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Abstract. Over the last years, enormous amounts of opinions have be-
come available on the Web, which causes the interest in the task of
Aspect-Based Sentiment Classification (ABSC) to rise. Hybrid models
for ABSC, which combine a knowledge base with a machine learning al-
gorithm, have gained popularity because of their superior performance.
LCR-Rot-hop-ont++ is such a hybrid model, which injects knowledge
from a domain sentiment ontology into the well-performing attention
neural network LCR-Rot-hop++. In this work, we extend the LCR-Rot-
hop-ont+-+ model in two ways. First, we inject additional knowledge
from a domain sentiment ontology into the neural network. Second, we
apply a novel weighting mechanism to the injected tokens to control the
influence of additional knowledge. Using the SemEval 2015 and SemEval
2016 datasets for evaluation, we find that knowledge injection improves
accuracy for datasets with a limited number of observations. Further-
more, we find that the proposed weighting mechanism leads to improved
predictive performance of the neural network model.

Keywords: Neural network - Knowledge injection - Aspect-based sen-
timent classification

1 Introduction

Over the years, the volume of opinionated texts on the Web has been tremen-
dously increasing. This trend causes the interest in the prediction of sentiment
from text to rise. Sentiment Analysis (SA) is the process of gathering and an-
alyzing the sentiment and opinions towards entities, such that it can be used
by various decision-makers such as businesses and researchers [7]. Especially for
large datasets, sentiment analysis is a useful tool as obtaining customers’ opin-
ions can become costly and time-consuming. Whereas SA is concerned with de-
termining the sentiment for an entire sentence or a document, the sub-category
Aspect-Based Sentiment Analysis (ABSA) has the task of identifying aspects
and computing the sentiments towards these [4]. For example, in the sentence
“The hotel has a great location, but the rooms are small and outdated”, we ob-
serve two aspects, location and rooms. Here, the sentiment towards the location



is positive, but the sentiment towards the rooms is negative. ABSA is able to
detect the different opinions towards the two aspects, whereas SA is not capable
of differentiating between the conflicting sentiments.

Aspect-Based Sentiment Classification (ABSC) methods can be divided in
three classes: knowledge-based, machine learning, and hybrid approaches [4]. By
combining knowledge-based and machine learning approaches into a hybrid ap-
proach, the advantages of both methods can be leveraged. It has been shown that
hybrid approaches outperform knowledge-based and machine learning methods
[14]. For example, [16] proposes HAABSA++, a two-step hybrid method. First,
a domain sentiment ontology is employed to predict sentiment. When the classi-
fication is inconclusive, this is followed by a neural network. However, the neural
network does not yet leverage the benefits of injecting domain knowledge. It
is shown that injecting knowledge increases the performance of language repre-
sentation models [8]. The question that remains is how exactly knowledge can
be injected into a hybrid model. Previous work on the injection of synonyms
of words in the test data has been positively evaluated [5]. In this research, we
alm to get one step further by investigating the benefits of injecting additional
domain knowledge.

For this research, it is assumed that the aspects are predefined and we only
consider the task of sentiment classification. In this work, we aim to investigate
how to inject domain knowledge from an ontology into a neural network for
ABSC. The neural network is the state-of-the-art LCR-Rot-hop++ model pro-
posed by [16]. We follow the approach of [5], where knowledge is injected into the
LCR-Rot-hop++ model based on K-BERT [8]. K-BERT uses Knowledge Graphs
(KGs) to add branches of additional information about a word to a sentence.
Instead of using KGs, [5] uses a domain sentiment ontology for knowledge injec-
tion. Particularly, a 0-hop method to navigate in the ontology is used, such that
lexical representations of concepts as defined in the ontology are added to the
sentences. By injecting knowledge into the LCR-Rot-hop++ model, a new model
called LCR-Rot-hop-ont++ is obtained. This method is shown to outperform the
LCR-Rot-hop++ model. Furthermore, it outperforms the HAABSA++ model
for smaller datasets. Our work extends the model proposed by [5] by following a
multi-hop navigation approach in the ontology. That is, we inject lexical repre-
sentations of subclasses of concepts (1-hop and 2-hop) in addition to word syn-
onyms (0-hop). Furthermore, we propose to apply a novel weighting mechanism
to the injected tokens to regulate the influence of the injected knowledge on the
model. For the implementation of our approach, we use Python 3.10 as program-
ming language along with PyTorch 2.0.0. The code is made publicly available at
https://github.com/charlottevisser/LCR-Rot-hop-ont-plus-plus.

