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ABSTRACT
Aspect-Based Sentiment Classification (ABSC) is a subfield of senti-
ment analysis concerned with classifying sentiment attributed to
pre-identified aspects. A problem in ABSC nowadays is the limited
availability of labeled data for certain domains. This study aims
to improve sentiment classification accuracy for these domains
where labeled data is scarce. Our proposed approach is to apply
cross-domain fine-tuning to a state-of-the-art deep learning method
designed for ABSC: LCR-Rot-hop++. For this purpose, we initially
train the model on a domain that has a lot of labeled data available
and consecutively fine-tune the upper layers with training data of
the target domain. The performance of the fine-tuning method is
evaluated relative to a model that is trained from scratch for each
target domain. For the initial training, restaurant review data is
used. For the fine-tuning and from-scratch training we use review
data for laptops, books, hotels, and electronics. Our results show
that when comparing the fine-tuning with the from-scratch method
(for the same training set), the fine-tuning method on average out-
performs the from-scratch method when the training set is small
for all considered domains and is considerably faster.

CCS CONCEPTS
• Information systems → Sentiment analysis; Information ex-
traction; Web mining.
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1 INTRODUCTION
The digital age has brought ever-growing amounts of information
to our fingertips. Thanks to the desire for sharing impressions
and ideas, the Web is now evolving to be a forum for consumers
to evaluate services and products based on feedback from other
like-minded people. Consumers are not the only ones that benefit
from this mutual content sharing, this user-generated Web-based
content is also getting increasing attention as a source of data for
its cross-domain business applications.

The increased amount of user-generated data gave rise to an-
other problem, people now face an excess of opinionated texts that
have to be filtered to get the desired information. This spawned in-
terest in automatic approaches that provide summaries of people’s
sentiments. One of these approaches is sentiment analysis. This
method’s main purpose is to detect sentiment and opinions from
text, and combine this information into useful and quickly inter-
pretable results for businesses and consumers. Sentiment analysis
can be a useful technique when the quantity of data is too large for
companies to process manually.

A subfield of sentiment analysis is Aspect-Based Sentiment Anal-
ysis (ABSA) [13], which involves two steps. First, the aspects of
a certain target object are identified, which is called Aspect De-
termination (AD). Secondly, the sentiment polarity, i.e., positive,
negative, or neutral, with respect to the previously found aspects is
determined, which is called Aspect-Based Sentiment Classification
(ABSC). In this work, we will focus on ABSC.

Some recent methods used in ABSC are hybrid methods [3].
These methods make use of a combination of ontology reason-
ing followed up by a neural network. [17] uses this approach in
the Ont+LCR-Rot-hop method. We use the LCR-Rot-hop++ hybrid
method discussed in [15] because this method showed superior
performance to LCR-Rot-hop and solutions based on non-hybrid
approaches (i.e., either ontology reasoning or machine learning).

A problem inABSC nowadays is the limited availability of labeled
data in certain domains. To combat this, we will focus on the cross-
domain application of ABSC. We aim to explore how to adapt the
neural network such that it works on other domains than it was
initially trained for. This is a subfield of transfer learning called
domain adaptation. In this work, we investigate how we can adapt
a state-of-the-art deep learning solution for cross-domain ABSC.
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Specifically, we initially train the entire LCR-Rot-hop++ model,
as proposed in [15], on a domain where much labeled data is avail-
able. Based on the results of diagnostic classification for LCR-Rot-
hop [10], we proceed by freezing the weights of the lower lay-
ers of the model, i.e., the Left-Center-Right (LCR) Bi-directional
Long-Short-Term-Memory (Bi-LSTM) modules, and fine-tune the
remaining layers on the target domain. For this last step we take
multiple subsets of the available data, to test how our approach
performs when there is only limited labeled data available for the
target domain.

To test our method we use two benchmark methods. First, we
train LCR-Rot-hop++ on the target domain and subsequently test
it on that same domain. This allows us to compare performance of
fine-tuning to that of from-scratch training. As a lower bound, we
train LCR-Rot-hop++ on a different domain than the target domain
and simply test it on the target domain.

