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ABSTRACT

The rapid surge in the number of Web shops presents a chal-
lenge for consumers: navigating through the vast amount of
stores and products available. Therefore, entity resolution has
become an important task to aggregate product information
across different Web shops. As entity resolution is a compu-
tationally demanding process, its pipelines are divided into
two: a blocking phase, which uses a computationally cheap
method to select candidate product pairs, and a matching
phase with a computationally expensive method to identify
matching pairs from the set of candidate pairs. In this paper,
we propose SC-Block++, an extension to a state-of-the-art
blocking algorithm SC-Block. SC-Block utilizes a RoBERTa
base transformer model, trained using Supervised Contrastive
Learning, to position the product records in an embedding
space, and produces a set of candidate pairs using a nearest-
neighbour search. We extend the training procedure of the
RoBERTa base transformer model by incorporating Adaptive
Flood Regularization (AdaFlood), a regularization method
aimed to prevent overfitting and to improve the generalization
performance of the model. We compare SC-Block++ to SC-
Block, and other benchmark methods on three different data
sets, and find that SC-Block++ is able to construct candidate
pairs more effectively than the other blocking schemes.
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1 INTRODUCTION

The number of online stores is rapidly increasing due to the
global digitalization. While these shops may sell identical
products, they provide different details about each product.
This variation makes it time-consuming for customers to
compare the information about a certain product across
different Web shops. Therefore, Entity Resolution (ER) has
become an important task to aggregate product information
across different Web shops. These algorithms uncover whether
two descriptions, like descriptions of products from two online
stores, refer to the same real-world entity. An entity resolution
pipeline typically consists of the following two steps: blocking
and matching. Blocking methods are computationally cheap
methods that construct candidate pairs, pairs of entities that
are most likely to match, in order to reduce the number of
pairs that need to be compared by the matching algorithm.
On the other hand, matching schemes are computationally
more expensive than blocking algorithms and try to identify
the candidate pairs that refer to the same real-world entity.

In this paper, we focus on the state-of-the-art blocking
method SC-Block from Brinkmann et al. [4]. This method
applies Supervised Contrastive (SupCon) Learning to train a
RoBERTa base language model to position records describing
the same real-world entity close to each other in an embed-
ding space. Unfortunately, neural networks (NN) like the
RoBERTa base transformer model are prone to overfitting.
When we train the model for a long time, we can easily
achieve a model with a training loss (value of the objective
function we minimize) of 0 after acquiring a training error
(fraction of training samples incorrectly fitted by the model)
of 0. Recent works have shown that it is important to train a
model until it achieves a training error close to 0 to decrease
its generalization error [3, 14]. Yet, Ishida et al. [8] are uncer-
tain whether a training loss of 0 is necessary after achieving
a training error of 0. Namely, a model with a training loss
equal to 0 may be fitted too well to the training data, which
degrades its performance to make predictions on unseen data.

For the above reason, [8] proposes a method known as
Flooding, which keeps the training loss at a pre-specified
value close to 0, known as the flood level, showing evidence
that Flooding is effective at mitigating overfitting. Several
extensions to Flooding have been proposed. One of these
is Adaptive Flood Regularization (AdaFlood) [2], which in
contrast to the regular Flooding procedure takes into account
the training difficulty of each training sample by computing
a flood level for each sample. Subsequently, the individual
loss of each training sample is kept at their respective flood
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level. Bae et al. [2] show that AdaFlood is able to consistently
outperform Flooding. Hence, we introduce SC-Block++, a
new variant of SC-Block, where we incorporate AdaFlood
during the training procedure of the RoBERTa base trans-
former model. We show that AdaFlood is able to enhance the
ability of SC-Block to construct candidate pairs effectively.
The Python code of the project is made freely available at
https://github.com/arthrng/scblock-plusplus.

We structure the rest of the paper as follows. In Section 2,
we provide an overview of the literature regarding blocking
methods and regularization techniques. Section 3 discusses
how SC-Block, Flooding, and AdaFlood work, and how our
proposed method SC-Block+-+ makes use of these. Section
4, presents the data we use to evaluate the performance of
SC-Block++, and Section 5 performance evaluation of SC-
Block++ against other blocking methods. Last, in Section 6,
we conclude and provide suggestions for future research.

2 RELATED WORK

In this section, we describe work related to ours. We start
with the blocking methods, and then discuss regularization
methods used to prevent overfitting.

Blocking algorithms aim to find candidate pairs of descrip-
tions which are most likely to refer to the same real-world
entity. This is done in order to decrease the number of com-
parisons that need to be performed by the matching methods
in ER pipelines. The easiest way to block entities when the
schema of the data set is available, is to group the records
based on their value(s) for some selected key(s) [5]. For ex-
ample, one can group records of people in a database based
on their postal code, which greatly reduces the comparisons
required to find which records refer to the same person.

Many methods build upon the idea that candidate pairs
can be found by grouping records in a database based on some
selected keys. Aizawa and Oyama [1] propose suffiz array
blocking. This method extracts the suffixes with some prede-
termined minimum length from certain keys. Subsequently,
a block is constructed for each suffix in which the records
sharing the same suffix for the selected keys are stored.

