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Abstract—We propose a novel data augmentation model for
text using all available data through weak supervision. To
improve generalization, recent work in the field uses BERT and
masked language modeling to conditionally augment data. These
models involve a small, high-quality labeled dataset, but omit the
abundance of unlabeled data which is likely to be present if one
considers a model in the first place. Weak supervision methods
make use of the vastness of unlabeled data, but largely omit the
available ground truth labels. We combine data augmentation
and weak supervision techniques into a holistic method, consist-
ing of 4 training phases and 2 inference phases, to efficiently train
an end-to-end model when only a small amount of annotated
data is available. We outperform a conditional augmentation
benchmark for the SST-2 task by 1.5, QQP task by 4.4, and
QNLI task by 3.0 absolute accuracy percentage points, and show
that data augmentation is also effective for natural language
understanding tasks, such as QQP and QNLI.

Index Terms—data augmentation, weakly supervised learning,
weak supervision, BERT, natural language processing

I. INTRODUCTION

In Natural Language Processing, task-specific vocabulary
construction, text cleaning, and model architectures have been
rendered mostly obsolete by transformer models [1], such as
BERT [2]. However, as model architectures have grown larger,
so has the amount of data required to train them. The limiting
factor has become the collection of high-quality labels for the
training data, which is often expensive to obtain [3]. We focus
on the common situation in which there is only a small dataset
with high-quality labels, but an abundance of unlabeled data.
We present novel techniques to extract more information out
of all data available, by proposing weak supervision tasks to
improve augmentation using the unlabeled data.

In data augmentation, high-quality labeled samples are aug-
mented to create new samples while entirely omitting the large
unlabeled dataset. Data augmentation increases invariance by
feature-averaging, and the variance of the augmented samples
acts as a regularization term that penalizes model complexity
[4]. In contrast, weak supervision uses external knowledge
bases, related datasets, or rules of thumb to generate low-
quality label estimates for a large collection of unlabeled data.
High-quality labeled data - if available - is typically used for
validation only. Both methods aim to solve a different part of
the same problem, but are rarely found together in academic
research.

In this work, we propose to combine data augmentation
and weak supervision, using span extraction, into a holistic
methodology that - to the best of our knowledge - is a new
contribution to the field. We present the methodology as Data
Augmentation using Weak Supervision On Natural Language
(DAWSON). The output of DAWSON is a dataset, which is a
combination of both the original and augmented texts. The aim
is to improve the augmentations by adding additional training
steps to obtain a better augmentation model (AM).

The paper is structured as follows: in Section II, we give
a brief introduction to existing methods. In Section III, we
present DAWSON. In Section IV, an ablation study is done.
Our conclusion is drawn in Section V. The code is available
at https://github.com/timellemeet/dawson.

II. BACKGROUND

In this section, we give an introduction to the currently used
methods that DAWSON is based on. As a running example,
we use a sentiment classification task for the negative movie
review:

“one relentlessly depressing situation”.

All operations are on token level, however, in the examples,
they are demonstrated on word level.

A. Data Augmentation

In computer vision, augmentations are often trivial and
intuitive. An image can be flipped, cropped, or manipulated
otherwise, and still agreeably show the same object. The same
does not hold for text.

To preserve semantically valid sentences, most methods
inject or replace words to augment the text. The challenge
becomes choosing the optimal words that maintain label qual-
ity, while introducing enough diversity for the augmentation
to improve generalization. Crucially, the word choice needs to
be conditional on the label of the sample. Replacing with a
word that is semantically feasible, but ignores the label, can
harm the meaning of the sentence, in our example:

“one relentlessly brilliant situation”,

would completely negate the sentiment of the review. BERT
is normally fine-tuned on a different type of downstream task,
such as classification or regression, using a masked language



modeling (MLM) task for pre-training only. In MLM, a hidden
word in a sequence needs to be predicted, thus also making
BERT an ideal candidate for word replacement augmentation.
Kumar et al. [5] found that the most effective and simple
approach is to train the model using the MLM task on the
labeled dataset and to simply prepend the label in natural form
as follows:

“negative one relentlessly [MASK] situation”,

where the label is “negative”. In this manner, during training,
replacement candidates are conditioned on the label.

