
IEEE TRANSACTIONS ON CYBERNETICS 1

Supervised and Unsupervised Aspect Category Detection for
Sentiment Analysis with Co-occurrence Data
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Using on-line consumer reviews as Electronic Word of Mouth to assist purchase-decision making has become increasingly popular.
The Web provides an extensive source of consumer reviews, but one can hardly read all reviews to obtain a fair evaluation of
a product or service. A text processing framework that can summarize reviews, would therefore be desirable. A sub-task to be
performed by such a framework would be to find the general aspect categories addressed in review sentences, for which this work
presents two methods. In contrast to most existing approaches, the first method presented is an unsupervised method that applies
association rule mining on co-occurrence frequency data obtained from a corpus to find these aspect categories. While not on
par with state-of-the-art supervised methods, the proposed unsupervised method performs better than several simple baselines, a
similar but supervised method, and a supervised baseline, with an F1-score of 67%. The second method is a supervised variant that
outperforms existing methods with an F1-score of 84%.
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I. INTRODUCTION

Word of Mouth (WoM) has always been influential on
consumer decision-making. Family and friend are usually asked
for advice and recommendations before any important purchase-
decisions are made. These recommendations can both have
short as well as long term influence on consumer decision-
making [1].

With the Web, word of mouth has greatly expanded. Anyone
who wishes to share their experiences, can now do so
electronically. Social media, like Twitter and Facebook allow
for easy ways to exchange statements about products, services,
and brands. The term for this expanded form of word of mouth
is Electronic Word of Mouth (EWoM).

Over the last few years, EWoM has become increasingly
popular [2]. One of the most important forms of EWoM
communication are product and service reviews [3] posted
on the Web by consumers. Retail Companies such as Amazon
and Bol have numerous reviews of the products they sell,
which provide a wealth of information, and sites like Yelp
offer detailed consumer reviews of local restaurants, hotels
and other businesses. Research has shown these reviews are
considered more valuable for consumers than market-generated
information and editorial recommendations [4], [5], [6], and
are increasingly used in purchase decision-making [7].

The information that can be obtained from product and
service reviews is not only beneficial to consumers, but also
to companies. Knowing what has been posted on the Web can
help companies improve their products or services [8].
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However, to effectively handle the large amount of informa-
tion available in these reviews, a framework for the automated
summarization of reviews is desirable [9]. An important task
for such a framework would be to recognize the topics (i.e.,
characteristics of the product or service) people write about.
These topics can be fine-grained, in the case of aspect-level
sentiment analysis, or more generic in the case of aspect
categories. For example, in the following sentence, taken from
a restaurant review set [10], the fine-grained aspects are ‘fish’,
‘rice’, and ‘seaweed’ whereas the aspect category is ‘food’.

“My goodness, everything from the fish to the rice
to the seaweed was absolutely amazing.”

As one can see, aspect categories are usually implied, that
is, the names of the categories are not explicitly mentioned in
the sentence. The same holds for fine-grained aspects: while
most of them are referred to explicitly in a sentence, some
are only implied by a sentence. For example, in the sentence
below, the implied fine-grained aspect is ‘staff’, whereas the
implied aspect category is ‘service’.

“They did not listen properly and served me the
wrong dish!”

When the aspect categories are known beforehand, and
enough training data is available, a supervised machine learning
approach to aspect category detection is feasible, yielding a high
performance [11]. Many approaches to find aspect categories
are supervised [11], [12], [13], [14]. However, sometimes the
flexibility inherent to an unsupervised method is desirable.

The task addressed in this paper stems from a subtask
of the SemEval 2014 Challenge [10], which purpose is to
identify aspect categories discussed in sentences, given a
set of aspect categories. The sentences come from customer
reviews and should be classified into one or more aspect
categories based on its overall meaning. For example, given
the set of aspect categories (food, service, price, ambience,
anecdotes/miscellaneous), two annotated sentences are:
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“The food was great.” → (food)
“It is very overpriced and not very tasty.” → (price,
food)

As shown in the above examples, aspect categories do not
necessarily occur as explicit terms in sentences. While in the
first sentence ‘food’, is mentioned explicitly, in the second
sentence it is done implicitly. In our experiments all sentences
are assumed to have at least one aspect category present.
Because it may not always be clear which category applies to a
sentence, due to incomplete domain coverage of the categories
and the wide variation of aspects a reviewer can use, a ‘default’
category is used. An example of a sentence where a ‘default’
category is used, is presented below. Here, the second part of
the sentence (“but everything else ... is the pits.”) is too general
to classify it as one of the other categories (i.e., food, service,
price, ambience).

“The food is outstanding, but everything else
about this restaurant is the pits.” → (food, anec-
dotes/miscellaneous)

In this work, both an unsupervised and a supervised method
are proposed that are able to find aspect categories based
on co-occurrence frequencies. The unsupervised method uses
spreading activation on a graph built from word co-occurrence
frequencies in order to detect aspect categories. In addition, no
assumption has to be made that the implicit aspects are always
referred to explicitly, like it is done in [15]. The proposed
unsupervised method uses more than just the literal category
label by creating a set of explicit lexical representations for
each category. The only required information is the set of aspect
categories that is used in the data set. The supervised method
on the other hand uses the co-occurrences between words, as
well as grammatical relation triples, and the annotated aspect
categories to calculate conditional probabilities from which
detection rules are mined.

The paper is structured as follows. First, in Section II, an
overview of the related work that inspired this research is
presented, then Section III gives the details of the proposed
unsupervised method, while Section IV discusses the details
of the supervised method. Section V contains the evaluation
of both methods, comparing them to several baselines and to
two state-of-the-art methods. Last, in Section VI, conclusions
are drawn and some pointers for future work are given.

II. RELATED WORK

Since most aspect categories are left implicit in text1,
methods for detecting implicit fine-grained aspects might be
used for aspect categories as well. As such, some works on
implicit aspect detection that inspired this research are discussed
below. For a comprehensive survey on detecting both explicit
and implicit aspects, and their associated sentiment, we refer
the reader to [16].