We expect the fine-tuning method to perform relatively well for
small subsets of target domain data. As the size of the training set
increases, however, we expect the accuracy gain from fine-tuning
to shrink up to a point where eventually the from-scratch method
outperforms the fine-tuning (for large training sets). This hypoth-
esis is based on the fact that the lower layers that are frozen in
fine-tuning mainly encode general language characteristics. There-
fore, we would expect this pattern to occur because the lower layers
might still capture some (but not a lot of) domain-specific informa-
tion. A major benefit of freezing certain layers during fine-tuning
is that it can substantially speed up model training, which is useful
if we want to quickly adapt our model to other domains.

All source code and data used in this paper can be found at
https://github.com/stefanvanberkum/CD-ABSC. The remainder of
this paper is structured as follows. Section 2 discusses the academic
literature related to our research. Section 3 briefly discusses the data
used in this paper. Section 4 briefly outlines the original LCR-Rot-
hop++ and describes our fine-tuning extension as well as how its
performance is evaluated. Section 5 reports the obtained results and
discusses their interpretation. Last, Sect. 6 summarizes the results
and discusses some suggestions for future work.

2 RELATEDWORK
Sentiment polarity analysis is a natural language processing tech-
nique used to detect positive, negative, or neutral sentiments in
subjective information. The method allows for automatic analysis
of customer feedback. We can distinguish sentiments on the word,
sentence, or document level. Because of the ever-rising amount of
reviews on the Web, there is a high demand for machine learning
methods that correctly and efficiently classify sentiments.

2.1 ABSC
In our paper, we focus on a subfield of sentiment analysis, namely
ABSC. In ABSC, a sentiment towards a particular aspect or feature
is determined. For example, in the sentence “the display of the
laptop is of poor quality", a negative sentiment towards the display
of the laptop is expressed, not directly towards the laptop itself.
Hence, display is one aspect of sentence-level sentiment.

In [13] an in-depth overview of ABSC is given, in addition to
recent progress in the field. Two distinctive methods that are men-
tioned are the knowledge-based approach and themachine learning-
based approach. In the former, domain-specific information is used
to determine which words express sentiment. The ontology-based
technique proposed in [14] has a competitive performance of over
80% accuracy for SemEval 2015 and SemEval 2016 data. Other
knowledge-based methods for sentiment classification are based
on Part-of-Speech (PoS) tagging and domain vocabulary [7]. Ma-
chine learning methods also achieved success in ABSC recently.
Using advanced representation ability, neural networks can auto-
matically generate meaningful representations for the aspects and
their contexts, and obtained outstanding results. In our research,
we will use one of such methods proposed in [15], which showed
results superior to many state-of-the-art solutions when paired
with ontology reasoning. This method (Ont+LCR-Rot-hop++) is
an extension of the Ont+LCR-Rot-hop as proposed in [17], which
is in turn an extension of the LCR separated neural network with
Rotatory attention (LCR-Rot) approach given in [18]. As our pro-
posed method mainly pertains to the machine learning part of the
Ont+LCR-Rot-hop++, we will focus on just the LCR-Rot-hop++ part
in our analysis (i.e., without the ontology).

2.2 Cross-Domain Sentiment Classification
Cross-domain sentiment classification is a hot topic in the sentiment
analysis field of research. The goal is to generalize a classifier that is
trained on the source domain to a different target domain. Acquiring
labeled training data is a costly process, especially for sentiment
classification, which makes it difficult to train machine learning
models for new tasks. By using cross-domain methods, less costly
labeled training data is needed to develop new machine learning
tasks.

An approach proposed in [5] is Domain Adversarial Neural
Networks (DANN), this model trains on features that are domain-
invariant using adversarial training. The goal is to embed domain
adaptation in the process of deep learning, so that the final senti-
ment classification decision is made based on features that are both
discriminative and domain-invariant. The proposed architecture is
a standard feed-forward neural network with one additional layer,
the gradient reversal layer. This last layer reverses the gradient
(maximizes the loss) for domain classification during backpropa-
gation, such that the domain classifier is not able to predict the
domain of the encoded representation.

