Alleviating the Cold-Start Problem 1n
Recommender Systems Using Error-Based Learning

1% Ricardo Laanen
Erasmus University Rotterdam
P.O. Box 1738
NL-3000 DR, Rotterdam, the Netherlands
ricardo.laanen @outlook.com

Abstract—Information overload is increasingly common due
to the overwhelming number of online products and services
offered online. Web shops use recommender systems to provide
personalized suggestions, which are effective for users with
historical data but face challenges with new users due to the cold-
start problem. It is useful to recommend items that offer a small
but representative insight into new users’ preferences, so that
future recommendations can be improved. This research tests two
error-based active learning strategies, which are especially useful
because they are expected to both produce informative training
points as well as reduce the predictive error of the model: the Y-
change method and a modified version of the CV-based method
called the error-change method. These methods rank items for
predicting new user preferences, with proposed conservative,
moderate, and risky versions. Results are compared with a
random selection method and the PopGini method, which was
the top-performing strategy in a research with a similar set-up.
The moderate version of the error-change method significantly
outperforms the other considered methods, while the Y-change
method still outperforms PopGini.

Index Terms—cold-start problem,
error-based learning, active learning

recommender systems,

I. INTRODUCTION

Over the last decades, the explosive growth of the Web
and the increase in available information have transformed
our way of life. Most industries have moved their business
online, giving us access to a global marketplace and a vast
reservoir of knowledge with just a few clicks. This potential for
connectivity and discovery has introduced various side effects
for Web users.

The sheer volume and diversity of available information and
products can overwhelm users [1]. This problem, known as
information overload, makes it difficult to process, prioritize,
or understand the vast amount of information at their disposal,
limiting their ability to navigate resources and make decisions.

Recommender systems suggest recommendations based on
users’ personal information [2]. They are crucial in filtering
abundant online information and have become essential tools
in e-commerce (e.g., Web shops), social media (e.g., Insta-
gram), and entertainment (e.g., Netflix). By using known user
preferences, historical data, and advanced machine learning
techniques, these systems guide users toward content that
aligns with their interests and needs.

2" Flavius Frasincar
Erasmus University Rotterdam
P.O. Box 1738
NL-3000 DR, Rotterdam, the Netherlands
frasincar@ese.eur.nl

The basic principle of recommender systems is that de-
pendencies between user-centric and item-centric data can be
learned from an evaluation matrix [3]. During the advent of
large-scale e-commerce, information overload was addressed
using adaptable systems [4]. Adaptable systems allow users to
modify them, while adaptive systems can autonomously adjust
themselves.

A key issue with recommender systems is the cold-start
problem, which occurs when a new user or item is introduced.
The lack of historical interaction data means that the user
or item profile does not provide enough information to the
system, leading to poor performance [5]. Consequently, the
system may provide inaccurate or inadequate recommenda-
tions, as traditional methods rely on historical data to make
suggestions.

The cold-start problem leads to various inefficiencies. New
users may disengage due to initial inaccuracies [6], and face
an overwhelming number of options that could lead them to
abandon the site entirely. Likewise, new items struggle to gain
visibility, leading to under-utilization of potentially superior
recommendations. Addressing the cold-start problem in rec-
ommender systems is crucial for improving user satisfaction
and recommendation accuracy.

This paper aims to address the cold-start problem for new
users in recommender systems by proposing new strategies
for recommending items without historical data. Latent factor
models based on matrix factorization have greatly improved
accuracy and flexibility [7]. This technique describes both
items and users using factors inferred from past interactions.
When a user’s factors align with an item’s factors, that item
is likely a good recommendation [7]. Besides improving
accuracy, matrix factorization is advantageous because it does
not rely solely on explicit feedback. While explicit data require
users to actively provide their preferences, implicit data reflect
user preferences through their behavior [7].

Active learning strategies can help mitigate the cold-start
problem by guiding the model’s sampling process based on
historical data [8]. In [9] uncertainty-reduction, ensemble-
based, and error-reduction strategies are proposed.