B. Weak Supervision

Weak supervision aims to obtain low-quality labels for the
unlabeled data when no high-quality labels are available. The
obtained dataset is used for further pre-training, or even as the
only training set. Methods such as Snorkel [6] make use of a
combination of expert-defined heuristics, existing models, and
any other sources of information to estimate training labels
without any access to ground truth data. Snorkel is called
a generative model. Next, a discriminative model is trained,
using the generative model predictions as labels, with a noise-
aware loss function to appropriately weight each observa-
tion. Ideally, the discriminative model generalizes beyond the
heuristics of the generative model. For example, a heuristic
might be a list of negative words that contains the word
“depressing” but misses the word “hopeless”. When using
BERT as the discriminative model, both words have similar
meaning from pre-training and will also correctly classify:

“one relentlessly hopeless situation”.

Snorkel yields probabilistic labels rather than binary pre-
dictions, meaning that each class is assigned a probability.
Snorkel aims to have the probabilities best reflect the con-
fidence in the labels, rather than minimizing cross-entropy.
Labels with less confidence have a lower probability, acting
as sample weights. This way, labels can have heterogeneous
noise levels. In our research, we assume that a Snorkel-like
weak supervision method - with weighted confidence - is used.

C. Span Extraction

In question-answering tasks, a question and a sequence
of text containing the answer are given. The model has to
highlight only the part of the sequence that is the answer to
the question. Such a task is categorized as a span extraction
(SE) problem. The problem is formulated as a classification
problem over all tokens in the sequence. Typically, there are
two classification heads; one to predict the first token in the
span, and the other for the last token. Keskar et al. [7] propose
a method to reformulate any task as a span extraction problem
by posing a natural question, such that a wider variety of tasks
and datasets can be used for transfer learning. In case of the
example, the classification task is to determine whether the
review is positive or negative:

“positive
0

or
0

negative
1

?
0

one
0

relentlessly
0

depressing
0

situation
0

”.

The labels are shown below the tokens. As the review is
negative, it is the only token with its label equal to 1.

III. DAWSON
The AM is improved by pre-training on weakly-labeled data

and making the augmentation heterogeneous. The procedure
requires a large, weakly-labeled dataset and a small, high-
quality labeled dataset. The high-quality dataset holds the
observations which are to be augmented, whereas the weakly-
labeled dataset serves to improve the AM with pre-training.
Figure 1 shows the flow of the procedure. The tasks include
SpanBERT [8] - an MLM task - to train semantically sound
word replacement, (weakly) supervised span-extractive clas-
sification tasks to train the co-occurrence relations between
words and labels, and heterogeneous augmentation.

Step 4
(Main Model)

SpanBERT
Training

Step 1

Span-Extractive
Pre-Training

Step 2

Target
Analysis

Step 3.1
(inference)Span-Extractive

Fine-Tuning

Step 3.2

Augmentation
Training

Heterogeneous
Augmentation

Step 5
(inference)

Analysis
Only

All Data Weakly Labeled Expert Labeled

Figure 1: Overview of the steps in the methodology. The
arrows represent the flow of the AM, with as exception the
target analysis, where the complexity and attention of the
expert-labeled data is passed.

Note that for each step, the training or inference is done on
all applicable data at once, the steps are not executed per
observation. For each step, the task-specific head of BERT is
changed, and the improvement of the AM comes from further
pre-training of the weights in the BERT layer only.

