minutes
Delayed'.'Total'>=200000

airportMonth.'Time'.'Month Name'='October'
airportMonth.'Time'.'Year'=2003

airportMonth

airportMonth.'Airport'.'Code' ascending

π[airportMonth.'Airport'.'Code']

a Query tree before optimization

σairportMonth.'Statistics'.'Minutes
Delayed'.'Total'>=200000

airportMonth

airportMonth.'Airport'.'Code' ascending
 

π[airportMonth.'Airport'.'Code']

σairportMonth.'Time'.'Year'=2003

σairportMonth.'Time'.'Month Name'='October'

b Query tree after optimization

Fig. 8: Query tree for use case 3 before and after optimization

Use case 4: The retrieval of the months and years in ascending order where airport
LAX had more than 20 diverted flights while hosting less than 16,000 flights in that
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month.
The number of diverted flights are counted per month. The query expression in JSONiq
takes on the following form:

let $airportMonths := collection("airportMonth")

for $airportMonth in $airportMonths
where $airportMonth.Airport.Code = "LAX"

and $airportMonth.Statistics.Flights.Total < 16000

and $airportMonth.Statistics.Flights.Diverted > 20

order by $airportMonth.Time.Year ascending,

$airportMonth.Time."Month Name" ascending

return {
"Month Name": $airportMonth.Time."Month Name",

"Year": $airportMonth.Time.Year
}

Translating this query into JAL results in the query tree displayed in Figure 9a.
The theoretical cost of executing this query is 0, as there are no joins or Cartesian
products present in the query. The physical cost of executing this query is 0.4 seconds.
Optimizing this query results in the query tree in Figure 9b. It can be seen that
the selection is decomposed into three selections. Following our heuristic optimization
algorithm described in Section 4, the condition $airportMonth.Airport.Code="LAX"
is executed first. The other two conditions can be considered to be in the same category,
as they both do not contain the equal operation and both do not contain the or

operator. Hence, there is no way of knowing which restriction should be performed
first. Again there is no theoretical cost. The physical cost of executing this optimized
query is 0.3 seconds.

σairportMonth.'Airport'.'Code'='LAX'
airportMonth.'Statistics'.'Flights'.'Total'<16000
airportMonth.'Statistics'.'Flights'.'Diverted'>20

airportMonth.'Time'.'Year' ascending, 
airportMonth.'Time'.'Month Name' ascending

airportMonth

π['airportMonth.'Time'.'Month Name', 'airportMonth.'Time'.'Year']

a Query tree before optimization

airportMonth.'Time'.'Year' ascending, 
airportMonth.'Time'.'Month Name' ascending

π['airportMonth.'Time'.'Month Name', 'airportMonth.'Time'.'Year']

 

σairportMonth.'Statistics'.'Flights'.'Diverted'>20  
 

σairportMonth.'Statistics'.'Flights'.'Total'<16000

 

σairportMonth.'Airport'.'Code'='LAX'

 

airportMonth

b Query tree after optimization

Fig. 9: Query tree for use case 4 before and after optimization
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5.1.3 Bike Sharing at Stations (Database 3)

Use case 5: The retrieval of the station ids of all stations in the region with id 80
that have 8 or more bikes available at the station.
The query expression in JSONiq takes on the following form:

let $stations := collection("station")

let $statuses := collection("status")

for $station in $stations, $status in $statuses
where $station.station id = $status.station id

and $status.num bikes available >= 8

and $station.region id = "region 80"

return { "station id": $station."station id" }

Translating this query into JAL results in the query tree displayed in Figure 10a.
The theoretical cost of executing this query can be computed by |station| × |status|,
hence 95× 95 = 9, 025. The theoretical cost of this query tree is thus 9,025 elements.
The physical cost of executing this query is 1.8 seconds. Optimizing this query results
in the query tree in Figure 10b. It can be seen that the selection is decomposed into
three selections. Two of those selections contain a condition that restricts the selection
to a single collection. Hence, they are to be performed before the selection with the
condition $station.station id = $status.station id. As the two conditions both
make a selection over a different collection, precedence of one over the other is not rel-
evant. The collection station after its corresponding selection yields an intermediate
output with a quantitative dimension of 59. The collection status after its correspond-
ing selection yields an intermediate output with a quantitative dimension of 14. The
Cartesian product of these results leaves us with a theoretical cost of 59 × 14 = 826
elements. The physical cost of executing this optimized query is 0.1 seconds.

