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Abstract. During the last decade daily life has morphed into a world of broad-
band ubiquity, where devices facilitate constant engagement. As a consequence
of this, the area of e-commerce has seen an immense growth. Despite the market
opportunities for retailers and the ease for customers to acquire products through
webshops, the shift to digital retail has its drawbacks. For example, it leads to
cluttered and incomparable information among different webshops, which calls
for an automated method to regain homogeneity in product representations. This
paper presents a product duplicate detection solution, which exploits a data type-
driven property alignment framework. Based on the performed experiment, we
show a statistically significant improvement of the F1-score from 47.91% to
78.13% compared to an existing state-of-the-art approach.
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1 Introduction

The evidence for e-commerce popularity surrounds us, whether it is commuters im-
mersed in their tablet to order groceries or a shopper buying a book on her phone to
avoid the hassle of carrying it home and save time spent on shopping. Online shopping
has become widely used and a common way of acquiring products. Digital retail sales
has hit an all time high and keeps growing according to recent projections by eMar-
keter [5]. As stated by Jeff Jordan of Andreessen Horowitz: ‘We’re in the midst of a
profound structural shift from physical to digital retail’. The prosperity in e-commerce
leads to more laborious product comparisons among different webshops, since charac-
teristics of products are represented by different lexical representations and webshops
provide different characteristics on products. This calls for an automated framework on
product duplicate detection to regain homogeneity in product representations. The basic
requirement of this framework involves enabling a fair comparison among products of
different webshops. Although a lot of methods have been proposed on duplicate detec-
tion [3,15], the idea of pre-processing data first, apart from data cleaning [4], is not a
popular one. One of the few methods related to property alignment is [9], which takes
the characteristics of products (which will be referred to as properties from now on) into



account, as well as the use of different measurement units. Those ideas are both adopted
and further extended upon in our research. Many methods on duplicate detection use
either TF-IDF [11] or use some lexical similarity measure [13], but lack usage of a se-
mantic similarity between words. In addition, besides some of the existing approaches
on duplicate detection, such as [13], most approaches do not take typographical errors
into account. To solve these drawbacks of existing methods our method exploits the
semantic similarities between words and tackles the problem of typographical errors.
In addition, we propose to use an elaborate pre-processing part to determine matching
properties to be used in the remaining steps of our solution.

A typical product duplicate detection framework consists of three steps. The first
step involves reducing the number of comparisons between products by so-called block-
ing. This ensures that only the products within the same block or partition of the dataset
are compared. Next, the similarity scores between product-pairs within the same block
are calculated. In the last step product duplicates are determined based on these scores.
Our solution for product duplicate detection includes an additional step which precedes
the above-mentioned steps. This step consists of an extensive data type-driven prop-
erty alignment (sub)framework. Products are characterized by several properties, each
property consists of a property Key and a property Value (from now on referred to as
simply Key and Value). For example, for the ‘aspect ratio’ of a television the prop-
erty Key is ‘aspect ratio’ and the property Value could be ‘4:3’. These together form
a property or Key-Value pair (KVP). First, a data type is determined for a property
Value. Next, the similarity of a pair of properties is evaluated based on the similarity of
the two Keys and the similarity of the corresponding Values. After the extensive data
type-driven property alignment (sub)framework is used to find matching properties, the
product duplicate detection framework is applied, which makes use of these matched
properties. The product duplicate detection framework is built upon the state-of-the-
art Multi-component Similarity Method (MSM) [2]. This framework determines the
product duplicates among different webshops, using a novel similarity function and an
adapted single linkage clustering algorithm.

The evaluation of the proposed framework is done on a dataset that describes 1446
televisions accompanied by their characteristics or so-called properties. The data is a
collection of products from two webshops, i.e., bestbuy.com, and newegg.com. The
dataset contains 774 and 672 products for these webshops, respectively. Each unique
television has a ‘modelID’, ‘title’, ‘url’, and ‘webshop’ along with its list of properties.
In total 200 unique Keys are present in the dataset. The product with the most compre-
hensive characteristics contains 61 properties, whereas the product with least exhaustive
characteristics only contain one property. The characteristics of bestbuy.com consists of
37 properties on average, whereas the characteristics of newegg.com only contains 22
properties on average.