In contrast to the benchmark [5], which only uses augmenta-
tion training (step 4), and augmentation without target analysis
(step 5 simplified), the weakly supervised dataset and the span
extraction formulation make it possible to have more domain-
specific pre-training and improved conditional, heterogeneous



augmentation. In the next sections, we describe each step in
detail. After the augmented dataset is obtained, it is combined
with the original labeled dataset to form the final training set
for an end-model of choice.

A. SpanBERT MLM

The MLM task is included to both further improve domain-
specific augmentation and classification performance. In pre-
training, BERT predicts the masked tokens in a sequence.
From a sequence of tokens, 15% are randomly selected. Of
the selected tokens, 80% are masked, 10% are kept unchanged,
and 10% are replaced by a random token. The unchanged set is
kept such that the original tokens for the selection remain the
most probable. In BERT, MLM is used to learn embeddings
of the corpus and the actual performance is not of importance.
However, the MLM performance does influence the quality of
the augmentations, although there still may be multiple valid
candidate words.

SpanBERT [8] extends the MLM task by masking spans
of tokens, and introducing a Span Boundary Objective (SBO).
Joshi et al. [8] found that SpanBERT is a more challenging
pre-training task that not only improves MLM, but also yields
greater gains downstream, especially for span extraction tasks,
wherefore we include it. Again, 15% of the tokens are masked.
However, the words are selected by an iterative process.
First, a span length is sampled from a geometric distribution
l ∼ Geo(p). Next, a starting point is uniformly chosen. For
example, if the drawn span length and drawn starting point
are both 2, the running example is masked as:

“one [MASK] [MASK] situation”.

This is repeated until 15% of the tokens have been masked.
Similar to BERT, 80% is actually masked, one half of the
remainder is kept unchanged, while the other half is replaced
randomly.

The Span Boundary Objective is a second task in addition
to the MLM task. The goal is again to predict masked tokens,
but using only the non-masked tokens at the boundaries of a
span. The SBO forces the start-, and end-token embeddings
of a span to summarize the content of the masked span.

An alternative embedding is calculated for the masked token
using two dense layers, layer normalization [9], and GELU
activations [10]. The first dense layer takes the concatenation
of the start-, end-, and positional token as input, reducing the
vector back to the normal hidden size. The second dense layer
is part of the token classifier, as for MLM. The probability
density and loss function are identical to the MLM task. The
final SpanBERT loss is the sum of both the MLM and SBO
task losses. As no labels are required, the SpanBERT task is
done on the full corpus, which includes both the labeled and
unlabeled datasets.

In our implementation, since we mask within individual
observations rather than a continuous text, we calculate an
observation-specific geometric mean for the span length, such
that, on average, 15% of an observation is masked. Further-
more, we only have one span per sequence for simplicity, and

never mask boundary tokens. During training, the dataset is
repeated 10 times, such that the same observation is included
with 10 different spans. In this manner, we adjust for only
having a single span and make sure that there is variety in
how the model must predict masks in each version of an
observation, forcing it to generalize more. Note that we include
the task but not the trained model from Joshi et al. [8].

B. Span-Extractive Training

The classification task is included to condition the words
in a sequence on the label. As a result, the label actively
influences the masked tokens during conditional augmentation.
Since the label is placed at the start of the sequence during
augmentation, it should be during the training of the AM as
well. A regular classification architecture would not condition
the words on the textual names of the classes. Furthermore, the
AM is trained on the weakly-labeled dataset, thus, the labels
contain noise and prepending the incorrect label is harmful.
Similar to weak supervision, probabilistic labels are required
to incorporate the confidence of a sample while conditioning
the labels. We propose to pre-train the AM using a weakly-
supervised span extraction formulation. Both the positive and
negative labels are prepended as words, and the objective is
to select the span containing the correct label.

