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ABSTRACT

With the vast amount of reviews available on the Web, in the past
decades, a growing share of literature has focused on sentiment
analysis. Aspect-based sentiment classification is the subtask that
seeks to detect the sentiment expressed by the content creators
towards a defined target typically within a sentence. This paper in-
troduces two novel unsupervised attentional neural network models
for aspect-based sentiment classification, and tests them on English
restaurant reviews. The first model employs an autoencoder-like
structure to learn a sentiment embedding matrix where each row of
the matrix represents the embedding for one sentiment. To improve
the model, a target-based attention mechanism is included that de-
emphasizes irrelevant words. Last, a redundancy and a seed regular-
ization term constrain the sentiment embedding matrix. The second
model extends the first by including a Bi-LSTM layer in the atten-
tion mechanism to exploit contextual information. Although both
models construct meaningful sentiment embeddings, experimental
results indicate that the inclusion of the Bi-LSTM in the attention
mechanism leads to a more precise attention mechanisms and, thus,
better predictions. The best model, i.e., the second, outperforms all
investigated unsupervised and weakly supervised algorithms for
aspect-based sentiment classification from the literature.
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1 INTRODUCTION

Word-of-Mouth (WOM) and its impact on consumers’ decision-
making process, have long been important topics in academic liter-
ature. WOM has been shown to strongly affect individuals’ choices
and product-satisfaction [12], possibly even more than traditional
advertising strategies [8]. With the advent of the Web, consumer-
to-consumer interactions are not constrained by geographical or
temporal barriers. This phenomenon is referred to as Electronic
WOM. Consumers engage with Web reviews to gather product in-
formation that can facilitate the decision-making process. Besides
being valuable for customers, online reviews are useful for sellers
too. In fact, they provide information about customer satisfaction
with respect to existing products [21], and they allow for a more
targeted market segmentation and product development [32].

Sentiment analysis is the subfield of Natural Language Process-
ing (NLP) concerned with automatically detecting the sentiment
expressed by content creators. In general, however, Web reviews
can discuss different aspects of a certain product and can thus
present opposite sentiment polarities. For instance, in the fictitious
restaurant review “The food was great, but the service was horrible”,
the reviewer was satisfied with the “food" but he/she was clearly un-
happy with the “service". Aspect-Based Sentiment Analysis (ABSA)
is a subtask of sentiment analysis that aims to identify the aspects of
a product or service that are discussed within a review and compute
the sentiment score specifically for each aspect. More precisely, [23]
defines three subtasks of ABSA: Opinion Target Extraction (OTE),
Aspect Category Detection (ACD), and Aspect-Based Sentiment
Classification (ABSC). OTE aims to identify aspect terms, ACD cat-
egorizes the aspects into predefined aspect categories, and ABSC
detects the sentiments expressed towards specific targets. In this
research, the main focus is the ABSC task.

The models for ABSC can be grouped into three sets: dictionary-
based, supervised machine learning, and unsupervised machine
learning [27]. Dictionary-based approaches utilize pre-developed
dictionaries, where words are assigned sentiment scores, to com-
pute an aggregate polarity score. Supervised machine learning
approaches extract meaningful patterns using labeled example data.
While these models have shown promising performances, espe-
cially when combined with dictionary-based approaches in the
creation of hybrid approaches [28] [31] [34], they require large
labeled training datasets. Since the process of annotating data is
time-consuming and costly, weakly supervised and unsupervised
approaches have recently gained traction.

Lately, Deep Neural Networks (DNN) have shown the most
promising results for ABSA [6]. If the use of DNN in a supervised
manner has been thoroughly studied within ABSA, and more specif-
ically for ABSC, the unsupervised application of these models is
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still relatively unexplored. [11] introduces an unsupervised neural
attention model called Attention-Based Aspect Extraction (ABAE)
which is shown to outperform baseline unsupervised methods in
the aspect extraction task.

In this work, inspired by the seminal work from [11], we propose
two unsupervised methods for ABSC. The first one, called Attention-
Based Aspect-Based Sentiment Extraction 1 (ABABSE1), adapts
ABAE to the ABSC task. For the second, called Attention-Based
Aspect-Based Sentiment Extraction 2 (ABABSE2), we propose an
unprecedented usage of a Bi-directional Long Short-Term Memory
(Bi-LSTM) layer within the attention mechanism of an unsupervised
attentional neural network. We evaluate the performance of these
models using the SemEval-2015 task 12 [24] and the SemEval-2016
task 5 subtask 1 [23] datasets. The Python scripts can be found at
https://github.com/LucaZampierin/ABABSE.

The contribution of this research can be summarized as follows:

e We propose ABABSE1: an unsupervised attention-based neu-
ral networks that adapts ABAE [11] to the ABSC task. The
model employs an autoencoder-like structure to learn a senti-
ment embedding matrix and uses an attention mechanism to
emphasize relevant words. We extend ABAE by including a
seed regularization term to exploit common knowledge [37]
and we include the aspect category information by means
of a one-hot-encoded vector.

e We propose ABABSE2: an extension of ABABSE1 where
we advance an unprecedented unsupervised usage of a Bi-
LSTM within the attention mechanisms in order to capture
contextual information and better detect relevant words.

e We analyze the performance of the two proposed models on
restaurant reviews. Experimental results show that ABABSE2
outperforms all investigated unsupervised and weakly su-
pervised methods achieving state-of-the-art results.

The remainder of the paper is structured as follows. Section
2 provides a review of the related work. The datasets used for
the empirical analysis are described in Section 3. Next, Section 4
presents the algorithms proposed in this research. In Section 5,
the performances of the novel models are compared against other
unsupervised approaches as well as state-of-the-art algorithms
for ABSC from the literature. Last, in Section 6 we present some
concluding remarks and suggestions for future research.