An early work on implicit aspect detection is [17]. The
authors propose to use semantic association analysis based on
Point-wise Mutual Information (PMI) to differentiate implicit

1In the restaurant data set [10] that is used for evaluation, around 77% of
the aspect categories was not literally mentioned in sentences.

aspects from single notional words. Unfortunately, there were
no quantitative experimental results reported in their work, but
intuitively the use of statistical semantic association analysis
should allow for certain opinion words such as ‘large’, to
estimate the associated aspect (‘size’).

In [18] an approach is suggested that simultaneously
and iteratively clusters product aspects and opinion words.
Aspects/opinion words with high similarity are clustered
together, and aspects/opinion words from different clusters are
dissimilar. The similarity between two aspects/opinion words is
measured by fusing both the homogeneous similarity between
the aspects/opinion words (content information), calculated
by traditional approach, and the similarity by their respec-
tive heterogeneous relationships they have with the opinion
words/aspects (link information). Based on the product aspect
categories and opinion word groups, a sentiment association
set between the two groups is then constructed by identifying
the strongest n sentiment links. This approach, however, only
considered adjectives as opinion words which are not able
to cover every opinion, yet the approach was capable of
finding hidden links between product aspects and adjectives.
Unfortunately, there were no quantitative experimental results
reported, specifically for implicit aspect identification.

A two-phase co-occurrence association rule mining approach
to identify implicit aspects is proposed by [15]. In the first
phase of rule generation, association rules are mined of the
from [opinion word → explicit aspect], from a co-occurrence
matrix. Each entry in the co-occurrence matrix represents the
frequency degree of a certain opinion-word co-occurring with
a certain explicitly mentioned aspect. In the second phase, the
rule consequents (i.e., the explicit aspects) are clustered to
generate more robust rules for each opinion word. Implicit
aspects can then be found by identifying the best cluster for a
given sentiment word with no explicit aspect, and assigning
the most representative word of that cluster as the implicitly
mentioned aspect. This method is reported to yield an F1-score
of 74% on a Chinese mobile phone review data set. However,
this frequency-based method requires a very good coverage of
opinion words with explicit aspects. It assumes that explicit
feature annotations are given and that an implicit feature has to
relate to an explicit feature. In our work we do not use these
assumptions, providing for more generality of the proposed
solution.

In [19] a semi-unsupervised method is proposed that can si-
multaneously extract both sentiment words and product/service
aspects from review sentences. The method first extracts Ap-
praisal Expression Patterns (AEPs), which are representations
of how people express opinions regarding products or services.
The set of AEPs is obtained by selecting frequently occurring
Shortest Dependency Paths between two words in a dependency
graph. Next the authors propose an AEP Latent Dirichlet
Allocation model for mining the aspect and sentiment words.
The model does however assume that all words in a sentence
are drawn from one topic. This method is reported to yield at
best an F1-score of 78% on a Restaurant review data set.

Association rule mining is also employed in [20], where first
the candidate aspect indicators are extracted based on word seg-
mentation, part-of-speech (POS) tagging, and aspect clustering.
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After that, the co-occurrence degree between these candidate
aspect indicators and aspect words are calculated, using five
collocation extraction algorithms. These five algorithms use
frequency, PMI, frequency*PMI, t test, and χ2 test, respectively,
out of which frequency*PMI is the most promising. Rules are
then mined of the form [aspect indicator → aspect word], and
only the best rules from the five different rule sets are chosen as
the basic rules. The basic set of rules is then extended by mining
additional rules from the lower co-occurrence aspect indicators
and non-indicator words. The authors propose three methods for
doing so: adding dependency rules, adding substring rules, and
adding constrained topic model rules. This method is reported
to yield at best an F1-score of 76% on a Chinese mobile phone
review data set.

Association rule mining is also the main technique in [21].
Unlike [15] and [20], no annotated explicit aspects are required,
instead the double propagation algorithm from [22] is employed
to identify the explicit aspects. An advantage of this double
propagation method is that it links explicit aspects to opinion
words. This is used later, to restrict the set of possible implicit
aspects in a sentence to just those that are linked to the opinion
words present in that sentence. The notional words are then
used to further investigate which of these aspect is most likely
the implicit aspect mentioned in this sentence. Their method
yielded an F1-score of 80% on a Chinese mobile phone review
data set, and apart from a small seed set of opinion words, it
operates completely unsupervised.

The SemEval 2014 competition has given rise to a number
of proposed methods to find aspect categories. The first to
mention, because of its similarity with the currently proposed
approaches, in that it is also co-occurrence based, is [23], where
co-occurrence frequencies are recorded between annotated
aspect categories and notional words. This enables the direct
association of words with categories. However, this does come
at the cost of making the method supervised. Furthermore, its
reported performance is one of the lowest in the SemEval-2014
rankings.

A high performing supervised method for category detection
is presented in [12]. The authors use a set of binary Maximum
Entropy classifier with bag-of-words and TF-IDF features for
each aspect category. With a reported F1-score of 81% this
method was one of the best submitted constrained methods
(i.e., no additional training resources were used apart from the
official training data).

Another high performing supervised aspect category de-
tection is proposed in [11]. Instead of a MaxEnt classifier,
five binary (one-vs-all) SVMs are employed, one for each
aspect category. The SVMs use various types of n-grams
(e.g., stemmed, character, etc.) and information from a word
clustering and a lexicon, both learned from YELP data. The
lexicon directly associates aspects with categories. Sentences
with no assigned category went through the post-processing
step, where the sentence was labeled with the category with
maximum posterior probability. The lexicon learned from
YELP data significantly improved the F1-score, which was
reported to be 88.6% and ranked first among 21 submissions
in SemEval-2014 workshop. However, for fair comparison, the
score obtained without using the lexical resources derived from

the YELP data, which is an F1-score of 82.2%, is reported in
the evaluation, as our proposed supervised method to which it
is compared also does not use external knowledge.

