
Chapter 11
tOWL: Integrating Time in OWL

Flavius Frasincar, Viorel Milea, and Uzay Kaymak

Abstract The Web Ontology Language (OWL) is the most expressive standard lan-
guage for modeling ontologies on the Semantic Web. In this chapter, we present the
temporal OWL (tOWL) language: a temporal extension of the OWL DL language.
tOWL is based on three layers added on top of OWL DL. The first layer is the Con-
crete Domains layer, which allows the representation of restrictions using concrete
domain binary predicates. The second layer is the Time Representation layer, which
adds time points, intervals, and Allen’s 13 interval relations. The third layer is the
Change Representation layer which supports a perdurantistview on the world, and
allows the representation of complex temporal axioms, suchas state transitions. A
Leveraged Buyout process is used to exemplify the differenttOWL constructs and
show the tOWL applicability in a business context.

11.1 Introduction

In its role as reference system, time is, beyond any doubt, one of the most encoun-
tered dimensions in a variety of domains. Naturally, dealing with time has been, and
continues to be, one of the major concerns in different fields, including knowledge
representation.

When including time in a knowledge representation language, one can choose
to model linear time or branching time. Linear time uses a single line of time (one
future), while branching time employs many time lines (possible futures). Based
on the inclusion of time representations in the language, wedistinguish between
explicit and implicit approaches. In an explicit approach,time is part of the lan-
guage, and in an implicit approach, time is inherent in the ordering of states. For
an explicit temporal representation, we differentiate between time points and time

Flavius Frasincar, Viorel Milea, and Uzay Kaymak
Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA Rotterdam, the Netherlands
e-mail:{frasincar, milea, kaymak}@ese.eur.nl

1

2 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

intervals. Also, the explicit representations can furtherbe defined using an internal
or an external view on time. In an external view, an individual has different states at
different moments in time, and in the internal view, an individual is seen as collec-
tion of different parts, each one holding at a certain momentin time. In other words,
the external view uses an enduratist view on the world, and the internal view uses a
perdurantist view on the world.

For modeling time one has at least two options to consider: valid time and trans-
action time. Valid time denotes the time during which the data is true in the modeled
world. Transaction time represents the time at which the data was stored. Another
differentiation pertains to whether we model relative timeas “next week” or abso-
lute time as “24 May 2009 15:00 CEST”.

The considerable and ever-increasing volume of data present on the Web today
motivates a need to move from free-text representations of data to semantically rich
representations of information. Endeavors in this direction are being undertaken un-
der a common denominator: the Semantic Web [4]. The state-of-the-art tools and
languages provided under this umbrella, such as RDF(S) [5, 11] and OWL [3], go
beyond the Web and provide the means for data sharing and reuse outside this plat-
form, i.e., in the form of semantic applications. Despite the omnipresence of time in
any Web knowledge representation, the current RDF(S) and OWL standards do not
support at language level temporal representations, failing thus to provide a uniform
way of specifying and accessing temporal information.

Previous attempts [6] to represent time and change relate toRDF extensions that
are able to cope only to a limited extent with the semantics oftemporal represen-
tations. Also, these languages are difficult to use in practice as they do not have an
RDF/XML serialization. Other solutions are based on proposing ontologies [9, 17]
for modeling time and/or change. These approaches also present shortcomings when
modeling temporal semantics as they are bound to the OWL expressivity power.

In this chapter, we present a temporal ontology language, i.e., tOWL, addressing
the current limitations on representing temporality on theSemantic Web. We model
valid time using an absolute time representation. By employing a similar approach,
one can model also transaction time, and by determining the context of temporal
expressions, it is also possible to use relative time by converting it internally to
an absolute representation. Our language is able to represent linear timeusing an
explicit timespecification. It supports bothtime pointsandtime intervals, and adopts
an internal (predurantist) view on the world. The proposed language builds upon
OWL, the most expressive Semantic Web standard in knowledgerepresentation.
The current contribution is focused around employing the tOWL language for the
representation of business processes, the Leveraged Buyout process.

Section 11.2 presents the concrete domains and fluents notions needed in or-
der to understand the tOWL language. In Sect. 11.3 we describe the tOWL lan-
guage by providing its layered architecture, and the OWL schema representation
in RDF/XML of its vocabulary. After that, in Sect. 11.4 we present the TBox and
ABox of the tOWL ontology for a Leveraged Buyout example. Section 11.5 com-
pares the related work with the tOWL approach. Last, in Sect.11.6 we present our
concluding remarks and identify possible future work.

11 tOWL: Integrating Time in OWL 3

11.2 Preliminaries

The language proposed in this paper builds on previous work on concrete domains
in description logics, and fluents representation in Semantic Web languages. In Sub-
sect. 11.2.1 we present a scheme for integrating concrete domains and their predi-
cates in description logics. After that, in Subsect. 11.2.2we present the 4D Fluents
approach for modeling change in OWL DL.

11.2.1 Concrete Domains

Current DL-based languages as OWL DL are well-equipped for representing ab-
stract concepts, but experience limitations when modelingconcrete features as price,
weight, age, etc. For this purpose, in [2], an approach is proposed for including con-
crete domains in the description logicALC. A concrete domainD is defined as as
a set∆

D
, the domain ofD, and a setpred(D), the predicate names ofD. Each

predicate name is associated with a predicate of arity n,PD ⊆ ∆n
D

.
In order to maintain the decidability of the extended language, the concrete do-

mains need to be admissible. A concrete domain is consideredadmissible if it sat-
isfies three conditions: (i) the set of predicate names is closed under negation, (ii)
the set of predicate names contains a name for∆

D
, and (iii) the satisfiability of

conjunctions of the form:

k∧

i=1
Pi(x

(i))

whereP1, ...,Pk are predicate names inpred(D) of arity n1, ...,nk, respectively, and
x(i) represents anni-tuple(x(i)

1
, ...,x(i)

ni
) of variables, is decidable.