Recently, deep learning for blocking has become popular.
AutoBlock is one of the earliest frameworks to use supervised
deep learning for blocking [27]. Similarly to SC-Block, it
utilizes a language model to construct embedding vectors
for the records. Next, Locality-Sensitive Hashing (LSH) is
used to retrieve the nearest neighbours of each record such
that candidate pairs can be constructed. The shortcoming of
AutoBlock is that it requires labelled data. In other words,
each record in the data set needs a label to detect which sam-
ples refer to the same real-world object. In reality, it may be
difficult to acquire labelled data. Hence, Thirumuruganathan
et al. [21] introduce an unsupervised blocking framework
called DeepBlocker, offering multiple deep learning-based
blocking solutions. These solutions exploit sequence mod-
elling, transformer, and self-supervision. Afterwards, one can
utilize a similarity-based, hash-based, or composite approach
to construct candidate pairs based on the embeddings.
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In the field of supervised machine learning, overfitting is a
fundamental issue due to the complexity of the model, the
presence of noisy data in the training set, or the limited
number of samples in the training data [22]. A machine learn-
ing model may fit very well to the training data, but it can
perform very poorly when making predictions on unseen data
as a result of overfitting. Over the years, many regularization
methods have been developed in order to mitigate overfitting.

One of the earliest and most trivial regularization methods
to reduce the complexity of a NN is weight decay, introduced
by Hanson and Pratt [6], which aims to reduce the size of
the parameters in the model by adding a penalty term to the
original objective function. Nevertheless, Krizhevsky et al.
[11] find that weight decay can reduce overfitting more effec-
tively when combined with dropout, a technique by Hinton
et al. [7]. The key idea of dropout is that nodes in the NN
are randomly dropped with probability p and retained with
probability 1 — p in each batch of the training process to
reduce the complexity of the NN. If a node is dropped, its
incoming and outgoing edges are also removed from the net-
work. Repeatedly dropping nodes each epoch results in many
variants of the original NN, which are each trained. Since
all these variants share their parameters with the original
NN, we are simultaneously training the original network by
training the smaller variants of it. To compensate for the
reduction in the size of the parameters, in the final batch
we scale the parameters with a factor 1 — p. Srivastava et al.
[20] find that overfitting can be reduced and the predictive
performance of NNs improves if dropout is used.

Another regularization method is early stopping [25]. When
training a deep learning model, the training and validation
loss typically decrease with more iterations. However, too
many iterations can lead to the validation loss increasing
again. Thus, in the early stopping procedure we stop training
the model once there is an increase of the validation loss.

Ishida et al. [8] state that the regularization methods
cannot directly control the training loss. Hence, although it
becomes more difficult for the training loss to shrink towards
0 when using these techniques, it is hard to maintain a
training loss greater than O until the training procedure is
finished. Thus, there is still some risk that a model may
overfit. Furthermore, some of these regularization methods
are specific to a model or a task (e.g., weight decay and
dropout are regularization methods tailored to NNs) [8].

For the given reasons, Ishida et al. [8] introduce Flooding,
a regularization method which directly prevents the training
loss from decreasing when it reaches a reasonably small value
chosen by a researcher. Also, this method is not limited to a
specific task or type of model. Therefore, in this research, we
utilize Flooding to improve the performance of SC-Block.

3 METHODOLOGY

In Section 3.1, we introduce the SC-Block blocking method,
then in Section 3.2, we discuss Flooding, and last in Section
3.3, we present AdaFlood and how we can incorporate it in
the training procedure of SC-Block.
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For the remainder of the paper, we assume that we have two
sets D and & containing a number of product offers such that
|€] < |D|. Both data sets are split into training, validation,
and test sets, which denoted as Dipgin and Eirain, Pyal
and &,47, and Diest and Etest, respectively. Furthermore, we
assume that the records in both data sets follow the same
schema. Lastly, we assume that we have a Clean-Clean entity
resolution problem, meaning that D and £ individually do
not contain any duplicate product offers [16].

3.1 SC-Block

SC-Block is a blocking method by Brinkmann et al. [4] that
combines SupCon Learning for positioning records in an
embedding space with a nearest-neighbour search to construct
candidate product pairs. In this section, we give an overview
of how this method is used to find candidate pairs, with steps
performed by SC-Block illustrated in Figure 1.

3.1.1 Preparing the Data. The product offers i in the sets D
and &€ have a title ¢; and certain attributes which are stored
in the key-value pairs k1,v14,...,kp,vp ;, where k; is the
name of attribute j, v; ; is the value of attribute j of product
offer i, and p is the number of attributes that the records in
both D and £ have. For each product offer, we serialize their
title and attributes to a single string s; as follows:

si = “COL title VAL t; COL ky VAL vy ; ...COL kp VAL v, ;"

The product offers in some of the data sets we use are
stored in pairs i, j, where ¢ € D and j € £. Each pair has a
label I; ; such that [; ; =1 if ¢ and j refer to same real-world
entity and I; ; = 0 otherwise. The SupCon loss we use to
train the RoBERTa base transformer model requires that
each product offer i in the training set has its own label [;,
such that matching product offers share the same label. To
obtain these labels, we build a correspondence graph using the
procedure described by Peeters and Bizer [17]. Each vertex
in this correspondence graph represents a product offer from
either Dyrgin O Etrain. We use the labels I; ; to connect
the vertices representing the matching product offers ¢ and j.
After connecting all the matching product descriptions, we
can assign a unique label to each vertex in the graph such
that matching records share the same label.