As far as it goes for unsupervised approaches in the SemEval
2014 competition, the one presented in [24] performs best,
which reported an F1-score of 60.0%. [24] proposes a basic
approach that first detects aspects (another subtask of the
SemEval competition), which would then be compared with
the category words using the similarity measure described by
[25]. The category with the highest similarity measure is then
selected, if it surpasses a manually set threshold.

III. UNSUPERVISED METHOD

The proposed unsupervised method (called the Spreading
Activation Method) uses co-occurrence association rule mining
in a similar way as [15], by learning relevant rules between
notional words, defined as the words in the sentence after
removing stop words and low frequency words, and the
considered categories. This enables the algorithm to imply
a category based on the words in a sentence. To avoid having
to use the ground truth annotations for this and to keep this
method unsupervised, we introduce for each category a set
of seed words, consisting of words or terms that describe
that category. These words or terms are found by taking the
lexicalization of the category, and its synonyms from a semantic
lexicon like WordNet. For example, the ambience category has
the seed set {ambience, ambiance, atmosphere}.

With the seed words known, the general idea of implicit
aspect detection can be exploited to detect categories as well.
The idea is to mine association rules of the form [notional
word → category] from a co-occurrence matrix. Each entry in
this co-occurrence matrix represents the frequency degree of
two notional words co-occurring in the same sentence. Stop
words, like ‘the’ and ‘and’, as well as less frequent words
are omitted because they add little value for determining the
categories in review sentences.

The reason why we choose to mine for rules similar to
that of [15]’s, and do not consider all notional words in the
sentence at once to determine the implied categories, like [21],
is based on the hypothesis that categories are better captured
by single words. If we have for example categories like ‘food’
and ‘service’ all it takes to categorize sentences is to find single
words like ‘chicken’, ‘staff ’, or ‘helpful’.

Association rules are mined when a strong relation between
a notional word and one of the aspect categories exists, with
the strength of the relation being modeled using the co-
occurrence frequency between category and notional word.
We distinguish between two different relation types: direct and
indirect relations. A direct relation between two words A and
B is modeled as the positive conditional probability P (B|A)
that word B is present in a sentence given the fact that word
A is present. An indirect relation between two words A and B
exists when both A and B have a direct relation with a third
word C. This indicates that A and B could be substitutes for
each other, even though their semantics might not be the same.
Without checking for indirect relations, substitutes are usually
not found since they do not co-occur often together. A visual
example of an indirect relation can be found in Figure 1.
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Figure 1: Example of an indirect relation: ‘waiter’ and ‘maı̂tre
d’’ are indirectly related by having the same set of directly
related notional words.

To exploit the direct, as well as the indirect relation
information between notional words and seed words, the
spreading activation algorithm [26] is utilized, which is a
method to search for associative networks. Spreading activation
has been successfully applied in various fields, e.g., [27], [28],
etc. For that, a network data structure is needed, consisting
of vertices connected by links, as depicted in Figure 1. The
vertices are labeled and the links may receive direction and/or
weights to model the relations between vertices. The search
process of finding an associative network is initiated by giving
each vertex an activation value. These initial values determine
the area of the search as the activation values are iteratively
spread out to other, linked, vertices.

In our case we want to use spreading activation to find,
for each category, a network of words associated with the
category’s set of seed words. To do this, a network data structure
is created, having vertices for all notional words and edges to
model the direct relations between these words. In the network
data structure all notional words receive an initial activation
value of zero except for the category’s seed words, which
receive positive activation values. In the first iterative step of
the spreading activation algorithm, these positive activation
values are spread out to other words directly related to the seed
words, based on the strength of the direct relation. In this way,
words that have strong direct relations with the seed words
receive high association values. The following iterative steps
will be looking for words with high association values that
are then activated and will spread out their activation value
to other words directly related to them. In this way, notional
words that are indirectly related to one of the seed words are
also identified. The end result will be a network of notional
words, each with their own activation value, the higher the
activation value, the more related the notional word will be to
the category.

The data network structure used for the spreading activation
algorithm will consist of vertices that represent the notional
words, and links between two vertices representing a strictly
positive co-occurrence frequency. Each link represents the direct
relation between two notional words and receives weight equal
to the conditional probability that word A co-occurs with word
B, given that B appears in a sentence. This also means that
the links receive direction as the conditional probability is not

Figure 2: Example flowchart of the unsupervised method.

symmetric, making the data network structure a co-occurrence
digraph.

Once each category has its own associative network, rules
can be mined of the form [notional word → category] from
vertices in these networks, based on the activation value of
the vertex. Since the same word can be present in multiple
associative networks, one word might trigger multiple aspect
categories. Based on the words in the sentence, a set of rules is
triggered and their associated aspect categories are assigned to
the sentence. Figure 2 illustrates how the unsupervised method
works on a simple example corpus, with a decay factor of
0.9 and firing threshold of 0.4. The example shows how an
associative network for the category ‘food’ is found and rules
are extracted.

A. Algorithm

The method can best be described according to the following
steps:

Identifying category seed word sets Sc

First, we identify for each of the given categories c ∈ C a
set of seed words Sc containing the category word and any
synonyms of that word. This first step is represented by step
A in Figure 2.

Determine co-occurrence digraph G(V,E)
Next, as a natural language preprocessing step, both training

and test data are run through the lemmatizer of the Stanford
CoreNLP [29]. We keep track of all lemmas in the text
corpus and count their occurrence frequencies. Stop words
and lemmas that have an occurrence frequency lower than a
small degree α are discarded, while the rest of the lemmas and
corresponding frequencies are stored in the occurrence vector
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N . The parameter α is used to filter out low occurring lemmas.
Each lemma in N is now considered to be a notional word. A
co-occurrence matrix X is then constructed where each entry
represents how often notional word from Ni appeared before
Nj the same sentence.