π[station.'station_id']

σstation.'station_id'=status.'station_id'
status.'num_bikes_available'>=8
station.'region_id'='region_80'

statusstation

a Query tree before optimization

σstation.'station_id'=status.'station_id'

status

σstation.'region_id'='region_80'  
 

station

π[station.'station_id']

σstatus.'num_bikes_available'>=8  
 

b Query tree after optimization

Fig. 10: Query tree for use case 5 before and after optimization
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Use case 6: The retrieval of the station ids and region ids of all stations where the
number of available bikes is larger than number of available dockers except for stations
in the region 80.
The query expression in JSONiq takes on the following form:

let $stations := collection("station")

let $statuses := collection("status")

for $station in $stations, $status in $statuses
where $station.station id = $status.station id

and $status.num bikes available > $status.num docks available

and $station.region id != "region 80"

return jn:project($station, ("station id", "region id"))

Translating this query into JAL results in the query tree displayed in Figure
11a. The theoretical cost of executing this query can be computed by |station| ×
|status|, hence 95 × 95 = 9, 025. The theoretical cost of this query tree is thus
9,025 elements. The physical cost of executing this query is 2.4 seconds. Optimizing
this query results in the query tree in Figure 11b. It can be seen that the selec-
tion operator is decomposed into three selections. The selection with the condition
$station.region id != ‘‘region 80’’ is pushed down further in the tree than the
two other conditions. This is because this condition is restricted to a single collec-
tion, while the other two selections contain a condition involving both collections. The
next selection that is executed is the one with the condition $station.station id

= $status.station id as it contains the equal operation. Last, the selection with
condition $status.num bikes available > $status.num docks available is exe-
cuted, as it does not contain an equal operation and involves two collections. The
collection station after its corresponding selection yields an intermediate output with
a quantitative dimension of 36. The Cartesian product of this result with the collec-
tion status leaves us with a theoretical cost of 36× 95 = 3, 420 elements. The physical
cost of executing this optimized query is 0.6 seconds.

π[station.'station_id', station.'region_id']

σstation.'station_id'=status.'station_id'
status.'num_bikes_available'>status.'num_docks_available'

station.'region_id'!='region_80'

statusstation

a Query tree before optimization

σstation.'region_id'!='region_80'  
 

π[station.'station_id', station.'region_id']

σstatus.'num_bikes_available'>status.'num_docks_available'

status

station

σstation.'station_id'=status.'station_id'

b Query tree after optimization

Fig. 11: Query tree for use case 6 before and after optimization
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5.1.4 Rick and Morty TV-Show (Database 4)

Use case 7: The retrieval of the episode codes where at least one of the characters
from the episode is neither female nor male.
An example of episode code is S01E01, meaning season 1 episode 1. The query
expression in JSONiq takes on the following form:

let $episodes := collection("episode")

let $characters := collection("character")

for $episode in $episodes
for $character in $characters
where $episode.characters.url = $character.url
where $character.gender != "Male"

and $character.gender != "Female"

return { "episode": $episode.episode }

Note that if an episode has more than one character that is neither male nor
female, the episode will occur more than once in the output collection. One can remove
these duplicates by using the distinct operator presented in Section 4. Translating
this query into JAL results in the query tree displayed in Figure 12a. The theoret-
ical cost of executing this query can be computed by |episode| × |character|, hence
41 × 671 = 27, 511. The theoretical cost of this query tree is thus 27,511 elements.
The physical cost of executing this query is 6.1 seconds. Optimizing this query results
in the query tree in Figure 12b. It can be seen that the selection operator is decom-
posed into three selections. Two of those selections involve a single collection (namely
character) and both of their conditions do not contain or operators or equal opera-
tions. Hence, we do not know in real-time which selection should be performed first.
What does follow from our optimization algorithm is that the selection with condition
$episode.characters.url = $character.url should be executed after the other
two, as it involves two collections. The collection character after the two single selec-
tions yields an intermediate output with a quantitative dimension of 61. The Cartesian
product of this intermediate result with the collection episode costs 61× 41 = 2, 501.
Hence, the theoretical cost of the optimized query is 2,501 elements. The physical cost
of executing this optimized query is 0.5 seconds.
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σepisode.'characters'=characters.'url'
character.'gender'!='Male'
character.'gender'!='Female'