Another approach that uses adversarial training is an end-to-end
Adversarial Memory Network (AMN) [9]. Its goal is to improve
the interpretability of deep neural networks. Similarly to [5], the
authors use a framework where they jointly train two classifiers,
one for sentiment classification and one for domain classification.
The proposed AMN is able to capture the pivots, which are words
important for sentiment classification and shared in both domains,
by using an attention mechanism.

Yet another solution for cross-domain sentiment classification
is to mask domain specific words to train the neural network on
domain-invariant features. This type of pre-training is also incor-
porated into the language representation model BERT, as proposed
in [4].

https://github.com/stefanvanberkum/CD-ABSC
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Other methods focus on freezing the weights of the lower layers
of the neural network and fine-tuning the rest of the model using
labeled information from the target domain. [8] freezes the first
few layers of pre-trained language models BERT and RoBERTa, and
fine-tunes the other layers. The authors find that only a fourth of
the final layers need to be fine-tuned to achieve 90% of the original
accuracy. In our paper we will use a similar freezing approach
applied to the neural network part of Ont+LCR-Rot-hop++ in [15],
as this method shows superior performance to Ont+LCR-Rot-hop
and solutions based on non-hybrid approaches.

2.3 Diagnostics
Many state-of-the-art ABSC methods produce so-called black box
models, where the sentiments towards a certain aspect are difficult
to interpret. [10] provides an explanation of modern neural atten-
tion models, using a technique called diagnostic classification. The
paper proposes explanation models for the LCR-Rot-hop model
proposed in [17]. The authors conclude that lower parts of the LCR-
Rot-hop model encode sentiment value and PoS, whereas the upper
layers determine the presence of a relation with the aspect and the
sentiment value of words related to the aspect.

Taking this into account, we opt to freeze the weights and biases
of the lower parts of LCR-Rot-hop++ in our proposed fine-tuning
approach, namely the LCR Bi-LSTMs. We only fine-tune the model
with target-domain data for the remaining layers.

3 DATA
In this paper, we use five different datasets for a total of seven
different domains. We use the Semantic Evaluation (SemEval) 2014
dataset [12] for the restaurant and laptop domain, and SemEval
2015 dataset [11] for the hotel domain. For the book domain we use
the Amazon/LibraryThing 2018 dataset [1] and for the electronics
domain the Customer Reviews Dataset (CRD) 2004 [6]. SemEval
datasets are widely used in research papers concerning the subject
of cross-domain sentiment analysis [12, 15, 17]. These particular
datasets are convenient since we can easily compare our findings
with the findings in related literature. We use the SemEval 2014
restaurant review data to initially train the LCR-Rot-hop++ neural
network by [15] for subsequent fine-tuning, this domain is discussed
in Subsect. 3.1. For every other (target) domain, we take a given
number of training subsets of increasing size, where aspect-based
opinions (sentences that contain sentiment regarding a particular
aspect) are cumulatively included. In other words, each training set
consists of the previous (smaller) training set and the new set of
opinions. These target domains are discussed in Subsect. 3.2.

3.1 Original Domain
The data used to train the neural network for subsequent fine-
tuning consists of restaurant reviews from the SemEval 2014 dataset
[12]. Every review sentence contains one or more opinions. In the
sentences, an opinion about a certain aspect of the restaurant is
given, and these aspects are divided into aspect categories. It is
important to note that in this work the aspects are provided in each
dataset. For each given aspect we aim to predict the polarity of the
sentiment associated with it in the review sentence. The polarity
regarding the aspects can either be positive, neutral, or negative.

<sentence id="1206">

<text>The place is small and cramped but the food

is fantastic.

