
Single Pattern Generating Heuristics for Pixel
Advertisements

Alex Knoops Victor Boskamp Flavius Frasincar
Erasmus University Rotterdam, the Netherlands

{alex.knoops, victorboskamp}@gmail.com
frasincar@ese.eur.nl

Adam Wojciechowski
Poznan University of Technology, Poland

adam.wojciechowski@put.poznan.pl



Outline

Introduction
Research question

Simulation
Configuration
Size of the banner
Size of the advertisements
Sorting of the advertisements

Heuristic algorithms
Left justified algorithm
Orthogonal algorithm
GRASP algorithm

Analysis

Software

Conclusion

Further reading



Introduction

I Web advertising revenues 2008 in USA $ 23.4 billion
(Interactive Advertising Bureau)

I 22% of $ 23.4 billion is banner advertising

I Pixel advertisement: make use of multibanners for
advertisement

I Multibanner: banner containing small pictures (pixels blocks)



Introduction

I Alex Tew’s Million Dollar Homepage

I 21 years old UK student

I 1000 x 1000 pixels

I $1 for 10,000 blocks of 10 x 10 pixels



Introduction

I Commercial improvement required:
I Static content
I No search capabilities
I Possibly out-of-date information
I Possibly broken links

I Allow content to be dynamically generated

For more information on suggestions for improvements see [1]



Research question

How to arrange rectangular pictures of different sizes and different
prices for advertisement on a banner, in order to maximize revenue?

Problem description

I Two-dimensional, single, orthogonal, knapsack problem

I Offline: the set of advertisements is predefined

I NP-hard

Research objective

I MAXSPACE: Maximize total banner revenue
(more pictures than the banner can accommodate)

I Time constraints for Web application
I Usability
I Server resources



Knapsack problem

Which boxes should be chosen to maximize the amount of money
while still keeping the overall weight under or equal to 15 kg?

Our problem

I Knapsack is replaced by banner

I Boxes are replaced by advertisements

I Weight is replaced by the size of the pictures

I 1 dimension constraint extended to 2 dimensions constraints



Configuration

Setup

I One allocation pattern per simulation cycle
I Simulation parameters

I 9 banner sizes
I 6 maximum ad sizes
I 120 sort orders
I 3 algorithms

I Total 19,440 simulation cycles

I 1.5 to 2 as many advertisements as banner size can
accommodate

I Platform: Intel Core 2 Duo CPU P8400 at 2.26 GHz

Price of advertisements
Uniform distribution between 9 and 11 per advertisement pixel

Price of banner
Fixed value of 4 per (unallocated) banner pixel



Size of the banner

Standard banner sizes

W × H Banner

728× 90 Leader board
234× 60 Half Banner
125× 125 Square Button
120× 600 Skyscraper
336× 280 Large Rectangle

I All banner sizes are also reverted except for the “Square
Button”

I 9 banner sizes



Size of the advertisements

I Minimum width and height 10 pixels

I Maximum width wmax

I Maximum height hmax

. . . as fraction of the banner width and the banner height.

{wmax , hmax} ∈

{{1/5, 1/2}, {1/2, 1/2}, {1/3, 1/3}, {1/5, 1/5}, {1/2, 1/5}, {1, 1}}

I 6 maximum advertisements sizes



Sorting of advertisements

I Ascending and descending
I Primary and secondary attribute

1. Price per advertisement pixel (p)
2. Width (w)
3. Height (h)
4. Total area (w × h)
5. Flatness (w/h)
6. Proportionality ( | log(w/h)| )

I A2
12 − (6 + 6) = 120 sort orders



Heuristic algorithms

Left justified algorithm

1. Start with ordered set of advertisements

2. Select next advertisement from the set of advertisements

3. Begin on the left column

4. Search column top to bottom for free space

5. When free space found, try to place advertisement

6. When there is no space, move to the next column

7. Go to step 2



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Left justified algorithm



Heuristic algorithms

Orthogonal algorithm

1. Start with ordered set of advertisements

2. Select next advertisement from the set of advertisements

3. Begin in the top-left corner

4. Move cursor diagonally down

5. Search from left and top border to cursor position for free
space

6. When free space found, try to place advertisement closest to
top-left corner

7. When there is no space, move cursor further diagonally down

8. Go to step 2



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Orthogonal algorithm



Heuristic algorithms

Greedy Randomized Adaptive Search Procedure (GRASP)