episode

π[episode.'episode']

character

a Query tree before optimization

σcharacter.'gender'!='Female'

π[episode.'episode']

episode

character

σepisode.'characters'=character.'url'

σcharacter.'gender'!='Male'

b Query tree after optimization

Fig. 12: Query tree for use case 7 before and after optimization

Use case 8: The retrieval of the episode code, character name, and location of the
episodes where at least one of the characters from that episode is human and the char-
acter’s current status is dead.
The query expressed in JSONiq takes on the following form:

let $episodes := collection("episode")

let $characters := collection("character")

let $locations := collection("location")

for $episode in $episodes, $character in $characters
where $episode.characters = $character.url
for $location in $locations
where $character.location.name = $location.name
where $character.species = "Human"

and $character.status = "Dead"

return {
"name": $character.name,
"episode": $episode.episode,
"location": $location.name

}
Again, if such a character occurs in more than one episode, or an episode contains

more than one of such characters, both will occur more than once in the output. One
can remove these duplicates by using the distinct operator presented in Section 4.
Translating this query into JAL results in the query tree displayed in Figure 13a. The
theoretical cost of executing this query can be computed by |episode| × |character| ×
|location|, hence 41 × 671 × 108 = 2, 971, 188. The theoretical cost of this query is
thus 2, 971, 188 elements. The physical cost of executing this query is 3, 516.1 seconds
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(about 59 minutes). Optimizing this query results in the query tree displayed in Figure
13b. It can be seen that the selection operator is decomposed into four selections. Two
of which solely involve the character collection and both conditions strictly contain the
equal operation. There is no way of knowing in real-time which of these two selections
should be performed first. The remaining two selections can both be placed within the
same category: both involve two collections, both involve the equal operations, and
both do not contain any or operators. Again, we do not know which selection will
result in the smallest (intermediate) output and thus we do not know which of the two
selections should be executed first. The two selections over the collection character
result in an intermediate output of size 80. The Cartesian product of this result with
the collection episode yields 80× 41 = 3, 280 elements. The selection over this output
gives us an intermediate result with size 92. The Cartesian product of this result with
the collection location results in 92 × 108 = 9, 936 elements. Hence, the theoretical
cost of this optimized query is 3, 280 + 9, 936 = 13, 216 elements. The physical cost of
executing this query is 2.1 seconds.

σepisode.'characters'=characters.'url'
character.location.'name'=location.'name'

character.'species'='Human'
character.'status'='Dead'

episode

location

π[character.'name', episode.'episode', location.'name']

character

a Query tree before optimization

σcharacter.'species'='Human'

σcharacter.'status'='Dead'

σepisode.'characters'=character.'url'

σepisodes.'characters'=characters.'url' 
characters.'gender'!='Male' 
characters.'gender'!='Female'

Episodes Characters

π[character.'name', episode.'episode', location.'name']

σcharacter.location.'name'=location.'name'

location

episode

character

π[character.'name', episode.'episode', location.'name']

b Query tree after optimization

Fig. 13: Query tree for use case 8 before and after optimization

5.1.5 Nobel Prizes and Winners (Database 5)

Use case 9: The retrieval of the year the Nobel Prize was received, and the first name
and surname of all Dutch, German, and Belgian Nobel Prize Laureates that won a
Nobel Prize in the category economics, sorting the result in descending order by year
and ascending order by surname.
The query expressed in JSONiq takes on the following form:

40



let $prizes := collection("prize")

let $laureates := collection("laureate")

for $prize in $prizes
for $laureate in $laureates
where $prize.laureates.id = $laureate.id
and $prize.category = "economics"

where $laureate.bornCountryCode = ("NL", "DE", "BE")

order by $prize.year descending,

$laureate.surname ascending

return {
"year": $prize.year,
"firstname": $laureate.firstname,
"surname": $laureate.surname

}

Translating this query into JAL results in the query tree shown in Figure 14a. The
theoretical cost of executing this query can be computed as |prize|× |laureate|, hence
652 × 955 = 622, 660. The theoretical cost of this query is thus 622, 660 elements.
The physical cost of executing this query is 522.3 seconds. Optimizing this query tree
results in the query tree provided in Figure 14b. It can be seen that the selection
operator is decomposed into three selections. There are two selections with a condition
involving a single collection. Both selections involve a different collection, hence their
relative order of execution is not relevant. The condition in the third selection involves
two collections, hence this selection should be executed after the other two selections.
The theoretical cost of this optimized query is computed as follows: the collection
prize contains 52 nodes after the selection. Similarly, the collection laureate contains
109 nodes after the selection is performed. The Cartesian product of both results in
52 × 109 = 5, 668 elements. Hence, the theoretical cost of executing the optimized
query is 5, 668. The physical cost is 1.0 seconds.

σprize.laureates.'id'=laureate.'id'
prize.'category'='economics'

(laureate.'bornCountryCode'='NL'
laureate.'bornCountryCode'='DE'
laureate.'bornCountryCode'='BE')

prize

prize.'year' descending, laureate.'surname' ascending

laureate

π[prize.'year', laureate.'firstname', laureate.'surname']

a Query tree before optimization

σprize.laureates.'id'=laureate.'id'

prize

 prize.'year' descending, laureate.'surname' ascending

laureate

π[prize.'year', laureate.'firstname', laureate.'surname']

σlaureate.'bornCountryCode'='NL'
laureate.'bornCountryCode'='DE'
laureate.'bornCountryCode'='BE'

σprize.'category'='economics'

b Query tree after optimization

Fig. 14: Query tree for use case 9 before and after optimization
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Use case 10: The retrieval of the first name and surname of all Dutch Nobel Prize
Laureates.
For our final use case, the query expressed in JSONiq takes on the following form:

let $prizes := collection("prize")

let $laureates := collection("laureate")

let $countries := collection("country")

for $prize in $prizes
for $laureate in $laureates
where $prize.laureates.id = $laureate.id
for $country in $countries
where $laureate.bornCountryCode = $country.code
and $country.name = "The Netherlands"

return jn:project($laureate, ("firstname", "surname"))

Translating this query into JAL results in the query tree displayed in Figure 15a.
The theoretical cost of executing this query can be computed by |prize|× |laureate|×
|country|, hence 652× 955× 135 = 84, 059, 100. The theoretical cost of this query tree
is thus 84, 059, 100 elements. We cannot compute the physical cost of this query due
to the high running time executing this query requires. After four hours our kernel
shut down, thus leaving us without a physical cost. Optimizing this query tree results
in the query tree provided in Figure 15b.

σprize.laureates.'id'=laureate.'id'
laureate.'bornCountryCode'=country.'code'

country.'name'='the Netherlands'

country

π[laureate.'firstname', laureate.'surname']

laureateprize

a Query tree before optimization

σcRXQWU\.'QaPe'=
'TKe NeWKeUOaQdV'

σOaXUeaWe.'bRUQCRXQWU\CRde'=
cRXQWU\.'cRde'

σSUL]e.OaXUeaWeV.'Ld'=OaXUeaWe.'Ld'