3.1.2 Creating Embeddings. In each epoch of the training
procedure, we construct the batches By, ..., Bg containing
128 strings corresponding to individual product offers (not
pairs of products), which are all randomly sampled from either
Dirain OF Etrain- As we use the Supervised Contrastive Loss
to train the RoBERTa base transformer model, we require a
multiviewed batch [10]. A multiviewed batch By, k=1,..., B,
contains the samples from B and an augmented version of
these samples. To create the multiviewed batch, for each
string s; in By, we find another string s; pertaining to a
product offer, which has the same label as 7, and store it in the
multiviewed batch. We sample s; from Dypqin if i € Etprain,
otherwise we sample s; from .44y, - If there does not exist
a product offer with the same label as i, we simply duplicate
i and store this duplicate in the multiviewed batch. Thus,
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each multiviewed batch contains 256 product offers. In each
epoch, we construct batches until every serialized product
string has been in some batch By, k=1,...,B.

We utilize the RoBERTa base transformer model to create
embeddings of the serialized strings, numerical representa-
tions of the strings, expressed as a vector. We perform a
nearest neighbour search on these embeddings which is used
to construct the candidate pairs. To generate the embeddings
for ¢ and j, we provide s; and its “augmented" variant s;
from the multiviewed batch as the input to the RoBERTa
base transformer model, which constructs embeddings for
each token in both strings. After we obtain the embeddings
for ¢ and j, we mean-pool and normalize them using an Lo
normalization such that we obtain the vectors 2; and %,
2412 = [12]]2 = 1.

To update the parameters in the RoBERTa base trans-
former model during the backpropagation step of the training
procedure, we use the SupCon loss function denoted as:

(1)

where Pi = {p € By|lp = I;}, Ai = B\{i}, T € R is a scalar
temperature parameter, and 2; is denoted as the anchor
embedding for product offer ¢. This loss function tries to
maximize the agreement of records with the same label and
minimizing the agreement of records with different labels.
Hence, we try to pull the anchor embedding of each product
i € By, closer to the other embeddings with the same label
while pushing it away from embeddings with different labels.
To train the RoBERTa model, we utilize the experimental
setup of Brinkmann et al. [4], setting d = 768, 7 = 0.07, and
we train the model for 20 epochs using the Adam optimizer
with a learning rate of 5 x 1075, Yet, the batch size we use is
different. Namely, [4] uses a batch size of 512, while we use a
size of 128 due to limitations of our computational resources.
This smaller batch size may hamper the performance of SC-
Block, as Peeters and Bizer [17] state that the SupCon loss
benefits from having a large number of samples in a batch.

1 expZ; - 2pT )

LSupCon = T n ~ 2
upon i€By, |Pi| pePi acAi €XpZ; - 2aT

3.1.3 Finding Candidate Pairs. After we train the RoOBERTa
base transformer model, we embed the product offers from
Diest and Etest to the embedding space. We use the embed-
dings from Diegt to construct the query table Q and the
embeddings from Etest to create the index table Z. The index
records in Z are constructed using FAISS Python library [9],
to allow for an efficient searching procedure.

Once we have prepared the tables Q and Z, we iterate over
all the embeddings in Q. For each z4 € Q, we compute its
cosine similarity with each embedding z;, € Z (Eq. 2),

Za - Rp
EE .
where coszq, 2, € —1, 1. The closer cosZa, 2 is to 1, the more
semantically similar the two embeddings are to each other.
‘We order the embeddings in Z using merge sort based on their
cosine similarity with 24, which has a time complexity of
Onlogyn in the worst-case possible case. Thereafter, we select
the k embeddings 21, ..., 25 € Z which have the highest value

COSZq, Zp =
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Figure 1: Overview of SC-Block.

for the cosine similarity with 24. If a € Diest is the product
that belongs to embedding 2, and b1,...,bx € Etest are the
products that correspond to 21,..., 2, then we denote the
candidate pairs as a,by,...,a,by.

3.2 Flooding

Flooding is a technique proposed by Ishida et al. [8] that pre-
vents a deep neural network from overfitting on the training
data. Let S = {x;,y;|z; € X,y; € V,i=1,...,N} be the
training set and f : X — ) the NN we are training. Fur-
thermore, suppose that ¢ is some arbitrary loss function and
Lirain = ﬁ ieB Ly;, fx; is the training loss of our model,
where B is a batch containing samples from S. Last, we as-
sume that 6 contains the parameters in f that we want to
estimate. Then, we can constraint the training loss by some
lower bound ~y > 0, also known as the flood level, using

Etraina = |‘Ct7‘ain0 - ’Y‘ - (3)

This expression ensures that the gradient of Lipgin W.I.t. 0,
Vg[ftmm, points in the same direction as Vg L¢rqin, when
Lirain® > 7, but in the opposite direction when L0 6 < 7.
This results in the training loss floating around ~.