From a tOWL perspective we identify one concrete domain thathas been proven
in the literature [12] to be admissible, the set of rational numbers with the compar-
ison operators<, ≤, =, 6=, ≥, and>. The set of time intervals with the 13 Allen
operatorsequal, be f ore, a f ter, meets, met-by, overlaps, overlapped-by, during,
contains, starts, started-by, f inishes, and f inished-by can be translated to opera-
tions on the previously identified concrete domain. The intervals concrete domain
is not admissible based on the previous definition, but it is awell-behaved con-
crete domain that has been proven to maintain the decidability of the extended lan-
guage [12].

In [2] the authors proposeALC(D), ALC extended with an admissible concrete
domainD. The extension is based on the following concrete domain constructor:

∃u1...un.P

whereui are concrete feature chains, i.e., compositions of the formf1... fmg where
f1, ... fm are abstract features, and g is a concrete feature. The semantics of the con-
crete domain constructor is defined as follows:

4 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

(∃u1...un.P)I = {a∈ ∆
I
| ∃x1, ...,xn ∈ ∆

D
:

uIi (a) = f I1 ... f Imi
gI(a) = xi ,1≤ i ≤ n,(x1, ...,xn) ∈ PD}

where∆
I

is the abstract domain of the interpretation.
In the same paper, the authors prove thatALC(D) is decidable. In addition, it is

proven that the union of two admissible domains yields an admissible domain, i.e.,
admissibility is closed under union. The previous concretedomain constructor has
been generalized to roles in [7] as follows:

∃u1...un.P
∀u1...un.P

whereui are concrete role chains, i.e., compositions of the formr1...rmg where
r1, ...rm are abstract roles, and g is a concrete feature.

The semantics of the generalized concrete domain constructor is defined as:

(∃u1...un.P)I = {a∈ ∆
I
| ∃x1, ...,xn ∈ ∆

D
:

uIi (a) = rI1 ...rImi
gI(a) = xi ,1≤ i ≤ n,(x1, ...,xn) ∈ PD}

(∀u1...un.P)I = {a∈ ∆
I
| ∀x1, ...,xn ∈ ∆

D
:

uIi (a) = rI1 ...rImi
gI(a) = xi ,1≤ i ≤ n,(x1, ...,xn) ∈ PD}

The earlier decidability results have been generalized in [13] to the more power-
ful description logicSHIQ(D). As tOWL aims at extending OWL with temporal
information based on the previously identified concrete domains, the decidable sub-
set of tOWL is given bySHIN (D), i.e., OWL DL with two well-behaved concrete
domains but without nominals.

11.2.2 4D Fluents

Most of the existing knowledge representation formalisms on the Semantic Web
deal with the representation of static domains, failing to capture the semantics of
dynamic domains. A notable exception is the 4D Fluents approach from [17], which
is based on an OWL DL ontology for modeling a perdurantist view on the world.
The abstract syntax of the proposed ontology is defined as follows:

Ontology(4dFluents
Class(TimeSlice)
DisjointClasses(TimeSlice TimeInterval)
Property(fluentProperty

domain(TimeSlice)
range(TimeSlice))

Property(tsTimeSliceOf Functional
domain(TimeSlice)
range(complementOf(TimeInterval))

Property(tsTimeInterval Functional
domain(TimeSlice)
range(TimeInterval)))

11 tOWL: Integrating Time in OWL 5

The cornerstone of the ontology is given by fluents, i.e., object properties that
change through time. The authors investigate several solutions for the fluents rep-
resentation in OWL. The first solution is provided by adding an extra temporal di-
mension to RDF triples that leads to ternary predicates which are not supported by
the OWL language unless reification is used. Unfortunately,reification has no clear
semantics so this solution is discarded. A second solution is provided by adding a
meta-logical predicateholdswhich makes triples valid at certain moments in time.
This solution is also rejected as OWL DL does not support second order logic.

The authors propose to represent fluents as properties that have as domain and
range timeslices. Timeslices stand for entities that are stretched through the temporal
dimension (temporal worms). For timeslice representationtwo properties are used:
tsTimeSliceO fto refer to the corresponding entity, andtsTimeIntervalto point to
the associated interval. For representing intervals, the 4D Fluents ontology imports
the OWL-Time ontology [9]. The definition ofTimeIntervalin OWL-Time is given
as follows:

Ontology(OWL-Time
Class(TimeInterval)
Class(InstantThing)
Property(begins Functional

domain(TimeInterval)
range(InstantThing)

Property(ends Functional
domain(TimeInterval)
range(InstantThing))

Property(inCalendarClockDataType
domain(InstantThing)
range(xsd:dateTime))

...)

TimeIntervalis defined as a class with two propertiesbeginsandendsthat refer
to InstantThings. InstantThinghas the propertyinCalendarClockDataTypeto re-
fer to one time instant given using XML Schemaxsd:dateTime. When using fluents
to link two different timeslices (possibly belonging to twodifferent entities), one
needs to make sure that these two timeslices correspond to the same time interval.
This constraint goes outside the OWL DL expressivity as it accesses information
from two possibly different entities and needs to be enforced before further process-
ing the ontology.

11.3 tOWL

This section presents the temporal OWL (tOWL) language [15], focusing on its ab-
stract syntax and semantics. First, Subsect. 11.3.1 gives an overview of the tOWL
language and its layer-based architecture. Then, Subsect.11.3.2 introduces the
tOWL OWL Schema in RDF/XML.

6 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

11.3.1 tOWL Overview

As given in Fig. 11.1 the tOWL language is composed of 4 layers, the bottom layer
being the OWL DL layer.