We diverge from Keskar et al. [7] by using a noise-aware
loss function, not posing a natural question, and selecting a
single token only instead of a span where possible, in order
to best mirror the task at the augmentation stage and to
reduce complexity. Only the labels are included, omitting the
tokens needed to phrase a natural question. Suppose that in the
example, the weak supervision estimates with 70% probability
that the review is negative, the training input is:

“positive
0.3

negative
0.7

one
0

relentlessly
0

depressing
0

situation
0

”,

with the labels shown below their respective tokens. Unlike
the original formulation, the order of the textual labels is also
randomly shuffled for each observation, such that the model is
forced to train on the actual label rather than token position.

In span extraction tasks, there are two trainable parameter
vectors, one for the start-, and end-token. However, most
simple natural labels - such as positive and negative in our
example - will be present in the vocabulary, and not be split-
up in multiple tokens. If this is the case, we propose to simplify
the span extraction task to only one trainable parameter vector,
s. The probability of token xi being selected is computed as:

pSE(y = xi) =
es·xi∑N
j=1 e

s·xj

. (1)

In case the natural label consists of multiple tokens, the
implementation remains a standard span extraction task, where
two trainable vectors are used to predict the start-, and end-
token of the label.

We add a noise-aware loss function to make use of the noise
information of the weak supervision. Ground truth labels are
unknown, but from the weak supervision phase, probabilistic



labels are obtained. Let ỹ be the weak supervision label for a
sample. We extend the labels by including all other tokens:

pSE(y = xi) =

{
pWS(ỹ = xi) if xi is label
0 if xi is not label

(2)

The confidence is incorporated in the loss function to act as a
sample weight using cross-entropy:

LSE = −
N∑
i=1

pSE(y = xi) log pSE(y = xi). (3)

First, the model is pre-trained on the large, weakly-labeled
data, after which the model is fine-tuned on the expert-labeled
data. Although the datasets could be merged for a single
training step, they are kept separate, such that a target analysis
of the labeled data can be done, as well as to ensure that the
final training is on the highest quality data only. For both pre-
training and fine-tuning, the model is trained for at most 10
epochs, but with an early stopping rule using the development
dataset to prevent over-fitting.

C. Target Analysis

Samples may have different levels of complexities, and the
extent to which a sample can be augmented while preserving
label quality varies. By including the weakly supervised train-
ing step, a classifier for the task is obtained, for which the
labeled data is out-of-sample. By comparing the predictions
for the labeled data and the ground truth labels, an error
es is obtained, which gives an estimate for the difficulty of
classifying a sample s.

The relative importance of the tokens is estimated using
attention. In the AM (BERT-Base) there are 12 layers and,
for each layer, 12 attention heads. An attention head yields
a probability density for every token, over all tokens in the
sentence. The probabilities act as weights that are used when
calculating the embedding for the token. We take the attentions
from the last layer only, and compute the average over all
heads and tokens to obtain a final vector or probability density,
which is considered as the weights of importance of the tokens.

D. Augmentation Training

The AM is fine-tuned on the labeled data itself using the
augmentation task. First, the dataset is duplicated 10 times,
tokens are randomly masked, and the label prepended. The
duplication is used in order to train different masks for the
same sentence, as in Section III-A. The model is trained for up
to 15 epochs, but again with early stopping using a validation
dataset to prevent over-fitting. The initial learning rate is set
to 2ϵ− 5. The MLM training is the standard BERT task, but
with the label prepended as token. Note that the span masking
strategy and SBO are omitted, and the masking is uniform,
instead of using the attention from the target analysis, to train
a generalized AM.

E. Heterogenous Augmentation

Using the target analysis, information about each observa-
tion is incorporated in which tokens are masked, and how they
are replaced. Also, the probabilities of the replacement tokens
can be used to estimate probabilistic labels. We consider the
observation-specific augmentation heterogeneous.

The level of augmentation can be controlled in two direc-
tions: the amount of augmented tokens, and the likelihood
of the replacement candidates. Again, the amount of masked
tokens is kept fixed at 15%. During inference, the masked
positions are sampled using the attention vector from the
target analysis instead of a uniform distribution. This selection
strategy is more efficient, as the augmented tokens are more
important to the classifier.