Uncertainty-reduction methods aim to select training points
that reduce uncertainty in some aspects such as values [9].
However, these methods may lead to the system becoming

confident about incorrect user preferences, reducing accuracy.

Ensemble-based methods combine multiple models, which
can be beneficial as different models might fit different users
better [9]. The downside is that such models are computation-
ally expensive and harder to interpret.

Error-based active learning focuses on reducing predictive
error by selecting training points based on their correlation
with error reduction [9]. This approach not only yields useful
training points but also lowers the model’s overall predictive
error.

In [9] the differences between instance-based and model-
based methods are also highlighted. Instance-based methods
select training points based on prediction changes, while
model-based methods use fluctuations in model parameters
[9]. Instance-based methods do not require knowledge of the
model’s underlying parameters.

This paper examines whether instance-based and error-
based active learning methods can surpass existing strategies,
specifically using implicit user data. Conservative, moderate,
and risky versions are explored and results are compared
with uncertainty-reduction methods from [10], tested on the
same implicit data. The Python code used in this research
is freely available at https://github.com/rmlaanen/RS-error-
based-learning.

II. METHODOLOGY

In this section the notation used in the remaining parts of the
paper is described and the Single Value Decomposition (SVD)
techniques used to construct the prediction model are shown.
The last subsection presents the error-based active learning
strategies that are used to rank the candidate items for the
recommender system.

A. Notation

In the dataset, the number of users is represented as V. The
complete set of users is given by U = {uy,uz,...,un}. The
number of items is represented as M. The complete set of
items is given by I = {i1,ia,...,in}.

An interaction of a user u with an item ¢ is represented
as a,;. The full user-item interaction matrix is given by A €
RY-M * As previously mentioned, the value of the interactions
is binary, which means either ‘0’ or ‘1’. Therefore, the domain
of ay; is given by a,; € {0,1}.

A candidate item is represented as i,. The hypothetical cold
user introduced to the system is ug. When a candidate item is
evaluated as part of the Y-change and error-based methods, a
training point is added to the training set with item ¢,, user
ug, and rating y € Y.

The function of the preferences of users (unknown to the
system) is given as f(u,?), and the approximated function of
user preferences is given as f (u, 7). The generalization error
G(f(u,i)) is a measure of predictive accuracy of the esti-
mated user preferences. The goal of the error-based learning
techniques is to find a candidate item ¢, which minimizes
the active learning criterion G(i,). G(i,) is a measure of
predictive accuracy after a candidate item ¢, rated by a
hypothetical cold user, user wug, is added to the training set.

B. Matrix Factorization

Matrix factorization maps both user-item interaction matrix
A € RN'M (0 a joint latent space of dimensionality n, where
user-item interactions are modeled as inner products of this
joint latent space [7]. The user latent factor matrix, p; € R"”,
can be regarded as the preference of every user towards each
latent factor, while the item latent factor matrix, ¢; € R™, can
be regarded as the resemblance of every item to each latent
factor [10].

The product of the matrixes, qiTpu, captures the overall
interest of user u in the characteristics of item ¢ [7]. The
prediction of the interaction value can be estimated using:

(D

The mapping of each item and user to the latent factor
vectors ¢; and p, is usually achieved through SVD [7].
However, SVD has difficulties dealing with a sparse interaction
matrix [10], such as the one used in this research. One possible
solution proposed in [13] is imputation, however, in [7] it is
suggested this is computationally expensive and may distort
the data, instead it is proposed to directly model the observed
ratings only. Through a regularized model, overfitting can
be alleviated [14]. The coefficients are chosen so that they
minimize the regularized squared error:

~ T
Qyi = G5 Pu

min > (s —a/pu) A (lal +llpal®) @)

P (u,i)E€R
Here, R denotes the set of user-item interactions a,; C A
included in the training set. The constant A is determined using
cross-validation and controls the amount of regularization. The
predicted interaction value a,; can not be predicted using the
scalar product ¢'p, on its own. A bias term is included in
accordance with [7]:

byi = p+ b, +b; 3)

Here, 11 denotes the overall average rating. b,, and b; denote
the observed deviations of user v and item ¢ from the average
[7]. Equation 1 must now include the bias term:

Oy = QiTpu + p+ by + b; 4

The predicted interaction value consists of four components:
the user-item interaction, the global average, the user bias, and
the item bias [7]. Equation 2 must now be updated with the
bias term as well:

. T . . . _2
min > (awi — @ pu— p— by —by)
(u,i)€R

- (el + lpal®) -)

In [10] the inclusion of a second regularization parameter
for the bias b,; is proposed, as this makes the model more

flexible. Thus, the regularized squared error is minimized as
follows:

. T 2
min Z (awi — @ pu— 11— by — b;)
(u,i)ER
+ A1 - (b7 +07)
e (lall® + llpal®) (6)

In this equation, A; controls the extent of regularization on
the bias term as proposed by [10], and A5 controls the extent
of regularization on the latent factors as proposed in [7]. The
predictions need to be converted into a binary variable, for
which the following logistical function can be used [10]:

- 1
ui = [1 + ea:p(—&ui)] M

Here, a;, represents the predicted binary value of the user-
item interaction, as the hard brackets round the enclosed
function to the nearest integer (either O or 1).

Equation 6 is solved by numerical methods. In [7] two
methods are suggested: Stochastic Gradient Descent (SGD)
and Alternating Least Squares (ALS). SGD is used in this
paper instead of ALS, since the amount of computations per
iteration is lower for SGD [10]. For each training point, the
model computes a,; and the associated prediction error with
the following equation [7]:

eniet = aus — s 8)

ui

Consequently, b,, b;, p, and g; are updated using the
learning parameters ; and o [10]:

bu by + 71 - (€wi — 71 - bu) ©)
by <—b; + 71 (ewi — 71 - bi) (10)
Pu Put V2 (€ui* i — V2" Pu) (11D
@i < ¢ + 72 (€ui " Pu— Y2 €) (12)

C. Employed Strategies

For a cold user, the user vector is empty, as a cold user
has not interacted with any items, preventing personalized
recommendations [10]. To provide such recommendations,
the preferences of user uy towards several items need to be
determined, requiring the true values of {ay1,@y2,..., @y;},
where j is finite and 7 < M [10].

The goal is to establish ug’s preferences for these j items
to achieve the best personalized recommendations [10]. Three
variants of two error-based active learning strategies are em-
ployed to rank items, with the highest-ranking items presented
to cold users. These strategies are non-personalized, as they
do not use user-specific information and require each user to
rate the same set of items [8]. Results are compared against a
random strategy to assess whether the rankings are superior to
random selection and against the PopGini strategy, identified
by [10] as the top-performing active learning method.

a) Random Strategy: The first strategy is the random
strategy, which selects items randomly to create the item
ranking. It is anticipated to be outperformed by all other active
learning methods [10] and serves as a baseline to evaluate
improvements from other strategies.

b) Y-Change Strategy: In [11] the output estimate change
(Y-change) model is proposed, under the assumption that
changes in output estimates generally lead to increased ac-
curacy. An item that causes significant changes in output
estimates is deemed useful [9]. To apply this strategy, the
user-item interaction matrix A, is divided into a training set
T with 70% of interactions and a test set A7*' with the
remaining 30%. Cold user interactions are retained in the
matrix to avoid computational expense and to ensure sufficient
data are available. The impact on item ranking is expected to
be minimal. The Y-change generalization error of a candidate
item, G Ay (i), measures the change in output estimates of
ATest when the candidate item i, is added to the training
set T'. The change in output estimates is calculated using the
following equation:

GAY(ix) - - Z

yeY,(u,i)c ATest

ﬁ(fT(u’ i)» fTU(im,uo,y) (ua Z))