2 RELATED WORK

The focus of sentiment analysis is identifying the sentiment that is
expressed in written contents. In particular, this entails detecting the
sentiment (s), the target (g), the individual expressing the sentiment
(h), and the moment when the sentiment was revealed (t) [17]. The
quadruple (s,g,h,t) forms an opinion, that is, the part of a sentence
that expresses or implies a sentiment. In the opinion, both target and
sentiment can be explicitly stated (e.g., “the pasta is delicious"), or
implicitly stated (e.g., “I was blown away!"). Since implicit targets in
reviews are relatively infrequent [7] and require particular attention,
in this paper, we assume the presence of an explicit target. If the
target is a specific aspect of an entity, then the task is defined as
ABSA. [27] presents a detailed outline of the models that have been
proposed for the three tasks of ABSA, and here we outline the most
relevant ones for ABSC.
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The first category are the dictionary-based approaches. These
algorithms utilize lexicons to compute the sentiment score of the
words in the sentence and then combine these scores to develop an
aggregate sentiment score for the aspect studied. WordNet [20] and
SenticNet [5], in particular the latest SenticNet 6 [4], are domain-
independent sentiment lexicons often employed for aspect-based
sentiment analysis. In order to exploit common domain knowledge,
domain-specific ontologies are common in the literature [29].

In the past decades, a large share of literature has focused on the
application of machine learning models in ABSC, especially super-
vised approaches. Machine learning has proven to provide more
flexibility and has achieved very promising performances in senti-
ment analysis tasks. Traditionally, the use of supervised classifiers
was combined with sentiment lexicons that were used to engineer
relevant features. For example, [15] creates a restaurant-specific
sentiment lexicon that is then employed to obtain informative fea-
tures for training a linear Support Vector Machine (SVM) model.
Similarly, [33] employs a linear SVM classifier trained utilizing
features obtained from sentiment lexicons. Here, however, the au-
thors use publicly available lexicons which are then combined and
adjusted using domain-specific knowledge.

Supervised classifiers suffer from the drawback that they require
labeled data to be trained. On the other hand, weakly supervised
machine learning approaches only require language-related tools,
such as seed words, to pre-process the input and do not require pre-
determined labels [10]. Many weakly supervised models present
in the literature build upon the Latent Dirichlet Allocation (LDA)
model [3]. This is done by utilizing some a priori knowledge, often
in the form of a sentiment lexicon, to bias the LDA model. For ex-
ample, [16] proposes the weakly supervised Joint Sentiment-Topic
(JST) model that aims to identify the topic and the sentiment ex-
pressed simultaneously. The authors modify the original LDA model
by including an additional sentiment layer and by using a domain-
independent lexicon for supervision. Similarly, the W2VLDA model
advanced by [10] builds upon a topic modeling approach and per-
forms concurrently aspect-term and opinion-words detection as
well as ABSC. The first task is performed by training a Maximum
Entropy classifier based on example aspect/sentiment words mod-
eled using Brown clusters. The second task, instead, is performed
by biasing the hyperparameters of the generative Dirichlet distri-
bution that characterizes the LDA model by means of seed words.
This bias is determined by the semantic similarity between domain
and seed words, computed using the word2vec embeddings [19].

Unsupervised machine learning approaches have not been ex-
plored as much in detail as supervised approaches, especially for
the sentiment classification task. However, the fact that they do
not need any labels makes them very interesting models to study.
[25] proposes an unsupervised information extraction algorithm,
called OPINE. Besides extracting important aspects discussed in a
review, this algorithm employs relaxation labeling for determining
the sentiment polarity of words. Similarly, [9] introduces a simple
unsupervised approach, called V3, for ABSC. There the authors ex-
ploit word2vec embeddings [19] in order to construct an in-domain
lexicon. Given a seed word for either positive or negative polarity,
the other words are assigned the polarity of the seed word they are
closer to in the embedding space. Each sentence is then assigned the


https://github.com/LucaZampierin/ABABSE

most frequent polarity. Note that, in this case, two aspects reviewed
in the same sentence are always assigned to the same polarity class.

Lately, a growing attention has been dedicated to the deep learn-
ing realm. DNNG are particularly attractive because of their ability
to extract information from sentences without needing feature engi-
neering [36]. Given the sequential property of language, Recurrent
Neural Networks (RNN) have gained importance in the sentiment
analysis field as they are able to capture contextual relations. In fact,
Long-Short Term Memory (LSTM) [13] and their variants are often
used in a supervised manner in ABSA [6]. Important advancements
were achieved with the employment of neural attention models.
These models utilize attention mechanisms that nudge the models
into focusing on the most relevant words [18] [35] [36]. Last, the
state-of-the-art performances have been achieved by combining
the flexibility of deep learning models with the domain-specific
knowledge of lexicons in the creation of hybrid models [31] [34].

Recently, researchers have explored the possibility of employing
neural networks also in an unsupervised manner. [11] proposes an
unsupervised model for the aspect extraction task, called Attention-
Based Aspect Extraction (ABAE). First, the word2vec word embed-
dings are used to map words onto an embedding space. Then, a rep-
resentation of the sentence is created by using a weighted average of
the word embeddings, where the weights are computed by an atten-
tion layer that filters out irrelevant words. Last, an autoencoder-like
structure conveys the information carried by the sentence represen-
tation through a lower-dimensional space and reconstructs it using
an aspect embedding matrix. To enhance the training procedure,
the authors use negative sampling and a redundancy regularization
term. The model is proven capable of extracting coherent aspects
and outperforms LDA-based and RNN-based models.