The structure of this paper is outlined as follows. In Sect. 2, we provide a
review of the relevant literature in the field of ABSC and knowledge injection
techniques. Section 3 explains the data used for this work. In Sect. 4, the em-
ployed methodology is presented, after which the results of the used methods
are evaluated in Sect. 5. Last, Sect. 6 provides our conclusion, discusses the
implications of this research, and gives suggestions for further research.
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2 Related Work

This section provides an overview of the relevant literature. First, Sect. 2.1 gives
a description of hybrid methods for ABSC. Then, Sect. 2.2 discusses knowledge
injection as a method to enhance neural networks with domain knowledge.

2.1 Hybrid Models for ABSC

ABSC can be divided into three types of models: knowledge-based, machine
learning, and hybrid models [4]. Knowledge-based algorithms make use of a
knowledge base to compute sentiment. Knowledge-based approaches have the
advantage that the interpretability is relatively straightforward. However, the
construction of a knowledge base can be very time-consuming. In contrast to
knowledge-based algorithms that require the existence of a knowledge base, ma-
chine learning models use a training dataset to learn and classify sentiment,
thereby reducing the need for external knowledge. However, these models are
more difficult to interpret and require a large labeled dataset for training. Par-
ticularly when datasets are small, which is often the case for ABSC, these models
might not deliver adequate results. This problem can be solved by combining
the two approaches into a hybrid model, such that it takes advantage of the
properties of both approaches [4].

There are various approaches for combining a knowledge-driven approach
with a machine learning method. One commonly used method involves using a
knowledge base that is leveraged by the machine learning algorithm for senti-
ment prediction [15]. Alternatively, a knowledge-based classifier is used together
with a machine learning classifier, which are implemented either sequentially or
simultaneously [1]. Among others, [10,15,16, 18] have developed hybrid models
which outperform knowledge-based or machine learning models.

[18] introduces a two-stage hybrid model, called Hybrid Approach for Aspect-
Based Sentiment Analysis (HAABSA). In the first stage, a domain ontology is
used for sentiment prediction. If the result is ambiguous, the machine learning
method LCR-Rot-hop is used as a backup model. LCR-Rot-hop is an extension of
LCR-Rot [20] with multi-hops for attention. [16] further extends HAABSA in two
directions and introduce HAABSA++, where the neural network is called LCR-
Rot-hop++. The model is enhanced by replacing GloVe word embeddings [11] by
BERT word embeddings [6], allowing to capture contextual information of each
word based on its surroundings. Furthermore, hierarchical attention is applied
by using a high-level attention layer. By doing this, the flexibility of the model is
increased. [16] finds that applying attention weighting separately for the context
and target vector pairs in each iteration of the rotatory attention mechanism is
most beneficial.

[5] also employs the LCR-Rot-hop++ model. However, instead of a two-
step approach, a domain sentiment ontology is used simultaneously with the
LCR-Rot-hop++ model, by directly injecting knowledge given by synonyms of
the current words. During the testing phase, BERT embeddings are replaced by
K-BERT embeddings [8], obtaining a new model called LCR-Rot-hop-ont++.



It was found that this model achieves a higher test accuracy than the LCR-
Rot-hop++ model. Furthermore, the results of the LCR-Rot-hop-ont++ model
show that this approach outperforms HAABSA++ for smaller datasets in terms
of test accuracy.