(13)
Here, Gay (i) represents the generalization error computed
using the Y-change method for the candidate item ¢,. To
determine which candidate item results in the greatest change
in output estimates, all possible ratings y € Y (in this paper, 0
or 1) are considered [9]. The generalization error is calculated
using a loss function L. fT(u, i) denotes the estimated rating
for an item 7 by user u using the learned function from the
current training set 7. fTU(im,uo,y)(uv i) denotes the estimated
rating for item ¢ by user w using the learned function from
the training set T' U (i, ug,y), where a training point with
the candidate item <¢,, hypothetical cold user ID wg, and
hypothetical rating y has been added to 7. This training point
represents a hypothetical rating by a cold user for the candidate
item. The new estimates are compared against those from
the original training set 7', addressing the question: “How
much would our predictions change if a cold user ug rated
candidate item ¢, with rating y?”” Equation 13 can be rewritten
as follows:

GAY(ix) - (fT(U, Z) - .fTU(iz,uo,y) (uv Z))2
(14)

In this equation, the loss function has been replaced by
the squared error function, which is the squared difference
between the previous estimates learned from fT and the new
estimates learned from fTU(im,uo,y)-

Here, G Ay (i) calculates the generalization error using all
possible ratings, and adds these together. However, the three
proposed variants of the Y-change method each require a
modification to the equation to arrive at the final respective
generalization errors. The conservative variant Gay _c (iz)

2.

YEY,(u,i)€ AT

uses the ratings which minimize the change in output esti-
mates. The moderate variant G'ay (i) takes the average
of all ratings, while the risky variant Gay _pg(iz) uses the
ratings which maximize the changes in output estimates:

Gay-oliz) ==min > (fr(uwi)=Ffrog,um (1)
v (u,i)EAT"St’
(15)
Gay - m(iz) =
1 A .
v S (Fr(wd) = Frog wew (s 1)* (16)

y€Y,(u,i)€ATest

>

(u,i)€ATest

Gay_pliz) = —
Ay —r(iz) max

17
c) Error-Change Strategy: The second strategy is the
error-change method, based on the CV-based method in-
troduced by [12], which is a strategy based on predictive
accuracy. The candidate item is selected based on how well
it could allow for approximating ratings which are in the
test set [9]. A new training point with item ¢,, user wuo,
and rating y is added to the training set 7', after which an
approximation fATU(iz,uo,y) (u,7)) of the user preferences is
obtained, which accuracy is evaluated using the test set A7¢s*
[9]. The candidate item’s usefulness is measured using the
following equation:

Gapliz) = [/(auiafTU(iz,uo,y) (u,i)) (18)

>

YEY,(ui)eAT s

Here, Gap (iy) is the generalization error determined using
the error-change method for the candidate item ¢,. The gen-
eralization error is calculated using a loss function L. a,,; are
the known ratings. fTU(iI,uO,y)(u, i) are the estimated ratings
for an item when the candidate training point with item i,
user ug, and the hypothetical rating y has been added to the
training set 7'. Equation 18 can be rewritten as follows:

>

y€Y,(u,i)cATest

(aui - fTU(iI,uo,y) (ua Z))2 (19)

GAE(%) =

In this equation, the loss function has been replaced by
the squared error function, which is the squared difference
betvgeen the actual ratings a,,; and the new estimates learned
bY Ui u0,y) (U, ©)-

Here, GAE(iz) calculates the error-change generalization
error using every potential rating. However, similar to the Y-
change method, there are three proposed variants of the error-
change method. The conservative variant CAT’AE,C(Z'E) uses
the ratings which maximize the errors. The moderate variant
Gay_ M (i) takes the average error of all ratings, while the
risky variant Gap_p(i,) uses the ratings which minimize

(fT(uv Z.)7JETLJ(im,uo,y)(uv 2))2

the errors of the estimates. This is reflected in the following
equations:

CA?AE_C(%) = max
(uyi)EATest

(aui - fTU(iI,uo,y) (’U,, Z))Q

max)

(20)
Gap—um(iz) =
1 R
v Z (Aui = U0 u0.9) (u,9))* (1)

YEY, (u,i)€ ATest

Gap—r(iz) = J;Ig} Z (@i = FTU(i0 u0,y) (U5 9))?