Given the promising performance of ABAE, other researchers
have tried to apply the same reasoning to the ABSC task. The
Joint Aspect Sentiment Autoencoder (JASA) model [37] adapts the
structure of ABAE to simultaneously extract aspects and classify
the sentiment as either positive or negative with minimal user
intervention. The final goal is to construct an aspect and a sentiment
embedding matrices at the same time. To ensure that meaningful
dictionaries are constructed, the authors propose the usage of a seed
regularization term, in addition to the redundancy one advanced by
[11], which leverages user’s information in the form of seed words.

3 DATA

To evaluate the performance of the proposed models, we employ
two English datasets often used in the ABSA literature, namely
SemEval-2015 task 12 [24] and SemEval-2016 task 5 subtask 1 [23]1.
This choice allows us to extract the performance of the baseline
approaches directly from the original publications. Moreover, since
these datasets comprise actual reviews, they include grammatical
mistakes, spelling errors, and slang words, allowing us to test the
real-life applicability of the models studied.

3.1 SemEval-2015 Task 12

The SemEval-2015 task 12 dataset [24] comprises reviews for three
different domains: laptops, restaurants, and hotels. Following [31],
in this research, only the restaurant reviews are utilized. The dataset

IThe XML files can be downloaded from http://metashare.ilsp.gr:8080/
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Table 1: Polarity frequencies in the SemEval-2015 task 12 and SemEval-2016
task 5 subtask 1 datasets

Negative Neutral Positive

SemEval-2015 train 21.9% 2.8% 75.3%
SemEval-2015 test 34.7% 6.2% 59.1%
SemEval-2016 train 26.0% 3.8% 70.2%
SemEval-2016 test 20.9% 4.9% 74.2%

consists of 254 training reviews and 96 test reviews. Each sentence
is stored independently and the final dataset results in 1315 training
sentences and 685 test sentences. Figure 1 presents a sample sen-
tence from the training set. Each sentence can express a sentiment
towards one or more aspects, defined as target. Moreover, each
target is categorized within a set of predefined aspect categories,
defined as category. Last, the polarity of the sentiment expressed
towards the given aspect can be either positive, neutral, or negative.

<sentence 1d="1153034:0">
<text>Great pizza and fantastic service.</text>
<Opinions>
<0Opinion target="pizza" category="FOODZQUALITY"
polarity="positive" from="6" to="11"/>
<0Opinion target="service" category="SERVICE#GENERAL"
polarity="positive" from="26" to="33"/>
</0pinions>

Figure 1: Sample sentence from the training set of SemEval-2015 task 12.

Tables 1 and 2 present the polarity and aspect category distri-
butions, respectively, for the pre-processed training and test sets.
Regarding the polarity, the class distribution differs between train-
ing and test sets, which could represent a challenge for machine
learning models. However, we expect unsupervised models to be
less affected by this property than supervised models as the polar-
ity labels are used only by the latter. Conversely, the training and
test aspect category distributions have a strong resemblance, with
the majority of the data points belonging to the FOOD#QUALITY,
RESTAURANT#GENERAL, or SERVICE#GENERAL categories.

3.2 SemEval-2016 Task 5 Subtask 1

The SemEval-2016 task 5 subtask 1 dataset [23] comprises reviews
for seven domains available in eight languages. As before, in this
research, only the English reviews for the restaurant domain are
used. The dataset consists of 350 reviews for training and 90 for
testing. In total, the number of training and testing sentences cor-
responds to 2000 and 676, respectively, with the same structure as
for the SemEval-2015 dataset (see Figure 1 for an example).

The polarity and aspect category distributions can be found in Ta-
bles 1 and 2, respectively, where the statistics for the pre-processed
train and test sets are presented. As opposed to SemEval-2015, here
both train and test sets present a strong unbalancedness between
the polarity classes with more than 70% of the observations be-
longing to the positive class for both collections. With regards to
the aspect category, more than 65% of the observations belong to
the top three categories: FOOD#QUALITY, SERVICE#GENERAL, and
AMBIENCE#GENERAL. For both polarity and aspect category, the dis-
tributions are similar between the train and test set.
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Table 2: Absolute and percentage frequency of aspect category in the SemEval-
2015 task 12 and SemEval-2016 task 5 subtask 1 datasets

SemEval-2015 SemEval-2016

Categories
Train Test Train Test

AMBIENCE#GENERAL 12.82% 11.39% 12.13% 9.08%
DRINKS#PRICES 1.17% 0.84% 1.06% 0.62%
DRINKS#QUALITY 2.50% 1.84% 2.34% 3.38%
DRINKS#STYLE_OPTIONS 203% 1.00% 1.70%  1.69%
FOOD#PRICES 3.21% 4.36% 3.78% 3.38%
FOOD#QUALITY 41.05% 40.54% 40.69% 43.54%
FOOD#STYLE_OPTIONS 6.33%  5.53% 6.17% 7.85%
LOCATION#GENERAL 1.09% 1.34% 1.17% 1.54%
RESTAURANT#GENERAL 9.70% 9.88% 9.73% 8.92%
RESTAURANT#MISCELLANEOUS  2.35%  3.18%  2.61%  2.77%
RESTAURANT#PRICES 0.78% 2.68% 1.38% 0.77%
SERVICE#GENERAL 16.97% 17.42% 17.24% 16.46%

3.3 Pre-processing

Since we assume explicit targets, all the sentences for which the
target is NULL, i.e., implicit, are removed. After this step, the num-
ber of training and testing sentences for the SemEval-2015 dataset
is 1279 and 597, respectively. For the SemEval-2016 dataset, the
training and testing samples become 1880 and 650. Then, we use
the NLTK library [2] to remove punctuation and tokenize words.
In this research, we use the 300-dimensional GloVe word repre-
sentations that were pre-trained on 42 billion tokens from Com-
mon Crawl [22]. This word embedding matrix contains representa-
tions for 1.9 million words. The reason for this choice is twofold.
Firstly, since contextual word embeddings result in different context-
dependent word representations, the employment of the seed reg-
ularization presented in Section 4.5 is facilitated by the usage of
non-contextual word embeddings. Secondly, [31] shows that the hy-
brid model HAABSA++ developed using GloVe representations out-
performs all other non-contextual word embeddings and achieves
results comparable to those obtained using context-dependent em-
beddings. The possibility of utilizing context-dependent embedding
is left as a suggestion for future research. The embeddings of the
words that are not present in the GloVe vocabulary are initialized
randomly according to a uniform distribution U(-0.01, 0.01).