Fig. 11.1 tOWL layer cake

The first layer introduced by tOWL concerns the expressiveness of the language
in a general, rather than in a strictly temporal sense. TheConcrete Domainslayer
enables the representation of restrictions on property chains based on concrete do-
main predicates.

Partly enabled by theConcrete Domainslayer, theTemporal Representationlayer
adds a temporal reference system to the language, in the formof concrete time and
concrete temporal relations. For this purpose we use two concrete domains: the set
of time instants given by XML Schemaxsd:dateTime(which is equivalent to the set
of rational numbers) with the comparison predicates, and the set of time intervals
with the Allen predicates. TheInterval is defined using the time instant concrete
domain as follows:

Interval≡ ∃ start end. <

Upon enabling temporal reference in the language, the representation of change
and state transitions is provided through theChange Representationlayer. This ex-
tension enables the modeling of temporal parts of individuals that may have different
property values at various moments in time. For this purposewe employ the fluents
approach of the 4D Fluents ontology.

11.3.2 OWL Schema of tOWL

In this section we present an OWL schema of the tOWL language constructs. This is
done in the same fashion as for OWL in the form of an “RDF Schemaof OWL” [3].
The main purpose of this section is to provide a clear overview of the tOWL vocab-
ulary.

The presentation of the OWL schema of tOWL starts off with theusual prelimi-
naries in the form of namespace declarations as for any OWL ontology:

11 tOWL: Integrating Time in OWL 7

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
<!ENTITY owl "http://www.w3.org/2002/07/owl#">
<!ENTITY towl "http://www.towl.org/towl#">
<!ENTITY towl_ "http://www.towl.org/towl">

]>
<rdf:RDF xmlns:rdf = "&rdf;"

xmlns:rdfs = "&rdfs;"
xmlns:xsd = "&xsd;"
xmlns:owl = "&owl;"
xmlns = "&towl;"
xml:base = "&towl_;">

The classTimeSliceis the superclass of all timeslices. This concept is introduced
in the language by theChange Representationlayer as follows:

<owl:Class rdf:ID="TimeSlice">
<rdfs:label>TimeSlice</rdfs:label>
<rdfs:subClassOf rdf:resource="&owl;Class"/>

</owl:Class>

Individuals of typeTimeSlice, as presented in the previous paragraph, describe a
regular individual over some period of time. Indicating which individual is described
by an instance of typeTimeSliceis achieved through thetimeSliceOffunctional
property:

<owl:FunctionalProperty rdf:ID="timeSliceOf">
<rdfs:label>timeSliceOf</rdfs:label>
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#TimeSlice"/>
<rdfs:range>

<owl:Class>
<owl:complementOf>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#TimeSlice"/>
<owl:Class rdf:about="#Interval"/>
<owl:Class rdf:about="&rdfs;Literal"/>

<owl:unionOf/>
</owl:Class>

</owl:complementOf>
</owl:Class>

</rdfs:range>
</owl:FunctionalProperty>

Another property describing individuals of typeTimeSliceindicates the period of
time for which these individuals hold. This is specified through thetime functional
property, that points to individuals of typeInterval. This property, as well as the
Intervalclass, are specified as follows:

8 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

<owl:FunctionalProperty rdf:ID="time">
<rdfs:label>time</rdfs:label>
<rdf:type rdf:resource="&owl;ObjectProperty"/>
<rdfs:domain rdf:resource="#TimeSlice"/>
<rdfs:range rdf:resource="#Interval"/>

</owl:FunctionalProperty>

<owl:Class rdf:ID="Interval">
<rdfs:label>Interval</rdfs:label>
<rdfs:subClassOf rdf:resource="&owl;Class"/>

</owl:Class>

Intervals are characterized by a starting point and an ending point, respec-
tively. These bounds of an interval are represented as XML Schemaxsd:dateTime
datatypes, and connected to the respective interval through thestart andendprop-
erties, respectively:

<owl:FunctionalProperty rdf:ID="start">
<rdf:type rdf:resource="&owl;DatatypeProperty"/>
<rdfs:domain rdf:resource="#Interval"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="end">
<rdf:type rdf:resource="&owl;DatatypeProperty"/>
<rdfs:domain rdf:resource="#Interval"/>
<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:FunctionalProperty>

Indicating change for timeslices is achieved in the tOWL language through the
use of fluents. AFluentPropertymay come in one of two flavors, namelyFluentO-
bjectPropertyor FluentDatatypeProperty. The first type links a timeslice to another
timeslice, while the second type is used to indicate changing concrete values and
thus links a timeslice to an XML Schema datatype. The fluent property types are
defined as follows:

<owl:Class rdf:ID="FluentProperty">
<rdfs:label>FluentProperty</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdf;Property"/>

</owl:Class>

<owl:Class rdf:ID="FluentObjectProperty">
<rdfs:label>FluentObjectProperty</rdfs:label>
<rdfs:subClassOf rdf:resource="#FluentProperty"/>

</owl:Class>

<owl:Class rdf:ID="FluentDatatypeProperty">
<rdfs:label>FluentDatatypeProperty</rdfs:label>
<rdfs:subClassOf rdf:resource="#FluentProperty"/>

</owl:Class>

The 13 Allen relations [1] that describe any possible relation that may exist be-
tween 2 intervals are introduced in the language through theTimeIntervalPredicate

11 tOWL: Integrating Time in OWL 9

class, limited to 13 individuals corresponding to the Allenpredicates in a one-to-one
fashion:

<owl:Class rdf:ID="TimeIntervalPredicate">
<rdfs:label>TimeIntervalPredicate</rdfs:label>
<owl:equivalentClass>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:ID="equal"/>
<owl:Thing rdf:ID="met-by"/>
<owl:Thing rdf:ID="meets"/>
...