In our work, we adopt a similar approach as [5] by injecting additional knowl-
edge from a domain sentiment ontology into the LCR-Rot-hop++ model during
the testing phase, resulting in an extended version of LCR-Rot-hop-ont++. We
use HAABSA++ and LCR-Rot-hop++ as benchmark models for performance
evaluation.

2.2 Knowledge Injection

Recently, incorporating knowledge into neural networks has gained popularity
due to its effectiveness. External knowledge types include among others linguis-
tic, semantic, factual, and domain-specific knowledge. In one solution, external
knowledge can be injected during training. However, this requires researchers to
train a model by themselves, and this is a computationally expensive and time-
consuming process, making it unfeasible for many applications. Furthermore,
even if training is feasible, a large domain-specific corpus is needed for this pur-
pose. Alternatively, knowledge can be injected, for example by using a Knowledge
Graph (KG), during the testing phase of trained models. This method has the
advantage of reduced cost of training, as well as increased interpretability since
the KG can be easily interpreted. However, one of the challenges of knowledge
injection is Knowledge Noise (KN). Injecting too much knowledge might lead to
a deviation from the original meaning of a sentence [8].

[8] proposes Knowledge-enabled BERT (K-BERT), a framework based on
the Transformer [17]. K-BERT follows the approach of injecting knowledge ob-
tained from a KG into the BERT model. K-BERT injects knowledge during the
testing phase, removing the need for users to conduct their own training. Ad-
ditionally, K-BERT uses soft-positioning and a visibility matrix to regulate the
scope of knowledge, thereby alleviating the issue of KN. This model has shown
to outperform BERT on domain-specific tasks.

The LCR-Rot-hop-ont++ model proposed by [5] employs K-BERT for knowl-
edge injection. Rather than a KG, a domain sentiment ontology devised by [15]
is used to inject knowledge. The advantage of a domain sentiment ontology is
that it captures the concepts and their semantic relations relevant to the domain
of interest. This knowledge is often only partially available in the more general
KGs. [5] injects lexical representations, which are synonyms of words present in
sentences.

For this research, we adopt the approach of [5] as we also use the previously
devised domain sentiment ontology for knowledge injection into the LCR-Rot-
hop++ model. We extend this approach by following a multi-hop approach for
knowledge injection. That is, we also inject lexical representations of concepts
related to words by using navigation hops in the ontology into sentences in
addition to synonyms.



3 Data

In this research, the datasets SemEval 2015 task 12 [12] and SemEval 2016 task
5 [13] are used for training and performance evaluation of our model. These
datasets have been widely used for ABSC tasks, making them a convenient
option for comparison between our proposed model and existing models. The
datasets comprise restaurant reviews consisting of one or more sentences. Each
sentence contains opinions about specific aspects, which are assigned to a cate-
gory in advance. These aspects are also assigned a polarity, which can be positive,
neutral, or negative. Figure 1 presents an example of a review in the SemEval
2015 dataset. In this example, the sentence has multiple targets, which are menu
and dishes.

<sentence id="1632445:1">
<text>The menu is limited but almost all of the dishes are excellent.</text>
<Opinions>
<Opinion target="menu" category="FOOD#STYLE_OPTIONS" polarity="negative" from="4" to="8"/>
<Opinion target="dishes" category="FOOD#QUALITY" polarity="positive" from="42" to="48"/>
</Opinions>
</sentence>

Fig. 1. An example sentence from the SemEval 2015 dataset.

Table 1 shows the frequencies and distribution of the opinions of the SemEval
2015 and SemEval 2016 datasets after preprocessing (opinions with implicit as-
pects are removed as the employed neural network requires explicit aspects). In
terms of the number of reviews, the SemEval 2015 and SemEval 2016 datasets
consist of a total of 1279 and 1880 reviews for training, and 597 and 650 reviews
for testing, respectively. Consequently, the SemEval 2015 dataset is compara-
tively smaller for both the training and testing phases. The majority of opinions
in both the training data and test data are characterized by positive polarities,
followed by negative and neutral polarities.