4 METHODOLOGY

The main goal of this paper is to develop an unsupervised approach
that is able to categorize the sentiment expressed towards a pre-
specified target as either positive, negative, or neutral. The models
proposed are inspired by the work done by [11] in unsupervised
aspect extraction. While in the latter the final goal is to develop
a set of aspect embeddings, here the objective is to construct a
set of sentiment embeddings for the positive/negative/neutral po-
larity classification. Both proposed models consist of two steps,
an attention-based sentence representation and a sentence recon-
struction. After presenting common preliminary steps in Section
4.1, Sections 4.2 and 4.3 introduce the first step for ABABSE1 and
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ABABSEZ?, respectively. The sentence reconstruction step, instead,
is identical for both models and is explained in Section 4.4.

4.1 Preliminaries

Let s = [wq, wy, ..., wn] be an input sentence formed by N words.
The actual input that is fed to the model is the vector representation
of the input words. To create these, each word w present in the
vocabulary is linked to a feature vector e,, € R4, where d represents
the dimension of each word vector. In this paper, we use the GloVe
pre-trained word embeddings [22]. The word embedding matrix
is defined as E € RVX”I, where V represents the total number of
words in the vocabulary. The goal of both models is to develop a
sentiment embedding matrix defined as P € RC*4 where C is the
number of sentiments for which we want to find a representation in
the embedding space. In this research the sentiments can be either
positive, neutral, or negative, and thus C equals three.

4.2 Attention-Based Aspect-Based Sentiment
Extraction 1

A visual representation of ABABSEL1 is presented in Figure 2. In the
equations specific to this model we use the subscript “ABABSE1".

OOOQQ| =P xp, +W° x o,
'

we P

[O QO O] P, = softmax(W x z, + b)

(e]e]ele)

Attention-based
sentence representation

QOO0 ©OCO COOJ

€y E Cu, E €y E

Figure 2: An example of the ABABSE1 structure.

The first step entails creating a representation of the sentence

in the embedding space zs ABABSE1 € R4. To do so, zs_ABABSE] iS
defined as the weighted average of the word embeddings as follows:

N
ZSABABSE1 = Z Qispapser X Cw; - 1)
i=1

In order to construct a sentence representation that contains the
most important information, an attention mechanism is employed
to focus on the words that are most relevant for the given target. A
weight a;, ;5 1psr € [0,1] is determined for each vocable w; in the
given sentence. This weight can be interpreted as the probability
that the corresponding word is relevant for detecting the target-
specific sentiment. First, an average representation of the target
(Ytapapse:) is computed by means of an average pooling layer
applied to the M word embeddings forming the target as follows:

M
1
YtapaBser = M Z Cwp, - (2)

m=1



Then, the attention mechanism is constructed where each vocable
w; with i € 1,2,.., N in the sentence is assigned an attention score
d; according to Equation 3. There, the entries of the weight matrix
M € R%*4 and the bias b are learned during the training process.
The tanh activation function maps all the values between -1 and 1
and it allows for non-linearity.

dippapss = tanh(e;vi XMXVtapapse +0) 3)
Given the attention scores, the attention weights can be computed
by employing a softmax function which scales all the sentence
scores in the [0, 1] range as follows:

_ exp(diapapse) )

~ .
Zj:l exp(djspapse:)

AiABABSE1

4.3 Attention-Based Aspect-Based Sentiment
Extraction 2

The ABABSE2 model builds upon ABABSE1. Since the word em-
beddings used are context-independent, ABABSE1 might suffer
from a lack of contextual information. To overcome this weakness,
ABABSE2? includes a Bi-LSTM layer that is able to model contex-
tual information in both left-to-right and right-to-left directions.
ABABSE? exploits the contextual information in the attention mech-
anism in order to detect with more precision the most important
sentiment-carrying words. Given the structural similarity between
ABABSE1 and ABABSEZ2, the visual representation of the latter is
reported in the Appendix A in Figure 5.

In the notation that follows, we use the subscript “ABABSE2". The
first step in ABABSEZ2 is to feed the word embeddings to a Bi-LSTM
layer. Then, for each word embedding e,,,;, withi € 1,2, .., N, the
Bi-LSTM returns the hidden outputs h; ¢ € R4 and h; € R4 for
the forward (left-to-right) and backward (right-to-left) propagation,
respectively. By averaging the forward and backward representa-
tions, we construct a hidden output h; € R? that captures both
the right-to-left and left-to-right contextual information. The hid-
den outputs are then used to construct a contextual target-based
attention mechanism. First, we build a representation of the target
(Ytapapsgz) by averaging its hidden outputs as in Equation 5.

1 M
Ytapapsez = M Z hp, (5
m=1

Then, the attention mechanism is constructed where each word
w; with i € 1,2,.., N is assigned a target-based attention score
di spapsE, (Equation 6), which is then used in Equation 7 to compute
the attention weights a; ,; , 55, As before, the matrix M € R%*9
and the bias b are learned during training. Note, while ABABSE1
employs the word embeddings to compute the attention score,

ABABSE? uses the hidden outputs computed by the Bi-LSTM (h;).
dippapsps = tanh(h; X MX yi, 5456, +b) (6)

exp(diapapses)
Zjl\il exp(deBABSEZ )

The sentence representation zs , ; , 5o, € R? is computed as the
weighted average of the word embeddings as in Equation 8. The

™

AiapaBsE2 =
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choice to use the word embeddings instead of the hidden outputs
of the Bi-LSTM, as often done in the supervised realm [31], is to
constrain the Bi-LSTM and prevent it from creating a sentence
representation that is loosely related to the original sentence but
that facilitates the sentence reconstruction task presented in Section
4.4. Other restrictions could be employed to use the hidden outputs
to construct the sentence representation. For example, penalizing
sentence representations that differ significantly from the average
of the word embeddings would constrain the behavior of the Bi-
LSTM. However, this analysis is left for future research.