The remainder of this paper is organized as follows. Sect. 2 elaborates upon existing
techniques on product duplicate detection and property alignment. We describe the pro-
posed methods in Sect. 3 and in Sect. 4 we evaluate the results of our proposed methods
and in Sect. 5 we discuss our results and give some suggestions for further research.



2 Related Work

The aim of our research is to better detect product duplicates by using an extensive
property alignment framework. In order to do so, we use existing methods and intro-
duce new ones. As will be discussed in both Subsect. 2.1 and Subsect. 2.2, there are
existing methods that already give a reasonably good performance, however, they have
shortcomings that we will address by means of extensions and new methods. In Sub-
sect. 2.1 we present an overview of current methods that address property alignment.
Subsect. 2.2 shows some of the current methods that deal with duplicate detection.

2.1 Property Alignment

The idea of intelligently pre-processing data, before pairwise product comparisons are
conducted, is not popular. Most of the research concerns data cleaning, see for exam-
ple [4], which provides an overview of methods on data preparation. Many are con-
cerned with the Values corresponding to a Key to determine the data type of the Key,
whereas [9] formalizes product information in an ontology in order to compare prod-
ucts. Data can be represented in different ways, for example as a string or an integer.
One can imagine that comparing strings with integers makes no sense. Using such in-
formation should make the property alignment more accurate. [9] introduced the use
of measurement units. ‘2m’ is not the same as ‘2lbs.’ and therefore they should not be
considered as a match. In our method we introduce Block Classification where the in-
sight gained from [9] is used. Furthermore, we add Value Classification and Property
Classification in order to align properties and detect property matches, making use of
the Block Classification.

2.2 Duplicate Detection

The first method we discuss for duplicate detection is the one proposed by [11], which is
based on the popular Term Frequency–Inverse Document Frequency method (TF-IDF).
First, it is determined how many times a unique word occurs in a document, which is
the Term Frequency. Then, the Inverse Document Frequency is calculated by taking the
logarithm of the number of documents minus the logarithm of the number of documents
containing that word. The final TF-IDF score for each word is calculated by dividing
the term frequency by the inverse document frequency. A cosine similarity matrix is
then constructed for all combinations of products. A shortcoming of this method is that
it makes no use of the semantic similarities between words.

[14] proposes the Title Model Words Method (TMWM). This method determines if
two products are duplicates by considering a similarity score. At first, an initial product
title similarity score is calculated. This is done by calculating the cosine similarity of
two product titles (interpreted as a bag of words). Then, the product title similarity score
is compared with a threshold α to determine if the two products are duplicates. If the
products are not duplicates based on the product title similarity score, model words are
extracted for the two products. Model words are words consisting of both numeric and
non-numeric tokens. The two products are considered to be different if the normalized
Levenshtein distance of the non-numeric part is smaller than the threshold 0.5, while



the normalized Levenshtein distance of the numeric part is larger than the threshold of
0.5. If the model words match, i.e., the numeric part is equal and non-numeric part is
approximately the same, then it could be an indication of duplicate products. Therefore,
the authors update the initial similarity score by taking a weighted average of the initial
product similarity title score and the average Levenshtein distance of the model words.
Based on the final similarity score and a threshold δ, it is determined if the products are
duplicates. This method does not consider different representations of data. Therefore,
products that are in fact duplicates, can be labelled as different.

[1] introduces the Hybrid Similarity Method (HSM), which extends the TMWM
method. Instead of only comparing the title, [1] uses information from the product prop-
erties in order to construct a similarity measure. This measure is based on two methods.
The first method checks for each combination of properties from both products if the
corresponding keys are matching. Then, the similarity between the corresponding Val-
ues is calculated. The authors use the cosine similarity as the first part of the similarity
measure. The second part concerns properties with no matching Key. Model words are
extracted from the Values of these properties and combined in two sets, one for each
product. Then, the percentage of matching model words between the two sets is cal-
culated, which is the second part of the similarity measure. At last, the authors of [1]
introduce a weight θ which is based on the number of Key matches and take a weighted
average of both parts to construct the similarity measure. A shortcoming of this method
is that it is only applicable for comparing two shops.Differently, [2] proposes a Multi-
Component Similarity Method(MSM), which is applicable to more than two shops.