Table 1. Distribution of opinions of train and test data of the SemFEval 2015 and
SemEval 2016 datasets.

Training data Test Data
Negative Neutral Positive Negative Neutral Positive
Freq. % Freq. % Freq. % Freq. % Freq. % Freq. %
SemEval 2015280 21.936 2.8963 75.3207 34.737 6.2353 59.1
SemEval 2016 489 26.0 72 3.8 1319 70.2 135 20.8 32 4.9483 74.3

In our approach, knowledge is injected by using a domain sentiment ontology.
The ontology contains concepts, for which it reports their lexical representations



as well as the corresponding subclasses. For our research, we use an ontology
with concepts related to restaurants [15], which contains 444 concepts in total,
576 subclass relationships, and 453 lexical representations. Figure 2 shows an
example of the concept Waiter in the ontology, with its lexical representations
and superclasses.

Waiter subClassOf ——» Staff —— subClassOf — ServiceMention
lex \e* lex ek
/ N\ / kY
waiter waitress staff crew

Fig. 2. An example of a concept in the domain sentiment ontology with its lexical
representations and superclasses.

Last, we use pre-trained word embeddings for this research. Particularly,
we use the uncased BERT [6] base model, trained on BookCorpus and English
Wikipedia [19]. It has 12 transformer layers, a hidden size of 768, and 12 self-
attention heads.

4 Methodology

This section describes the methodology followed for this work. First, the neural
network LCR-Rot-hop++ [16] is introduced in Sect. 4.1. Then, the methods to
inject knowledge into the neural network are discussed in Sect. 4.2. By injecting
knowledge into LCR-Rot-hop++, we obtain the model called LCR-Rot-hop-
ont++. An overview of LCR-Rot-hop-ont++ is given in Fig. 3.

4.1 LCR-Rot-hop++

For each opinion, the sentence S of N words is divided into three parts; the left
context [s},sh,... s} ], the target phrase [s},s},...,s%,], and the right context
[s1,85,...,8]. L, M, and R represent the length of the three parts, respectively.

Each word is embedded using BERT [6] for the training data, and K-BERT [8]
for test data. Three Bi-LSTMs take the embeddings as input, and return hidden
states [hY,h, ..., hY ] for the left context, [k, A5, ..., h%] for the right context,
and [hY, R, ... hi,] for the target phrase, as initial representations.

Next, a rotatory attention mechanism is employed. The rotatory attention
mechanism consists of two steps. First, target2context attention generates con-
text representations by using target representations. Second, in context2target
attention, left-aware and right-aware target representations are generated by us-
ing the left and right contexts, respectively. To obtain a representation of the
left and right context, we initially use an average representation of the target
r'» = pooling([ht, kS, ... h%,]).
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Fig. 3. An overview of LCR-Rot-hop-ont++.

Then, a scoring function f is defined as follows:

F(hL,rtr) = tanh( Y x WL x rte + BL), (1)

1x1 1x2d 2dx2d 2dx1 1x1
where h! is the hidden state of the left context, W! is the weight matrix, ri»
is the average pooling layer of the target phrase, and bl is the bias for the left

context.
To obtain normalised attention scores a which range between 0 and 1, a

softmax function is applied, which takes the score f as input. The normahbed

attention score is defined as follows:

Oél» _ exp(f(hﬁ, Ttp)) (2)

[ L .
21 exp(f (R, r'r))
Last, the left context representation is computed:

L
=> ol x B . (3)

2dx1 7—=1 1x1 2dx1




The right context representation can be obtained in a similar manner. After
computing the left and right context representations, these are used to obtain the
target representation. A similar approach is taken here as in the first step of the
rotatory attention mechanism. In this case, the left-aware target representation
is computed by using the hidden states weighted by attention scores:

M
t t t
rt o= E aj' x ht. (4)
2dx1 i=1 1x1 2dx1

Similarly to the left-aware target representation, the right-aware target rep-
resentation can be computed.