(ui)€ATest
(22)

To perform item ranking using the error-change method, a
similar set-up is used as for the Y-change method. For every
possible combination of candidate item i, € I, and rating
y € Y, a single interaction is added to the train set and the
ratings of the user-item interactions in the test set are predicted
using the updated train set. Last, these are compared against
the real interactions. This will answer the question: “What is
the change in predictive error if a cold user evaluated candidate
item ¢, with rating y?” for every candidate item and possible
rating.

d) PopGini Strategy: The third strategy is the PopGini
strategy, which is a combination of the popularity strategy and
the Gini strategy [10].

The popularity strategy ranks the most popular items, which
are those items that have been most interacted with in the
dataset, as the highest [10]. The Gini strategy uses the Gini
impurity measure to determine the rank of items [10]. The
Gini impurity measure for a candidate item ¢, is given by the
following formula:

Gini(iz) =1— Y (p(yliz))?

yey

(23)

Here, p(yli,) is the relative frequency of positive evalua-
tions (where y = 1) and negative evaluations (where y = 0).

The Gini impurity measure interprets the ratio of positive
and negative interactions, where an item with a high Gini
impurity measure would be useful for dividing a set of (cold)
users into groups that will either like or dislike a certain item
[10]. The PopGini strategy is a combination of the popularity
and Gini impurity measures. The PopGini score of a candidate
item i, is computed as follows:

PopGini(iz) = wp xlogyg(Aus,) +wg x (1— Z (p(yliz))?)

y€e0,1
(24)
Here, w,, and w, are weights for the popularity and Gini
scores, respectively, which can be adjusted. To further control
for outliers, the logarithm with base 10 is taken of the
interaction frequency, given as A,;_, or the total number of
interactions of all users with item 7.

III. EVALUATION

To evaluate the proposed strategies, this research uses a
dataset from De Bijenkorf, a Dutch luxury department store
with a Web shop that handles over 100,000 visitors daily
and €250,000 in turnover from over 200,000 items [10].
The dataset comprises 2,563,878 user-product interactions,
collected from July 14th, 2015 to July 13th, 2016. Interactions
are binary: a value of ‘1’ indicates a purchase or a higher
number of purchases than returns, while ‘0’ indicates an equal
number of purchases and returns. A value of ‘1’ signifies a
positive rating, and ‘0’ a negative rating. Data is implicit as
users do not provide explicit ratings. To manage computational
demands, 100,000 interactions were randomly sampled from
the full dataset, resulting in 73,446 unique users and 55,529
items.

A. Set-Up

The strategies in this research are evaluated using the Root
Mean Square Error (RMSE). The RMSE metric is chosen
because it is widely used in the evaluation of models in
the field of recommender systems and will allow for easy
interpretation and comparison. The RMSE is calculated using
the following formula:

yy)®

Z(u,i)eT(aui -
‘Itest|

RMSE = 25)

Here, a,; represents the actual rating of item ¢ by user u,
while a;, denotes the predicted rating of item ¢ by user w.
The term |I*¢5¢| denotes the total number of items in the test
set. A lower RMSE indicates better model performance, as it
reflects more accurate predictions.

The evaluation follows a similar experimental setup to the
study by [10]. 25% of users were randomly selected to act
as cold users, a choice informed by previous studies [10].
Cold users were shown 10, 25, 50, or 100 items to assess
the strategies across different numbers of items.

The user-item interactions of the remaining 75% of regular
users are used for training. Additionally, interactions of cold
users with items in the item set under consideration (10, 25,
50, and 100 items) are included in the training set, while
interactions with items not in this set are part of the test set.

Cold users who have not interacted with at least one item in
the item set are excluded from both the training and test sets.
This exclusion ensures that recommendations are not made to
users who have no opinions on any of the considered items,
preventing non-personalized recommendations.

This approach to creating the train and test sets simulates
the scenario where recommendations are made to a cold user,
relying only on interactions from previous users and the cold
user’s feedback on the items under consideration. Note that
this split is distinct from the splits used to compute item
rankings for the Y-change and error-change methods.

B. Model Parameters

The recommender system model was optimized through a
random grid search, considering 100 combinations of model
parameters, including the number of factors, bias regulariza-
tion (A1), and latent factor regularization (As).