1. Start with ordered set of advertisements

2. Select next advertisement from the set of advertisements

3. Place advertisement in the smallest rectangle
(in a rectangle corner that is closest to a corner of the banner)

4. Divide free space in rectangles in the current rectangle

5. Merge rectangles that yield the largest area

6. Go to step 2

For more info see original paper [2]



Heuristic algorithms

Greedy Randomized Adaptive Search Procedure (GRASP)

1 2

3



Analysis

Profit per banner pixel per algorithm

Algorithm Minimum 1st Quartile Median Mean 3rd Quartile Maximum
Orthogonal 6.079 8.585 9.082 8.887 9.427 10.620
Left justified 5.748 8.155 8.626 8.509 9.042 10.540
GRASP 4.730 6.978 8.044 7.962 9.083 10.600

CPU time per algorithm in seconds

Algorithm Minimum 1st Quartile Median Mean 3rd Quartile Maximum
Orthogonal 0.016040 0.432000 2.632000 3.151000 4.745000 20.49000
Left justified 0.008244 0.156200 0.571000 0.956600 1.203000 17.25000
GRASP 0.003904 0.025610 0.072310 0.071180 0.099090 0.320000



Analysis

Mean profit per pixel grouped by banner size

90 x 728
336 x 280
280 x 336
728 x 90
120 x 600
600 x 120
60 x 234
234 x 60
125 x 125

90 x 728
728 x 90
336 x 280
600 x 120
280 x 336
120 x 600
234 x 60
60 x 234
125 x 125

90 x 728
120 x 600
728 x 90
60 x 234
280 x 336
336 x 280
600 x 120
125 x 125
234 x 60

GRASP

Left justified

Orthogonal

7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2

Profit per pixel



Analysis

Mean profit per pixel grouped by sorting

Total area Desc
Height Desc
Width Desc
Price/pix Desc
Proportionality Desc
Price/pix Asc
Flatness Asc
Flatness Desc
Proportionality Asc
Width Asc
Height Asc
Total area Asc

Height Desc
Width Desc
Total area Desc
Price/pix Desc
Flatness Desc
Proportionality Asc
Flatness Asc
Proportionality Desc
Height Asc
Width Asc
Price/pix Asc
Total area Asc

Width Desc
Total area Desc
Height Desc
Price/pix Desc
Proportionality Desc
Flatness Asc
Flatness Desc
Price/pix Asc
Proportionality Asc
Height Asc
Total area Asc
Width Asc

GRASP

Left justified

Orthogonal

7.0 7.5 8.0 8.5 9.0

Profit per pixel



Software

I Requirements
I Usable results: image + imagemap
I Responsiveness

I Web application demo

I Url: http://headshredder.homelinux.net:8080/java/

Input sample:

1;amazon.png;5;http://www.amazon.com/;

2;bittorrent.png;7;http://www.bittorrent.com/;

3;bitty.png;9;http://www.bitty.com/;

4;blogburst.png;6;http://www.blogburst.com/;

http://headshredder.homelinux.net:8080/java/


Software



Software



Conclusion

Conclusion

I Orthogonal algorithm best for our purpose

I Sorting by descending total area, width, or height

Future work

I Improvement of pattern generating algorithms
I Lookahead step
I Left justified and orthogonal algorithm (efficiency): memorize

previously visited places
I GRASP algorithm (effectiveness): implement the improvement

phase

I Online: advertisements placement requests come on the fly

I Make pixel advertisement banner dynamic (scheduling)



Future work

I Assign different prices to locations (Eyetrack research)



Further reading

[1] Wojciechowski, A.
An Improved Web System for Pixel Advertising.
EC-Web 2006, Springer LNCS 4082 (2006) 232–241

[2] Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.
A GRASP Algorithm for Constrained Two-dimensional
Non-guillotine Cutting Problems.
The Journal of the Operational Research Society 56 (2005)
414–425



Questions

Any questions?


	Outline
	Introduction
	Research question

	Simulation
	Configuration
	Size of the banner
	Size of the advertisements
	Sorting of the advertisements

	Heuristic algorithms
	Left justified algorithm
	Orthogonal algorithm
	GRASP algorithm

	Analysis
	Software
	Conclusion
	Further reading