Hierarchical attention is then employed to overcome the limitation of relying
only on local information in the LCR-Rot-hop approach. By incorporating a
high-level representation of the input sentence, hierarchical attention enhances
the representation of target2context and context2target vectors by incorporating
relevance scores computed at the sentence level.

Attention weighting is applied separately on the context and target vector
pairs in each iteration. First, we compute the attention score for each vector
vt e {rt rtrt 1

f(vl) = tanh( Ui/ X er{c,t} + bze{c,t}), (5)
1x1 1x2d 2dx2d 1x1
where W, is a weight matrix and b, is the bias for context vector pair ¢ and
target vector pair t. Then, the attention scores are normalized for the context
and target vector pairs separately:

ai — 26Xp(f(’Ui)) . (6)
> =1 exp(f(v7))

The scaled vectors are:
i i
Vpew = @ X Vold- (7)
2dx1 1x1 2dx1

A hop in the rotatory attention mechanism refers to the process of comput-
ing the target and context vectors (r!,7",r%, and r!*). During hyperparameter
optimization, it was found that repeating this procedure three times is optimal,
which is in accordance with [18].

The four vector representations together are used for aspect-level sentiment
prediction. The left- and right-context representations are concatenated with the
two-side target representations to get the final sentence representation v:

v o=[rtrtrte e (8)
8dx1 2dx1 2dx1 2dx1 2dx1

Then, v is used as input for a softmax layer to obtain the sentiment proba-
bility:

p =softmax( W, x v + b, ), 9)

|Clx1 |C|x8d 8dx1 |Clx1



where p is the conditional probability distribution, C' is the number of sentiment
categories, W, is a weight matrix and b, is the bias for the sentiment classifica-
tion.

The LCR~Rot-hop-ont++ model is optimized during training by minimizing
the cross-entropy loss function with Lo regularization, given by:

L= —Z( Y xlog 7, )+A|@||2, (10)

1x1 j |ClIx1 |ClIx1

where y; represents the true sentiment, p; is the predicted probability of sen-
timent classifications, A is the Ly regularization term, and @ is a vector which
contains all the parameters of the model. The model parameters are updated by
using Stochastic Gradient Descent (SGD) with momentum and a dropout rate.

Prior to model training, the hyperparameters of the model are tuned by using
a Tree-based Parzen Estimator (TPE). TPE is a well performing method based
on Bayesian optimization [3]. To implement the TPE algorithm, the HyperOpt
package [2] is employed. The training dataset is used for hyperparameter tuning,
with a division of 80% for model training and 20% for model validation.

4.2 Knowledge Injection

The contextual embeddings are generated for each word by using BERT [6] for
the training phase. During the test phase, knowledge is injected by using an
approach based on the K-BERT model [8]. To limit the effects of KN, we use
soft-positioning and construct a visibility matrix as proposed by [§].

Instead of using a KG, a domain sentiment ontology constructed by [15] is
employed to inject knowledge during the testing phase. A k-hop is defined as
the process of traversing k classes from the current concept in the ontology to
obtain lexical representations. k ranges from 0 to N — 1, where N represents the
total number of classes. Specifically, a 0-hop indicates only adding synonyms,
since the ontology does not have to be traversed. A sentence tree is constructed
by inserting the tokens from the ontology as child descendant nodes of the words
in the original sentence. Synonyms are inserted by adding soft branches to the
sentence tree, while the other k-hops are inserted by adding hard branches. An
example of a sentence tree is shown in Fig. 4.

