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Abstract. State-of-the-art machine learning models have continuously
improved over recent years, leading to increasingly high-performing mod-
els. Simultaneously, it has become increasingly difficult to infer insights
in model behavior, as models continuously increase in complexity. This
paper aims to increase the explainability of the HAABSA++ model, a
state-of-the-art machine learning algorithm that combines a domain sen-
timent ontology with a deep learning model using contextualized word
embeddings, designed for aspect-based sentiment analysis. The model is
trained and evaluated on the SemEval 2016 restaurant reviews dataset.
For model explainability we propose two SHAP approaches. The first
approach, SHAP model 1, applies SHAP after BERT word embeddings
are generated, measuring the contribution of each embedded word to the
sentiment prediction. The latter approach, SHAP model 2, applies SHAP
before BERT word embeddings are generated. SHAP model 2 appears
to be better at finding words that individually contribute most towards
a sentiment prediction since it generates new word embeddings for each
subset of the original sentence.

Keywords: SHAP · HAABSA++ · Aspect-Based Sentiment Analysis ·
Explainability

1 Introduction

The mass integration of the Social Web into consumer markets has drastically
altered interactions between businesses and consumers; specifically reviews have
had a significant impact as a form of customer value co-creation [20]. Conse-
quently, academic research into reviews has seen a huge increase in coverage,
with sentiment analysis being one of the main fields of interest. Sentiment anal-
ysis makes it possible to automate the evaluation of review sentiments, enabling
managers and researchers to derive insights on a large scale, which has had huge
implications for various sectors [10].

The simplest application of sentiment analysis is the sentiment classifica-
tion of sentences, paragraphs, or documents. This process, however, is unable
to capture all the complexities of human language, as the meaning of language



is dynamic and influenced by factors such as context and presumptions. One
way of dealing with context is Aspect-Based Sentiment Analysis (ABSA); here,
the relevant entity or related aspect is identified and then classified according to
sentiment [17]. Several varieties of ABSA models have emerged over the years,
resulting in impressive performances.

As high-performing models often combine multiple techniques to increase ac-
curacy, the transparency of such models decreases, resulting in black box models.
The black box nature of a model is problematic, as it reduces the comprehension
of why a model did, does, and will do something. Even if correct, the model pre-
diction could be based on the wrong reasoning or predictors, potentially leading
to decisions based on compliance, rather than truthful insights.

This research aims to increase the explainability of ABSA models – particu-
larly to aid managers and researchers in comprehending model behavior – with
the goal of creating trust and insights about how decisions are made. Aiding
this purpose is the state-of-the-art ABSA model that has been developed for the
SemEval 2015 and 2016 tasks and associated data, namely the Hybrid Approach
for ABSA with BERT embeddings and hierarchical attention (HAABSA++)
model proposed by [22].

The hybrid model uses an ontology-driven approach to predict sentiment,
while the deep learning acts as a backup for when the ontology-driven approach
proves inconclusive. The HAABSA++ model extends the LCR-Rot-hop model
by adding a hierarchical attention layer to the deep learning algorithm, improv-
ing the model’s flexibility. HAABSA++ also replaces the non-contextual word
embeddings in HAABSA with BERT [5] word embeddings, which are able to
take into account the context around each word. As the deep learning model
benefits from multiple iterations of extensions, it has increased in complexity,
further decreasing the explainability of the model’s behavior.

Since the deep learning algorithms in the HAABSA++ model have reached
a highly developed stage, it is of crucial importance that tools for interpretation
stay up to par to be able to understand model behavior. Therefore, this pa-
per focuses on the following research question: To what extent can we correctly
interpret and explain the behavior of the HAABSA++ model?

To obtain model interpretability and explainability, post-hoc model-agnostic
interpretation methods are used. Model-agnostic interpretation methods can be
divided into global and local methods. Local interpretation methods concentrate
on explanations of single instances, while global interpretation methods describe
overall model behavior. Therefore, local interpretation methods are suitable for
exploring the reason behind certain unexpected predictions, which gives insights
into why a model predicts this outcome. On the other hand, global explanation
methods are useful in summarizing the reasons for overall behavior, which makes
it easier to identify trends or divergence points.