The AM computes a distribution of probabilities for the
token candidates of a masked position. If a sample is complex
and already hard to classify, more probable tokens are selected
to preserve label quality. Only the expert-labeled dataset is
used for both training and augmentation.

1) Candidate Selection
Depending on the prediction error for a sample during the

target analysis, more or less token-diversity is permitted. A
task-specific upper bound (UB) and lower bound (LB) are set
empirically for the probability range of eligible replacement
tokens. Using the prediction error es for observation s, an
observation-specific lower bound LBs is used:

LBs = LB + (UB − LB)es. (4)

The tokens in the vocabulary are sorted by probability for
each observation, and a token is discarded if the cumulative
probability up to and including that token is out-of-bounds.
The leftover candidate tokens are re-weighted, using a softmax
mapping based on their original probabilities. The resulting
probabilities are used to sample the final selected token. By
setting the upper and lower bound on the cumulative distribu-
tion of candidate tokens, tokens that are not diverse enough
or are too unlikely can be omitted. Thus, the overall level of
noise can be controlled. As the AM improves through (pre-
)training, the probability of suitable tokens increases, while
the probability for the rest of the vocabulary decreases, thus
allowing for more diverse sampling while preserving quality.

2) Probabilistic Labels
In contrast to Kumar et al. [5], we make use of probabilistic

labels as in weak supervision. Normally, the original binary
labels are used. The augmented samples introduce uncertainty
and noise, and, as the degree of augmentation is known,
an estimation of the reliability of a label can be made.
In determining a formulation for the probabilistic label, the
following considerations have been made:

• The probabilistic label is a function of token probabilities;
• Adding a token mask should always decrease confidence;
• The label should be roughly in the neighborhood of the

lowest token probability;
• The probability of a candidate token is relative to all other

tokens in the vocabulary. As the vocabulary is large -



and many tokens may be feasible - even the largest token
probabilities are typically below 10%;

• The label of the observation may never flip, thus, the
confidence is at least 50%.

The probability for the augmented observation label y∗ is
calculated using the average probability for the tokens in the
sentence, that is:

Pr(y∗ = y) =

max

(
N −K +

∑K
k=1 pMLM (mk = x̂πk

)

N
, 0.50

)
,

(5)

where x̂πk
is the selected replacement token for mask mk

at position πk, pMLM (mk = x̂πk
) is the MLM probability of

x̂πk
, and N and K are the total and masked number of tokens,

respectively.

IV. EXPERIMENTS

The methodology is evaluated on multiple types of binary
classification tasks. An ablation study is done to understand
the contribution of the different components to the overall
performance.

A. Benchmark Tasks

We make use of a selection of the GLUE tasks [11] which
form the benchmark for leading language models. We consider
three tasks: (1) the Stanford Sentiment Treebank (SST-2, 12),
a binary sentiment classification task on movie reviews; (2)
the Quora Question Pairs (QQP) task [13], consisting of pairs
of questions that are classified as semantically equivalent or
not; and (3) the Question-answering NLI (QNLI) task, a
reformulation from SQuAD [14] where it needs to be evaluated
if a question is answered by a randomly paired paragraph.

1) Expert-Labeled Dataset Selection
The selected datasets are large and therefore suitable can-

didates for the weak supervision approach, resembling most
practical use cases. Not all test sets are publicly available,
for consistency we fully omit these. To simulate having a
small dataset with high-quality labels, for each iteration of an
experiment, two small datasets are sampled from the training
data; one serving as the small expert-labeled dataset and
the other as the test set for the experiment. The remaining
training data is treated as if it is unlabeled and a weak
supervision method has generated weak labels. The original
development sets are used for early stopping, if indicated in
the methodology, to ensure a comparable optimization as to
any other GLUE based research. For SST-2 and QNLI, the
sampled datasets consist of 1% of the original training data,
and 0.5% for QQP, with the exact split shown in Table I.