Because of the presence of branches after the injection of the k-hops, the
sentence tree cannot be used as input for BERT’s embedding layer. The sentence
tree is rearranged by inserting the tokens located in the branches subsequent to
their originating (word) nodes. By doing this, the sentence loses its original
structure. This issue can be solved by using soft-positioning. All injected tokens
get the same soft-position as the original word in the sentence. However, this
might lead the sentence to lose its original meaning. To solve this issue, we
construct the visibility matrix M, such that the injected tokens have no influence
on the hidden state values of words that are in different branches. The visibility



matrix M is defined as:

Moo — 0 if w; ® w; (11)
" —oo0, if w; X wy,

where @ denotes that w; and w; belong to the same branch, and ® denotes
that they are not in the same hard branch. ¢ and j represent the hard-position
indexes of the words. Words within the same hard branch are visible to each
other, whereas words belonging to different hard branches are not. Synonyms
from soft branches are able to only view the words that they originate from.
Figure 4 shows an example of a sentence tree with the corresponding visibility
matrix. Words from the corresponding hard-position indices that are visible to
each other are shown in red (dark grey in black and white printing), and words
that are not visible to each other are shown in light grey. All words in the original
sentence form a branch and can view each other, while injected words can view
only words on the same branch.

The visibility matrix M is used to mask self-attention scores. Mask-self at-
tention is defined as follows:

QI K+ VI = RiW, hiWy, BW,, (12)
Qi+1Ki+1T + M

NGRS )

pitt — gty (14)

where W,, Wy, and W, are model parameters, h' is the hidden state of the i-th

mask-self attention blocks, and dj, is the scaling factor given by the dimension-
ality of the current head (k).

S = softmax( (13)

. 0o 1 2 8 4 5 6 7 8 9 10

0 1 2 9 10 Upper number: hard-position index
[CLS] — The — ambience — was — relaxed Lower number: soft-position index 0
- — :softbranch 1

0 1 2 - \ 3 4
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outdoor 4
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outdoors outside jazz 6
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9

Fig. 4. An example of a sentence tree and the corresponding visibility matrix.

Hop Weight. On the one hand, increasing the number of hops in the domain
sentiment ontology may cause the original meaning of the sentence to change.



This is due to the fact that injecting subclasses introduces concepts with increas-
ingly distinct meanings as the number of hops increases. On the other hand,
alternative lexical representations of present concepts might be better able to
capture the sentiment because people sometimes use a variety of words, even
when they all convey the same underlying meaning. Therefore, lexical represen-
tations such as synonyms can be more important than the original words due to
their presence in the training data. For these reasons, we apply a hop weighting
mechanism to the embedding of the injected tokens from the ontology to control
the influence of the injected knowledge. The hop weight is inverse proportional
to the number of hops in the ontology, such that tokens from a hop further in
the ontology obtain a lower weight. The hop weight mechanism is defined as:

(15)

hwi =

1 if ¢; in original sentence
e~ (Mhopst7)  otherwise,

where np0ps is the number of hops in the ontology to reach token t;, and v is a
hyperparameter.

5 Results

In this section, we present the results obtained from the LCR-Rot-hop-ont++
model. In Sect. 5.1, we compare the accuracy of our model with two benchmark
models, namely LCR-Rot-hop++ and HAABSA++. In Sect. 5.2, the impact of
soft-positioning, the visibility matrix, and hop weighting is investigated.

5.1 Knowledge Injection

In Table 2, the accuracy of the LCR-Rot-hop-ont++ model with 0, 1, and 2 hops
injected from the domain sentiment ontology is presented for the SemEval 2015
and SemEval 2016 datasets, along with the accuracy of the benchmark models
HAABSA++ and LCR-Rot-hop++. We give the results of the HAABSA++
model as reported by [18], since we do not replicate this method. First, we note
that higher test accuracies are obtained for all models for the SemEval 2016
dataset in comparison to the SemEval 2015 dataset. This is probably due to
the fact that for SemEval 2016 dataset we have more data for training. The
results for the SemEval 2015 dataset show that the LCR-Rot-hop-ont++ model
outperforms the LCR-Rot-hop++ model for all hop levels. Specifically, the LCR-
Rot-hop-ont++ model achieves a test accuracy of 80.9%, which is the highest
among all hop levels. However, the HAABSA++ model still outperforms the best
LCR-Rot-hop-ont++ model by 0.8 percentage points. For the SemEval 2016
dataset, the LCR-Rot-hop++ model achieves the highest accuracy of 87.5%,
outperforming both LCR-Rot-hop-ont++ and HAABSA++. Thus, the methods
which use an approach containing an ontology do not improve performance for
the SemEval 2016 dataset. Furthermore, HAABSA++ outperforms the LCR-
Rot-hop-ont++ models for 0, 1, and 2 hops.