To explain HAABSA++ model behavior, a SHapley Additive exPlanations
(SHAP) approach is proposed. SHAP uses the concept of Shapley values to cap-
ture the marginal contribution of features on the model prediction. In addition
to local explanation, SHAP has the added benefit of aggregating to a global



interpretation representation, giving a clear depiction of which words contribute
the most to the sentiment prediction on a global level.

Various researchers have attempted to interpret the HAABSA++ model
and its predecessors. [14] analyzes local model predictions by focusing on sur-
rogate models, as the authors create two sampling methods that feed an in-
terpretability algorithm based on Local Interpretable Model-Agnostic Explana-
tions (LIME). Furthermore, [6] attempts to increase global interpretation of the
LCR-Rot-hop++ model using diagnostic classifiers, testing various hypotheses
to break down whether certain layers of the model encode specific types of in-
formation. This paper builds upon previous research in two ways. First, the
research introduces new interpretation methods that do not use surrogate mod-
els to analyze local model predictions. Second, in addition to local interpre-
tation methods, this research builds a basis for direct global interpretation of
the HAABSA++ model. The code of our proposed solutions is made publicly
available at https://github.com/kzyeung/SHAPHaabsa_plus_plus.

This paper is structured as follows. Section 2 discusses previous work re-
garding ABSA and model-agnostic methods. Then, Sect. 3 illustrates the data,
followed by, in Sect. 4, an overview of the HAABSA++ model and the proposed
SHAP approaches. Next, Sect. 5 presents the obtained results. Last, Sect. 6 gives
our conclusion and suggestions for future research.

2 Related Work

This section describes prior academic literature relevant to the topics in this
paper. Section 2.1 gives an overview of the background and development of the
state-of-the-art HAABSA++ model. Next, Sect. 2.2 goes into existing work on
the relevance of understanding complex machine learning models.

2.1 Hybrid Approach to Aspect-Based Sentiment Analysis

As previously mentioned, the state-of-the-art model of interest offers a hybrid ap-
proach to ABSA. First, an ontology-based approach is considered to predict the
sentiment value, as detailed in [23]. When the ontology-based approach proves
inconclusive, the model makes use of a backup deep learning model, namely LCR-
Rot-hop. HAABSA++ [22] extends the model by replacing the non-contextual
GloVe word embeddings with deep contextual word embeddings using BERT [5].
The LCR-Rot-hop model is also updated by incorporating hierarchical attention,
offering a high-level representation of the input sentence.

2.2 Understanding Black Box Models

Although an increase in complexity does not necessarily relate to an increase in
accuracy [16], complex tasks where the sole purpose lies in maximizing the accu-
racy often do result in complex models with a lack of transparency, also known
as black box models [11]. Black box models have been problematic in high-stakes



decision-making, as a lack of understanding can lead to undesired outcomes [16].
Although [16] states that black box models can still be used for the knowledge
discovery process – which fits the scope of the utility of the HAABSA++ model
– the mentioned problems are still relevant. A lack of understanding can lead to
unjustified confidence in a model’s external validity, complex decision pathways
prone to human error, and a general lack of trust in the model’s predictions.
Hence, interpretability is often extremely important for a model to be usable,
sometimes to the point that an increase in interpretability justifies a decrease
in accuracy [15]. Model-agnostic interpretation methods aid in comprehending
a model’s behavior, often in exchange for some of its accuracy.

[8], however, argues that interpretability alone is insufficient; explainability
is crucial for humans to gain trust in black box models. Although the differ-
ences between interpretability and explainability are often obscure, there are
important reasons to distinguish between the two. The difference mainly lies in
understanding model behavior, rather than just correctly predicting model be-
havior; i.e., interpretability refers to the ability to predict model outcomes, while
explainability refers to understanding the relationship between output and in-
put. Explainability ensures interpretability, but the opposite is not always the
case. Consequently, this research intends to explore not only model interpre-
tation but also model explainability. Therefore, global model-agnostic methods
are explored on top of local model-agnostic methods. While local model-agnostic
methods only focus on the vicinity of the instance one wishes to explain [15],
global model-agnostic methods aim to understand the model in its entirety,
enabling the possibility to summarize model behavior. Local interpretability is
more readily applicable than global interpretability, as it only needs to stay faith-
ful to the vicinity of the considered instance; thus, with global interpretability,
predictive power is often exchanged for a more helpful overall explanation, in-
stead of many different explanations for every possible instance. For this reason,
both local and global model-agnostic methods are considered in this research.