</owl:oneOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

In the same fashion we describe<, ≤, =, 6=, ≥, and> relations that may hold
between concretexsd:dateTimevalues that represent the end points of intervals:

<owl:Class rdf:ID="DateTimePredicate">
<rdfs:label>DateTimePredicate</rdfs:label>
<owl:equivalentClass>
<owl:Class>

<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:ID="dateTime-less-than"/>
<owl:Thing rdf:ID="dateTime-greater-than"/>
<owl:Thing rdf:ID="dateTime-equal"/>
...

</owl:oneOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

Concrete features, i.e., functional properties over the concrete domain, are intro-
duced in tOWL through theConcreteFeatureclass:

<owl:Class rdf:ID="ConcreteFeature">
<rdfs:label>ConcreteFeature</rdfs:label>
<rdfs:subClassOf rdf:resource="&owl;FunctionalProperty"/>
<rdfs:subClassOf rdf:resource="&owl;DatatypeProperty"/>

</owl:Class>

One of the novelties of the tOWL language consists of the introduction of chains
of roles ending in a concrete feature. This is present in the language through the
ConcreteRoleChainconstruct:

<owl:Class rdf:ID="ConcreteRoleChain">
<rdfs:label>ConcreteRoleChain</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdf;List"/>

</owl:Class>

10 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

Introducing such chains has impact on the type of restrictions allowed in the
language. For this purpose, the OWL constructowl:onPropertyis extended with the
onPropertyChainsconstruct, thus allowing restrictions on tOWL chains:

<owl:ObjectProperty rdf:ID="onPropertyChains">
<rdfs:label>onPropertyChains</rdfs:label>
<rdfs:domain rdf:resource="&owl;Restriction"/>
<rdfs:range rdf:resource="&tow;ConcreteRoleChains">

</owl:ObjectProperty>

<owl:Class rdf:ID="ConcreteRoleChains">
<rdfs:label>ConcreteRoleChains</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdf;List"/>

</owl:Class>

In the same fashion, the OWL restrictionsallValuesFromandsomeValuesFrom
are extended to include theTimeIntervalPredicateandDateTimePredicateclasses:

<owl:ObjectProperty rdf:ID="dataAllValuesFrom">
<rdfs:label>allValuesFrom</rdfs:label>
<rdfs:domain rdf:resource="&owl;Restriction"/>
<rdfs:range>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#TimeIntervalPredicate"/>
<owl:Class rdf:about="#DateTimePredicate"/>

</owl:unionOf>
</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="dataSomeValuesFrom">
<rdfs:label>someValuesFrom</rdfs:label>
<rdfs:domain rdf:resource="&owl;Restriction"/>
<rdfs:range>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#TimeIntervalPredicate"/>
<owl:Class rdf:about="#DateTimePredicate"/>

</owl:unionOf>
</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

11.4 A tOWL Ontology for the Leveraged Buyouts

In order to show the usefulness of the proposed language, in this section, we illus-
trate how one can model a business process for which the temporal aspects are
essential. For this purpose, we decided to focus on Leveraged Buyouts (LBO),
one of the most complex processes encountered in business acquisitions. First, in
Subect. 11.4.1 we introduce the LBO example. Then, in Subsect. 11.4.2 we present
the TBox of the LBO example. After that, in Subsect. 11.4.3 wegive the ABox of

11 tOWL: Integrating Time in OWL 11

the LBO example. Last, in Subsect. 11.4.4 we show some use cases for the tOWL
in the context of the LBO example.

The focus of this section is to illustrate how the information regarding an LBO
process can be represented in the tOWL language. For this purpose, we provide a
representation of this example in tOWL abstract syntax and RDF/XML syntax. This
is done for both TBox and ABox level representations.

11.4.1 Leveraged Buyouts

A Leveraged Buyout is a special type of an acquisition in which a company buys
another company by using loans guaranteed with assets of thebought company.
Figure 11.2 shows the activity diagram of an LBO process associated to one of the
buyer/buyee companies. After each stage, but the last one, the system can go in
the Abort stage, which ends the process without acquisition. The firststate is the
Early Stage. From this stage a transition can be made to theDue Diligencestage or
the current state might be extended. AfterDue Diligencestage follows theBidding
stage, from which the process can optionally go toRaise Bidstage. Last, the process
ends withAcquisition.

Due Diligence Bidding Acquisition

Extension

Abort

Raise Bid
acquisition

due diligence

abort

abort

abort

acquisition

extension

bidding

abort

raise bid

Early Stage
due diligence

Fig. 11.2 The Leverged Buyouts process

The running example in this paper is based on the largest LBO acquisition in Eu-
rope. In 2007, two hedge funds did compete for the acquisition of a target company.
From the two hedge funds, Kohlberg Kravis Roberts & Co and Terra Firma, the first
won the bidding and acquired the target company Alliance Boots.

11.4.2 TBox

At TBox level we represent conceptual information that is known about LBO pro-
cesses in general. In this context, two types of companies that take part in an LBO
are known:HedgeFundandTarget, which we define as subclasses of theCompany
class. In tOWL abstract syntax, this translates to the following:

12 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

Class(Company)
Class(HedgeFund partial Company)
Class(Target partial Company)

In tOWL RDF/XML, this can be represented as:

<owl:Class rdf:ID="Company"/>
<owl:Class rdf:ID="HedgeFund">

<rdfs:subClassOf rdf:resource="#Company"/>
</owl:Class>
<owl:Class rdf:ID="Target>

<rdfs:subClassOf rdf:resource="#Company"/>
</owl:Class>

The different stages of an LBO process are represented as subclasses of theStage
class, such as for example in the case of theBiddingstage. In tOWL abstract syntax,
this is represented as:

Class(Bidding partial Stage)