Using the Wilcoxon signed rank test on 100 bootstraps on the test data, we
have shown that LCR-Rot-hop-ont++ (no matter the number of hops) is statis-
tically significant better than LCR-Rot-hop++ on SemEval 2015 and LCR-Rot-
hop++ is statistically significant better than LCR-Rot-hop-ont++ (no matter
the number of hops) on SemEval 2016 with p-values smaller than 0.001.

We conclude that leveraging a domain sentiment ontology both in a hybrid
approach and directly injecting in a neural network increases accuracy for smaller
datasets. However, a hybrid approach is preferred over knowledge injection. Fur-
thermore, an ontology does not boost performance for larger datasets, as these
allow for a better trained neural model.

Table 2. Accuracy of HAABSA++, LCR-Rot-hop and LCR-Rot-hop++ for the Se-
mEval 2015 and SemEval 2016 datasets.

Model SemEval 2015 SemEval 2016
HAABSA++ 81.7% 87.0%
LCR-Rot-hop++ 80.4% 87.5%
LCR-Rot-hop-ont++ (0-hops) 80.6% 86.8%
LCR-Rot-hop-ont++ (1-hop) 80.9% 86.8%
LCR-Rot-hop-ont++ (2-hops) 80.7% 86.9%

5.2 Ablation Experiment

The results of the ablation experiment conducted on the LCR-Rot-hop-ont++
model for the SemEval 2015 and SemEval 2016 datasets are reported in Table 3.
Different components of the model, being soft-positioning, the visibility matrix,
and the hop weight mechanism, are removed to investigate their impact on the
performance of the model.

Considering the SemFEval 2015 dataset, the test accuracy is lower for 0, 1, and
2 hops in the ontology without soft-positioning, visibility matrix, and hop weight
mechanism. Furthermore, considering the SemEval 2016 dataset, removing only
soft-positioning leads to an improved accuracy for all hop levels. For 0-hops,
1-hop, and 2-hops the accuracy improves with 0.7, 0.3, and 0.3, respectively.
However, removing the visibility matrix results in a decrease in accuracy for all
hops. Last, removing the hop weight mechanism decreases the accuracy for 0, 1,
and 2 hops. This suggests that the visibility matrix and the hop weight mech-
anism are of greater importance for the performance of LCR-Rot-hop-ont+-+
than soft-positioning.

The previous result is partly in accordance with the work of [8], where the
authors argue that the visibility matrix and soft-positioning are both of impor-
tance to limit KN. On the one hand, both works show that that the visibility
matrix is of importance since removing it decreases performance for all datasets.
On the other hand, [8] shows that excluding soft-positioning also worsens per-
formance of all datasets, while we only find that this holds for the SemEval 2015



dataset. Interestingly, in our case, removing soft-positioning for LCR-Rot-hop-
ont++ obtains better results for the SemEval 2016 dataset than HAABSA++.
Based on our results, the use of soft-positioning degredates performance on larger
datasets. This could be due to the fact that the heuristic used for soft-positioning
introduces too much noise in a model that is already of a good quality due to
the use of a large dataset for training.

Table 3. Model accuracy results for ablation experiment on SemEval 2015 and Se-
mEval 2016 datasets.