2) Simulating Weak Supervision
To simulate weak supervision, the true labels are assigned a

probability. The Beta distribution is selected due to its domain
of [0, 1] and flexible shape, allowing for different types of
noise settings. We use the Matthews Correlation Coefficient
(MCC), proposed by Matthews [15], to evaluate the quality
of the generated noisy labels. To simulate a real-life weak

Task
Weakly
Labeled

Expert
Labeled
/ Test

Dev.
Mean
Token
Length

SST-2 66,002 673 872 13.3
QQP 360,211 1,819 40,430 30.4
QNLI 102,648 1,047 5,463 50.0

Table I: The average number of observations and sequence
length in tokens for the experimental datasets.

supervision scenario for complex tasks, we empirically set µ =
0.57 and σ2 = 0.05.

SST-2 QQP QNLI

MCC 0.244 0.235 0.242
Accuracy 0.623 0.622 0.621

Table II: Metrics of the simulated weak supervision method
compared to the ground truth.

As can be seen in Table II, for all datasets, the noisy labels
are better than random, and thus contain information that a
discriminative model can generalize. However, the labels are
of low enough quality to simulate a weak supervision method.

B. Evaluation Criteria

For a direct comparison to the state-of-the-art, we follow
Kumar et al. [5] in the use of intrinsic and extrinsic evaluation
methods.

The intrinsic evaluation consists of semantic fidelity and
generated diversity of the augmented samples. The semantic
fidelity is determined by training a BERT-Base model on all
labeled data originally available, with true labels, and use of its
predictions as ground truth for the augmented data to estimate
if the labels are still valid. The generated diversity is measured
using the type-token ratio [16], which is the number of unique
predicted tokens (types) divided by all predicted tokens in the
dataset.

The extrinsic evaluation is the end-to-end performance -
using any classifier - for a regular classification task trained
on the combined dataset (original+augmented). We compare
two classifiers for the extrinsic evaluation: a BERT-Base model
(Base) - only pre-trained by Devlin et al. [2] - and the AM
itself, to make use of the transfer learning from the domain-
specific tasks. Both models have the same architecture with a
newly initialized classification head, the only difference is the
starting point of the weights of the BERT layer before fine-
tuning. Note that this implies that the AM will train on the
samples it has augmented.

C. Ablation Study

To understand which aspects are an improvement over direct
data augmentation, an ablation study of the training tasks
is done. The benchmark is the conditional augmentation as



proposed by Kumar et al. [5]. We implement our own version
to control the experimental settings and obtain results for
the new datasets. The heterogeneous augmentation addition
expands the benchmark augmentation with the attention-based
sampling of the mask positions and error analysis-based token
selection. The probabilistic labels, however, are added sepa-
rately. The extrinsic metrics are chosen to be in line with the
GLUE benchmark. For the extrinsic evaluation, the models
are trained with an unbounded number of epochs, but with
early stopping until the validation accuracy decreases. This
strategy prevents the difference between results from possibly
being attributed to the number of training epochs, as every
configuration is trained based on the same criteria for optimal
performance. The maximum sequence length for all tasks is
set to 200 tokens, which is 4 times the longest mean token
length (which is of QNLI). The UB and LB are empirically
set to 1.0 and 0.6, respectively. The experiments are repeated
15 times with different expert-labeled datasets.

D. Implementation Details

The starting point for the augmentation model is a BERT-
Base uncased, with L = 12 transformer blocks, H = 768
hidden size, and A = 12 attention heads, resulting in 110M
parameters. This configuration is chosen as it is the most
commonly used in the field, mainly because the larger version
of BERT does not fit on most GPUs and smaller versions
have only been recently introduced. We make use of the
implementation from Huggingface1, a library providing a
common interface for all transformer-based models. We use
the original model by Devlin et al. [2], pre-trained on the
BookCorpus dataset and the English version of Wikipedia.
Our implementation is in TensorFlow. We make use of lay-
erwise learning rates by using Layer-wise Adaptive Moments
(LAMB) as the optimizer. Proposed by You et al. [17], LAMB
is originally intended to speed up pre-training by allowing for
larger batch sizes without loss in performance. However, You
et al. [17] found that LAMB also yields excellent performance
for smaller batch sizes and is typically more consistent than
the often used Adam with Weight Decay [18].