The tOWL RDF/XML representation of the above expression takes the form:

<owl:Class rdf:ID="Stage"/>
<owl:Class rdf:ID="Bidding">
<rdfs:subClassOf rdf:resource="#Stage"/>

</owl:Class>

All stages are pairwise disjoint, which can be represented in tOWL abstract syn-
tax as follows:

DisjointClasses(EarlyStage, DueDiligence, ..., Extension)

In tOWL RDF/XML, for each unique pair of stages their disjuction is expressed
like:

<owl:Class rdf:ID="RaiseBid">
<rdfs:subClassOf rdf:resource="#Stage"/>
<owl:disjointWith rdf:resource="#Acquisition"/>

</owl:Class>

We define the class of all timeslices of an LBO process as follows, in tOWL
abstract syntax:

11 tOWL: Integrating Time in OWL 13

Class(LBOProcess_TS complete
restriction(timeSliceOf(someValuesFrom LBOProcess)))

The same representation takes the following form in tOWL RDF/XML:

<owl:Class rdf:ID="LBOProcess_TS">
<owl:quivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="&towl;timeSliceOf"/>
<owl:someValuesFrom rdf:resource="#LBOProcess"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

In similar fashion, we define, for each stage, the class of alltimeslices of that
stage. For theEarlyStagethis achieved as follows, in tOWL abstract syntax:

Class (EarlyStage_TS complete
restriction(timeSliceOf(someValuesFrom EarlyStage)))

The tOWL RDF/XML serialization of this fact takes the form:

<owl:Class rdf:ID="EarlyStage_TS">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="&towl;timeSliceOf"/>
<owl:someValuesFrom rdf:resource="#EarlyStage"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

For each stage, we define a functional property that links a particular LBO pro-
cess timeslice to the timeslice of the stage belonging to it.Please note that this
property is not a fluent as it links timeslices correspondingto different temporal in-
tervals and it does not change in time. In tOWL abstract syntax, this is represented
as:

ObjectProperty(earlyStage
domain(LBOProcess_TS)
range(EarlyStage_TS)
Functional)

Representing the same fact in tOWL RDF/XML resumes to the following ex-
pression:

14 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

<towl:ObjectProperty rdf:ID="earlyStage">
<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#LBOProcess_TS"/>
<rdfs:range rdf:resource="#EarlyStage_TS"/>

</towl:ObjectProperty>

Next, we move on to define theinStagefluent, that for each timeslice of a com-
pany points to the stage in which the company finds itself. In tOWL abstract syntax
it is represented as:

FluentObjectProperty(inStage
domain(
restriction(timeSliceOf(someValuesFrom Company)))

range(
restriction(timeSliceOf(someValuesFrom Stage)))

In tOWL RDF/XML serialization the previously fluent is described as:

<towl:FluentObjectProperty rdf:ID="inStage">
<rdfs:domain>

<owl:Restriction>
<owl:onProperty rdf:resource="&towl;timeSliceOf"/>

<owl:someValuesFrom rdf:resource="#Company"/>
</owl:Restriction>

</rdfs:domain>
<rdfs:range>

<owl:Restriction>
<owl:onProperty rdf:resource="&towl;timeSliceOf"/>
<owl:someValuesFrom rdf:resource="#Stage"/>

</owl:Restriction>
</rdfs:range>

</towl:FluentObjectProperty>

Timeslices of an LBO process are defined by the sequence of stages that a com-
pany may follow in this process. Representing such sequences relies on concrete
role chains, and reduces to assessing the order of the intervals associated with the
different stages.

For example, representing that theEarlyStagealways starts an LBO process can
be represented in tOWL abstract syntax as follows:

Class(LBOProcess_TS complete
intersectionOf(

restriction(
dataSomeValuesFrom((earlyStage time) time starts))

...))

For the RDF/XML serialization of the above type of restriction we need two types
of lists: lists for representing each concrete role chain, and a list that stores the prop-
erty chains on which the binary concrete domain predicate isapplied. Please note

11 tOWL: Integrating Time in OWL 15

that for concrete features that stand for concrete feature chains used in restrictions,
the list construct is not needed.

Serializing the previous axiom in tOWL RDF/XML results in the following:

<towl:ConcreteRoleChain rdf:ID="iEarlyStageChain">
<rdf:first rdf:resource="#earlyStage"/>
<rdf:rest>

<towl:ConcreteRoleChain>
<rdf:first rdf:resource="#time"/>
<rdf:rest rdf:resource="&rdf;nil"/>

</towl:ConcreteRoleChain>
</rdf:rest>

</towl:ConcreteRoleChain>

<owl:Class rdf:ID="LBOProcess_TS">
<owl:equivalentClass>

<owl:intersectionOf parseType="Collection">
<owl:Restriction>

<towl:onPropertyChains>
<towl:ConcreteRoleChains>

<rdf:first rdf:resource="#iEarlyStageChain"/>
<rdf:rest>
<towl:ConcreteRoleChains>

<rdf:first rdf:resource="#time"/>
<rdf:rest rdf:resource="&rdf;nil"/>

</towl:ConcreteRoleChains>
</rdf:rest>

</towl:ConcreteRoleChains>
</towl:onPropertyChains>
<towl:dataSomeValuesFrom rdf:resource="#starts"/>

</owl:Restriction>
...

</owl:intersectionOf>
</owl:equivalentClass>

</owl:Class>

Similarly, meetsis used between the other stages of the LBO process, while the
last stage, i.e.,Acquisition finishesthe LBO process.

11.4.3 ABox

At ABox level we represent particular information that is known about the specific
LBO process presented in this section. We start off by instantiating the relevant
individuals that are known to play a role in the LBO process.