The number of factors varied across 10, 20, 50, 100, 200,
500, and 1000. Regularization terms ranged from 1 x 107! to
1 x 108 in decreasing orders of magnitude. Each parameter
combination was evaluated using 5-fold cross-validation.

The optimal parameters were found to be 100 factors,
A1 = 1 x 1078 for bias regularization, and Ay = 1 x 107°
for latent factor regularization. These parameters were used in
the recommender system model, implemented in Python with
Scikit Surprise [15]. The weights for the PopGini strategy, wy,
and wy, were set at 0.9 and 1.0, respectively, as per [10].

C. Results

TABLE I
RMSE FOR DIFFERENT NUMBERS OF SHOWN ITEMS PER STRATEGY

Strategy Number of Items Mean ‘
10 25 50 100
Random 0.482 | 0.450 | 0.446 | 0.446 | 0.456
Conservative Y-change 0.417 | 0.439 | 0.424 | 0444 | 0.431
Moderate Y-change 0.402 | 0.430 | 0.441 | 0441 | 0.428
Risky Y-change 0.450 | 0.435 | 0.451 | 0.450 | 0.447
Conservative error-change | 0.401 | 0.422 | 0.439 | 0.441 | 0423
Moderate error-change 0.352 | 0.385 | 0.401 | 0.422 | 0.390
Risky error-change 0.426 | 0.445 | 0.453 | 0.430 | 0.438
PopGini 0.453 | 0.449 | 0.448 | 0.441 | 0.448
045 . Ranking Strategy
P a p— —# Random

=& Conservative Y-change
=+ WModerate Y-change
Risky Y-change

—% Conservative error-change

RMSE

0.40 Moderate error-change
Risky error-change

PopGini

10 25

50 100
MNumber of tems Shown

Fig. 1.
strategy

Visualization of RMSE for different numbers of shown items per

Table 1 shows the RMSE for each tested strategy in com-
bination with the number of items which were shown.

The results are visualized for easy comparison in Figure
1. The RMSE decreases for most strategies as the number
of items shown increases. The moderate error-change strategy
(highlighted in bold) outperforms the other strategies for every
number of shown items. All other error-change variants and
all variants of the Y-change method yield worse results, but
outperform both the PopGini and random strategy.

The moderate error-change achieves the lowest average
RMSE in all scenarios, especially with fewer items, which
is crucial for cold users. This suggests that items improving
prediction accuracy are valuable for preference elicitation,
aligning with the idea that a candidate item enhancing ac-
curacy is useful.

The moderate variants perform best, while risky variants
are less effective. A balanced approach is ideal; evaluating all
possible ratings for a candidate item is more effective than
using overly optimistic ratings, which often result in higher
errors.

The Y-change strategy’s relatively poor performance com-
pared to error-change indicates that large prediction changes
are not always accurate. The Y-change method may highlight
items that cause significant but inaccurate changes, whereas
the error-change method, which focuses on accuracy improve-
ments, performs better. Despite its initial effectiveness with a
small number of items, the Y-change method shows limited
improvement as the number of items increases, sometimes
performing worse than random selection.

IV. CONCLUSION

Recommender systems address information overload and
personalized recommendations are now standard for online
businesses. SVD algorithms with matrix factorization are
crucial for predicting preferences but struggle with sparse user-
item matrices and the cold-user problem.

This research evaluates two error-based active learning
strategies from [9] that rank candidate items for cold users to
gather preferences. The aim is to select the most informative
training points to efficiently determine cold user preferences.
These strategies are compared with the PopGini strategy,
identified as the best in [10], and a random strategy to assess
improvement over random selection. The study is novel in
applying these strategies to implicit user data and introduces
two new variants of the Y-change and error-change methods.

The results indicate that the moderate error-change strategy
outperforms all other strategies in terms of RMSE, with the
conservative error-change strategy and Y-change strategy also
performing well. Overall, the error-change strategy is the best,
followed by the Y-change strategy.

A. Limitations

Many other active learning strategies remain to be evaluated
under similar conditions to identify the optimal approach.
[9] highlights additional error-based strategies like parameter
change-based, variance-based, and image restoration-based
methods. Unlike the instance-based Y-change and error-change
methods, these are model-based. Other potential strategies
include uncertainty-reduction and ensemble-based methods
[9].