MSM builds on HSM and makes use of TMWM. It introduces a hierarchical clus-
tering approach, which allows for comparing multiple shops. Its similarity measure
consists of three parts. At first, a list of brands is introduced to detect if products have
different brands. If they are not different, the Keys are given a score by making use of
q-grams [12]. The authors use q-grams, in order to deal with typographical errors and
abbreviations at both the Key and Value level. The second part is the same as in HSM,
where the percentage of matching model words is calculated. The third part consists of
calculating a similarity measure based on TMWM, where TMWM is adjusted to return
a similarity score instead of a boolean result.

We extended the model of [2] by introducing a data-type property alignment frame-
work as a pre-processing. Therefore, our approach in finding the similarity measure
between properties differs. Furthermore, instead of using a hierarchical clustering ap-
proach, we use a trained threshold, which we compare with the similarity score, in order
to determine if two products are duplicates. In order to overcome typographical errors
and abbreviations, we will make use of q-grams similarity as well, which is actually the
same as the Jaccard Similarity with q-shingles [10], later on called k-shingles.

3 Method

To determine property matches and detect duplicates of products over different web-
shops several methods have been incorporated in two frameworks. This section de-
scribes the two frameworks and the various methods that have been implemented. The
first framework is the property alignment framework, which is described in Subsect. 3.1



and the second framework is the product duplicate detection framework, which is de-
scribed in Subsect. 3.2.

3.1 Property Alignment Framework

This subsection explains the property alignment framework and all incorporated meth-
ods in detail. Subsubsections 3.1.1, 3.1.2, and 3.1.3 elaborate upon the Block-, Value-,
and Property Classification methods, respectively. In Subsubsect. 3.1.4 the property
matching is explained. Subsubsections 3.1.1, 3.1.2, and 3.1.3 build upon each other’s
results in order to classify each property to a certain type. These property types are last
used in Subsubsect. 3.1.4 to match properties.

3.1.1 Block Classification

Our goal is to align or match properties of TVs from different webshops. The data
from different webshops is not easily comparable. In order to tackle this problem, we
introduce Block Classification. Recall that a property of a product consists of a Key and
a corresponding Value. Keys are directly comparable, since each Key is a string. How-
ever, Values are not always a string and therefore comparing Values is not as straight-
forward. The Value representation can differ quite significantly between webshops and
even within a webshop. For example, the Key ‘Brightness’ is described with the Value
‘450 cd/m2’. This Value consists of two separated parts (split by a space), namely an
integer and a string. The same key is also described with the Values ‘350 cd/m2’ and
‘450Nit’ for other products. The latter consists of two parts as well, viz. an integer and
a string. However, the representation of the Value is not separated by a space. Clearly,
this shows that Values are not easily comparable.

In order to deal with the previously mentioned issues, we propose Block Classi-
fication. The idea is to partition a Value based on white spaces, where the resulting
partitions of the Value are called blocks. Now that the Values are split into blocks, one
can compare the blocks of the Values. This makes sense if one compares integers with
integers, strings with strings, and so on. Therefore, we introduce Type Classification of
the blocks. First it is checked whether a block is strictly Numerical. In this case, it is se-
quentially checked if the block is of the type: Integer, Float, Fraction, Ratio, Percentage,
or Dash.

If a block strictly consists of alphabetical characters, it is checked whether the block
belongs to the block type Boolean, Measure, or Compound. If Boolean, Measure, and
Compound are not suitable as types, the block will be classified as a Word block. A
Boolean block can have either ‘Yes’ or ‘No’ as Value. The block type Measure repre-
sents a measurement unit listed in Table 1. The expressions of the measurement units
vary over webshops, for example, the weight of a product might be given in Kilo-
gram(s), Kilo(s), Kg(s), Pound(s), or Lb(s). The block type Compound represents the
symbol ‘x’ or the word ‘times’ to connect two or more blocks, for example: ‘52 x 6.8’.
If a block is neither Numerical nor Alphabetical, the block type Universal will be as-
signed.