SUL]e

OaXUeaWe

π[OaXUeaWe.'fLUVWQaPe', OaXUeaWe.'VXUQaPe']

cRXQWU\

b Query tree after optimization

Fig. 15: Query tree for use case 10 before and after optimization

It can be seen that the selection operator is decomposed into three selections. There
is one selection with a condition involving a single collection. Therefore, this selection
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is pushed further down the query tree than the other two selections. The conditions
in these two selections can be placed within the same category: both involve two
collections, both contain the equal operation, and both do not contain or operators.
There is no way of knowing in real-time which of the two should take precedence
over the other. The theoretical cost of this optimized tree is computed as follows:
the selection over the collection country yields an output containing a single node.
The Cartesian product with the laureate collection results in 1× 955 = 955 elements.
Performing the next selection over this intermediate output results in a collection
containing 18 nodes. The Cartesian product of this new intermediate output with
the collection prize results in 18 × 652 = 11, 736. Next we have a selection and a
projection of the result. Hence, the theoretical cost of the query after optimization is
955 + 11, 736 = 12, 691 elements. The physical cost of executing the optimized query
is 1.8 seconds.

5.2 Overview

An overview of both the theoretical as well as the physical costs (as determined using
the system details of Section 4.7) for all use cases is given in Table 6. More precisely,
Table 6 shows the theoretical costs, which are determined by the cardinality of the
joins, hence qualitative results. It also shows the physical costs (in seconds), which are
determined by the times resulting from running the queries, hence quantitative results.
Our smallest database (D1 ) covers the data for one collection that consists of 151
JSON documents and our largest database (D5 ) covers data for three collections of
sizes 652, 955, and 135 JSON documents. For all use cases where a join-type operation
was required (use cases 5 to 10), the physical cost as well as the theoretical cost
decreased significantly after optimization was applied. For use cases performing a query
without a join-type operation, only an improvement in physical cost is observed. As
theoretical costs depend on the presence of join-type operations, it follows that there
is no theoretical cost for such queries.

The larger the size(s) (i.e., number of JSON documents) of the collection(s), the
more a significant difference can be observed between the costs of executing the query
with and without optimization. For instance, when comparing use case 5 (dataset 3
(D3) covering two collections both with a size of 95 JSON documents) with use case
9 (dataset 5 (D5)), the difference of physical cost after optimization is substantially
larger. The physical cost of use case 5 decreases from 1.8 seconds to 0.1 seconds,
whereas the physical cost of use case 9 decreases from 522.3 seconds to 1.0 seconds.
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Without Optimization Algorithm With Optimization Algorithm
Theoretical Cost

(# pairs)
Physical Cost

(in s)
Theoretical Cost

(# pairs)
Physical Cost

(in s)

D1
Use case 1 0 0.03 0 0.01
Use case 2 0 0.04 0 0.03

D2
Use case 3 0 0.40 0 0.30
Use case 4 0 0.40 0 0.30

D3
Use case 5 9,025 1.80 826 0.10
Use case 6 9,025 2.40 3,420 0.60

D4
Use case 7 27,511 6.10 2,501 0.50
Use case 8 2,971,188 3,516.10 13,216 2.10

D5
Use case 9 622,660 522.30 5,668 1.00
Use case 10 84,059,100 - 12,691 1.80

Table 6: The theoretical and physical costs of executing all the 10 use cases with and
without optimization

6 Conclusion

While JSON has risen in usage compared to other data formats in large database appli-
cations, JSON querying approaches have not enjoyed the same algebraic optimization
that has been developed for queries of other data formats like XML. In this paper we
have defined a tree-based JSON data model, a JSON algebra with algebraic operators,
algebraic operator equivalence rules, as well as a heuristic optimization algorithm for
the purpose of optimizing JSON queries. Through this we have provided an approach
for the logical optimization of JSON queries, extending approaches developed in rela-
tional algebra and XML contexts into a JSON context. We find that JSON queries
can indeed be optimized by employing our heuristic optimization algorithm through
translation into an algebraic form by converting the relevant collection(s) into our pro-
posed JSON Data Model and making use of our algebraic equivalence expressions. In
particular, we tested in 10 use cases based on 5 databases with varying structures and
levels of query cost. There are considerable reductions in both theoretical and phys-
ical costs in execution when queries are optimized compared to when they are not.
The reduction in cost becomes more considerable when the original query is costlier.
Even in cases where there are no theoretical costs associated with either optimized
or unoptimized queries, our approach still shows a reduction in the physical cost of
execution.