3.3 Adaptive Flooding Regularization

3.3.1 The Method. AdaFlood is regularizer proposed by
Bae et al. [2] based on Flooding, which tries to mitigate
two shortcomings of Flooding. First, Flooding may lead to
instability issues — training a machine learning model with
Flooding multiple times can lead to different solutions of
the parameter estimates, each different in their ability to
generalize. This instability issue stems from the fact that the
training procedure of the RoBERTa base transformer model
is stochastic, as we construct batches by randomly sampling
products from the full training set. Furthermore, Flooding
only guarantees “global convergence" —Flooding encourages
the training loss L¢,4in, averaged over all the samples in a

batch, to be close to ~, while having no requirement on the
individual losses of the training samples. As shown empirically
by Xie et al. [24], the individual losses of some training
samples are far away from ~ while others are close to =,
leading to some of the inconsistent behaviour of Flooding.

Second, Flooding does not take into account the training
difficulty of the samples. For example, some samples are
“easier" to classify for models, meaning that their individual
training loss can be driven to 0 without overfitting the model.
However, for outliers, noisy, or incorrectly labelled training
samples, a training loss of 0 may cause overfitting.

Bae et al. [2] mitigate both shortcomings of Flooding by
reformulating Eq. 3 to

5 1
['AdaFlood,t'r’aine = ) [Cy;, fe; — v v, (4)
|B‘ i€B

where +y; is the flood level belonging to some training sample
i, which addresses the second issue we discuss. This new for-
mulation solves the first issue of Flooding by subtracting the
flood level from each individual training loss, rather than the
training loss L,q;n computed over the entire batch. There-
fore, we aim to keep the individual losses of each training
sample close to their respective flood levels, leading to more
consistent behaviour of the models.

We compute the individual flood level for each training
sample before we train the NN f using Eq. 5, where f; j quz
is some arbitrary auxiliary model, j=1,...H, H < N.

Vi = Lys; fi j,aus i, (5)

3.3.2 Adaptive Flooding within SC-Block. To incorporate
AdaFlood within the SC-Block framework, resulting in our
proposed method SC-Block++, we train some auxiliary net-
works. We initiate the estimation procedure by training a
RoBERTa base transformer model on Dyyqin U Etrqin using
the exact same procedure described in Sections 3.1.1 and
3.1.2. We label this model as the base auxiliary network fquz.
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Then, we partition Dyyqin U Etrain into H equal-sized, non-
overlapping sets D1 trqin Ugl,trainv e 7DH,train U(‘:H,trainv
where each set contains n samples (although the size of
DH train Y €H train Mmay be smaller than n if it is not pos-
sible to precisely divide Dyrgin U Etrain into H equal-sized
sets). For i € Dj trqin U &) train and j=1,..., H, we train
an auxiliary network f; j gy by first randomly re-initializing
the weights of the last three layers of fauz. Namely, Bae
et al. [2] state that re-initializing the weights of the last
few layers removes most of the influence of the samples
from Dj train U Ej train o0 fi j aus- Subsequently, we train
fi,j,auz using Dipqin U gtrain \D',t'rain U gj,t7’¢zin~ Again»
we use the procedure from Sections 3.1.1 and 3.1.2 to train
the auxiliary network. Once we have trained f; j quz, We
utilize f; j que to determine the mean-pooled and normalized
embeddings 21,...,2n belonging to the product offers in
Dj train Y Ej train- Last, we can determine the flood level
~; by computing the individual SupCon loss for the product
offer i € Dj train U Ej train, Which we denote as £; supcon-
We compute 4; sypcon using

1 expz; - 2pT )
|Pi| pePi ‘qeaiexpzi-2aT’’

Zi,SupC’an = (6)
where Pi = {p € Dj train U Ej trainllp =i}, Al =Djtrain U
Ejtrain\{i}, and the rest of the notation is the same as
defined in Section 3.1.2. We repeat this procedure until each
product offer Dyygin U Etrqin has its own flood level.

After we have determined the flood levels for all the samples
in Dyprain Y Etrain, We can use the training procedure from
Section 3.1.2 to train the RoOBERTa base transformer model.
However, we utilize ZAdaFlood,tmin from Eq. 4 as the loss
function, where each individual loss of the training samples
are computed using Eq. 6.

We estimate H = 20 auxiliary NNs. This implies that the
data we use to train fi,j,auah Dirain U Etrain \ Dj7t7“ain U
&} train, contains roughly 95% of the product offers from
DtrainUEtrain- According to [2], this size for the training set
of the auxiliary networks should roughly approximate the best
performance we can achieve using AdaFlood. Furthermore,
we train each auxiliary network for 20 epochs using the Adam
optimizer with a learning of rate 5 x 107°. The embeddings
constructed by the auxiliary networks have size d = 768, the
temperature parameter 7 in the SupCon loss function is set
to 0.07, and the batches in each epoch have size 128.

4 DATA

We use three data sets for our research to compare the various
blocking methods to SC-Block.