N
ZSABABSE2 — E AiapaBsez X €w; (8)
i=1

4.4 Sentence Reconstruction Using Sentiment
Embeddings

The second phase of the procedure works essentially as an autoen-
coder. The objective is to convey the information carried by the
attention-based sentence representation through a lower dimen-
sion and then reconstruct the sentence representation utilizing the
sentiment embedding matrix P € REXd, Learning the optimal em-
bedding matrix essentially means discovering the most relevant
semantic areas in the word embedding space [37].

First, the sentence representation is reduced to the C-dimensional
ps € RC vector as presented in Equation 9. The softmax activation
function introduces non-linearity and allows us to interpret each
node activation as the probability that the target-specific sentiment
expressed in the sentence is either positive, negative, or neutral.
Both W € RE*? and b € RE*! are learned during training.

ps = softmax (W X zs + b) 9)

Second, the model reconstructs the original sentence representa-
tion by means of the sentiment embedding matrix P. [37] performs
both aspect and sentiment extraction simultaneously showing that
the two tasks are correlated. Consequently, since the aspect cate-
gory of the target is assumed to be known in this paper, we use
one-hot-encoding to include an additional binary vector o5 € R
that represents a distribution over the K aspect categories available.
Then, the reconstruction rs € R¥ is computed as follows, where
both P € RE*4 and W° € R%*k are learned during training:

rs =P X ps + W° X o05. (10)

4.5 Unsupervised Training Procedure

Each model is trained to minimize the difference between the
sentence representation zs ; and its reconstruction rs, with i €
{ABABSE1, ABABSE2}. Following the methodology suggested by
[11], the model is also trained to maximize the difference between
the reconstruction rs and the sentence representation x4 € R? of
other Q distinct and randomly selected sentences, called negative
samples, where x4 is the average of the vector embeddings of the
words in the sentence. In this paper, the difference between two
vectors is measured using the cosine similarity (see Equation 11)
which outputs a value in the [-1,1] range, where -1 and 1 indicate
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dissimilar and similar vectors, respectively. The model is there-
fore trained in an unsupervised manner minimizing a hinge loss
(Equation 12) over the training data set D [11].

a-b

sim(a, b) = m (11)

Q
J©) = > > max(0, 1 - sim(rs, z5) + sim(rs, xg))  (12)
seDg=1

In addition, following the methodology proposed by [37], both
a redundancy and a seed regularization are employed. The redun-
dancy regularization ensures that the sentiment embeddings are suf-
ficiently different between each other. This regularization was em-
ployed also by [11] and is computed as in Equation 13. P, € RE*9 js
the sentiment embedding matrix, where each row is normalized to
length 1 (hence the subscript n), and I € R*€ is the identity matrix.
Clearly, U(®) is minimized when the dot product between different
rows of P, is close to zero, indicating that this regularization term

enforces orthogonality between the sentiment embeddings.

U(©) = [Py x Py — 1] (13)
The seed regularization is employed to exploit common-sense
knowledge. To do so, the user defines a set of seed words for each of
the polarity classes which are then used to constrain the sentiment
embedding matrix P. For example, if the seed words “good", “bad",
and “indifferent"” are defined, respectively, as positive, negative,
and neutral, then the sentiment embeddings are penalized when
deviating significantly from the word embedding of the given seed.
In practice, if G seed words are provided for each sentiment, then
the c-th row of the “prior" matrix R € R€*? [37] is constructed by
averaging the embedding of the seed words as follows:

R, = é Z ey, - (14)
g=1
Given the “prior" matrix, the seed regularization is developed to
maximize the similarity between each row of R and P. Thus, with
R, and P, being the c-th row of the two matrices, the regularization
is computed as follows:

C
V(©) = Z[l — sim(R¢, PL)]. (15)

c=1
The final objective of the model is to minimize the loss function
J(6) subject to the regularization terms whose influence is deter-
mined by the hyperparameters A; and A3. Moreover, in order to
reduce the likelihood of overfitting, the Ly regularization term is
included in the loss function and its influence is controlled by the
hyperparameter A3. The overall loss function L(©) is presented in
Equation 16, where © represents the set of parameters of the model.

L(6) = J(©) + 11U(®) + 1V (8) + As]|0)|* (16)
The loss function is minimized using backpropagation [26]. All
the parameters are initialized randomly following a uniform dis-
tribution U(-0.1, 0.1) and are updated using the Adam optimizer
[14]. The parameters of the Adam algorithm (f; and f2) are treated
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as hyperparameters and are re-tuned for each model and dataset.
Moreover, in order to reduce the negative effect of overfitting, the
dropout technique [30] is employed. The dropout rate is also a hy-
perparameter that is tuned specifically for each dataset and method.

Besides the aforementioned parameters of the Adam optimizer
and dropout rate, also the learning rate, the batch size, the number
of negative samples, and the regularization weights employed in
the loss function (41, A2, and A3) must be tuned simultaneously. To
do so, 20% of the training observations are employed as a validation
set. The optimal hyperparameters are those resulting in the lowest
reconstruction loss J(©) (see Equation 12) for the validation set. In
this research, we use the Tree-structured Parzen Estimator (TPE)
[1] algorithm. Once the optimal hyperparameters are found, the
full training set is used to fine-tune the model.