First, we represent the participating companies. In tOWL abstract syntax this is
represented as follows:

Individual(iAllianceBoots Target)
Individual(iKKR HedgeFund)
Individual(iTerraFirma HedgeFund)

Similarly, we represent the same in tOWL RDF/XML:

16 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

<Target rdf:ID="iAllianceBoots"/>
<HedgeFund rdf:ID="iTerraFirma"/>
<HedgeFund rdf:ID="iKKR"/>

For each of the hedgefunds involved, we instantiate a process and define its
stages, such as in the case of the TerraFirma. In tOWL abstract syntax, we define
the following:

Individual(iLBOProcess1 type(LBOProcess)
value(earlyStage iEarlyStage1)
value(dueDiligence iDueDiligence1)
value(bidding iBidding1)
value(abort iAbort1))

Individual(iLBOProcess_TS1 type(LBOProcess_TS)
value(timeSliceOf iLBOProcess1))}

The tOWL RDF/XML representation of the above two individuals takes the fol-
lowing form:

<LBOProcess rdf:ID="iLBOProcess1">
<earlyStage rdf:ID="iEarlyStage1"/>
<dueDiligence rdf:ID="iDueDiligence1"/>
<bidding rdf:ID="iBidding1"/>
<abort rdf:ID="iAbort1"/>

</LBOProcess>

<LBOProcess_TS rdf:ID="iLBOProcess_TS1">
<towl:timesliceOf rdf:ID="iLBOProcess1"/>

</LBOProcess_TS>

Next, we represent the information contained by the individual news messages
associated with the LBO process. We illustrate this by employing the first news mes-
sage that describes the hedgefundTerraFirma entering theEarlyStagephase. This
is described in the following news message:

Buyout firm Terra Firma mulls Boots bid
Sun Mar 25, 2007 8:42am EDT
This news message signals the beginning of the LBO, mentioning that Terra Firma
is considering a bid for Alliance Boots (EarlyStage).

For representing the information contained in the news message we create a
timeslice for the hedgefund and the target, respectively, atime interval associated to
the stage, and employ theinStagefluent to associate the companies to the stage. In
tOWL abstract syntax, this resumes to the following:

11 tOWL: Integrating Time in OWL 17

Individual(t1 type(Interval))
Individual(iEarlyStage1 type(EarlyStage))
Individual(iEarlyStage1_TS1 type(TimeSlice)

value(timeSliceOf iEarlyStage1)
value(time t1))

Individual(iAllianceBoots_TS1 type(TimeSlice)
value(timeSliceOf iAllianceBoots)
value(time t1)
value(inStage iEarlyStage1_TS1))

Individual(iTerraFirma_TS1 type(TimeSlice)
value(timeSliceOf iTerraFirma)
value(time t1)
value(inStage iEarlyStage1_TS1))

The tOWL RDF/XML representation of this news message is formulated as fol-
lows:

<towl:Interval rdf:ID="t1"/>
<EarlyStage rdf:ID="iEarlyStage1"/>
<towl:TimeSlice rdf:ID="iEarlyStage1_TS1">

<towl:timeSliceOf rdf:ID="iEarlyStage1"/>
<towl:time rdf:ID="t1"/>

</towl:TimeSlice>
<towl:TimeSlice rdf:ID="iAllianceBoots_TS1">

<towl:timeSliceOf rdf:ID="iAllianceBoots"/>
<towl:time rdf:ID="t1"/>
<inStage rdf:ID="iEarlyStage1_TS1"/>

</towl:TimeSlice>
<towl:TimeSlice rdf:ID="iTerraFirma_TS1">

<towl:timeSliceOf rdf:ID="iTerraFirma"/>
<towl:time rdf:ID="t1"/>
<inStage rdf:ID="iEarlyStage1_TS1"/>

</towl:TimeSlice>

Finally, it should be remarked that although the representation proposed here is
not an exhaustive one with regard to an arbitrary LBO process, i.e., it does not cover
the whole process, it is sufficient for illustrating the fulfillment of the two objec-
tives it set out to achieve: i) illustrating the power and useof the tOWL language
constructs in a temporal context, and ii) how an LBO process can be modeled by
employing the tOWL language.

11.4.4 Use Cases

The usefulness of the tOWL representation of the LBO processis explained by
means of three use cases depicted in Fig. 11.3: (a) historical analysis, (b) stock
prediction, and (c) regulatory conformance.

In the historical analysis use case it can be determined in which stage the LBO
process is, given a certain time instant. In this way the LBO process evolution can be
analyzed at every moment in time. In the example from Fig. 11.3, the LBO process
is in Early stage at timet1 and inDue Diligenceat timet2.

18 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

Early Stage

Due Diligence

Bidding
...

t1 t2

Early Stage

Due Diligence

Bidding
...

t

Early Stage

...
Bidding

(a) Historical Analysis (b) Stock Prediction (c) Regulatory Conformance

time time time

Fig. 11.3 Three use cases for the tOWL representation of the LBO process

In the stock prediction use case it can be estimated what is the impact on the
stock price of a certain company given its stage in the LBO process. For instance
knowing that the LBO process is in an advanced stage has a positive effect on the
price of the target company stocks. In the example from Fig. 11.3, the LBO process
is in Biddingstage at timet, which means that theAlliance Boots’ stock price will
possibly increase.

In the regulatory conformance use case it can be checked if a given LBO process
(ABox) obeys its temporal obligations from the regulatory specification (TBox). In
the example from Fig. 11.3, theBiddingstage comes immediately after theEarly
Stagewhich conflicts with the LBO process regulation that says that after Early
Stageshould follow theDue Diligencestage.

11.5 Related Work

In this section we compare our approach with related work forrepresenting time and
change on the Semantic Web. In Subsect. 11.5.1 we analyse Temporal RDF, an RDF
extension to represent both time and change. Then, in Subsect. 11.5.2 we discuss
OWL-Time, an OWL ontology able to represent time. Last, in Subsect. 11.5.3 we
relate to the 4D Fluents ontology able to represent time and change.