Another limitation of the current research methodology is
noted by [10]. In this setup, the same items are shown to all
cold users, without considering individual user feedback after
the items are displayed.

B. Suggestions for Future Research

The results indicate that both the error-change and Y-change
strategies could surpass established methods like PopGini. Fu-
ture research should explore further improving these methods.

Both Y-change and error-change strategies assume that
items providing substantial information are useful. The model
could be enhanced by evaluating cold users’ feedback after
each candidate item is shown. Ideally, the most highly ranked
items should improve predictions significantly, so incorporat-
ing cold users’ opinions as each item is rated might further
optimize recommendations.

Combining Y-change and error-change into a single method
could address their weaknesses. Y-change focuses on large
prediction changes but ignores their accuracy impact, while
error-change considers overall accuracy improvement without
assessing how much information is gained. A hybrid method
could integrate both approaches, weighting each strategy’s
generalization error to create a ranking that balances accuracy
and informational impact.

REFERENCES

[1] B. Schwartz, The Paradox of Choice: Why More Is Less, Harper
Perennial, 2004.

[2] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender
Systems Handbook, Springer, 2011.

[3] C.C. Aggarwal, Recommender Systems: The Textbook, Springer, 2016.

[4] T. W. Malone, K. A. Grant, and F. Turbak, “The information lens: An
intelligent system for information sharing in organizations,” SIGCHI
Bulletin, vol. 17, no. 4, 1986, pp. 1-8.

[5] N. T. Nguyen, M. Rakowski, M. Rusin, J. Sobecki, and L. C. Jain,
“Hybrid filtering methods applied in Web-based movie recommenda-
tion system,” in Proceedings of the 11th International Conference on
Knowledge-Based and Intelligent Information & Engineering Systems
(KES-2007), Springer, 2007, pp. 206-213.

[6] J. Bobadilla, F. Ortega, A. Hernando, and J. Bernal, “Generalization
of recommender systems: Collaborative filtering extended to groups
of users and restricted to groups of items,” Expert Systems With
Applications, vol. 39, no. 1, 2012, pp. 172-186.

[7]1 Y. Koren, R. E. Bell, and C. Volinsky, “Matrix factorization techniques
for recommender systems,” IEEE Computer, vol. 42, no. 8, 2009, pp.
30-37.

[8] M. Elahi, F. Ricci, and N. Rubens, “A survey of active learning in col-
laborative filtering recommender systems,” Computer Science Review,
vol. 20, no. 2, 2016, pp. 29-50.

[91 N. Rubens, D. Kaplan, and M. Sugiyama, “Active learning in recom-
mender systems,” in Recommender Systems Handbook, F. Ricci, L.
Rokach, B. Shapira, and P. B. Kantor, Eds. Springer, 2010, pp. 735-
767.

[10] T. Geurts and F. Frasincar, “Addressing the cold user problem for
model-based recommender systems,” in Proceedings of the International
Conference on Web Intelligence (WI-2017), ACM, 2017, pp. 745-752.

[11] N. Rubens, R. Tomioka, and M. Sugiyama, “Output divergence criterion
for active learning in collaborative settings,” IPSJ Online Transactions,
vol. 2, 2009, pp. 240-249.

[12] S. A. Danziger, J. Zeng, Y. Wang, R. K. Brachmann, and R. G. Lathrop,
“Choosing where to look next in a mutation sequence space: Active
learning of informative pS3 cancer rescue mutants,” Bioinformatics, vol.
23, no. 13, 2007, pp. 104-114.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, “Application
of dimensionality reduction in recommender systems: A case study,”
Technical report, University of Minnesota, 2000.

[14] A. Paterek, “Improving regularized singular value decomposition for
collaborative filtering,” in Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD-2007), ACM, 2007, pp. 39-42.

[15] N. Hug, “Surprise: A Python library for recommender systems,” Journal
of Open Source Software, vol. 5, no. 52, 2020, pp. 2174.