5 RESULTS

In this section, we test the performance of the proposed models.
Section 5.1 introduces the baseline algorithms used in this paper. In
Section 5.2 we provide an extended comparison of ABABSE1 and
ABABSE2. Last, the best model is compared against the baseline
models in Section 5.3.

5.1 Baseline Models

The considered baseline models are given below.

Majority heuristic: This heuristic always predicts the majority
class, i.e, the positive sentiment. This heuristic can achieve high
accuracy in case the dataset is strongly unbalanced.

W2VLDA [10]: A weakly supervised model that builds upon a
topic modeling approach and performs sentiment classification by
adjusting the parameters of the generative Dirichlet distribution
based on seed words that are sampled and used for training. The
results are available only for the SemEval-2016 dataset.

V3 [9]: An unsupervised approach that uses the known polarity
of seed words and the distance in the word2vec embedding space
to assign a polarity to all words. Majority voting determines the
sentence polarity. The results are available only for SemEval-2015.

Ontology [28]: A dictionary-based approach that uses in-domain
knowledge to construct a lexicon. The sentiment, only positive or
negative, is obtained by ontology reasoning.

LCR-Rot [36]: A supervised approach that employs a Left-Center-
Right separated neural network with Rotatory attention.

HAABSA++ [31]: A hybrid approach that combines an ontol-
ogy with the LCR-Rot-hop supervised model [34]. The latter was
improved by the addition of a hierarchical attention mechanism
and use of deep contextual word embeddings.

The baseline models’ results are taken from the original articles.

5.2 Comparison ABABSE1 and ABABSE2

The comparison between ABABSE1 and ABABSE2 is based on their
predictive performance, the quality of the attention mechanism,
and the quality of the sentiment embedding dictionary learned.
The results presented hereafter correspond to those obtained using
the tuned hyperparameters (see Table 6 in Appendix B) and the
following five seed words per class: [amazing, great, nice, impecca-
ble, excellent] for positive, [rude, bad, terrible, awful, horrible] for
negative, and [mediocre, ordinary, decent, average, ok] for neutral.



The predictive performance is evaluated using the following five
measures: in-sample accuracy (in-A), out-sample accuracy (out-A),
precision (P), recall (R), and F1 scores, where the last three are all
out-of-sample. The average results are presented in Table 3. In order
to reduce the effect of random fluctuations on the scores, we report
the average over ten runs which implies that the F1 scores cannot
be directly computed using the reported P/R values.

Table 3: Comparison using in-sample accuracy (in-A), out-of-sample accuracy
(out-A), precision (P), recall (R), and F1 score (F1). Largest values are in bold

Dataset Model in-A  out-A P R F1

2015 ABABSE1 729% 69.1% 47.3% 50.8% 47.2%
ABABSE2 77.8% 73.8% 49.3% 51.1% 49.4%

2016 ABABSE1 755% 753% 44.6% 45.2% 42.8%
ABABSE2 77.3% 78.8% 47.7% 46.7% 46.3%

Clearly, ABABSE2 performs better than ABABSE1 in any perfor-
mance measure for both datasets. ABABSE2 outperforms ABABSE1
by 4.7% and 3.5% in the out-of-sample prediction accuracy for
SemEval-2015 and SemEval-2016, respectively. These results are evi-
dence that the inclusion of the Bi-LSTM in the attention mechanism
did improve the predictive capacity of the model significantly.

It is interesting to observe that ABABSE1 and ABABSE2 show
relatively low P/R/F1 scores compared to the reported accuracies
and that the latter are overall higher for the SemEval-2016 dataset.
This is due to the fact that both models are on average unable to
detect the minority (neutral) class, and thus their accuracy improves
when the neutral class corresponds to a lower percentage of the
test set (6.2% for SemEval-2015 and 4.9% SemEval-2016).

In order to understand why ABABSE2 outperforms ABABSE1,
we study the attention weights that are learned by each model. The
attention mechanism selects the most relevant words by assigning
larger weights to them. Since here the objective is target-specific
sentiment classification, we expect the attention mechanism to
extract the sentiment-carrying words related to the target. To facil-
itate this analysis, we visualize the sentences as in Figure 3, where
darker colors correspond to larger attention weights. The sum of
the attention weights over the sentence equals one for both models.

Tue  Pred arget

& ——
PosNeg When | got there | sat up stairs where the atmosphere was cozy the service was horrible
e P gt

das o =

NegPos When | got there | sat up stairs where the atmosphere was cozy the service was horrible

(@) ABABSE! attention visualization
e P tare
dass cass ——
PosNeg When | got there | sat up stairs where the atmosphere was cozy the service was horrible
Tne  pres et
dass class o
NegNeg When | got there | sat up stairs where the atmosphere was cozy the service was horrible

(b) ABABSE? attention visualization

Figure 3: Attention visualizations of the ABABSE1 (a), and ABABSE2 (b) mod-
els for the sentence “When I got there I sat up stairs where the atmosphere
was cozy the service was horrible".

The first example, from the SemEval-2016 dataset, is presented
in Figure 3 where the sentence is: “When I got there I sat up stairs
where the atmosphere was cozy the service was horrible". Note, in
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this sentence, there are two targets (i.e., “atmosphere" and “service")
and thus two target-specific sentiments are predicted. In this case,
ABABSE1 predicts the wrong sentiment for both targets, while
ABABSE2 correctly classifies one of the two. The ABABSE1 model
(Figure 3a) is able to detect the sentiment-carrying words, i.e., “cozy"
and “horrible", but it is not able to specifically focus on either of the
two words depending on whether the target studied is “atmosphere”
or “service". Moreover, ABABSE1 assigns a small weight to other
words that a human would judge as irrelevant for the sentiment
classification task. On the other hand, ABABSE2 (Figure 3b) is able
to correctly classify the negative sentiment expressed towards the
“service" because it focuses on the correct word “horrible". With
respect to “atmosphere”, though, also ABABSEZ is unable to neglect
the negative sentiment carried by the word “horrible".