Model SemEval 2015 SemEval 2016
HAABSA++ 81.7% 87.0%
LCR-Rot-hop++ 80.4% 87.5%

0-hops LCR-Rot-hop-ont-++ 80.6% 86.8%
LCR-Rot-hop-ont++ (w/o SP) 80.1% 87.5%

(
LCR-Rot-hop-ont++ (w/o VM) 80.4% 86.2%
LCR-Rot-hop-ont++ (w/o hop weight) 80.2% 86.6%
LCR-Rot-hop-ont++ (w/o VM, SP, hop weight) 80.2% 87.7%
1-hop LCR-Rot-hop-ont-+-+ 80.9% 86.8%
LCR-Rot-hop-ont++ (w/o SP) 79.6% 87.1%
LCR-Rot-hop-ont++ (w/o VM) 79.2% 84.0%
LCR-Rot-hop-ont++ (w/o hop weight) 80.6% 86.3%
LCR-Rot-hop-ont++ (w/o VM, SP, hop weight) 78.6% 86.5%
2-hops LCR-Rot-hop-ont-++ 80.7% 86.9%
LCR-Rot-hop-ont++ (w/o SP) 79.2% 87.2%
LCR-Rot-hop-ont++ (w/o VM) 79.1% 83.7%
LCR-Rot-hop-ont++ (w/o hop weight) 80.4% 86.2%
LCR-Rot-hop-ont++ (w/o VM, SP, hop weight) 78.7% 86.0%

6 Conclusion

This research follows the model of [5] called LCR-Rot-hop-ont++. This model
injects knowledge from a domain sentiment ontology into the neural network
LCR-Rot-hop++. This model uses BERT [6] during the training phase. Knowl-
edge is injected during the testing phase in a comparable manner to K-BERT [§].
However, instead of using a KG, [5] injects lexical representations of present
concepts using a domain sentiment ontology. Following the methodology of K-
BERT, LCR-~Rot-hop-ont++ employs a visibility matrix and soft-positioning in
order to deal with KN. We extend this framework by injecting lexical represen-
tations of selected subconcepts in addition to the lexical representations of the
original concepts. Furthermore, we propose a hop weight mechanism, which as-
signs a weight to the embedding of injected tokens, to control for the additional
injected knowledge. For training and evaluation of the model, we use the Se-
mEval 2015 and SemEval 2016 datasets. We compare our proposed model with
the benchmark models LCR-~-Rot-hop++ and HAABSA++.



The results show that the LCR-Rot-hop-ont++ model outperforms LCR-
Rot-hop++ for the SemEval 2015 dataset when traversing 0, 1, and 2 subclasses
from the current concept. Particularly, the highest accuracy of 80.9% is achieved
by performing 1 hop. Furthermore, HAABSA++ outperforms LCR-Rot-hop+-+
in this case. However, LCR-Rot-hop++ achieves a higher accuracy than LCR-
Rot-hop-ont++ and HAABSA++ for the SemEval 2016 dataset. Since SemEval
2015 is a smaller dataset than SemEval 2016, this shows that knowledge injection
is more helpful for datasets with limited observations. Last, LCR-Rot-hop-ont++
is outperformed by HAABSA++ for both datasets. This implies that a two-step
approach outperforms knowledge injection during the testing phase.

We find that including the visibility matrix improves performance for all
hops in the LCR-Rot-hop-ont++ model for both datasets. Furthermore, soft-
positioning is shown to be useful for the SemEval 2015 dataset. However, the
LCR-Rot-hop-ont++ model performs better than the HAABSA++ model when
soft-positioning is excluded for the SemEval 2016 dataset. Last, results show
that the hop weight mechanism enhances the performance of the LCR-Rot-hop-
ont++ model.

For future research, an opportunity for the improvement of our proposed
model is to replace BERT word embeddings by RoBERTa word embeddings [9],
as RoBERTa has shown to improve performance in comparison to BERT. Fur-
thermore, our model currently only injects knowledge in the testing phase. The
effects of injecting knowledge during the training phase can also be investigated,
since this approach might enhance the model’s ability to learn from external
information. Last, a suggestion for further research is to control the amount of
knowledge injected to limit KN. In our work, we inject all lexical representations
of concepts for the current hop in the domain sentiment ontology. However, by
limiting the injected knowledge to a percentage of what is available in the on-
tology, the risk of injecting excessive or irrelevant knowledge might be reduced.
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