</text>

<aspectTerms>

<aspectTerm term="place" polarity="negative"

from="4" to="9"/>

<aspectTerm term="food" polarity="positive"

from="39" to="43"/>

</aspectTerms>

<aspectCategories>

<aspectCategory category="ambience" polarity="

negative"/>

<aspectCategory category="food" polarity="

positive"/>

</aspectCategories>

</sentence>

Figure 1: Example of sentence in a restaurant review in the
XML markup language.

The review sentences for this dataset are presented in the XML
markup language. Figure 1 shows an example of such a sentence.
This particular sentence consists of two opinions. For each opin-
ion, a polarity is included which indicates whether the writer of
the review is positive, neutral, or negative towards that particular
aspect. The sentence in Fig. 1 illustrates that it is possible to have
more than one opinion in a sentence. In case that we have more
than one sentiment type (e.g., positive and negative) associated to
the very same aspect, we are dealing with a conflicting sentiment.
A sentence could also contain implicit aspects. In this work, we do
not consider conflicting sentiment and implicit aspects, and remove
all such opinions from the dataset, because the machine learning
model is not able to cope with such cases. For the restaurant train-
ing dataset, we have 3693 opinions. 2.5% of the opinions have a
conflicting sentiment and are therefore removed. No opinions are
removed because of implicit aspects in this dataset.

Below the sentence in Fig. 1, the aspects and the corresponding
polarities in that sentence are identified. In this sentence the aspects
are “place" and “food", and they have a negative and positive polarity,
respectively. Next to the polarity, the position of the aspect in the
sentence is given, but these are not considered in this work. The last
few lines in the XML code give the aspect category of the aspects in
the sentence and their corresponding polarities towards that aspect
category, which are also not considered in this work.

3.2 Target Domains
In this section we describe the datasets of the target domains that
we consider in this work: laptops, books, hotels, and electronics.
These sets are all split into a train and test set using approximately
80% and 20% of the opinions, respectively. The first domain that
is considered during the analysis is laptops. This set can be split
into nine training subsets that each increase in size by 250 opinions.
That is, the first subset contains the first 250 opinions, and each



WI-IAT ’21, December 14–17, 2021, ESSENDON, VIC, Australia Stefan van Berkum, Sophia van Megen, Max Savelkoul, Pim Weterman, and Flavius Frasincar

of the following subsets contains the previous subset and the next
250 opinions. For consistency, the other large dataset (books) is
also split into nine training subsets. Each of the smaller datasets
(hotels and electronics) is, however, split into ten training subsets
for convenient data representation.

3.2.1 Laptops. The laptop reviews data is also from the SemEval
2014 dataset [12] and is structured in a similar way as the restaurant
data.We vary the amount of opinions from the laptop review dataset
used to fine-tune the neural network. The 2250 opinions used for
training are split into nine training subsets of increasing size. The
test set consists of 701 opinions. 2.0% of the opinions in the laptop
dataset have a conflicting sentiment and are therefore removed. No
opinions in this domain are removed because of implicit aspects.

3.2.2 Books. Another domain used for fine-tuning and to test the
cross-domain performance is the book domain. The book review
data is fromAmazon/LibraryThing 2018 [1]. The 2700 opinions used
for training are again split in nine training subsets of increasing
size. The test set consists of 804 opinions. No opinions are removed
from the dataset because of conflicting sentiments. 8.6% of the total
opinions in this dataset are removed because of implicit aspects.

3.2.3 Hotels. Yet another dataset used to fine-tune our model con-
sists of hotel reviews and is from SemEval 2015 [11]. The hotel
training set only contains 200 opinions and is split into ten training
subsets of increasing size. The test set consists of 64 opinions. No
conflicting sentiments are present in the hotel dataset. However,
22.1% of the total opinions in this dataset are removed because of
implicit aspects.