Table 1: Measuring units expressed by different unit symbols.
Measuring unit Unit Symbol

Weight Kilogram(s), Kilo(s), Kg(s), Pound(s),
Lb(s)

Frequency Hertz, Hz
Energy & Electricity Watt(s), W, kWh, Joule(s), kiloJoule(s),

kJ, J, Volt(s), V
Sound intensity Bel(s), Decibel(s), B, dB
Length Inch(es), cm, mm, ”
Brightness cd/m2, cd/m2, cd/m, Nit

Even though Type Classification is introduced, one can still find cases where a com-
parison is not optimal. Consider for example the Values ‘180Hz’ and ‘180 Hz’, which
describe the same information. The first block is classified as Universal, while for the
latter Value the blocks are classified as Integer and Measure. Clearly, both Values are
equal. In order to overcome this problem, an Universal block, which contains an inte-
ger and a measurement unit (in this case Hz), will be split into 2 blocks, we use the
measurement units form Table 1. Namely, an Integer block and a Measure block. In this
way, one is able to compare 180Hz and 180 Hz. Table 2 shows how several Values are
split into block and how these blocks are subsequently classified. Also it is indicated
how Values containing a measurement unit are classified, such as ‘180Hz’.

Table 2: Examples of Block Classification.
Property value Set of blocks Types of blocks

180Hz ‘180’ + ‘Hz’ Integer + Measure
180 Hz ‘180’ + ‘Hz’ Integer + Measure
4:3 and 16:9 ‘4:3’ + ‘and’ + ‘16:9’ Ratio + Word + Ratio
B007B9PMCO ‘B007B9PMCO’ Universal
122 W ‘122’ + ‘W’ Integer + Measure
Yes ‘Yes’ Boolean
52 x 6.8 ‘52’ + ‘x’ + ‘6.8’ Integer + Compound + Float
52% humidity ‘52%’ + ‘humidity’ Percentage + Word
55-2/3 mm ‘55-2/3’ + ‘mm’ Dash + Measure

3.1.2 Value Classification

The goal is to compare properties. Recall that a property consists of a Key-Value pair.
As mentioned before, comparing Values is not straightforward. In the previous section



we introduced Block Classification and we have shown how to classify parts (blocks) of
Values. However, we do not want to compare parts of the Values, but the Values them-
selves. Therefore, we introduce Value Classification, where the results of the Block
Classification is used to determine the type of the corresponding Value.

The classification of a Value depends on the number of blocks. Three options are
considered: one block, two blocks, and three or more blocks. For each of these options
the Value Classification differs. In case a Value consists of one block, three types are
considered: Boolean, Quantitative, and Qualitative. A Value is of type Boolean if the
block is a Boolean block. A Value is classified as Quantitative if the block is strictly
Numerical. And lastly, a Value is of type Qualitative if the block is either a Word block
or a Universal block.

In case a Value consists of two blocks, the following three types are considered:
Measure, Quantitative, and Qualitative. A Value is of type Measure if the first block
is Numerical followed by a Measure block. A Value is of type Quantitative if the first
block is of type Numerical followed by a Word block. If the two blocks are of any other
combination of types, the Value is classified as Qualitative.

In case a Value consists of three or more blocks, two types are considered: Com-
pound, and Qualitative. At first it is checked whether one or more blocks are of type
Compound. A Value is classified as a Compound Value, if the following three restric-
tions are satisfied. First, the one or two blocks before a Compound block must be either
Numerical followed by a Word block or Numerical followed by a Measure block or
simply a Numerical block. Secondly, between two Compound blocks, the one or two
blocks must be Numerical followed by a Word or a Measure block or simply a single
Numerical block. At last, the first block after the last compound block must be Numeri-
cal. For example, ‘52 mm x 45 mm x 20’ would be classified as a compound Value. This
is visualized in Eq. 1, where a Compound Value is considered. A Value is Qualitative,
if there is no Compound block present.