11.5.1 Temporal RDF

Temporal RDF [6] extends RDF with temporal information. Theapproach is based
on temporal graphs which are sets of triples with time intervals or instants (tempo-
ral labels) associated to them. The time intervals represent the time in which a triple
holds true, and haveintial and f inal properties defined. The authors focus on valid
time, while stating that transaction time can be defined in a similar way. The pro-
posed approach extends the RDF semantics with a temporal semantics and defines
temporal entailment of RDF graphs.

11 tOWL: Integrating Time in OWL 19

An interesting feature of temporal RDF is that it supports anonymous time which
represents a time variable instead of a constant. One such temporal variable intro-
duced in the language isNOW which stands for the current time. This variable is a
place holder for the time at which the corresponding triple is evaluated. Temporal
RDF has a temporal query language, and it is proven that the temporal labeling of
triples does not introduce any complexity overhead in queryanswering.

Despite using reification for associating time intervals totriples, the lack of se-
mantics of reification is overcame by defining temporal rulesthat provide for equiv-
alent representations. Nevertheless, from a practical perspective, the authors do not
show how reification can be avoided from the serialization ofRDF graphs. In addi-
tion, as XML is the lingua franca on the Semantic Web, temporal RDF doesn’t have
an RDF/XML serialization which makes this approach difficult to use in practice.

Temporal RDF and tOWL are able to specify both temporal instants and inter-
vals. In tOWL the reification problem is avoided by employinga perdurantist view
on the world, extending objects in a temporal dimension. In addition, we target OWL
instead of RDF, which allows a more precise definition (e.g.,functional properies,
restrictions, etc.) of the provided vocabulary. We also make use of concrete domains
which allows a more accurate definition of intervals (the start time point of an inter-
val has to be before the end time point of the same interval) aswell as employing the
Allen calculus for defining temporal relationships betweenobject states. Differently
than temporal RDF, tOWL makes use of existing standards, when possible, for rep-
resenting temporal information (e.g.,xsd:dateTimefor representing time points).

11.5.2 OWL-Time

One of the first OWL ontologies seeking to represent time is OWL-Time [9]. The
initial purpose of OWL-Time was to describe the temporal content of Web pages and
services. It later grew to a reference time ontology able to represent time, duration,
clock, calendar, and temporal aggregates in may domains. Some of the applications
of OWL-Time are information retrieval and question answering. OWL-Time is cur-
rently a W3C working draft [10].

The root node of OWL-Time ontology is theTemporalEntitywhich is re-
fined in two types:Instant and andInterval. Any TemporalEntityhas abegins
andendsproperty which refer toInstantThings. In addition, the ontology defines
CalendarClockDescription, DurationDescription, andTemporalUnit. OWL-Time
provides two alternative ways to represent time pointsCalendarClockDescription
and xsd:dateTime. The advantage of the first representation is that it allows one
to express more information (e.g., the first day of a week, i.e., Sunday), while the
second one is based on a standard which has a wider acceptanceand usage.

OWL-Time defines theinside relation between instants and intervals, and the
Allen temporal relations between intervals. The Allen relations can be specified
based the transitivebe f orerelation between begin and end points. Unfortunately,
this translation scheme goes beyond the OWL expressivity and thus needs to be

20 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

encoded separately from the OWL inference rules. From the 13Allen relations six
have inverses (equaldoesn’t have an inverse) which can be easily expressed based
on OWL semantics.

For time representations that are not based onxsd:dateTime, OWL-Time defines
a time zone ontology that allows to define time zones (e.g., +1hour from Greenwich
Mean Time) and link them to geographical locations (e.g., the Netherlands). Addi-
tionally OWL-Time allows the representation of temporal aggregates [16]. For this
purpose, it builds upon the the inherent ordering of temporal entities. For example
in OWL-Time one is able to specify “every other Friday in 2009” which takes in
consideration the days ordering in a specific context, i.e.,“2009”.

The semantics of the introduced concepts is given in first order logic and to some
extent also in second order logic (quantifying over predicates for the definition of
temporal aggregates) and thus goes beyond the expressivitypower of OWL DL. It
is not clear which set of the proposed vocabulary provides for a decidable language.
Also, some of the introduced primitives asxsd:durationhave ambiguous semantics
(e.g., a duration of 1 month can represent 28 days, 29 days, 30days, and 31 days)
and for this reason they have been left out from the XML Schemadatatypes included
in RDF and OWL [8].

For tOWL we have identified that the decidable language subset is SHIN (D).
Also, tOWL is able to better capture the semantics of intervals (e.g., impose an or-
dering between the start and end time points of an interval),and make use of Allen
calculus for defining temporal relations at TBox level by employing the functional-
ity offered by concrete domains (OWL-Time is able to do this only at ABox level).
tOWL does not make use of durations avoiding thus their ambiguous semantics.
Differently than OWL-Time, tOWL is able to represent the objects’ dynamics by
specifying object properties that change in time.

11.5.3 4D Fluents

As identified in Sect. 11.2, the 4D Fluents ontololgy [17] allows to represent both
time and change. Unfortunately, as it makes use of OWL-Time ontology for the
time representation, it suffers from the shortcomings previously identified for this
approach. While 4D Fluents defines timeslices and fluents as an ontology, tOWL
brings these primitives as first class citizens of the new language enabling anyone
devising a tOWL ontology to make use of these constructs in modeling the domain
dynamics. In addition, this approach allows a tOWL reasonerto translate the Allen
relations between intervals as temporal relations betweentheir end points, and en-
force that two timelisces connected by the same fluent correspond to the same inter-
val.