3.2.4 Electronics. The electronics domain consists of four subdo-
mains, i.e., DVD players, digital cameras, MP3 players, and cell
phones, and is from CRD 2004, which was first introduced in [6].
CRD 2004 contains two separate datasets for digital camera reviews,
which we combine to have a slightly larger dataset. The training set
for each of these domains is again split into ten training subsets of
increasing size. For the electronics dataset, the sentiment towards a
particular aspect can only be positive or negative, not neutral like
the other domains. The dataset for electronics assigns a number to
each opinion indicating its strength, where (-)3 is the strongest and
(-)1 the weakest. We set all these numbers equal to (-)1 as we do not
differentiate between opinion strengths in this work. Furthermore,
no opinions are removed because of conflicting sentiments for any
subdomain. The percentages of total opinions removed because of
implicit aspects for the DVD players, digital cameras, MP3 players,
and cell phones are 27.4%, 19.2%, 20.3%, and 15.9%, respectively.

4 METHODOLOGY
Our proposed approach to cross-domain ABSC is to apply domain
fine-tuning to the upper layers of the LCR-Rot-hop++ model de-
scribed in [15]. First, the LCR-Rot-hop++ is briefly introduced in
Subsect. 4.1. Our proposed approach to fine-tune the model for
cross-domain ABSC is discussed in Subsect. 4.2. Lastly, the evalua-
tion of the fine-tuning approach will be briefly outlined in Subsect.
4.3.

4.1 LCR-Rot-hop++
The LCR-Rot-hop++ method [15] uses three Bi-LSTM modules, a
rotary, and a hierarchical attention mechanism to obtain sentiment
classifications. In Fig. 2, we visualize this method. The solid (red) ar-
rows depict the first step, which is the layer of three Bi-LSTMs. The
densely dashed (yellow) arrows show the rotary attention mech-
anism with multiple hops. The en dashed (green) arrows depict
the hierarchical attention mechanism. Finally, the em dashed (blue)
arrows depict the representation concatenation and sentiment clas-
sification. This subsection is meant to provide a brief overview of
the LCR-Rot-hop++ method.

The model’s input is defined as a sentence S = [w1,w2, ...,wN ]

with N words, where wi denotes the ith word of the sentence.
This sentence S is split into three parts: left context [wl

1,w
l
2, ...,w

l
L],

target (aspect) [wt
1,w

t
2, ...,w

t
T ], and right context [wr

1 ,w
r
2 , ...,w

r
R ],

where L, T, and R denote the lengths of the three parts, respectively.
For example, if we have input sentence "the food was great", then
this is split into: [“the"] (left context), [“food"] (target), and [“was",
“great"] (right context). The words in the sentence are then embed-
ded using the pre-trained BERT-Base model with 12 layers and a
hidden layer size of 768 [16].

The next layer in the model consists of three Bi-LSTMs. Each
of these three Bi-LSTM modules deals with a different part of the
input sentence. More specifically, the model has a target (center)
Bi-LSTM that deals with the target phrase and a left and right Bi-
LSTM that deal with the left and right context, respectively. The
output of these Bi-LSTMs is called a hidden state vector and this is
fed to the rotary attention mechanism.

The rotary attention mechanism first uses a pooling operation to
obtain an average representation of the target phrase, which is then
used to calculate the representation of the left and right context
phrases using a bilinear attention mechanism. These representa-
tions are weighted by applying a hierarchical attention mechanism.
Consecutively, these attention-weighted left and right context repre-
sentations are used to obtain a left- and right-aware representation
of the target phrase, respectively, again using a bilinear attention
mechanism. As before, these representations are weighted by ap-
plying another hierarchical attention mechanism. These can then
be fed into the start of the rotary attention mechanism once more,
instead of the output of the initial pooling operation. As in [15],
this mechanism is repeated for three hops.

After executing all hops over the rotary attentionmechanism, the
final representations are again weighted by applying a hierarchical
attention mechanism. After this last weighting, the final representa-
tions are concatenated and fed into a final Multi-Layer Perceptron
(MLP) which uses a softmax function to compute aspect-level sen-
timent predictions (p). The model is trained with backpropagation
and stochastic gradient descent optimization with momentum. To
avoid overfitting, a dropout strategy that randomly removes nodes
along with their incoming and outgoing connections from the net-
work is used.