We have several suggestions for directions of future research. One may have noticed
that our use cases focus solely on projections, selections, join-type operations, and
sorting. Our reasoning for this is that we expect queries containing such operations to
best showcase our algorithm’s impact on the execution costs of JSON queries. How-
ever, in the implementation of our algorithm, we did create and test all other unary
and binary operators we defined in Section 4.2. There may be value in the investiga-
tion of the efficiency gain (or lack thereof) that can be attained by our algorithm for
queries using (a combination) of those operators. Furthermore, improvements can be
made regarding our implementation, such as the addition of a proper parser for JSON
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data, as we now assume that the (input) data has a valid structure without perform-
ing validation. Additionally, extending the JSONiq engine with the implementation
of our algorithm, for the comparison of query execution with and without our opti-
mization algorithm, may be a relevant aim for the continuation of this work. Also of
interest for future work are the consequences of extending our approach into a dis-
tributed context and analysis of the feasibility of such an implementation compared
to single-machine environments. Further research into the combination of these logical
optimization approaches with some form of physical optimization may be warranted,
with possible additional efficiency gains available when both are used in tandem. Last,
we would like to extend our approach currently focusing on syntactic querying to
semantic querying inspired by recent work proposed for semi-structured data [42, 43].
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Appendix A RegEx Grammar

To elaborate further on the RegEx lexer grammar defined in Table 5, JSONiq queries
follow a certain structure. Because of this structure, we can identify the tasks the
query consists of. This is done by the lexer rules:

• The first rule VARIABLE ASSIGNMENT is required to extract the part in which
JSONiq stores its query result. This always starts with the word let followed by a
dollar sign $ (to announce a name) and some characters representing the name of
the result, and ending with :=. Note that let, $, and := are thus JSONiq syntax.
This rule is written in RegEx. Therefore, a \ must added before $ to be able to
capture this symbol. As the name of the query result can be of irregular length,
RegEx uses .+ to allow for one or more characters of input in that position. The
variable assignment is complete once := has been found. RegEx can recognize this
as the end of this rule, by placing ( ) around :=.

• The second rule PROJECTION is used for retrieving the (sub)set of columns used
for the output. JSONiq uses for to select one or more columns. As columns have
names, for is followed by a $. RegEx then captures the name using .+, allowing for
the name to contain one or more characters. Following JSONiq syntax, the column
name belongs to some table. This can be recognized by the word in, followed by
the name of the table. Again, RegEx matches this name by using .+. The regular
expression ?(?=for—where—return—for—let—order by) is a positive looka-
head assertion. It specifies a condition that can be optionally true for a match to
occur (this can be recognized by ? before the parenthesis), but it doesn’t include
the matched keyword in the overall match.

• The third rule CONDITION is used for filtering. Filtering in JSONiq is done by
using where, followed by the column name and the actual filtering condition. The
column name starts with a $, following JSONiq syntax. To capture the actual filter
condition, RegEx uses .*, which means zero or more characters. The regular expres-
sion (?=for—return—let—order by—where) is a positive lookahead assertion.
It specifies a condition that can be optionally true for a match to occur (this can be
recognized by ? before the parenthesis), but it doesn’t include the matched keyword
in the overall match.

• The fourth rule RETURN covers the formatting of the output of query. return in
JSONiq indicates what the format of the result will look like. It is followed by one
or more characters defining the format. RegEx captures this by using .+. This rule
closes with the positive lookahead assertion ?(?=return). It specifies that the rule
can optionally end with another return. If such a match is found, it is not included
in the overall match.

• The fifth rule SORT can be used to extract the ordering of the output of the query.
JSONiq allows for the sorting of output of the query by using order by, followed
optionally by the name of the column on which the output should be ordered. RegEx
captures this by means of .*, which means zero or more characters. The regular
expression (?=return—for—let—order by) is a positive lookahead assertion. It

49



specifies a condition that can be optionally true for a match to occur (this can be
recognized by ? before the parenthesis), but it doesn’t include the matched keyword
in the overall match.
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