Tue  Pros arget
case cass =

Neg Pos We stood there for 10 minutes while employees walked back and forth ignoring us
(@) ABABSE ! attention visualization

arget

NegNeg  We stood there for 10 minutes while employees walked back and forth ignoring us

(b) ABABSE? attention visualization

Figure 4: Attention visualizations of the ABABSE1 (a), and ABABSE2 (b) mod-
els for the sentence “We stood there for 10 minutes while employees walked
back and forth ignoring us".

Another relevant example from the SemEval-2016 dataset is
presented in Figure 4 where the sentence studied is: “We stood there
for 10 minutes while employees walked back and forth ignoring us".
In this sentence the sentiment is given in an implicit manner. In
this case, ABABSE1 (Figure 4a) mistakenly classifies the sentiment
towards “employees" as positive. On the other hand, ABABSE2
(Figure 4b) makes the correct prediction. The difference between
ABABSE1 and ABABSE2 can be explained by the fact that the
latter detects the relevant word, i.e., “ignoring", while the former
distributes uniformly the weights among the words in the sentence.

Table 4: List of the ten nearest neighbors for each sentiment embedding
learned by ABABSE1 and ABABSE2 in SemEval-2016 using five seed words

Class ABABSE1 ABABSE2

excellent, fantastic, nice,

great, amazing, terrific,
superb, wonderful,
awesome, fabulous

fantastic, superb, amazing,
excellent, great, wonderful,
nice, terrific,
awesome, incredible

Pos

horrible, terrible, awful,
bad, horrid, rude, horrific
worst, disgusting, nasty

horrible, awful, terrible,
Neg horrid, bad, rude, hideous
disgusting, worst, horrific

average, decent, than,
less, typical, normal,
higher, comparable,
ordinary, compared

average, decent, ordinary,
mediocre, less, compared,
normal, than,

expect, higher

These examples provide strong evidence in favor of the hypoth-
esis that the inclusion of the Bi-LSTM within the attention mech-
anism helps in focusing on the correct words. In particular, the
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second example suggests that when the sentiment is expressed in a
less direct manner, extracting contextual information via a Bi-LSTM
helps in computing more meaningful attention weights.

Then, we explore the sentiment embedding matrix P € RE%4
constructed by each model. We do so by searching the ten nearest
neighbors in the GloVe embedding space using the cosine similarity
metric. Table 4 presents the most representative words found for
each sentiment class by ABABSE1 and ABABSE2 when using five
seed words per class. It can be concluded that all models construct
a precise and meaningful sentiment embedding. This holds true
even when fewer seed words are used per class, indicating that
the models require little pre-determined knowledge. Appendix C
presents an analysis of how the number of seed words affects the
predictive performance of the models.

5.3 Performance Results

The best-performing model, ABABSE2, is compared against the
baseline models presented in Section 5.1. This comparison is based
on the out-of-sample accuracies for both the SemEval-2015 and
SemEval-2016 datasets, as this is the standard evaluation measure
for ABSC. The results are summarized in Table 5, where unsu-
pervised and supervised models are introduced separately. Where
available, we present both in-sample and out-sample accuracy re-
sults. Note, the ABABSEZ2 results are the average over ten runs.

Table 5: Comparison of the models using out-of-sample accuracy (out-A) and
in-sample accuracy (in-A). Largest values are in bold

SemEval-2016
out-A  in-A. out-A in-A

SemEval-2015

Unsupervised models

Majority heuristic 59.1% 753% 74.2%  70.2%
W2VLDA - - 77.3% -
V3 69.4% - - -
Ontology 65.8% 79.7% 78.3%  75.3%
ABABSE2 73.8% 77.8% 78.8% 77.3%
Supervised models

LCR-Rot 78.4% 86.2% 86.9% 92.9%
HAABSA++ 81.7% 88% 87.0% 88.9%

When focusing on the unsupervised (or weakly supervised) set of
algorithms, ABABSE2 shows an improvement in performance com-
pared to the baseline models. When comparing the out-of-sample
accuracies for the SemEval-2015, ABABSE2 outperforms the ma-
jority class, V3, and the ontology by 14.7%, 4.4%, and 8.0%, respec-
tively. Similarly, the out-of-sample accuracies for the SemEval-2016
indicate that ABABSE2 performs better than all three baselines
exceeding the majority class by 4.6%, the W2VLDA by 1.5%, and the
ontology by 0.5%. Consequently, ABABSE2 outperforms all investi-
gated unsupervised (or weakly supervised) algorithms achieving
the state-of-the-art accuracies of 73.8% and 78.8% on the SemEval-
2015 and SemEval-2016 datasets, respectively. Of particular interest
are the comparative results of ABABSE2 and the ontology. The
ontology does not require a training set as it is simply a collection
of rules and dictionaries; however, the development of such an
ontology requires in-domain knowledge and can be very costly in
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terms of time required. Therefore, the fact that ABABSE2 achieves
comparable results is remarkable.

As expected, when considering supervised algorithms, the dif-
ference in performance is quite substantial. The state-of-the-art
algorithm HAABSA++ outperforms ABABSE2 by 7.9% and 8.2% on
the SemEval-2015 and SemEval-2016 test sets, respectively. Simi-
larly, the LCR-Rot model performs better than ABABSE2 by 8.1% on
the SemEval-2016 dataset; however, it is surprising to see that the
performance difference between the LCR-Rot model and ABABSE2
shrinks to 4.6% when evaluated on the SemEval-2015 dataset. Last,
it is worth noticing that the gap between in-sample and out-of-
sample accuracy is smaller for ABABSE2 compared to LCR-Rot and
HAABSA++. As expected, the unsupervised nature of ABABSE2
reduces the influence of overfitting compared to supervised models.