V alue :

Compound Type Value︷ ︸︸ ︷
Blocki +Blockj︸ ︷︷ ︸

Numerical + Word or Measure

x Blockk +Blockl︸ ︷︷ ︸
Numerical + Word or Measure

x Blockm︸ ︷︷ ︸
Numerical Block

(1)

3.1.3 Property Classification

In order to compare two properties we also classify the type of the properties, in other
words Property Classification is introduced. To determine the type of a property the
previously determined Value types are used. First, for each unique Key the Values be-
longing to this Key are aggregated in a list. For example, the key ‘Brightness’ will have
multiple observations in the dataset all with different Values. For example, ‘450 Nit’
could be found or ‘350 cd/m’ or other Values with different representations. Obviously,
all these Values together indicate the type of the property. It can also happen that certain
Values have been misspelled or otherwise incorrectly entered. For example, it could be
that for the Key ‘Brightness’ there is a Value which is simply ‘250’. This Value would
be classified as a Quantitative Value, while the property ‘Brightness’ should still be
classified as a Measure type. This is why the type of the property is equal to the type



that has been assigned most frequently to the Values belonging to the unique Key. This
way certain errors in the Values are circumvented.

The whole process of Block Classification, Value Classification, and Property Clas-
sification is shown below in Alg. 1.

Algorithm 1 Property Classification
Initialize list of products with properties, X
Initialize list of aggregated properties, A
for Unique key k ∈ X do

Initialize list of values, V
for prop ∈ X with key k do

Split value v ∈ prop by space
Initialize list of blocks, B
for substring s ∈ v do

Create block b(s)
Determine type of b(s)
Add block b(s) to B

end for
Add list B to value v
Determine type of value v based on B
Add value v ∈ prop to list of values V

end for
Create aggregated property APk with key k and list of values, V
Determine type of aggregated property APk

Add aggregated property APk to A
end for

As can be seen in this Algorithm 1, the different values are first split into a list of
Blocks after which the type of the Blocks is determined. When this is done the type of
the value can be determined based on the Blocks. Finally, a list of aggregated properties
is filled and each aggregate property is classified as being of a certain type based on the
Values.

3.1.4 Property Matching

In the previous subsections we introduced Block Classification, Value Classification,
and Property Classification. These are the building blocks for the property matching
method. In order to match properties, a quantification of the similarity between prop-
erties is needed. To compare properties a Property Score is calculated to represent the
similarity between two properties. Property matching is based on the similarity be-
tween two Keys (Key Score) and the similarity between two Values (Value Score). The
Property Score is a weighted average between these two scores. If the Property Score
exceeds a certain trained threshold, then the two compared properties are considered as
a match.



The Key Score is a combination of two similarity measures; the lexical similarity
and the semantic similarity. To find the lexical similarity, the Jaccard similarity with k-
shingles [10], with k representing the number of considered characters, is used. For this
metric we vary k between 2 and 8. For the semantic similarity between two Keys the
meaning of the words are considered, where WordNet [8] is used as a semantic lexicon.
One can understand that Keys which have the same meaning, but are represented with
different words, should have sets of synonyms (Synsets) in common and thus a high
(semantic) similarity. First, the lemmas (the root of a word) of all the words in both
Keys are retrieved. These lemmas can then be disambiguated and assigned a certain
sense from WordNet using Lesk [6], where the context is defined as the words in the
other keys of the current type of product, i.e., televisions in our case. A word sense
is simply the meaning of a word with a set of synonyms and a certain gloss. When
comparing two Keys with certain synsets assigned to each individual word or compound
words, if this is the case, the Jaccard similarity is used on the glosses of the synsets.
Basically, two sets are created with the combined glosses and the Jaccard similarity
is taken over these two sets of glosses after stopwords1 have been removed. The Key
Score is a weighted average of the lexical similarity score and the semantic similarity
score. This is summarized in Eq. 2.

Key score = (1 − δ) × Lexical Sim. score+ δ × Semantic Sim. score, (2)

where δ is a trained weight.
The Value Score depends on the type of the property. First, we iterate through all

the Values belonging to the unique Keys of the compared properties. Only the Values
that have the same data type as the property are used for the comparison. In case both
properties are of type Qualitative, a lexical similarity metric is used. Here, the same
lexical similarity is used as in the Key Score, i.e., k-shingles Jaccard Similarity. In case
both Values are Boolean, we first calculate the fraction of the number of times ‘Yes’
occurs in the Values. Then, one minus the absolute value of the difference between the
fractions is calculated and this is the Value Score. In case both of the Values are either of
type Quantitative, Measure, or Compound, the Mann-Whitney U test is used [7]. This
test is used to check whether the null hypothesis of a equal distribution of Values is
statistically significant. Whenever both Values are Quantitative, the Numerical blocks
are used in the Mann-Whitney U test. Whenever both Values have been classified as
Measure Values and the Measure blocks are of the same unit, the Mann-Whitney U test
is performed on the Numerical blocks of both Values. When both Values are Compound,
the Numerical blocks are used in the Mann-Whitney U test. The Value score is then
equal to the p-value of the Mann-Whitney U test. Now that the Key and Value Score
have been obtained, the Property Score is a weighted average of the Key and Value
score. This is shown in Eq. 3.