First, we use is the Web Data Commons (WDC) Products
data set! introduced by Peeters et al. [18] to evaluate block-
ing methods. This data set contains 11715 product offers
describing 2162 unique real-world products. These product
offers have been extracted from 3259 Web shops in 2020 using
the schema.org annotations. Each product offer is described

!Downloaded from https://webdatacommons.org/largescaleproductco
rpus/wdc-block on April 25th 2024.
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Table 1: Statistics of the WDC products data sets

Split Corner cases | D] |€] #V.onti(‘ics in ’D ué .# ) # non—n.xa‘(‘ching
without duplicates matching pairs pairs
Training 500 894 309 500 2000
Validation 20% 500 891 306 500 2000
Test 500 719 147 500 4000
Training 500 881 278 500 2000
Validation 80% 500 894 304 500 2000
Test 500 711 156 500 4000

using the following 5 attributes: title, description, price, cur-
rency, and brand. The data set also contains pairs of product
offers which have a label of 1 if they match and 0 otherwise.
Yet, the data set is not exhaustive, meaning that it does not
include all possible product pairs, as labelling all the pairs
may be computationally expensive.

To evaluate the performance of the blocking methods,
corner cases are included in the data set. There are two
types of corner cases: positive and negative corner cases.
A positive corner case refers to matching products whose
textual representations are highly dissimilar from each other.
For example, some online stores mention different features
or use different units of measurements to describe the same
product. A negative corner case is given by two product offers
which do not match but whose descriptions exhibit many
similarities. Thus, two product offers which differ in only one
product feature are considered a negative corner case.

The WDC Products data set provides more challenges to
the blocking methods by including product descriptions of
real-world entities in the test set which are not included in
the training data. Peeters and Bizer [17] state that addition
of unseen product entities in the test set allows to assess
the robustness of the methods regarding their performance
matching unseen entities.

Multiple variations of the WDC data set varying in size, the
number of corner cases, and the number of unseen products in
the test set exist. We exploit the “small" variant of the WDC
Products data set, containing a total of 6500 product offers.
Furthermore, we select the variants of this small data set in
which 20% and 80% of the product offers are corner cases
(further referred to as WDCgg and WDCg correspondingly)
to measure how well the blocking methods are able to deal
with difficult product offers. Last, 50% of the product offers
in the test set of both variants of the small data set are
unseen in the training data. Table 1 provides some statistics
of these two data sets.

Second, for the training and evaluation of the blocking
methods in this paper, we also consider a data set known
as Walmart-Amazon?. This data set is provided by Mudgal
et al. [13] for evaluating entity resolution methods. The data
set contains a total of 24628 product offers for electronics
collected from the Web shops Amazon (22074 product offers)
and Walmart (2554 product offers). Each product offer has
the following 5 attributes: title, product category, brand,
model number, and price.

2Downloaded from https://github.com/anhaidgroup/deepmatcher/blo
b/master/Datasets.md on April 25th 2024.
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Table 2 provides the statistics of the Walmart-Amazon
data set, where products from Walmart are denoted as D
and the ones from Amazon as £. We observe that the number
of pairs in each split is not close to the size of the Cartesian
product D x & (i.e., 22074 x 2554 = 56376996), which we also
observe in the previous data set. Again, labelling each pair
may be computationally expensive. Therefore, Mudgal et al.
[13] only consider a subset of the pairs from D x &.

Table 2: Statistics of the Walmart-Amazon data set

s # entities in DU E # non-matching
Data set Split DI 11 Githout duplicates  matching pairs # pairs
Training | 1424 3702 3742 576 5568
Walmart-Amazon | Validation | 927 1580 1756 193 1856
Test | 900 1584 1770 193 1856
5 RESULTS

In this section, we evaluate the performance of SC-Block++,
first by comparing it to SC-Block, SC-Block with Flood-
ing (SC-Block igoding), another supervised blocking method
known as Sentence-RoBERTa (SRoBERTa) [19], and a self-
supervised blocking method called Barlow Twins [26] (Section
5.1). Next, we evaluate the performance of the blocking meth-
ods within entity resolution pipelines in Section 5.2. We carry
out all experiments using an NVIDIA A100 as our GPU.

5.1 Comparing the Blocking Methods

We apply the blocking methods SC-Block, SC-Block piooding
(we provide the optimal values of v in Appendix A), SC-
Block++, SRoBERTa, and Barlow Twins to the test splits
of all three data sets for k € {1,5,10,20,40,80} nearest
neighbours. Subsequently, we compute the Pair Quality, Pair
Completeness, and Fy score to evaluate these methods. Pair
Quality reflects the fraction of true matches that are main-
tained after blocking. Pair Completeness measures the frac-
tion of pairs that are correctly identified as candidate pairs.
Fy score is the harmonic mean between the Pair Quality
and Pair Completeness, and allows us to measure how well a
blocking method is able to balance these two metrics.

In Figures 2, 3, and 4 we report the F} score, Pair Quality
and Pair Completeness obtained by the blocking methods ver-
sus k, respectively. From the figures we observe that, overall,
SC-Block++ outperforms all other blocking methods. Specif-
ically, SC-Block++ achieves a higher F* score across all data
sets and most values of k compared to the other blocking
methods, implying that SC-Block++ is able to achieve a
better balance between Pair Quality and Pair Completeness.
Indeed, if we look at the Pair Quality we see that, gener-
ally, the Pair Quality of SC-Block++ is larger than that
of the other blocking methods. This implies that a larger
proportion of the pairs in the candidate set constructed by
SC-Block++ are truly matching, implying that SC-Block++
is more effective at finding truly matching pairs. Furthermore,
we observe that the Pair Completeness of SC-Block++ is
generally larger compared to the other blocking methods,
and therefore approaches 1 much sooner. This means that
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Figure 3: Pair Quality of each blocking method.