From X and N the co-occurrence digraph G(V,E) is
constructed with nodes V and edges E. Each notional word
i ∈ N receives its own node i ∈ V . A directed edge (i, j) ∈ E
between nodes i and j exists if and only if the co-occurrence
frequency Xi,j is strictly positive. The weight of each edge
(i, j) ∈ E is denoted by Wi,j and represents the conditional
probability that notional word i co-occurs with notional word
j in a sentence after it, given that j is present in that sentence.
This formula is shown in Equation 1:

Wi,j =
Xi,j

Nj
, (1)

where Xi,j is the co-occurrence frequency of words i and j
(word i after word j) and Nj is the frequency of word j. Step
B in Figure 2 illustrates this step.

Apply spreading activation
Once the co-occurrence digraph G(V,E) is obtained, we

apply for each category c ∈ C the spreading activation
algorithm to obtain for each vertex i ∈ V an activation value
Ac,i. Each activation value has a range of [0, 1], and the closer
it is to 1 the stronger the notional word is associated with the
considered category.

The process of obtaining these activation values for category
c ∈ C is initiated by giving all vertices i ∈ V an activation
value Ac,i. Vertices that are labeled as one of the category’s
seed words s ∈ Sc receive the maximum activation value of 1,
while the rest of the vertices receive the minimum activation
value of 0.

After this initialization step, the iterative process of spreading
the activation values starts. The actual spreading of activation
values is done by ‘firing’ or ‘activating’ vertices. A vertex
that is fired, spreads its activation value to all vertices directly
linked to the fired vertex. The activation value added to the
linked words depends on the activation value of the fired vertex
and the weight of the link between the fired vertex and the
vertex receiving the added activation value. The formula for
the new activation value for one of the vertices j linked to the
fired vertex i is shown in Equation 2.

Ac,j = min{Ac,j +Ac,i ·Wi,j · δ, 1} (2)

The parameter δ in Equation 2 models the decay of the
activation value as it travels further through the network,
ranging from 0 to 1. The closer this decay factor gets to
0 the more the firing activation value will have decayed (i.e., it
will be closer to 0). Furthermore, any activation value Ac,j can
have a maximum value 1. Firing vertices is only allowed if its
activation value reaches a certain firing threshold τc, depending
on the category c ∈ C. Once a vertex has been fired it may not
fire again. The sets M and F keep track of which vertex may
be fired and which vertex has already been fired, respectively.

A single step in the iterative process of spreading the
activation values starts by searching for vertices i /∈ F with

activation value Ac,i greater than firing threshold τc. These
vertices are temporarily stored in M . Then for vertex i ∈M
we look for vertex j linked to this vertex with edge (i, j) ∈ E,
and modify its activation value Ac,j according to Equation 2.
This is done for each vertex j ∈ V linked to vertex i with edge
(i, j) ∈ E, after which vertex i is removed from M and stored
in F , the same process is then executed for the remaining
vertices i ∈ M . This concludes one iterative step, that is
repeated until no more vertices i /∈ F with activation value
Ac,i greater than firing threshold τc exists. The pseudocode for
the spreading activation algorithm can be found in Algorithm 1,
and an illustration of this complete step can be found in Step
C of Figure 2.

ALGORITHM 1: Spreading activation algorithm
input : category c
input : vertices V
input : seed vertices Sc

input : weight matrix W
input : decay factor δ
input : firing threshold τc
output : activation values Ac,i for category c

1 foreach s ∈ Sc do
2 Ac,s ← 1
3 end
4 foreach ∈ V \ Sc do
5 Ac,i ← 0
6 end
7 F ← Sc

8 M ← Sc

9 while M 6= ∅ do
10 foreach i ∈M do
11 foreach j ∈ V do
12 Ac,j ← min{Ac,j +Ac,i ·Wi,j · δ, 1}
13 end
14 end
15 M ← ∅
16 foreach i ∈ V \ F do
17 if Ac,i > τc then
18 add i to F
19 add i to M
20 end
21 end
22 end

Rule mining
Once spreading activation is applied to all categories c ∈ C,

matrix Ac,i is obtained, containing, for each notional word
i ∈ N , activation values for each category c ∈ C. From these
associations values, rules are mined, based on the magnitude
of these values. Vertices that have fired are seen as part of the
associative network and from each vertex in that network, a
rule is mined. Any vertex whose activation value Ac,i is higher
than parameter τc produces a rule [notional word i→ category
c] that is stored in rule set R. All notional words are allowed
to imply multiple categories except for seed words, which can
only imply the category they belong to. This step is depicted
as Step D of Figure 2.

Assign aspect categories
In the last step we predict categories for each unprocessed

sentence, using the rule set R obtained from the previous
step. For each unprocessed sentence we use lemmatisation,
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and look if any word matches a rule, after which that rule
is applied. Since multiple rules can be fired, it is possible to
predict multiple aspect categories per sentence. This last step
corresponds to Step E in Figure 2.

B. Parameter Setting

Three parameters, α, δ, and τc need to be set manually.
For α, the minimal occurrence threshold, a value of 0.005 ×
number of sentences in the dataset is used. In this way, low-
frequency words are excluded from the co-occurrence matrix.
The decay factor δ is set at 0.9 to increase the number of
indicators (recall).

The τc parameter is set differently for each category c.
With parameters α and δ fixed, the algorithm is run for each
category using a range of values for τc. For each τc, the method
constructs an association network, counting the number of
notional words in it. The decision for the best value for τc can
be made based on a plot of the activated word count relative
to the total number of words in the network. The plots for
categories ‘service’ and ‘food’ (cf. Section V for a description
of the used data set) are shown in Figure 3 and 4, respectively.

Figure 3 shows that having high value for τc results in only
seed words indicating the presence of a category (i.e., these
are the explicitly mentioned categories). This is shown by the
long flat tail to the right. On the other hand, having τc = 0
results in all words being indicators, producing much noise.
To find the optimal, or at least a good, value for τc, we use
the breakpoint heuristic, where we find the breakpoint in the
graph for relative word count, having the flat part of the graph
to the right and the sloped part of the graph on the left. This
is shown as the dashed vertical line. For most categories this
results in a near-optimal choice for τc.