The 4D Fluents solution for representing a dynamic world suffers from the pro-
liferation of objects. One fluent requires two timeslices, each timeslice referring to
one entity and one temporal interval, in total 7 triples (including the triple in which
the fluent is employed) need to be created in the dynamic domain for 1 triple in the

11 tOWL: Integrating Time in OWL 21

static domain. In order to alleviate this problem, tOWL differentiates between two
types of fluents FluentObjectProperty and FluentDatatypeProperty, FluenDataype-
Property has as range datatypes which means that one timeslice and its two required
relationships are not needed. This yields a reduction from 7triples to 4 triples in the
case of FluentDatatypeProperty.

Differently than 4D Fluents, tOWL allows the use of the Allencalculus at TBox
level as for expressing temporal relations between the different concept states. Also,
by extending the OWL language with concrete domains in addition to the temporal
concrete domains, one can add other concrete domains as for example the Region
Connection Calculus (RCC8) for specifying spatial relationships, or the price con-
crete domain for representing price changes.

11.6 Conclusion

The tOWL language is an extension of OWL DL that enables the representation of
time and change in dynamic domains. It comes to meet shortcomings of previous
approaches, such as [6, 9, 17] that only address these representations to a limited
extent. For this purpose, tOWL makes use of concrete domainsand a perduran-
tist view on the world based on fluents. The expressivity power of the language is
demonstrated by means of one of the most complex use cases known from business
process modeling, i.e., a real world Leveraged Buyout (LBO)process. The knowl-
edge regarding this LBO is modeled at TBox level by means of axioms describing
the possible paths through such a process. At ABox level we are able to describe the
actual process through the representation of the information contained in real news
messages associated with this particular LBO.

Currently we are working towards providing a tOWL Protege plugin that would
foster the tOWL usage by allowing users to build tOWL ontologies using a simple
user interface. For this purpose, we plan to keep the new interface compatible with
the Protege OWL interface so that the transition to the new language is made as
smooth as possible for existing Protege users. As far as the reasoner is concerned,
we would like to implement theSHIQ(D) reasoning algorithm from [13], or use a
hybrid reasoner in which one of the existing DL reasoners (e.g., Pellet) is extended
with a concrete domain reasoning box.

In order to further reduce the proliferation of objects in tOWL, we would like
to investigate the merging of timeslices by coalescing their corresponding inter-
vals. Also, we would like to investigate the decidability oftOWL (in this paper it is
shown that tOWL without nominals is decidable) by considering what is the influ-
ence of nominals onSHIQ(D) decidability results. We also plan also to examine
how to extend the tOWL language with a spatial dimension by including the RCC8
calculus. As Allen calculus, RCC8 has the jointly exhaustive and pairwise disjoint
property that ensures the decidability of the extended DL language [14].

22 Flavius Frasincar, Viorel Milea, and Uzay Kaymak

Acknowledgements The authors are supported by the EU funded IST-STREP ProjectFP6-26896:
Time-determined ontology-based information system for realtime stock market analysis(TOWL).
More information is available on the official website1 of the TOWL project.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM
26(11), 832–843 (1983)

2. Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages.
In: 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 452–457.
Morgan Kaufmann (1991)

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F., Stein, L.A.: OWL Web Ontology Language reference. W3CRecommendation 10 Febru-
ary 2004 (2004). http://www.w3.org/TR/owl-ref/

4. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American284(5),
34–43 (2001)

5. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation 10 February 2004 (2004). http://www.w3.org/TR/rdf-schema/

6. Gutierrez, C., Hurtado, C.A., Vaisman, A.A.: Introducing time into RDF. IEEE Transactions
on Knowledge and Data Engineering19(2), 207–218 (2007)

7. Hanschke, P.: Specifying role interaction in concept languages. In: Third International Con-
ference on Pirnciples of Knowledge Representation and Reasoning (KR 2002), pp. 318–329.
Morgan Kaufmann (1992)

8. Hayes, P.: RDF semantics. W3C Recommendation 10 February2004 (2004).
http://www.w3.org/TR/rdf-mt

9. Hobbs, J.R., Pan, F.: An ontology of time for the Semantic Web. ACM Transactions on Asian
Language Information Processing3(1), 66–85 (2004)

10. Hobbs, J.R., Pan, F.: Time ontology in OWL. W3C Working Draft 27 September 2006 (2006).
http://www.w3.org/TR/2006/WD-owl-time-20060927/

11. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and abstract syn-
tax. W3C Recommendation 10 February 2004 (2004). http://www.w3.org/TR/rdf-concepts/

12. Lutz, C.: Interval-based temporal reasoning with general tboxes. In: Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 89–96. Morgan Kaufmann
(2001)

13. Lutz, C.: Adding numbers to the SHIQ description logic: First results. Eighth International
Conference on Principles of Knowledge Representation and Reasoning (KR 2002) pp. 191–
202 (2002)

14. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and
general TBoxes. Journal of Automated Reasoning38(1-3), 227–259 (2007)

15. Milea, V., Frasincar, F., Kaymak, U.: Knowledge engineering in a temporal Semantic Web
context. In: Eigth International Conference on Web Engineering (ICWE 2008), pp. 65–74.
IEEE Computer Society (2008)

16. Pan, F., Hobbs, J.R.: Temporal aggregates in OWL-Time. In: 18th International Florida Ar-
tificial Intelligence Research Society Conference (FLAIRS2005), pp. 560–565. AAAI Press
(2005)

17. Welty, C.A., Fikes, R.: A reusable ontology for fluents inOWL. In: Fourth International
Conference on Formal Ontology in Information Systems (FOIS2006),Frontiers in Artificial
Intelligence and Applications, vol. 150, pp. 226–336. IOS Press (2006)

1 http://www.semlab.nl/towl