Property score = (1 − θ) ×Key score+ θ × V alue score, (3)

where θ is a trained weight. If this Property Score is higher than a certain trained thresh-
old, the properties are classified as match.

1 The stopwords used can be found at http://www.ranks.nl/stopwords



3.2 Product Duplicate Detection Framework

The product duplicate detection framework consists of 3 heuristics to decrease the num-
ber of product comparisons before doing the actual duplicate detection computations.
After heuristics-based preprocessing, the framework contains 2 steps to match products
that are considered duplicates. First, the so-called shop heuristic assumes that there are
no product duplicates present within the same shop. With this heuristic a lot of un-
necessary comparisons are avoided. The second heuristic is the brand heuristic. This
assumption presumes there are no product duplicates with the same brand. The third
heuristic is the screen size heuristic. The assumption is that there are no product du-
plicates with different screen sizes. The second and third heuristics will be explained
in more detail in Subsubsections 3.2.1 and 3.2.2, respectively. To test whether products
need to be indicated as being duplicates or not, the similarity between product titles and
a list of properties are measured by means of a title-based score (i.e., title score) and
properties-based score (i.e., property score). The first step consists of a score calculated
based on the two product titles of the products that are being compared, as can be found
in Subsubsect. 3.2.3. The second step consists of a score that is calculated based on
the properties of the two products, as can be found in 3.2.4. Last, these steps will be
combined into a so-called ‘product score’ as will be explained in Subsubsect. 3.2.5.

3.2.1 Finding the Brand for All Products

To find the brand of all the products in our dataset we make use of a list of well-known
TV brands and manufacturers from Wikipedia2. This can easily be extended for other
types of products as there are many such lists of manufacturers. First we scan all the
products with their properties and count how often a property Value contains one of the
TV brands from the list. The property Key for which a Value is most often found in the
TV list, is then denoted as the brand key. All brands which are not present in the list, but
belong to the brand key are added to the brand list. When this is done all the products
that do not have the same brand are no longer compared by the algorithm.

3.2.2 Finding the Screen Size for All Products

The third heuristic assumes product duplicates can not have different screen sizes. Al-
most all products comprise the screen size in their product title, where the screen sizes
that are in the titles are represented by some digits followed by the ”(inch) sign and
can easily be extracted from the title. The products that do not contain their screen size
in the product title are included in the comparison. All of the products with different
screen sizes are no longer compared, since it is impossible that two products with dif-
ferent screen sizes are duplicates. This heuristics is only used to decrease the number of
unnecessary comparisons of products and henceforth decrease the time it takes to run
the algorithm.

2 https://en.wikipedia.org/wiki/List_of_television_manufacturers

https://en.wikipedia.org/wiki/List_of_television_manufacturers


3.2.3 Scoring of the Products on Their Titles

The similarity score of compared products based on their titles is found using the lex-
ical similarity between these titles. First both titles are cleaned by removing the brand
and two common words: ‘refurbished’ and ‘open box:’. We consider these words to be
meaningless in comparing products and we found these by analyzing the available data.
Next, the similarity score is calculated using the same lexical similarity measure as for
the property alignment framework, i.e., k-shingles Jaccard Similarity. This final score
represents the title score for the two products that are being compared.

3.2.4 Scoring of the Products on the Values of Their Matching Keys

For the two products that are being compared a score is calculated for all their prop-
erties that either have the same Key or have been matched by our property matching
algorithm. Each pair of matched properties adds value to the total property score. Note,
each score of the separate pairs of matched properties is weighted with a learned weight
dependent on the type of the properties.