SC-Block++ already captures many of the matching pairs
for a smaller value k, reducing the number of comparisons
that need to be done by the matching method. From these
findings, it is evident that SC-Block benefits from AdaFlood.

Nevertheless, we do not obtain the same success for SC-
Block piooding-Namely, SC-Block piooding achieves much lower
FY scores compared to SC-Block when applied to the data
sets Walmart-Amazon and WDCs(. These findings are also
reflected in the Pair Completeness and Pair Quality of SC-
Blockpiooding being lower than those of SC-Block for these
two data sets. We believe that these results may be caused



SC-Block++: A Blocking Algorithm Based on Adaptive Flood Regularization

1.0
208 %
o
g
o6
-
Eo04
S
=
£o.2
0.0 e X .
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
k k
(a) Walmart-Amazon (b) WDC2
1.0
w 0.8
2
[
v
Boe6
[
s
Eo0a4
S
= -@- sCBlock
fo.2 B SCBlock with flooding
=&~ SC-Block with AdaFlood
pos
0.0 =~ Sentence ROBERTa

0O 10 20 30 40 50 60 70 80
k
(¢) WDCsgo

Figure 4: Pair Completeness of each blocking method.

by the instability issues that Flooding has, which we dis-
cussed in Section 3.3. Hence, the weights in the RoBERTa
base transformer model of SC-Block pyo0ding that we obtain
may not result in the best performance on the test set. Also,
we may obtain these results because Flooding simply is not
necessary when applying SC-Block to Walmart-Amazon and
WDCyq (optimal level of 7 is 0 as shown in Appendix A).

When we look at the results of SC-Blockpipoding for
WDCsgp, SC-Block pooding is able to outperform SC-Block.
Specifically, the F}" scores of SC-Block piooding are strictly
larger than the scores of SC-Block for k£ = 1,5,10, and 20.
Namely, for these values of k, SC-Block pjpoding manages to
obtain higher values of the Pair Quality and Pair Complete-
ness. These results may confirm our finding from Appendix
A: Flooding can help SC-Block deal with the large amount
of corner cases in the WDC Products data set.

5.2 Comparing the Blockers within ER Pipelines

To compare how blocking methods perform within ER pipelines,
we first tune k for the blocking methods across all three data
sets. To tune k, we utilize the procedure used by Brinkmann
et al. [4] and Papadakis et al. [15]. Namely, for each blocking
method, we compute the Pair Completeness on the validation
split of the data sets for the values k € {1,...,80} until it
reaches a threshold of 95%. Once the Pair Completeness
reaches this threshold, we find the optimal value of k, as it
means that we have captured most of the matching pairs in
the candidate set. If a blocking method is not able to reach
the threshold of 95%, we simply set k = 80. The rationale for
tuning k based on the Pair Completeness instead of the Fy
score stems from the fact that, during the matching phase,
any matching pair discarded by the blocking method cannot
be recovered. Therefore, we tune k£ in such a way that we
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add most of the matching pairs to the candidate set while
keeping the number of candidate pairs as small as possible.
After we find the optimal k for SC-Block, SC-Block pioodings
SC-Block++, SRoBERTa, and Barlow Twins across all three
data sets, we incorporate these blocking methods within
ER pipelines, with the matching methods being SupCon-
Match [17], Ditto [12], and DeepMatcher [13]. We use the ER
pipelines to extract matching pairs from the test split of all
three data sets. We report for the ER pipelines the optimal
value of k obtained by the blocking method, the Fraction
Of Comparisons (FOC), precision, recall, and F; score in

Table 3. The FOC is defined as %, where C is the
candidate pairs set in the test set. The optimal values of the
hyperparameter « used in Ditto are 0.4 for Walmart-Amazon,
0.6 for WDCyq, and 0.1 for WDCgy.

From Table 3, we observe that across all three data sets,
the pipelines that do not contain a blocking scheme achieve
the best performance in terms of precision, recall, and the F}
score. In terms of efficiency, the pipelines without a blocking
method perform the worst since the matching schemes need to
consider every possible comparison. In contrast, the pipelines
that use SC-Block++ as the blocking scheme are able to
find a better balance between the efficiency of the matching
method and the quality of the pairs constructed by the
matching method. Namely, we observe that the SC-Block++
pipelines obtain values of the precision, recall, and the F}
score similar to the ones obtained by the pipelines without a
blocking scheme, while requiring less comparisons.

In addition, the SC-Block++ pipelines outperform the
other pipelines where blocking is performed. The SC-Block++
manages to reach the Pair Completeness threshold of 95% for
a much smaller value k compared to the other blocking meth-
ods, resulting in the matching methods within SC-Block++
pipelines performing less comparisons, as is also evident from
the FOC results. Although the pipelines with SC-Block++
do not always obtain the highest recall, especially on the
WDCgo data set, their Fj scores are larger compared to
the other pipelines since the pipelines are more precise. The
higher precision of the SC-Block++ pipelines is attributed
to the fact that SC-Block++ constructs much smaller can-
didate sets than the other blocking schemes, as k is smaller.
Therefore, the candidate set of SC-Block++ contains less
false positives, increasing the precision of the SC-Block++
pipelines relative to the other pipelines.