Figure 3: Graph displaying the relative activated word counts
for different values of firing threshold τservice together with
the threshold chosen by the heuristic.

One exception is the ‘food’ category, as shown in Figure 4.
Here, we choose to have more words as indicators, because
‘food’ is by far the largest of the aspect categories we aim
to detect. Hence, it is reasonable to have a larger associative
network, with more words pointing to the ‘food’ category.
Given the fact that many different words, such as all kinds of

meals and ingredients point to ‘food’, it is rather intuitive to
have a bigger associate network for this category. Hence, when
dealing with a dominant category like ‘food’, the τc should
be lower than the one given by the heuristic, for example by
setting it similar to Figure 4.

Figure 4: Graph displaying the relative activated word counts
for different values of firing threshold τfood together with the
threshold chosen by the heuristic.

C. Limitations

A practical limitation of this unsupervised method is that
it requires tuning for multiple parameters. Although one can
implement a training regime to learn these parameters, this
would render the method supervised, removing one of its key
advantages. Another shortcoming, albeit a minor one, is the
requirement of determining a seed set up front for each aspect
category one wants to find. Using the lexical representation of
the category complemented by some synonyms is an easy way
of retrieving a suitable seed set words, but abstract or vague
categories like ‘anecdotes/miscellaneous’ cannot be dealt with
effectively in this way.

IV. SUPERVISED METHOD

Similar to the first method, the supervised method (called
the Probabilistic Activation Method) employs co-occurrence
association rule mining to detect categories. We borrow the
idea from [23] to count co-occurrence frequencies between
lemmas and the annotated categories of a sentence. However,
low frequency words are not taken into account in order to
prevent overfitting. This is achieved using a parameter αL,
similar to the unsupervised method. Furthermore, stop words
are also removed.

In addition to counting the co-occurrences of lemmas and
aspect categories, the co-occurrences between grammatical
dependencies and aspect categories are also counted. Similar to
lemmas, low frequency dependencies are not taken into account
to prevent overfitting, using the parameter αD. Dependencies,
describing the grammatical relations between words in a
sentence, are more specific than lemmas, as each dependency
has three components: governor word, dependent word, and
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relation type. The added information provided by dependencies,
may provide more accurate predictions, when it comes to
category detection. Knowing whether a lemma is used in
a subject relation or as a modifier can make the difference
between predicting and not predicting a category.

To illustrate the value of dependencies, a small example is
provided using the following two sentences:

“The food

det
��

is pretty good.”

nsubj

��

cop

��
advmod
��

“This fast food joint

det

��

amod

��
comp

��
is my favourite.”

nsubj

��

cop

��
nmod

��

Assuming that the category ‘food’ exists, and that its category
word is a good indicator word for this category, most of the
time, the word ‘food’ will actually indicate the category ‘food’,
as in the first sentence. However there are also sentences where
the word ‘food’ does not indicate the category ‘food’, as shown
in the second sentence. By using the word ‘food’ as indicator
for the category ‘food’, both sentences will be annotated
with the category ‘food’, but by looking at dependencies this
does not have to be the case. In the first sentence ‘food’ is
used in relation to ‘good’ as nominal subject, while in the
second sentence ‘food’ is used to modify ‘joint’. From these
dependency relations we might learn that only when the word
‘food’ is used as a nominal subject, it implies the category
‘food’.

The fact that dependencies are more specific than lemmas
also has a disadvantage. With dependencies being triples, and
hence more diverse than lemmas alone, they tend to have a
much lower frequency count than single lemmas. This means
that many dependencies would not occur frequently enough to
be considered, since low frequency dependencies are omitted
to mitigate overfitting. To cope with this problem, two variants
of each dependency are added: the first is the pair of governor
word and dependency type, and the second is the pair of
depending word and dependency type. These pairs convey less
information than the complete triples, but are still informative
compared to having just lemmas. Since the frequency of these
pairs is generally higher than that of the triples, more pairs are
expected to pass the frequency filter. Hence, we extract, for each
dependency, the following three forms: {dependency relation,
governor, dependent} (D1), {dependency relation, dependent}
(D2), and {dependency relation, governor} (D3).

All the dependencies relations from the Stanford Parser [29]
are used to build up the dependency forms, except for the
determinant relation. For the previous first sentence, this would
mean the following dependency sets: [{advmod, good, pretty},
{cop, good, is}, {nsubj, good, food}] (D1), [{advmod, pretty},
{cop, is}, {nsubj, food}] (D2), and [{advmod, good}, {cop,
good}, {nsubj, good}] (D3).

Figure 5: Example flowchart of the supervised method.

The co-occurrence frequencies provide the information
needed to find good indicators (i.e., words or dependencies)
for the categories. To determine the strength of an indicator,
the conditional probability P (B|A) is computed from the
co-occurrence frequency, where category B is implied when
lemma or dependency form A is found in a sentence. These
conditional probabilities are easily computed by dividing the
co-occurrence frequency of (B,A) by the occurrence frequency
of A. The higher this probability, the more likely it is that A
implies B. If this value exceeds a trained threshold, the lemma
or dependency form indicates the presence of the corresponding
category.

This threshold that the conditional probability has to pass
is different for each category. It also depends on whether a
dependency form or lemma is involved, since dependency
forms generally have a lower frequency, requiring a lower
threshold to be effective. Hence, given that there are three
dependency forms and one lemma form, four thresholds need
to be trained for each category in the training data. To find
theses thresholds a simple linear search is performed, picking
the best performing (i.e., on the training data) value from a
range of values for each different threshold.