During training, we make use of smart batching. Atten-
tion is computed for every token in relation to every other
token. Thus, including more tokens increases the number of
relations exponentially. Within a batch, all sequences need to
be padded to the same length such that they can be fitted
into an non-ragged tensor. However, batches do not have
to be the same shape. By first sorting the dataset based
on string length, and shuffling locally within a range of 3-
6 batch sizes as a rolling window to maintain randomness,
the maximum sequence length per batch is optimized and
computation time is decreased. After the batches have been
created, they are shuffled for the training order. Smart batching
is especially useful in a dataset with strongly heterogeneous
sequence lengths, such as movie reviews, where one can leave
a single word or an extensive essay. Decreasing the overall

1https://huggingface.co/transformers/

maximum sequence length results in a loss of information,
while keeping the maximum sequence length larger results in
many unnecessary computation for short reviews.

E. Results

The results of the ablation study are given in Table III. When
the AM is used as the downstream classifier, it has only been
pre-trained up to the included steps. For all three tasks, the
best-performing configuration is the proposed methodology,
sometimes excluding the probabilistic labels, and using the
augmentation model as the final classifier. The benefit from
weak supervision and transfer learning is proportional to
the amount of unlabeled data available. The heterogeneous
augmentation and probabilistic labels provide a small addi-
tional gain. Not using any augmentation, for all tasks, results
in large variance in extrinsic accuracies across experiments,
showing the need for robustness from augmentation. The
AM classifier outperforms the Base classifier, providing an
additional performance gain from transfer learning without any
extra work.

SST-2 is the only task shared with the other research in the
field. Data augmentation is mostly tested on topic classification
or sentiment analysis. To the best of our knowledge, this is
the first paper to apply textual augmentation to any natural
language understanding task. One could argue that, intuitively,
a topic classification task is easier to augment. However, to our
surprise, both the QQP and QNLI tasks have greater absolute
performance improvements than SST-2. This might be related
to the spread in performance between using the small sampled
dataset and when all data is available, or simply because
QQP and QNLI have more data. When comparing the relative
performance improvements, SST-2 still has the smallest gain,
but the results are closer. The sampled dataset for SST-2 has
the smallest number of observations, but the baseline without
augmentation is 83%, compared to 76% for QQP and 71%
for QNLI. Thus, SST-2 is clearly an easier task for a BERT
classifier. Therefore, even though SST-2 intuitively is more
suited for augmentation, there is less performance to be gained
from it, similarly to how a less complex model (e.g. logistic
regression) will be closer to a BERT model in performance
for a simple task than for a complex task.

For QNLI, both the benchmark and best type-token ratios
are larger than for either the SST-2 or QQP tasks. QQP has
more unlabeled data, but a smaller average number of tokens
in the sequences (Table I). We hypothesize that the better type-
token ratio is explained by the larger mean token length. Recall
that, in our implementation, SpanBERT uses span lengths
drawn from a geometric distribution, with as mean 15% of
the number of tokens of that specific observation. Therefore,
the span lengths in QNLI are larger on average (7.5 tokens)
than the spans in QQP (4.6 tokens), and thus more challenging.
This would also explain the smaller type-token ratio for SST-
2, where the average span length is only 2.0 tokens. However,
the difference might also be explained simply by the difference
in corpora, and their similarity to the datasets used by for the
initial pre-training.