The main method of our interest is based on Shapley values, which originate
from game theory [19]. Shapley values calculate the marginal contribution of
each feature to determine a fair payout. Various researchers have successfully
adopted Shapley values in explaining machine learning models [4, 7, 12, 21]. Al-
though precisely computing Shapley values is resource-intensive, many advances
have been made in efficiently approximating Shapley values [1, 2]. Therefore,
Shapley values present a viable method to calculate the contribution of each
word to the sentiment. Additionally, [12] proposes SHAP; inspired by LIME,
SHAP offers a united approach to explain any machine learning model’s output
using Shapley values. Furthermore, SHAP offers the benefit of being able to give
global interpretability by aggregating all Shapley values.

3 Data

As our research builds upon the HAABSA++ model proposed in [22], the data
and processing thereof are identical. Specifically, we utilize the SemEval 2016



contest data of restaurant reviews for aspect-based sentiment classification. The
SemEval 2015 data, which was also used in [22], is a subset of the SemEval 2016
data. Therefore, we do not consider it.

The original data is in the .xml format and includes 350 and 90 reviews in the
training and test sets, respectively. Reviews and sentences within reviews can
contain multiple aspects, which totals to 2507 and 859 instances of sentiment-
labeled aspects for the training and test sets, respectively. Each aspect is labeled
a sentiment, namely ‘positive’, ‘neutral’, or ‘negative’. A target word, if present,
marks the word that indicates the aspect. A sentence can have multiple aspect
categories, although not every aspect category has a target word. A target word
is set to ‘NULL’ if this is the case.

Table 1. Distribution of sentiment classifications in the SemEval 2016 restaurant re-
views data.

Positive Negative Neutral Total

N % N % N % N %

Train data 1319 70.2 488 26.0 72 3.8 1880 100
Test data 483 74.3 135 20.8 32 4.9 650 100

To be able to conform to the HAABSA++ model requirements, the SemEval
2016 dataset is modified. First, all sentiment classifications without a target word
are removed, as LCR-Rot-hop++ requires a target word to be able to separate
the sentence in a left-center-right part. As a result, the dataset is reduced to 1880
and 650 instances for the training and test sets, respectively. Table 1 shows the
distribution of each sentiment class for the remaining instances. The majority
class is ‘positive’, representing 70.2% of the training data and 74.3% of the
test data. The data is then processed using the NLTK platform [3]. Using the
WordNet lexical database, the text is tokenized, tagged, and lemmatized [13].

Table 2. Distribution of sentiment classifications where LCR-Rot-hop++ is utilized.

Positive Negative Neutral Total

N % N % N % N %

144 58.1 82 33.0 22 8.9 248 100

As explained in [22], the model first uses an ontology. Only when the ontol-
ogy proves inconclusive, a backup method is used in the form of the LCR-Rot-
hop++ mechanism described in [22]. Since the ontology is transparent in nature,
our research focuses on explaining the backup method which is the black box
component of the model. Out of the 650 sentiment-labeled aspects in the test



data, 402 are predicted with the ontology. The remaining 248 instances are un-
decided by the ontology, which is when the LCR-Rot-hop++ model is utilized.
Table 2 shows the distribution of the sentiment classifications of the remaining
248 instances. Although positive classifications still account for the majority of
the data, it has significantly decreased from 74.3% to 58.1%. This implies that
the ontology is relatively better in predicting positive sentiment in comparison
to neutral or negative sentiment.

4 Methodology

This section details the methods relevant to this research. First, Sect. 4.1 de-
scribes the HAABSA++ model. Although a detailed explanation of the model
is given in [22], we provide a basic explanation needed to understand the funda-
mentals of our research. Next, the workings of the interpretation methods used
to explain the HAABSA++ model are detailed in Sect. 4.2.

4.1 Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSA++, which stands for Hybrid Approach for Aspect-Based Sentiment
Analysis++, is a hybrid model designed to solve aspect-based sentiment classifi-
cation problems using a combination of an ontology and a deep learning model.
The model first attempts to classify the sentiment towards a target using an
ontology. When the ontology proves inconclusive, the model switches over to a
deep learning model called LCR-Rot-hop++ [22].