Once the conditional probabilities are computed and the
thresholds are known, unseen sentences from the test set are
processed. For each unseen sentence we check whether any
of the lemmas or dependency forms in that sentence have a
conditional probability greater than its corresponding threshold,
in which case the corresponding category is assigned to that
sentence. Figure 5 illustrates how the supervised method works
on a very simple test and training set.
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A. Algorithm

The method can best be described according to the following
steps:

Determine lemmas/dependencies
As a natural language preprocessing step, both training and

test data are run through the part-of-speech tagger, lemmatizer,
and dependency parser [30] of the Stanford CoreNLP [29].
This results in all sentences having a set of lemmas, denoted
by sL, and three dependency form sets, denoted by sD1

, sD2
,

and sD3
, respectively. The training set provides the annotated

categories of each sentence s, which is denoted by sC .
Determine weight matrix W
Next all unique categories are identified, storing them

in category set C. Additionally, the occurrence frequencies
of all lemmas and dependency forms are stored in vector
Y , while the co-occurrence frequencies of all dependency
form/lemma-category combinations, are counted and stored in
matrix X , respectively. These three steps of gathering statistical
information on the data are all performed on the training data
alone.

After the occurrence vector Y and co-occurrence matrix X
are obtained, we calculate for each co-occurrence entry Xc,j ,
with occurrence frequency Yj greater than θ, its associated
conditional probability P (c|j), and store it in weight matrix W .
The threshold θ prevents low occurring lemmas and dependency
forms from becoming indicators. This way we aim to mitigate
possible overfitting. The value of θ is, based on intuition,
set to 4 for these experiments, however, this could be part
of the training regime as well. The formula for calculating
these conditional probabilities is shown in Equation 3. The
pseudo-code for identifying the category set C, counting the
occurrence and co-occurrence frequencies, and computing the
weight matrix W , is shown in Algorithm 2.

Wc,j =
Xc,j

Yj
(3)

Find optimal thresholds τc,k
Next we execute a linear search for optimal thresholds τc,k,

c ∈ C, k ∈ {L,D1, D2, D2} on the training set. For each
category c ∈ C we optimize the four thresholds τc,L, τc,D1

,
τc,D2

, τc,D3
. Because the selection of one threshold influences

the selection of the other three thresholds, all thresholds are
optimized together.

The linear search uses Equation 4 to find the maximum
conditional probability maxc,k. If the maximum conditional
probability maxc,k is higher than the corresponding threshold
τc,k, we predict category c.

The training set is then evaluated for a range of values of
thresholds τc,k, and the thresholds which provided the highest
evaluation metric are selected as thresholds for the test set. In
our experiments we used as evaluation metric the F1-score and
as range [0.5, 1) with a step of 0.01 for thresholds τc,k.

maxc,k = max
j∈sk

Wc,j (4)

ALGORITHM 2: Identify category set C and compute weight matrix
W .
input : training set
input : occurrence threshold θ
output : category set C, Weight matrix W

1 C,X, Y ← ∅
2 foreach sentence s ∈ Training set do

// sk are the lemmas/dependecies of s
3 foreach sk ∈ {sL, sD1 , sD2 , sD3} do
4 foreach dependency forms/lemmas j ∈ sk do

// count dependency form/lemma
occurrence j in Y

5 if j /∈ Y then
6 add j to Y
7 end
8 Yj ← Yj + 1

// sC are the categories of s
9 foreach category c ∈ sC do

// Add unique categories in
category set C

10 if c /∈ C then
11 add c to C
12 end

// count co-occurrence (c, j) in X
13 if (c, j) /∈ X then
14 add (c, j) to X
15 end
16 Xc,j ← Xc,j + 1
17 end
18 end
19 end
20 end
// Compute conditional probabilities

21 foreach (c, j) ∈ X do
22 if Yj > θ then
23 Wc,j ← Xc,j/Yj

24 end
25 end

ALGORITHM 3: Estimating categories for the test set.
input : training set
input : test set
input : occurrence threshold θ
output : Estimated categories for each sentence in the test set

1 W ,C ← Algorithm 2(Training set, θ)
2 τc,L, τc,D1 , τc,D2 , τc,D3 ← LinearSearch (Training set, W , C)
// Processing of review sentences

3 foreach sentence s ∈ test set do
4 foreach category c ∈ C do

// Obtain maximum conditional
probabilities P (c|j) =Wc,j per type,
for sentence s

5 maxc,L ← maxl∈sL Wc,l

6 maxc,D1 ← maxd1∈sD1
Wc,d1

7 maxc,D2 ← maxd2∈sD2
Wc,d2

8 maxc,D3 ← maxd3∈sD3
Wc,d3

9 if maxc,L > τc,L or maxc,D1 > τc,D1 or maxc,D2 > τc,D2

or maxc,D3 > τc,D3 then
10 estimate category c for sentence s
11 end
12 end
13 end
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Estimate categories
The final step is to predict the aspect categories for each

unseen sentence s ∈ test set. From all lemmas and dependency
forms sL, sD1 , sD2 , and sD3 in sentence s we find the
maximum conditional probability P (c|j), as described in
Equation 4, for each category c ∈ C. Then, if any of these
maximum conditional probabilities surpasses their threshold
τc,k, category c is assigned as an aspect category for sentence
s. The pseudo-code for this step is shown in Algorithm 3.

B. Limitations

The main disadvantage of this method is that, contrary
to unsupervised methods, this method requires a sufficient
amount of annotated data in order to work properly. For a small
annotated data set this method will be inaccurate. Especially
the dependency indicators require enough training data in order
to be effectively used to predict categories.

Another limitation stems from the use of dependency
relations. These are found by using a syntactical parser,
which relies on the grammatical correctness of the sentence.
However, the grammar used in review sentences can be quite
disappointing. If sentences have weird grammatical structures,
the parser will not be able to extract relevant dependency
relations from these sentences, and may even misrepresent
certain dependencies.

Furthermore, because dependencies are triplets, and many
different dependency relations exist, the number of different
dependency triplets is huge, which makes it harder to find rules
that generalize well to unseen data. While a sufficiently large
training set will negate this issue, this might unfortunately not
always be available.