4.2 Domain Fine-tuning
Our proposed adaptation of the LCR-Rot-hop++ method to improve
its cross-domain performance is fine-tuning of the model by train-
ing only the upper layers of the model with data from the target
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Figure 2: Visual representation of the LCR-Rot-hop++ method.

domain. The choice for which layers get fixed during fine-tuning is
based on previous work on explaining which type of information
gets encoded in each layer of LCR-Rot-hop [10]. The authors argue
that the lower layers of the LCR-Rot-hop model mainly encode
general language characteristics, while the upper layers represent
the more domain-specific language and associated sentiment. The
LCR-Rot-hop++ is very similar to the LCR-Rot-hop method, the
only differences being the use of BERT embeddings (as opposed
to GloVe) and the use of hierarchical attention layers in the upper
part of the model. Therefore, we assume that the Bi-LSTMs also
mainly encode general-language information in the LCR-Rot-hop++
model. Consequently, in our proposed approach the weights for
these Bi-LSTMs are fixed and we only fine-tune the model for the
multi-hop rotary attention module with hierarchical attention and
MLP, by training it on labeled data of the target domain. The fixed
layers are depicted in Fig. 2 by the solid (red) arrows.

4.3 Evaluation
For this research, LCR-Rot-hop++ is initially trained on restaurant
data. Consecutively, it is fine-tuned and tested on a different target
domain (laptop, book, hotel, or electronics data). Two benchmark
approaches can be used to evaluate the performance of the proposed
cross-domain adaptation of the LCR-Rot-hop++: a restaurant-target
and a target-target approach. In the restaurant-target approach, the
testing data for each target is simply evaluated using amodel trained

only on restaurant data. The performance of this benchmark can be
seen as a worst-case performance. The target-target approach uses
the target training data meant for fine-tuning to train the model
from scratch (without fixing any layers). These three approaches
(i.e., restaurant-target, target-target, and fine-tuning) are evaluated
for varying sizes of target training data. This implies that in relation
to the size of the training set, the restaurant-target measure is the
only one that has a constant value as it is not trained nor fine-tuned
using target domain data.

For consistency, the same number of nodes is used for each
layer as in [15], i.e., 300 nodes for each Bi-LSTM, 600 nodes for
each bilinear and hierarchical attention layer and 2400 nodes for
the MLP. Additionally, as in [15], the model is run for 200 itera-
tions. Moreover, the hyperparameters (learning rate, dropout rate,
momentum term, and L2 regularization term) are determined sepa-
rately for each of the target domains for each of the three subtasks
(i.e., restaurant-target, target-target, and fine-tuning). Here, the
hyperparameters for the restaurant-target subtask are only tuned
once, for the initial restaurant training. For this purpose a Tree-
structured Parzen Estimator (TPE) is used [2]. Ideally, one would
tune the hyperparameters for each different training set, for as
many times as possible, and for as many iterations as in the regular
runs (200). However, due to time-constraints we have to limit the
hyperparameter tuning. Therefore, for each target domain and sub-
task, the algorithm is run ten times for 15 iterations of the model.
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For the applications that use target training data (i.e., target-target
and fine-tuning), the optimal hyperparameters are only determined
for the largest target training set. The assumption is that limiting
the hyperparameter tuning affects the accuracy for each subtask
(especially target-target and fine-tuning) within a given target do-
main in a similar way, and that it will therefore have little effect on
the ultimate difference in accuracies between these subtasks.

5 RESULTS
In this section we report the results of domain fine-tuning the
LCR-Rot-hop++ model for the following domains: laptops, books,
hotels, and electronics. For every domain, the accuracies obtained
from fine-tuning on the target domain are compared with the two
benchmark performance measures (restaurant-target and target-
target) to evaluate the cross-domain adaptation of the LCR-Rot-
hop++ method. For each of the figures in the following subsections,
an OLS regression is displayed with a corresponding 95% confidence
interval to approximate a trend for the target-target and fine-tuning
results. This allows for an easier interpretation of the results and
more importantly, it allows us to easily identify common tendencies
between all different target domains.