Ontology. The domain sentiment ontology is designed to find the possible sen-
timent expression of a word depending on the aspect. For instance, the word
‘small’ implies a positive sentiment in the context of ‘price’, but often a nega-
tive sentiment in the context of ‘portions’. The model uses the NLTK platform to
tokenize the text; each word is lemmatized based on the part-of-speech tagging
using the WordNet lexical database within the NLTK platform. The ontology is
manually constructed as explained in [18] using the OntoClean method [9]. Al-
though [18] originally uses a support vector machine model as a backup method,
a revised backup method proposed by [23] and then further improved by [22]
proved to result in higher performance, leading to the final LCR-Rot-hop++
model.

LCR-Rot-hop++. LCR-Rot-hop++ utilizes BERT word embeddings to gen-
erate contextual word representations, as described by [5]. In LCR-Rot-hop++
the BERT tokenization proposed in [5] is used to tokenize the text data. After-
wards, the uncased base version of BERT containing 768 dimensions is used to
generate word embeddings for our data.

LCR-Rot-hop++ then divides the sentence into three parts: left, center, and
right. The target word(s) in the sentence are assigned as the center, while the



remaining parts of the sentence are assigned towards the left or right parts,
depending on where they stand in relation to the target word. If the sentence
starts or ends with the target word, the left or right parts remain blank.

Each of the three parts is translated to their embedding representation de-
fined by BERT. The left, center, and right parts are then fed into separate bidi-
rectional Long Short-Term Memory (bi-LSTM) networks, which produce three
sets of hidden state vectors. Bi-LSTMs combine two LSTMs, processing the
text input in both a forward and backward order, to avoid bias toward words
near the end of their sequence. The hidden state vectors are then fed into a re-
peated two-step rotatory attention mechanism, rotating over a Target2Context
and Context2Target mechanism for the left and right parts sequentially, until
the desired number of iterations has been reached.

To compute the Target2Context vector, an average pooling layer first pro-
duces a vector representation of the target phrase. Second, an attention mech-
anism assigns attention scores to the context words, which are then normal-
ized through a softmax function. The final context vector is computed using
an attention weighted combination of the hidden states. The obtained context
representation vector is used to adjust the target vector representation with a
similar attention mechanism called Context2Target. Again, the computed atten-
tion scores are normalized through a softmax function, and using an attention
weighted combination of the hidden states the final target vector is obtained. The
four obtained vectors (target and context for both left and right sequences) are
combined to calculate attention scores on the sentence level, scaling the context
and target vectors one last time. The second iteration uses the obtained target
vectors to replace the pooling layer in the first step, to reiterate the complete
process for a total of three times. Lastly, the resulting vectors are concatenated
to obtain the final sentence representation, which is fed into a multi-layer per-
ceptron to compute the sentiment prediction vector.

4.2 Interpretation Methods

As the improved performance of the backup method has led to an increase in
complexity, a need has arisen to explain the model in order to better derive
insights from the model predictions. This research utilizes SHAP to understand
the features that contribute to the model predictions.

Shapley Values. Shapley values are a concept originally developed in cooper-
ative game theory [19], and have become more prominent in the field of machine
learning since the introduction of SHAP [12]. The aim is to calculate the exact
contribution of each player so that the value of each player can be distributed
fairly. This concept has been adapted to the field of machine learning by in-
terchanging players with features such that the most important features in a
machine learning model can be identified. The Shapley value evaluates all pos-
sible combinations of features in different coalitions and calculates the output
value of each coalition, which is then used to calculate the marginal contribution
of each feature.



First, we define the original sentence as the text including the context phrase
and target phrase {W, T} ∈ X in the sentence, where W is the combina-
tion of all context words and T is the target phrase. Suppose we have a sen-
tence with N context words, then W is the set of all context words wn: W =
[w1, w2, . . . , wN−1, wN ]. The nature of the LCR-Rot-hop++ model does not al-
low for target T to be removed, because it uses the context words to predict the
sentiment on T . Hence, the features for the SHAP model consist of the context
words wn. Each subset S includes a number of features k between 0 and N (i.e.,
varying between ∅ and the original context W ). The amount of total possible
subsets S is 2N . The power set of W is defined as all possible subsets S of W:

P (W ) = {S |S ⊆ W}.