When we look at the pipelines that use SC-Block gj40ding,
we notice that the SC-Block pypoding Pipelines outperform the
SC-Block pipelines on the WDCg( data set. Specifically, the
SC-Block iooding Pipelines are able to achieve a lower value
of k, leading to less product pairs that need to be compared
by the matching method. Furthermore, this reduction in the
number of comparisons leads to a higher precision, and thus
a higher F score. These results are in line with the notion
from the previous section that SC-Block piooding is able to
improve the tolerance of SC-Block against corner cases. Still,
on the two other data sets, the SC-Block pyoding PiPelines
generally perform worse than the SC-Block pipelines, in terms



SAC '25, March 31-April 4, 2025, Catania, Italy

A. Ning et al.

Table 3: Performance of the ER pipelines for Walmart-Amazon, WDCsy and WDCg(. The best value of a measure is in bold

‘Walmart-Amazon WDCsyg ‘WDCgo

Blocker Matcher k FOC Recall Precision F} k FOC Recall Precision Fj k FOC Recall Precision Fj
SupCon-Match| - 100% 62.2% 58.8% 60.4% | - 100% 75.6% 64.9% 69.8% | - 100% 72.1% 60.4% 65.7%
- Ditto - 100% 97.0% 34.5% 50.9%| - 100% 93.1% 48.5% 63.8%| - 100% 92.5% 45.1% 60.6%
DeepMatcher | - 100% 98.1% 28.3% 43.9%| - 100% 96.1% 41.2% 57.7%| - 100% 94.0% 35.1% 51.1%
SupCon-Match| 7 0.8% 57.6% 54.9% 56.2%[15 2.1% 73.3% 63.1% 67.8%[10 2.0% 70.0% 59.1% 64.1%
SC-Block++ Ditto 7 08% 95.3% 32.6% 48.9%|15 2.1% 92.5% 47.9% 63.2%|10 2.0% 89.9% 41.5% 56.8%
DeepMatcher | 7 0.8% 97.9% 27.0% 42.3%|15 2.1% 95.4% 38.4% 54.8%|10 2.0% 93.5% 34.2% 50.0%
SupCon-Match|[80 88% 53.9% 53.9% 53.9%([31 4.3% 74.3% 60.2% 66.5%[18 2.5% 70.5% 53.6% 60.9%
SC-Blockriooding Ditto 80 88% 98.0% 15.5% 26.7%|31 4.3% 92.3% 36.7% 52.3%|18 2.5% 93.0% 30.7% 46.2%
DeepMatcher |80 88% 97.5% 16.4% 28.1% (31 4.3% 95.5% 31.1% 46.9%|18 2.5% 95.0% 27.9% 43.1%
SupCon-Match |20 2.2% 54.9% 53.0% 53.9%|16 2.2% 73.1% 56.9% 64.0%(|35 4.9% 71.0% 48.7% 57.8%
SC-Block Ditto 20 2.2% 95.9% 20.5% 33.8% |16 2.2% 90.1% 38.8% 54.3%|35 4.9% 91.6% 25.8% 40.2%
DeepMatcher |20 2.2% 96.9% 18.1% 30.4% |16 2.2% 94.5% 32.6% 48.4%|35 4.9% 94.4% 23.5% 37.6%
SupCon-Match|80 88% 3.1% 50% 5.9% [80 11.1% 55.8% 56.9% 56.3% (|80 11.2% 49.9% 48.8% 49.3%
SRoBERTa Ditto 80 88% 5.2% 8.7% 6.5% |80 11.1% 70.7% 25.0% 36.9% |80 11.2% 63.3% 22.3% 33.0%
DeepMatcher |80 88% 5.7% 6.4% 6.0% |80 11.1% 94.7% 27.5% 42.7%|80 11.2% 48.8% 26.8% 34.6%
SupCon-Match|80 88% 54.4% 54.4% 54.4% |80 11.1% 48.6% 55.8% 51.9%([80 11.2% 36.7% 52.0% 43.0%
Barlow Twins Ditto 80 88% 94.8% 12.6% 22.2%|80 11.1% 59.1% 25.9% 36.1%|80 11.2% 46.0% 23.9% 31.4%
DeepMatcher |80 88% 95.2% 14.5% 25.1%|80 11.1% 95.1% 26.3% 39.5%|80 11.2% 44.7% 25.1% 32.9%

of the ability to retrieve matching pairs and the number of

comparisons that need to be performed.

6 CONCLUSION

In this paper, we study the effectiveness of the state-of-the-
art regularization method known as AdaFlood within the
training procedure of SC-Block, a blocking method proposed
by Brinkmann et al. [4]. Hereby, we develop an extended
variant of SC-Block called SC-Block++, which uses AdaFlood
to improve its overall effectiveness in finding candidate pairs.
We evaluate the performance of SC-Block++ on its ability
to construct candidate pairs, and compare its performance
to that of the blocking schemes SC-Block, SC-Block with
Flooding, SRoBERTa, and Barlow Twins on the data sets
Walmart-Amazon, WDCyg, and WDCgg. Subsequently, we
incorporate these blocking methods within state-of-the-art
entity resolution pipelines and evaluate how the blocking
methods influence the performance of these pipelines.