5.1 Laptops
The laptop domain data is divided into nine subsets that cumu-
latively increase by 250 opinions. Figure 3 depicts the obtained
accuracies for all training subsets.

Figure 3: Test accuracy of restaurant training (restaurant-
target), laptop training (target-target), and restaurant train-
ingwith laptopfine-tuning (fine-tuning) for different laptop
training set sizes.

The restaurant-target benchmark has an accuracy of approxi-
mately 40%. The target-target benchmark accuracy increases from
approximately 65% to 72% as the amount of opinions used for train-
ing increases from 250 to 2250. Fine-tuning using the target domain
gives an accuracy that increases from approximately 69% to 71% on
the same training sets. Comparing the fine-tuning with the target-
target benchmark, we see that the fine-tuning approach on average
outperforms the target-target approach when the training set is
small, with an expected intersection around 2059 opinions.

5.2 Books
The book domain data is divided into nine subsets that cumulatively
increase by 300 opinions. Figure 4 depicts the obtained accuracies
for all training subsets.

Figure 4: Test accuracy of restaurant training (restaurant-
target), book training (target-target), and restaurant train-
ing with book fine-tuning (fine-tuning) for different book
training set sizes.

The restaurant-target benchmark has an accuracy of approxi-
mately 30%. The target-target benchmark accuracy increases from
approximately 68% to 73% as the amount of opinions used for train-
ing increases from 300 to 2700. Fine-tuning using the target domain
gives an accuracy that increases from approximately 73% to 74%
on the same training sets. Comparing the fine-tuning with the
target-target benchmark, we see that the fine-tuning approach on
average outperforms the target-target approach for all considered
sizes of the training set, with an expected intersection around 3417
opinions.

5.3 Hotels
The hotel domain data is divided into ten subsets that cumulatively
increase by 20 opinions. Figure 5 depicts the obtained accuracies
for all training subsets.

The restaurant-target benchmark has an accuracy of approxi-
mately 47%. The target-target benchmark accuracy increases from
approximately 60% to 67% as the amount of opinions used for train-
ing increases from 20 to 200. Fine-tuning using the target domain
gives an accuracy that increases from approximately 69% to 74%
on the same training sets. Comparing the fine-tuning with the
target-target benchmark, we see that the fine-tuning approach on
average outperforms the target-target approach for all considered
sizes of the training set, with an expected intersection around 1289
opinions.

5.4 Electronics
The DVD player, digital camera, MP3 player, and cell phone domain
datasets are divided into ten subsets that cumulatively increase
by 25, 31, 54, and 22 opinions, respectively. Figure 6 depicts the
obtained accuracies for all training subsets for each domain.
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Figure 5: Test accuracy of restaurant training (restaurant-
target), hotel training (target-target), and restaurant train-
ing with hotel fine-tuning (fine-tuning) for different hotel
training set sizes.

For the DVD player domain depicted in Fig. 6a, the restaurant-
target accuracy is approximately 49%. The target-target and fine-
tuning accuracies increase from approximately 66% to 83% and
78% to 79%, respectively, with an expected intersection around 197
opinions.

For the camera domain depicted in Fig. 6b, the restaurant-target
accuracy is approximately 59%. The target-target and fine-tuning
accuracies increase from approximately 87% to 92% and 90% to 91%,
respectively, with an expected intersection around 214 opinions.

For the MP3 player domain depicted in Fig. 6c, the restaurant-
target accuracy is approximately 46%. The target-target and fine-
tuning accuracies increase from approximately 66% to 80% and
75% to 79%, respectively, with an expected intersection around 487
opinions.

For the cell phone domain depicted in Fig. 6d, the restaurant-
target accuracy is approximately 67%. The target-target and fine-
tuning accuracies increase from approximately 72% to 93% and
79% to 88%, respectively, with an expected intersection around 151
opinions.