Using an example of a sentence with N = 4 context words defined as W =
[w1, w2, w3, w4], Table 3 depicts all subsets in P (W ) |S ⊆ W . The sentiment
class probability of each subset is calculated using the LCR-Rot-hop++ model
described in Sect. 4.1. For every subset S we obtain three different p-values:
[p1, p0, p−1] for positive, neutral, and negative sentiment respectively.

Table 3. Example of the power set P (W ) |S ⊆ W, N = 4.

k: 0 1 2 3 4

[∅] [w1] [w1, w2] [w1, w2, w3] [w1, w2, w3, w4]
[w2] [w1, w3] [w1, w2, w4]
[w3] [w1, w4] [w1, w3, w4]
[w4] [w2, w3] [w2, w3, w4]

[w2, w4]
[w3, w4]

To calculate the Shapley value Φn of word wn, (1) is used. Here, p(S) is
defined as the p-value of subset S. Within the summation, this accounts for all
subsets S that do not contain wn, as is denoted by S ⊆ W \ {wn}. p(S ∪ {wn})
is the p-value of the subset where wn is added. Specifically, we calculate the
difference between all subsets including wn, and all subsets excluding wn, to
obtain the marginal p-value of adding wn to each subset. Then, the marginal
value of the subset is divided by

(
N−1
k

)
before being summed together, where k

is the size of S. Thus we obtain Φn, which is the average marginal p-value of wn.

Φwn
=

1

N

∑
S⊆W\{wn}, k=|S|

(p(S ∪ {wn})− p(S))(
N−1
k

) (1)

For instance, if we want to calculate the Shapley value of w1, we calculate
the marginal p-value of adding w1 to each subset S that does not contain w1.
Table 4 shows each subset S and corresponding S ∪ {w1}.



Table 4. All subsets S ⊆ W \ {w1} |N = 4 and corresponding S ∪ {w1}.

k
(
N−1
k

)
S ∪ {w1} S

0 1 [w1] ∅
1 3 [w1, w2] [w2]
1 3 [w1, w3] [w3]
1 3 [w1, w4] [w4]
2 3 [w1, w2, w3] [w2, w3]
2 3 [w1, w2, w4] [w2, w4]
2 3 [w1, w3, w4] [w3, w4]
3 1 [w1, w2, w3, w4] [w2, w3, w4]

SHAP. SHAP is an algorithm introduced by [12] to utilize Shapley values
within the field of machine learning. As Shapley values offer an intuitive way to
interpret the contribution of each feature, SHAP applies the concept of Shapley
values to machine learning models that are difficult to interpret. As explained
before, Shapley values show the average marginal p-value of each word wn. Due
to their nature, they are inherently easy to interpret, as the size and polarity
of the value linearly translate to its contribution towards the final prediction.
SHAP calculates Shapley values by masking parts of the original data input,
thus creating a power set P (W ) of all the context words wn. The sum of the
computed SHAP values adds up to the difference in the base value b(v) and the
final predicted p-value. The base value b(v) is the predicted p-value when all
context words wn are masked; in other words, a sentence that only consists of
its target T .

In this research, we propose two versions of SHAP to understand the LCR-
Rot-hop++ model to a greater extent. The first model (model 1) applies SHAP
only to the LCR-Rot-hop++ model after word embeddings are generated using
BERT. The subsets are created after BERT word embeddings are generated,
measuring the contribution of each embedded word to the sentiment prediction.
The second model (model 2) applies SHAP before BERT word embeddings are
created, which means that new word embeddings are created for all subsets of
the sentence W . The final SHAP values measure the contribution of each word
on the final sentiment classification, accounting for a change in context as a re-
sult of SHAP masking part of the sentence. Figure 1 describes the steps involved
in building SHAP models 1 and 2, as well as the differences in both models. X
denotes the original sentence text, consisting of the context phrase W and target
phrase T . S are the subsets belonging to the power set P (W ) as described be-
fore. The p-values {p1, p0, p−1} are the output of the LCR-Rot-hop++ model,
referring to the positive, neutral, and negative sentiment probability, respec-
tively. Lastly, {ϕ1, ϕ0, ϕ−1} are the SHAP values that indicate the contribution
of each word to the three sentiment class probabilities.



Fig. 1. SHAP integrated within LCR-Rot-hop++.