If two properties are both of type Qualitative, Boolean, or are non-matching types,
the similarity is calculated using the lexical similarity measure. For two properties that
are both Measure properties, the score is simply 1, if the absolute value of the difference
of the values is smaller than 1. The idea is that small differences in numerical values
do not indicate any dissimilarity, however, we need to take integers into account. For
example, the number of HDMI ports can be 0,1,2,... If one product has 1 port and the
compared product has 2, then this indicates dissimilarity between the two products.
This is why we chose for an absolute difference smaller than 1. If either the type of
measurement differs or the absolute value of the difference between the Values is larger
than 1, the score is -1. For two properties that are both of type Quantitative the score is
again 1 if the absolute value of the difference of the two Values is smaller than 1 and
the score is -1, otherwise. However, if the Values do not solely consist of one numerical
Value, the remainder is also taken into account by using the lexical similarity measure.
The score of the two properties of type Quantitative is then the average of the score of
the numerical part and the score of the non-numerical part. For Compound properties
the score is simply the average of the score of each individual part. Each individual part
is treated as a Quantitative type comparison and is simply scored 1 or -1 dependent on
the absolute value of the difference of the two Values.

At last, the weighted scores are aggregated and the total score is normalized by
dividing by the number of scores added up, such that the total property score ranges
from 0 to 1. This can be seen in Equation 4:

Property score =

∑
pi=pj

score(pi, pj) × wi

Number of times pimatches pj
, (4)

where pi is property i and wi is the weight dependent on the type of the two proper-
ties. This score on the similarity of the matching properties is used later on to indicate
duplicate products.



3.2.5 Final Score Based on Matching Keys and Titles

The final score between two products is a weighted average of the score calculated be-
tween the two titles and the score calculated for all the matched properties. This results
in the following equation:

Product score = (1 − τ) × title score+ τ × property score, (5)

where τ is a trained parameter. If this product score exceeds a certain trained threshold
the products being compared are indicated as product duplicates.

4 Evaluation

In Subsect. 4.1 we describe the process of evaluating our algorithms on property match-
ing and product duplicate detection. Subsect. 4.2 provides the results on the framework
for property matching and Subsect. 4.3 evaluates the obtained results from the product
duplicate detection framework.

4.1 Evaluation Method

The so-called bootstrap method, i.e., random sampling with replacement, is used to
assign measures of accuracy to sample estimates. The number of random samples is
set to 50. Each random sample consisting of numerous TVs represents the training set,
whereas the remainder of the TVs not allocated to the random sample is used as a test
set for validation. Additionally, all the parameters used throughout are trained using
a genetic algorithm. This includes: the two thresholds, the weights in the Key score,
Property Score, and Property Score, and the weights in the Product Score.

When evaluating the algorithm, a ‘match’ for the property matching framework
means two different properties are considered the same and a ‘match’ for the product
duplicate detection framework means two products are considered as duplicates. The
F1-measure, which is the harmonic mean of the precision and recall, is used as the
performance measure. Additionally, the precision and recall themselves are used for
measuring the performance. The precision is how accurate the algorithm is, i.e., the
correct matches divided by the correct matches plus incorrect matches. The recall is an
indication of how much is missed by the algorithm, i.e., the correct matches divided by
the correct matches plus the missed matches, that our algorithm should have indicated.

The evaluation of the property matching framework and of the product duplicate
detection framework are conducted separately. In order to be able to find performance
measures for the algorithms the results of the algorithms should be related to a golden
standard. For the property matching framework this golden standard is based on the so-
called inter annotator agreement (IAA)3. Matches between Keys are added to the golden
standard in case a sufficient percentage of selections by the annotators overlap. In our
case we have used four annotators. If three out of four annotators indicate the same

3 https://corpuslinguisticmethods.wordpress.com/2014/01/15/what-is-inter-annotator-
agreement/



match then it is considered a sufficient match. In our case the four annotators agreed
unanimously in 82.2% of the cases. When two products share the same ModelID, they
are considered as duplicates, which acts as our golden standard. Note that the ModelIDs
are often missing on the Web, which makes our framework interesting for duplicate
detection, but we have used datasets, where the ModelID is present, to evaluate our
algorithm and to be able to train the parameters.