V. EVALUATION

For the evaluation of the proposed methods, the training
and test data from SemEval 2014 [10] are used. It contains
3000 training sentences and 800 test sentences taken from
restaurant reviews. Each sentence has one or more annotated
aspect categories. Figure 6 shows that each sentence has at
least one category and that approximately 20% of the sentences
have multiple categories. With 20% of the sentences having
multiple categories, a method would benefit from being able
to predict multiple categories. This is one of the reasons why
association rule mining is useful in this scenario as multiple
rules can apply to a single sentence.

Figure 7 presents the relative frequency of each aspect
category, showing that the two largest categories, ‘food’ and
‘anecdotes/miscellaneous’, are found in more than 60% of the
sentences. This should make these categories easier to predict
than the other categories, not only because of the increased
chance these categories appear, but also because there is more
information about them.

Last, in Figure 8, the proportion of implicit and explicit
aspect categories is shown. It is clear that using techniques
related to implicit aspect detection is appropriate here, given
that more than three quarters of the aspect categories is not
literally mentioned in the text.

1 2 >2
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number of categories
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Figure 6: The distribution of number of aspect categories per
sentence.

Because both the unsupervised and the supervised method
work best for well-defined aspect categories, the last category
in this data set, ‘anecdotes/miscellaneous’ poses a challenge.
It is unclear what exactly belongs in this category, and its
concept is rather abstract. For that reason, we have chosen not
to assign this category using any of the actual algorithms, but
instead, this category is assigned when no other category is
assigned by the algorithm. The characteristics in Figure 6 also
show that the use of ‘anecdotes/miscellaneous’ as a ‘fallback’
is justified given its large size and the fact that every sentence
has at least one category.

As is done at the SemEval 2014 [10] competition, the
methods are evaluated based on the micro averaged F1-score
defined as follows:

F1 =
2 · P ·R
P +R

, (5)

where precision (P ) and recall (R) are defined as follows,

P =
TP

FP + TP
,R =

TP

FN + TP
, (6)

where TP , FP , and FN represent the true positives, false
positives, and false negatives, respectively, of the estimated
aspect categories with respect to the (gold) aspect category
annotations.

A. Unsupervised Method

Table I displays, for each aspect category, the chosen firing
threshold together with the resulting precision, recall, and F1-
score on the test set. The category ‘anecdotes/miscellaneous’
is estimated when none of the other four categories are chosen
in the sentence.

With an overall F1-score of 67.0% on the test set, the method
seems to perform well, but the performance strongly depends
on the choice of the parameters. If we would for example, had
chosen to treat the category ‘service’ as a dominant category,
like we did with the category ‘food’, and had lowered the
firing threshold, then the precision of this category would have
dropped significantly, while the recall would only increase
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Figure 7: The relative frequency of the aspect categories.
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Figure 8: The ratio between implicit aspect categories and
explicitly mentioned ones.

slightly. Likewise, if we would not have treated the category
‘food’ as a dominant category, its recall would have severely
dropped, while the precision would have increased. So certain
domain knowledge about the dataset is required when choosing
parameter values. Table II shows this sensitivity of the firing
thresholds, where the relative change in terms of F1-score is
given when deviating from the chosen thresholds. As can be
seen the proposed method is sensitive to threshold variations.

Category TP’s FP’s FN’s τc precision recall F1

food 313 103 105 0.22 75.1% 74.4% 74.8%
service 100 4 72 0.19 96.2% 58.1% 72.5%
ambience 41 10 77 0.09 80.4% 34.8% 48.5%
price 52 16 31 0.09 79.0% 54.2% 64.3%
misc. 163 159 71 - 50.6% 70.9% 59.1%
all 852 157 173 - 70.0% 64.7% 67.0%

Table I: Chosen firing thresholds and their evaluation scores
on the test set.

Category -0.05 -0.02 -0.01 0 0.01 0.02 0.05
food -8 -7.9 -7.9 0 -1.9 -6.7 -25
service -8.6 -3.3 -4.6 0 0 0 0
ambience -47 3.1 8.9 0 0 0 -5.6
price -72.1 -18.7 -11 0 0 0.1 1.6

Table II: Relative change in F1, when varying firing thresholds.

Category TP’s FP’s FN’s precision recall F1

food 371 51 47 87.9% 88.8% 88.3%
service 159 32 13 83.2% 92.4% 87.6%
ambience 83 28 35 73.8% 70.3% 72.5%
price 74 8 9 90.2% 89.2% 89.7%
anecdotes/misc. 165 38 69 81.3% 70.5% 75.5%
all 852 157 173 84.4% 83.1% 83.8%

Table III: Evaluation scores of the supervised method with
both dependency and lemma indicators on the test set.

Category TP’s FP’s FN’s precision recall F1

food 348 35 70 90.9% 83.3% 86.9%
service 153 13 19 92.2% 89.0% 90.5%
ambience 78 28 40 73.6% 66.1% 69.6%
price 79 9 4 89.9% 95.2% 92.4%
anecdotes/misc. 165 38 69 81.3% 70.5% 75.5%
all 823 123 202 87.5% 80.3% 83.5%

Table IV: Evaluation scores of the supervised method with
only lemma indicators on the test set.

From Table I, one can conclude that this approach has
difficulty predicting the category ‘ambience’. This might be
due to the nature of that particular category, as it is often not
specified in a sentence by just one word, but is usually derived
from a sentence by looking at the sentence as a whole. This
can be illustrated with the following example

“Secondly, on this night the place was overwhelmed
by upper east side ladies perfume.”

where there is no particular word that strongly suggests that
‘ambience’ is the right category for this sentence.

B. Supervised Method

For the supervised method we use the training set to learn
the parameters and co-occurrence frequencies, after which
we evaluate the method on the test set. To see the impact
the dependency indicators have, this method is executed
separately for the dependency indicators, lemma indicators
and a combined version where both lemma and dependency
indicators are used, and evaluated on the test set. Tables III,
IV, and V show the results.