5 Results

This section presents the results of our SHAP models and the interpretation
thereof. First, Sect. 5.1 demonstrates the use of SHAP on local instances, as
sentiment classifications of single sentences are explained. We compare the results
of SHAP model 1 and model 2. Section 5.2 continues to accumulate SHAP results
to obtain global inferences on the LCR-Rot-hop++ model.



5.1 SHAP Local

Table 5 shows the results of SHAP model 1 and model 2 on a sentence that
is incorrectly classified by the model, sorted by sentiment class prediction. As
Table 5 reveals, sentence X1: ‘The bus boy even spotted that my table was shaking
a stabilized it for me’ is classified as negative, even though the sentiment is
positive in reality. The columns Φ1, Φ0, and Φ−1 show the SHAP values of each
word, which indicates their contribution towards a positive, neutral, and negative
sentiment predictions, respectively. The SHAP values for the target word ‘bus
boy’ is the base value which is the prediction when all context words are masked.
Together they add up to the sentiment classification probabilities for each class.

Table 5. SHAP model 1 and model 2 results for sentence X1.

The bus boy even spotted that my table was shaking a stabilized it for me

Target: bus boy
Sentiment: Positive
Prediction: Negative

SHAP model 1 SHAP model 2

wn ϕ1 ϕ0 ϕ−1 wn ϕ1 ϕ0 ϕ−1

the -0.003 -0.054 0.057 shaking -0.055 -0.009 0.064
spotted -0.031 -0.007 0.037 the 0.015 -0.050 0.035
was -0.016 -0.001 0.017 my -0.021 -0.003 0.024
it -0.008 -0.003 0.011 me 0.015 -0.035 0.020
table -0.009 -0.001 0.010 it -0.016 -0.003 0.019
shaking -0.007 -0.001 0.009 a -0.006 -0.010 0.016
even 0.003 -0.011 0.008 spotted -0.009 -0.004 0.013
a 0.002 -0.007 0.006 was -0.001 -0.008 0.009
stabilized 0.005 -0.008 0.003 stabilized -0.008 0.006 0.002
that 0.014 -0.014 0.000 table 0.003 -0.001 -0.002
my 0.025 -0.004 -0.021 that 0.015 -0.007 -0.008
me 0.037 -0.011 -0.026 even 0.013 0.005 -0.018
for 0.036 -0.008 -0.029 for 0.064 -0.009 -0.055
bus boy 0.365 0.136 0.498 bus boy 0.403 0.133 0.463

P-value 0.412 0.005 0.582 P-value 0.412 0.005 0.582

Starting with SHAP model 1, Table 5 shows that the words ‘the’, ‘spotted’,
and ‘was’ contribute the most towards a negative sentiment prediction. This does
not immediately make sense from a linguistic point of view, however, it can be
explained by the fact that SHAP model 1 computes word embeddings from the
complete sentence, where words contain information about the original context.
The context of the word ‘the’ is, therefore, most associated with a negative
sentiment, as the methodology of SHAP model 1 implies that the embedding
of ‘the’ has captured a context that is similar to other contextual embeddings
with a negative sentiment. Likewise, the embedding vectors for ‘spotted’ and



‘was’ from the original sentence are the closest to other embedding vectors with
negative associations.

The p-values are identical for SHAP model 2, since both SHAP model 1
and 2 aggregate towards the embeddings of the full sentence. Nevertheless, the
SHAP values are significantly different, as SHAP model 2 regenerates the BERT
embeddings for every single subset S ⊆ W ∈ X1, capturing information about
a different context each time. This results in the word ‘shaking’ as the highest
contributor towards the negative sentiment class. Words weak in meaning like
‘the’, ‘it’, and ‘a’ still score relatively high, which implies that adding these
words to subsets where they do not exist has a relatively large effect.

Linguistically, the text ‘table was shaking’ is the only part that has a negative
connotation, which suggests that model 2 is more useful in terms of determining
the individual words that lead to a negative prediction, rather than the context
the word is captured in.

As SHAP model 2 is presumed to assign contribution more towards individual
words, we present one more local interpretation using SHAP model 2. Table 6
shows the results of the model on a correctly predicted sentence X2: ‘For the
amount of food we got the prices should have been lower.’ as negative. In this
case, the word ‘lower’ is attributed the highest contribution towards a negative
sentiment. Following ‘lower’, the words ‘we’, ‘been’, and ‘have’ are shown to
have a significant contribution as well. These words are weak in meaning, as
they act as function words. The fact that they still represent a large part of
the contribution towards a negative sentiment implies that these words still
add important information about the context, possibly defining how words are
related to each other.