4.2 Property Alignment Framework

In Table 3, the reported F1-measures of the 50 bootstraps for the property matching
framework can be seen. These results are with using the semantic similarity and with
the Jaccard similarity using different k-shingles as the lexical similarity measure. When
using the semantic similarity measure, the results were higher than without, which is
why we only reported these. The algorithm was executed for k varying between 2 and
8. The highest results were achieved for k = 3. For both k = 7 and k = 8, there was
a significant drop of around 5 percentage points in performance for the algorithm. This
is quite an intuitive results, since a lot of the Keys are quite short. This means that for
a high k, the Keys are completely in a single shingle and would have to be identical
otherwise the similarity is 0. This is, obviously, not always the case and this is probably
why the results start dropping around k = 7.

Table 3: The average F1-measure for the property alignment framework. The results
are for k = 2 to k = 8 and with the semantic similarity measure

Metric Mean Std. Dev.
Jaccard 2-shingle 79.69 2.60
Jaccard 3-shingle 81.55 1.96
Jaccard 4-shingle 81.14 1.86
Jaccard 5-shingle 80.26 2.06
Jaccard 6-shingle 78.32 2.48
Jaccard 7-shingle 73.19 2.66
Jaccard 8-shingle 71.13 2.30

4.3 Product Duplicate Detection Framework

In Table 4, the reported F1-measures of the 50 bootstraps of the product duplicate de-
tection framework can be seen. These results have been gained using the semantic sim-
ilarity and with k ranging from 2 to 8. For the product duplicate detection the highest
performance was achieved for k = 4. For the product duplicate detection framework,
the drop in performance is much less severe, when k is increased. This is probably due
to the fact that the titles are often quite long for products. As this is the application
of the lexical similarity measure with the most impact, it seems that a high k has less
negative influence, since the titles are still compared with a lot of shingles instead of a
single shingle.



Table 4: The average F1-measure for the product duplicate detection framework. The
results are for k = 2 to k = 8 and with the semantic similarity measure

Metric Mean Std. Dev.
Jaccard 2-shingle 76.41 2.84
Jaccard 3-shingle 77.88 2.68
Jaccard 4-shingle 78.13 2.65
Jaccard 5-shingle 77.37 2.75
Jaccard 6-shingle 76.65 2.69
Jaccard 7-shingle 76.32 2.52
Jaccard 8-shingle 76.10 2.63

To compare our method to that of MSM, we have executed our algorithm on the
same bootstraps as MSM, with 50 bootstraps in total. The results can be seen in Table 5.
On average our methods scores 30.21% better than the MSM method. The standard
deviations can also be found in Table 5. Since these are paired observations we can
use a paired t-test. Our method significantly outperforms MSM, even with a 99.9%
significance level.

Table 5: This table shows the F1-measures for MSM and our proposed algorithm, as
well as the difference in performance. Our algorithm was executed using the semantic
similarity measure and k = 4-shingles

Method F1-measure Std. Dev. 95% Interval
MSM 47.91 3.05 [41.93 - 53.89]
Our method 78.13 2.65 [72.94 - 83.32]
Difference 30.21 3.65 [23.01 - 37.36]

Regarding the complexity analysis of the developed algorithms, we can state that
the Property Alignment framework has complexity O(p2) where p is the number of
(unique) properties in the dataset, and the Product Duplicate Detection Framework has
complexity O(n2 p̄2) where n is the number of products and p̄ is the average number
of properties per product in the dataset.

5 Conclusion

In this paper we have proposed and implemented an extensive property alignment
framework, which makes use of inferred data types. It has an F1 of 81.55% with the best
performing similarity measure on 50 bootstraps. Additionally, we have significantly im-
proved upon the MSM algorithm with regard to the product duplicate detection. Our
results are on average 30.21% higher, when using the F1-measure. The significance of
the improvement has been tested with a t-test and our results are significantly better
than those of MSM, even with a 99.9% significance level. Moreover, the framework
can easily be adapted to other classes of products.



The first suggestion for future work is to introduce a framework that can handle
different measurement units, such that, for example, properties measured in feet can be
compared to properties measured in meters. Furthermore, our method searches for the
similarity of property pairs based on the similarity of property Keys and property Val-
ues. Additionally, it could prove useful to exploit the similarity of Keys with Values for
finding additional property matches. For example, for the property ‘Parental Control’ in
our dataset the Value was most often ‘V-Chip’, while there is also a property with Key
‘V-Chip’, where the Values are ‘Yes’ or ‘No’.
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