Comparing the results from Tables III-V shows that using
both dependency and lemma indicators provides best results.
However, these results are only slightly better than when
only lemma indicators are used, which means that we cannot
claim that dependency indicators are beneficial when predicting
categories in terms of F1 score. Table V does show that by
themselves, dependency indicators do have predicting power,
albeit less than lemma indicators. This was as expected, since
dependency indicators consists of more than one component,
which makes it harder to find rules that generalize well to
unseen data, and, in addition, they also rely on the grammatical
correctness of the sentence.

Using dependency indicators, in addition to lemma indicators,
does seem to result into finding more categories, even though
it is less precise in doing so. This is especially the case for
the category ‘food’. The main reason for this is that ‘food’ is
by far the largest category, resulting in more available training
data for this category, which makes it easier to find rules.
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Category TP’s FP’s FN’s precision recall F1

food 343 45 75 88.4% 82.1% 85.1%
service 152 27 20 84.9% 88.4% 86.6%
ambience 62 34 56 64.6% 52.5% 57.9%
price 61 5 22 92.4% 73.5% 81.9%
anecdotes/misc. 165 38 69 81.3% 70.5% 75.5%
all 783 149 242 84.0% 76.4% 80.0%

Table V: Evaluation scores of the supervised method with
only dependency indicators on the test set.

C. Comparison

To evaluate the quantitative performance of the proposed
method, it is compared against several baseline methods and
three successful methods from the SemEval-2014 competition.
The four baseline methods are:
• Seed word baseline: This baseline estimates a category

if one of its seed words is present in the sentence.
• Majority baseline: This baseline predicts for every

sentence the two most common categories (i.e., ‘food’
and ‘anecdotes/miscellaneous’) present in the data.

• Random baseline: For this baseline we randomly select
categories for each sentence. The chance of selecting a
certain category depends on the appearance in the training
set, just as the number of selected categories depends on
the distribution of the number of categories per sentence
in the training set.

• SemEval baseline: The final baseline comes from [10],
and it is a simple supervised method. For every test
sentence s, the k most similar to s training sentences
are retrieved. Here the similarity between two sentences
is measured by calculating the Dice coefficient of the sets
of distinct words of two sentences. Then, s is assigned
the m most frequent aspect categories of the k retrieved
sentences. This baseline is clearly a supervised method
and thus requires a training set.

The four methods from the literature are V3 [24], an
unsupervised semantic similarity algorithm, Schouten et al. [23],
a supervised co-occurrence based algorithm, Brychcin et
al. [12], the best performing submitted constrained (i.e., no
external training data is used) method, and a constrained
version (cf. end of Section II) of Kiritchenko et al. [11], the
best constrained supervised machine learning approach at this
particular task at SemEval-2014. The resulting overall precision,
recall, and F1-score are displayed in Table VI.

Method precision recall F1

Random baseline 30.8% 30.5% 30.6%
Majority baseline 38.8% 63.7% 48.2%
Seed word baseline 57.2% 46.4% 51.2%
Schouten et al. [23] 63.3% 55.8% 59.3%
V3 [24] 63.3% 56.9% 60.2%
SemEval-2014 baseline [10] - - 63.9%
Proposed Unsupervised Method 69.5% 64.7% 67.0%
UWB [12] 85.1% 77.4% 81.0%
constrained Kiritchenko et al. [11] 86.5% 78.3% 82.2%
Proposed Supervised Method 84.4% 83.1% 83.8%

Table VI: F1-scores of different (constrained) methods.

Clearly, the supervised method, as well as many other
(supervised) methods presented at SemEval-2014 perform better
than the proposed unsupervised method. However, this is to be
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Figure 9: F1-scores for different sizes of the training set (%
of 3000 sentence).

expected for an unsupervised method. Interestingly, it is able
to outperform the basic bag-of-words supervised approach
of the SemEval-2014 baseline, as well as the supervised
co-occurrence based method from [23]. On the other hand,
the second proposed method beats all constrained methods
from the SemEval-2014 competition. Note however, that the
full (unconstrained) method from Kiritchenko et al. [11]
outperforms our proposed method by a few percent, which is
due to the fact that it enjoys an unconstrained training regime.

In Figure 9 F1-scores are shown for different sizes of the
training set, using a stratified sampling technique where the
distribution of the categories remains similar to the original
dataset. Each data point in the figure represents an incremental
increase of 10% (300 sentences) in labeled data, for the
supervised method, and unlabeled data for the unsupervised
method. The supervised method always seems to outperform
the unsupervised method, although larger training sizes for
the unsupervised method seem to perform on par with the
supervised method for which very small amounts of labeled
data are available (F1-score around 70%).

VI. CONCLUSION

In this work we have presented two methods for detecting
aspect categories, that is useful for online review summarization.
The first, unsupervised, method, uses spreading activation over
a graph built from word co-occurrence data, enabling the use of
both direct and indirect relations between words. This results
in every word having an activation value for each category that
represents how likely it is to imply that category. While other
approaches need labeled training data to operate, this method
works unsupervised. The major drawback of this method is
that a few parameters need to be set beforehand, and especially
the category firing thresholds (i.e., τc) need to be carefully set
to gain a good performance. We have given heuristics on how
these parameters can be set.

The second, supervised, method uses a rather straightforward
co-occurrence method where the co-occurrence frequency
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between annotated aspect categories and both lemmas and
dependencies is used to calculate conditional probabilities.
If the maximum conditional probability is higher than the
associated, trained, threshold, the category is assigned to that
sentence. Evaluating this approach on the official SemEval-
2014 test set [10], shows a high F1-score of 83%.

In terms of future work, we would like to investigate how
injecting external knowledge would improve the results. While
lexicons are a good way of doing that, as shown by [11], we are
especially interested in exploiting more semantic alternatives,
like ontologies or other semantic networks. Also, as we are
dealing with unbalanced data, we plan to explore machine
learning techniques that address this problem [31].
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