5.2 SHAP Global

To achieve global interpretation, SHAP simply calculates the mean SHAP values
for all words to see their average contribution over the model predictions. The
global interpretations are shown separately for each sentiment class.

Since SHAP generates all possible subsets for each sentence, the computa-
tional time is long. Therefore, 5% of the dataset is randomly sampled to obtain
a segment of 12 instances to demonstrate the capabilities of SHAP. As SHAP
model 2 is determined to be better at capturing the contribution of adding indi-
vidual words, rather than the context that they originally consist of, we aggregate
words only for SHAP model 2. The results are presented in Table 7.

Table 7 shows the words with the highest nine average SHAP values per
sentiment classification. The last row contains the sum of the SHAP values
of all remaining words. Unsurprisingly, the neutral sentiment barely has any
contributing words, since neutral sentences are the clear minority in the dataset.
The highest contributions belong to ‘!’, ‘plenty’, ‘sure’, ‘not’, whereas only ‘not’
belongs to a negative sentiment classification. This is most likely the cause of
positive being the majority class, which means there are more sentences and
words that are positive.



Table 6. SHAP model 2 results for sentence X2.

For the amount of food we got the prices should have been lower.

Target: food
Sentiment: Negative
Prediction: Negative

wn ϕ1 ϕ0 ϕ−1

lower -0.031 -0.029 0.060
we -0.053 0.008 0.045
been -0.029 -0.010 0.039
have -0.018 -0.004 0.022
of -0.028 0.013 0.015

the1 -0.008 -0.004 0.012
the2 -0.001 -0.008 0.009
prices -0.001 -0.006 0.007
got 0.009 -0.012 0.003
for 0.034 -0.023 -0.001

amount 0.047 -0.021 -0.026
should 0.075 -0.006 -0.069
food 0.389 0.118 0.491

P-value 0.387 0.007 0.606

Table 7. SHAP 2 global - averaged over a random sample with similar distribution
containing 5% of the data.

Positive Neutral Negative

Word µϕ Word µϕ Word µϕ

! 0.24 continued 0.02 not 0.11
plenty 0.12 of 0.01 continued 0.07
sure 0.10 we 0.01 though 0.06
pacific 0.09 stopped 0.01 over- 0.06
dinner 0.09 stabilized 0.01 no 0.06
should 0.08 either 0.00 shaking 0.06
yuppies 0.07 on 0.00 lower 0.06
old 0.07 take 0.00 removed 0.06
variety 0.06 tenderizer 0.00 rated 0.05
remaining -0.39 remaining -0.87 remaining -0.3

6 Conclusion

The complexity of the LCR-Rot-hop++ model that acts as a backup method in
the HAABSA++ method can lead to intricacies. Because the LCR-Rot-Hop++
model utilizes context-aware BERT embeddings, features are never completely
separable from each other. In this paper, we propose two SHAP approaches,
SHAP model 1 and model 2, to better capture the behavior of the LCR-Rot-
hop++ model. SHAP is able to infer local and global interpretations, offering



the user insights into why a model did, does, and will do something. We conclude
that SHAP model 1 is more likely to capture the contribution of specific con-
texts, since words maintain their information about the original context, even
after being subsetted by SHAP. SHAP model 2 partially refutes this by generat-
ing new BERT embeddings for each subset of the original sentence. As a result,
SHAP model 2 is better at capturing the contribution of specific words. Thus,
words strong in meaning are more likely to be assigned a high contribution than
function words that depend on their context. Future research could consider re-
moving function words before feeding them to the SHAP model to avoid dilution
of the meaning of other words.

Although SHAP offers a lot of potential to gain a better understanding of
model behavior, it is not without its disadvantages. One of the main problems
with SHAP is the required computational power. Additionally, although SHAP
model 2 proves to be more effective at defining the contributions of individual
words, the fact that new embeddings are created for every single subset adds
another layer that is computationally intensive. The earlier suggestion to poten-
tially remove function words could compensate for this by reducing the number
of subsets, but it could also be worth exploring methods that only estimate
Shapley values instead of using precise calculations [1, 2].
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