5.5 Discussion
In summary, it appears that our proposed fine-tuning approach
initially outperforms the from-scratch training (target-target) for
all considered domains. Individually, the regressions for each target
domain might not be very informative as each one is only based
on nine or ten data points. However, when we consider all graphs
together, we can clearly see that there is a common tendency for
all different target domains. That is, in each graph, the fine-tuning
approach initially outperforms the target-target approach and the
target-target approach overtakes the fine-tuning approach at the
end of the graph. At the start of the graphs (the smallest training set),
the fine-tuning approach outperforms the target-target approach
by approximately 5 percentage points for each of the large datasets
(laptops and books), and by approximately 2-11 percentage points
(8 percentage points on average) for the small datasets (hotels and
electronics). Because this common tendency holds for all seven
domains, the results suggest that our proposed fine-tuning approach

improves the obtained accuracy when only a limited amount of
training data is available.

This tendency for the fine-tuning approach to outperform the
target-target approach for small training sets and for the target-
target approach to perform better near the end is also what we
would expect, theoretically, given that we fix certain layers during
fine-tuning. As mentioned in Subsect. 4.2, the layers that are fixed
during fine-tuning mainly encode general language characteristics,
while the layers that are not fixed encode the more domain-specific
language and associated sentiment. For this reason, it is understand-
able that a model that is pre-trained on reviews for another domain
(restaurants in our case) and consecutively fine-tuned with a small
amount of target domain training data, can outperform a model that
has to be trained from-scratch (target-target) with that same small
amount of data. When the size of the target domain training set is
large, however, we would expect the from-scratch training to out-
perform the fine-tuning approach as the layers that are fixed during
fine-tuning might still capture some domain-specific information.

The advantage of applying this particular fine-tuning technique
to the LCR-Rot-hop++ method, is that we can exploit its architec-
ture to freeze layers that are expected to encode similar information
across domains. This can substantially speed up model training. To
illustrate this, our proposed fine-tuning approach is approximately
twice as fast per iteration for small amounts of training data, com-
pared to training the full model with that same amount of data
(i.e., from-scratch training). This difference in speed only increases
when the model is trained using larger amounts of training data.

6 CONCLUSION
The amount of opinionated data on the Web is extensive. However,
annotated data is scarce for certain domains and acquiring these is
a labor intensive task. Therefore, in this paper we propose an adap-
tation of a state-of-the-art ABSC method to perform cross-domain
analysis. Specifically, we train the the LCR-Rot-hop++ model [15]
on restaurant data. We then freeze lower layers (the LCR Bi-LSTMs),
and train the remaining layers on the target domain. A major ben-
efit of this approach is that it can substantially speed up model
training.

From the obtained accuracies we can derive one common ten-
dency, namely that our proposed fine-tuning approach on average
outperforms the regular from-scratch training when the training
set is small. Based on the large datasets (laptops and books), the
accuracy gain from our proposed fine-tuning approach compared
to the target-target approach is approximately 5 percentage points,
when the target training set is small. For the small datasets (hotels
and electronics), this accuracy gain is approximately 8 percentage
points on average.

The choice to freeze the LCR Bi-LSTMs is based on the assump-
tion that these layers encode mainly general language characteris-
tics, while the upper layers encode more domain-specific language
and associated sentiment. This assumption is based on a diagnostic
classification analysis for LCR-Rot-hop [10]. Since we make use of
the LCR-Rot-hop++ method [15] in this paper, suggestions for fu-
ture research would include doing diagnostic classification analysis
for LCR-Rot-hop++ to determine the validity of this assumption.
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(a) DVD players. (b) Digital cameras.

(c) MP3 players. (d) Cell phones.

Figure 6: Test accuracy of restaurant training (restaurant-target), target training (target-target), and restaurant training with
target fine-tuning (fine-tuning) for different electronics training set sizes.
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