We find that SC-Block++ is an effective blocking scheme
to construct candidate pairs as it outperforms the blocking
methods SC-Block, SC-Block with Flooding, SRoBERTa, and
Barlow Twins, in terms of the Pair Quality, Pair Complete-
ness, and F}* score across all three data sets. These results
are also reflected in the performance of the entity resolu-
tion pipelines when SC-Block++ is used during the blocking
phase. When we tune the hyperparameter k in the nearest
neighbour search of the blocking schemes, we find that SC-
Block++ consistently achieves the lowest value of k, resulting
in SC-Block++ creating less candidate pairs and therefore
improving the efficiency of the entity resolution pipelines.
This efficiency gain does not hamper the performance of
the SC-Block++ pipelines, since these pipelines frequently
outperform the other pipelines of the other blocking schemes
in terms of precision, recall, and F7y.

There are several limitations to our research, which may
lead to interesting directions for future research. To begin, in
this work, we do not take into account the influence that the

temperature parameter may have on the SupCon loss, which
we use to train SC-Block. Wang and Liu [23] state that the
temperature controls the trade-off between uniformity and
tolerance. Uniformity measures how evenly the embeddings
(constructed by the language model) are spread across the
feature space, while tolerance represents how tolerant the
SupCon loss is against samples that are semantically similar
even though they are non-matching. Although uniformity is
important for a model to learn separable factors between two
non-matching samples [23], excessive pursuit to uniformity
leads to the tolerance of a model worsening. Therefore, for
future research, it may be interesting to study if a balance
between uniformity and tolerance by tuning the temperature
parameter improves the performance of SC-Block++, since,
for example, it may be more resistant against corner cases.

Another limitation is that we do not consider that the size
of the data sets may affect the performance of the blocking,
as the data sets we consider here are all relatively small. A
data set with more records and a larger vocabulary typically
leads to more candidate pairs being constructed by a blocking
method [4]. Hence, one could study if SC-Block++ is able
to maintain a dominant performance over the other blocking
schemes if the methods are applied to a larger data set.

Last, we borrow the learning rate and the number of epochs
from Brinkmann et al. [4]. Yet, we may observe different
results for the blocking methods if we tune these hyperpa-
rameters. Thus, one could study how tuning these parameters
affects the results we obtain in this work.

A OPTIMAL FLOOD LEVEL FOR SC-BLOCK

We train SC-Block piooding on the training splits of the three
data sets we describe in Section 4. These models are trained
for the flood values v € {0.000,0.005,0.010, ...,0.025}. Sub-
sequently, we utilize these variants of SC-Block to construct
candidate pairs of the products in the validation splits of all
three data sets. We perform the nearest neighbour search
for k € {1,5,10,20,40,80}. In Table 4, we report the F}
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scores for each flood level across all values of k. Moreover, we
compute the mean F}' scores to gain insight on the overall
performance of the model across the values for k.

Although the optimal value of v = 0.000 when we apply SC-
Block f1p0ding to Walmart-Amazon and WDCyg, we utilize
7 =0.005 for the other experiments, since SC-Block t40ding
is able to achieve the second-highest mean F;" scores for this
value of v (the variant of SC-Block with v = 0 is included
in the experiments any way as a baseline). Doing so allows
us to compare the performance of SC-Block fio0ding to the
other blocking methods.

Table 4: F scores of SC-Block Flooding for different values of

the flood level across all three data sets

Data set v F Mean Fy'
k=1 k=5 k=10 k=20 k=40 k=80
0.000 | 58.1% 46.8% 38.7% 34.4% 30.5% 27.8% 39.4%
0.005 | 55.5% 44.8% 37.0% 31.7% 28.1% 25.9% 37.2%
Walmart-Amazon 0.010 | 33.0% 31.9% 282% 25.6% 23.8% 22.4% 27.5%
0.015 | 48.7% 40.5% 34.5% 29.3% 27.0% 24.5% 34.1%
0.020 | 39.0% 34.6% 29.7% 26.8% 241% 22.5% 29.5%
0.025 | 16.9% 20.0% 19.3% 17.9% 16.7% 15.5% 17.7%
0.000 | 29.7% 82.0% 76.3% 170.9% 66.1% 61.5% 64.4%
0.005 | 31.7% 78.6% 74.0% 69.3% 64.7% 60.1% 63.1%
WDCa0 0.010 | 31.6% 77.0% 721% 66.4% 62.9% 59.5% 61.6%
0.015 | 32.3% 75.3% 72.1% 65.3% 60.9% 57.5% 60.6%
0.020 | 30.3% 72.1% T71.1% 67.7% 61.6% 58.3% 60.2%
0.025 | 29.7% 75.4% 72.5% 68.0% 62.8% 59.0% 61.2%
0.000 | 30.4% 69.5% 67.9% 62.5% 59.4% 57.6% 57.9%
0.005 | 32.5% 76.1% 70.6% 64.6% 61.5% 57.9% 60.5%
WDCso 0.010 | 30.8% 67.4% 66.3% 64.3% 60.3% 58.1% 57.9%
0.015 | 28.6% 70.9% 68.6% 62.6% 59.8% 57.3% 58.0%
0.020 | 28.4% 67.3% 66.2% 61.5% 59.4% 56.8% 56.6%
0.025 | 31.6% 68.7% 69.0% 63.2% 59.8% 57.6% 58.3%
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