Overall, ABABSE2 performs well on both datasets used in this
research, outperforming all investigated unsupervised and weakly
supervised algorithms, and achieving state-of-the-art results.

6 CONCLUSION

In this paper, we introduce two novel attentional neural networks
for unsupervised ABSC. The first model (ABABSE1) adapts the
ABAE model [11] for ABSC. As ABAE, ABABSE1 uses a target-
based attention mechanism to detect the sentiment-carrying words
and employs a redundancy regularization term. However, ABABSE1
extends the ABAE framework by adding a seed regularization to
exploit common knowledge in the form of seed words. ABABSE2
further extends ABABSE1 by including a Bi-LSTM layer in the
attention mechanism to capture contextual information.

The models are evaluated on their out-of-sample predictions
using the SemEval-2015 task 12 [24] and the SemEval-2016 task 5
subtask 1 [23] restaurant datasets. We tune the hyperparameters
using the TPE algorithm [1] and 20% of the training observations
as a validation set. With an average out-of-sample accuracy of
73.8% and 78.8% on the SemEval-2015 and SemEval-2016 datasets,
respectively, ABABSE2 achieves the best results. This performance
difference is likely due to the attention mechanism learned by
each model. In fact, both models detect the sentiment-carrying
words, but ABABSE2 is better at identifying target-specific words,
especially when the sentiment is expressed implicitly, evidencing
the benefits of using Bi-LSTMs within the attention mechanisms.
By analyzing the ten nearest neighbors of the learned sentiment
embeddings, we conclude that both models construct meaningful
sentiment embeddings, even when only one seed word is used.

The best model (ABABSE?2) is then compared against the cur-
rent state-of-the-art unsupervised and supervised algorithms for
ABSC. ABABSE2 performs better than W2VLDA [10] and V3 [9],
and achieves comparable results to the ontology introduced by
[28]. These results evidence the benefits of using attentional neural
networks in an unsupervised manner. When juxtaposed against
supervised algorithms, ABABSE2 was outperformed by around 8%;
however, it is concluded that it suffers less from the overfitting
issue induced by the unbalancedness of the datasets.

Since this research focused on the restaurant domain, the ap-
plicability of the models to other domains has not been tested yet.
This is left as a suggestion for future research. In particular, it
would be interesting to evaluate the performance on the laptop



domain, as it is deemed more challenging due to its more numerous
domain-specific words and aspect categories [23].

With regards to the models, ABABSE2 employs a Bi-LSTM layer
to capture contextual information, but this knowledge is only used
within the attention mechanism. A suggestion for future research
is to employ the hidden outputs of the Bi-LSTM also in the creation
of the sentence representation while constraining the Bi-LSTM by
means of regularization terms. Last, one could study how the perfor-
mance would change if contextual word embeddings are employed
instead of the 300-dimensional GloVe [22] word embeddings.
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A ABABSE2 VISUAL REPRESENTATION

This appendix presents the visual representation of the ABABSE2
model. The structure resembles that of ABABSE1 to which the
Bi-LSTM is added in the attention mechanism.

B HYPERPARAMETERS

This appendix presents the list of optimal hyperparameters for each
model and each dataset as resulted after tuning the parameters using
the Tree-structured Parzen Estimator (TPE) [1].



SAC 25, March 31-April 4, 2025, Catania, Italy

OOOO r, =P xp, + W° x o,
’

we P
[O O O] p, = softmaz(W x z; +b)

Tw

0000 =-Yauxe

(ele)ele)

Attention-based
sentence representation

! Bi—L:lTM o |
L L) L3
CO00) (0000 OO0

Sy, E €y E Cu, E

Figure 5: An example of the ABABSE2 structure.

Table 6: Optimal hyperparameters for each model and each dataset

SemEval-2015 SemEval-2016
ABABSE1 ABABSE2 ABABSE1 ABABSE2

learning rate 0.01 0.01 0.005 0.005
dropout rate 5% 5% 5% 5%
iit 0.95 0.99 0.99 0.97
P2 0.99 0.99 0.99 0.99
A3 0.04 0.04 0.04 0.04
A2 5 5 5 5
A 5 5 1 1
batch size 30 30 30 30
neg. samples 10 10 10 10
#epochs 3 2 3 2

C IMPACT OF SEED WORDS

In this appendix, we provide an analysis of the impact that the
number of seed words has on the predictive performance of the
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models proposed in this paper. Assessing the level of human inter-
vention needed to achieve the desired results is particularly useful
for real-life applications.

In Figure 6 we plot the average out-of-sample accuracies for
each model against the number of sentiment seed words for both
datasets, ceteris paribus. With regards to ABABSE2, as expected, on
average the accuracy increases when more human knowledge is ex-
ploited in the form of seed words. On the other hand, the behaviour
of ABABSEL1 is surprising. While the performance improves as the
number of seed words is increased from one to two, its perfor-
mance levels off or even decreases as the number of seed words
exceeds three. This behavior is clearly visible in Figure 6 where the
predictive performance of ABABSE1, evaluated on SemEval-2015
and SemEval-2016, reaches its maximum, on average, when three
and two seed words are employed, respectively. This contrasting
behaviour could be very subjective to the seed words used in this
experiment and further analysis on the effect of seed words might
be required in future research. It should also be noticed that both
models achieve good accuracies already when only one seed word
is used. We conclude that both models are able to achieve good

performances with little human intervention, but that ABABSE2
does improve significantly, on average, when more seed words are

used, probably due to its higher complexity.
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Figure 6: Out-of-sample accuracy as a function of the number of seed words
per sentiment class for SemEval-2015 (a) and SemEval-2016 (b).
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