Task SST-2 QQP QNLI

Extrinsic Classifier Base AM Base AM Base AM

No Augmentation 83.3 (7.8) 75.6 (3.5) 70.6 (11.1)
Benchmark Aug. 86.0 (2.3) 85.2 (2.4) 77.0 (1.3) 76.4 (1.3) 76.6 (1.7) 77.0 (1.1)
+ SpEx Fine-Tuning 86.2 (1.5) 85.2 (1.6) 76.6 (1.0) 76.1 (1.3) 76.0 (2.1) 77.1 (1.4)
+ SpEx Pre-Training 86.4 (1.4) 86.4 (2.1) 77.1 (1.0) 80.8 (1.5) 75.9 (1.9) 79.2 (1.4)
+ SpanBERT Training 87.2 (1.3) 87.1 (1.6) 76.9 (1.3) 81.2 (1.4) 76.0 (2.0) 79.5 (1.1)
+ Heterogenous Aug. 86.9 (1.5) 87.3 (1.5) 77.4 (1.3) 81.4 (1.2) 77.2 (1.4) 79.6 (1.3)
+ Probabilistic Labels 86.6 (1.1) 87.5 (1.7) 77.6 (1.5) 81.3 (1.2) 76.3 (1.5) 79.6 (1.5)
All Data 93.4 (1.4) 88.6 (1.5) 88.7 (1.0)

Intrinsic Metric TTR SF TTR SF TTR SF

Benchmark Aug. 9.2 (0.7) 87.3 (1.0) 13.4 (1.5) 86.7 (1.6) 13.8 (0.5) 84.8 (0.8)
+ SpEx Fine-Tuning 9.0 (0.4) 86.8 (1.2) 13.0 (1.8) 86.3 (1.6) 13.1 (0.5) 83.9 (0.6)
+ SpEx Pre-Training 8.9 (0.7) 87.8 (1.3) 11.7 (2.1) 85.9 (1.6) 12.7 (0.5) 84.1 (1.2)
+ SpanBERT Training 14.1 (0.7) 89.0 (1.6) 14.2 (0.8) 87.4 (0.8) 15.6 (0.4) 85.5 (1.0)
+ Heterogenous Aug. 14.3 (0.7) 89.0 (1.4) 14.3 (0.9) 87.5 (0.8) 15.5 (0.3) 85.8 (1.0)
+ Probabilistic Labels 14.2 (0.8) 89.6 (1.3) 14.3 (0.9) 87.3 (0.9) 15.5 (0.4) 85.6 (0.9)

Table III: Results of the ablation study. All measures are reported as the mean and standard deviation over the 15 repeated
experiments, multiplied by 100. The extrinsic results are reported in accuracy for the Base and AM classifier as downstream
model. For the intrinsic evaluation, the Type-Token Ratio (TTR) and Semantic Fidelity (SF) are reported.

V. CONCLUSION

We proposed a new methodology for data augmentation,
using weak supervision and span extraction. Multiple methods
of transfer learning and pre-training are combined that were
previously considered disjoint solutions to the same problem.
We outperform the benchmark for the SST-2 task by 1.5,
QQP task by 4.4, and QNLI task by 3.0 absolute accuracy
points. This shows that the advantages of weak supervision
and span extraction extend beyond the direct benefits, as they
also allow for the further improvement of data augmentation.
Additionally, the downstream model improves further when
it has been pre-trained using DAWSON, and we show that
data augmentation is not only possible for natural language
understanding, but more effective than for a simpler task. As
DAWSON does not require any domain-specific adjustment,
we argue that in an era where unlabeled data is abundant,
computational resources are cheap and Moore’s law is still
valid, combining weak supervision and data augmentation is
a scalable and effective way to improve downstream models.

There are numerous variations on our experiments that could
be done to further understand the methodology, and may be
suited to future research. These variations may potentially
include techniques such as the use of different textual la-
bels or different levels of simulated noise. In addition, we
plan to explore the consequences of other formulations for
probabilistic labels, as well as the use of a real-life weak
supervision method instead of the current simulation-based
weak supervision method.
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