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ABSTRACT
Being able to generate personalized recommendations is a wide-
spread objective in (online) retail. The focus of this research is to
estimate the relevance of user-item combinations based on previous
interactions using implicit feedback. We do this in a situation where
interactions are often repeated, focusing on new ones. We bring
two weighting schemes of positive and negative implicit feedback
together into a single Weighted Matrix Factorization (WMF) model
to handle the uncertainty associated with implicit preference in-
formation. Next, we bring the concept of these weighting schemes
to a Deep Learning framework by introducing a Neural Weighted
Matrix Factorization model (NeuWMF). We experiment with differ-
ent weights, loss functions, and regularization terms, and evaluate
both models using purchase data from an online supermarket. Our
WMF model with both weighted positive and negative feedbacks
gives superior performance in terms of NDCG and HR over regular
WMF models. Even better results are obtained by our NeuWMF
model, which is better capable of capturing the complex patterns
behind item preferences. Especially the weighting of positive terms
gives an extra boost compared to the state-of-the-art NeuMF model.
We confirm the practical use of our model results in an experiment
on real customer interactions.

CCS CONCEPTS
• Information systems→Recommender systems; Personaliza-
tion; Retrieval tasks and goals.
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1 INTRODUCTION
In online retail, the number of choices can easily overwhelm a cus-
tomer. To find the relevant items in this overload of options, a user
is not always capable or willing to give an explicit query expressing
his or her needs and would like to be pointed in the right direction
[1]. In everyday life, individuals often rely on recommendations
from peers when selecting items. A Recommender System (RS) can
help to provide a similar sense of direction for users by automati-
cally generating personalized recommendations [21] based on past
user interactions.

In recent years, research effort on RS has shifted towards implicit
data [6] [7] [9]. Here, we can think about any interaction a user had
with an item, for example purchasing it, viewing it, or clicking on it.
If we observe a user interacting with an item, we can interpret this
as positive feedback (the user is somehow interested in the item).
In contrast, the non-observed user-item pairs are inherently more
ambiguous. They partly consist of real negative feedback: the user
is not interested in the item. However, some of them can also be
regarded as missing values: the user might want to buy the item in
the future, may not have seen it at all, or might buy it at a different
shop. This uncertainty makes the implicit case challenging.

The main aim of this research is to create a pointwise predicted
personalized score of relevance for user-item interactions based
on implicit data, where we focus on grocery shopping. Relevant
products can be split into two groups, the ones a user did and did
not already interact with before. As grocery shopping behavior
consists of a large part of repurchases (items a user buys with a
certain frequency), we are focused on the latter group. To estimate
the relevance of user-item interactions, we propose a combination
of different techniques from the field of Collaborative Filtering (CF)
that are able to deal with the uncertainty of the context in which a
user has made a decision whether or not to interact with an item.

If a user has frequently interacted with an item, we can be more
certain about the user’s preference for it. If a user interacted with
an item once, only to never do it again, it is likely less of their
taste than all-time favorites that are interacted with over and over
again. We implement this idea in an RS by putting different weights
on positive feedback based on the number of interactions [8]. At
the same time, we can differentiate in the importance of negative
feedback. It is probable that users are more aware of products that
are very popular among all users. Therefore, if a user has never
interacted with a popular (and assumingly well-known) product,
it is likely that this negative feedback was intentional [7]. Again,
we can implement the negative feedback in the RS by different
weights, this time based on item popularity. We implement both
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methods into a single Weighted Matrix Factorization model (WMF)
that can be estimated by element-wise Alternating Least Squares.
It is already known that implementing either positive or negative
feedback is useful in a WMF model, but the combination of the
two has not been investigated yet. Next, we bring these concepts
of weighted positive and negative feedback to the domain of Deep
Learning. We make use of the ability of Deep Learning models to
capture highly complex interactions that go further than the only
linear relations estimated byWMF. We make use of a Neural Matrix
Factorization (NeuMF) framework [6], of which it is known that
its performance is superior to WMF models on various domains
of implicit datasets, but has not been tested on supermarket data
yet. By using the NeuMF framework, we propose a model we call
NeuWMF.

To be able to focus on new relevant items, we investigate a
modified version of the evaluation measure NCDG next to the
standard NDCG and HR. This modified version only rewards the
identification of relevant items if they were never interacted with
before by the user. We perform an experimental study on historic
data from the Dutch online supermarket Picnic and additionally
test the results of our model by performing a real-life experiment.

In short, the main contributions of this work are as follows:

(1) We propose NeuWMF: an extension of the NeuMF model
that brings the concept of weighting positive and negative
feedback to Deep Learning models for implicit recommen-
dation.

(2) We justify the usefulness of weighting positive and negative
feedback simultaneously, by studying the combination of
both into a single WMF model.

(3) We make two small extensions to be able to focus on the
identification of new relevant items in a situation with the
repurchase property. Specifically, we define a modified evalu-
ationmeasure aimed at rewarding new items and aweighting
scheme for positive feedback based on relative interaction
frequency rather than absolute frequency.

(4) We study the performance of our models and extensions
on historic purchase data and in an experimental setting. In
both settings, we show that the estimated relevance scores of
our best performing model have a significant relation with
real conversions.

2 RELATEDWORK
Since the 2009 explosion of research effort in the RS field caused by
the Netflix prize competition, algorithms like Matrix Factorization
(MF) are known to be one of the most effective approaches to
Collaborative Filtering [12]. However, many of them focus either
on explicit feedback or go beyond purchase information alone [2]
[17]. In this work we are focused on model-based CF methods using
implicit data. Existing contributions most relevant to our research
are summarized in Table 1.

The output of a recommendation system can take multiple forms.
The relevance of items can be expressed as the relevance of a single
item (pointwise), as a preference of one item over another (pair-
wise), or as a list of most relevant items to a user (listwise) [21]. Of
these three systems, using pointwise relevance is the most versatile
approach.

When dealing with implicit recommender systems in a CF frame-
work, several issues are common. Conventional MF techniques
often do not work well in the context of implicit feedback, as the
interaction matrix is too large and sparse for efficient matrix de-
composition. [12] proposed to directly model only the observed
interactions. Implicit data is inherently biased and uncertain: we
know users interact with items they like, but we do not know
why an item is not interacted with. [15] therefore regarded the
non-interacted items in implicit data as Missing Not At Random
(MNAR) and reformulated the problem of filling the interaction
matrix with relevance scores as missing data imputation.

[8] introduced another way of dealing with the uncertain nature
of implicit data. They introduced the concept of confidence for
positive feedback to distinguish only the most meaningful inter-
actions, leading to a method called Weighted Matrix Factorization
(WMF), which we will use in the rest of our research. The weights
of specific user-item combinations were taken to be either a linear
or a logarithmic function of the number of interactions between
them. Estimation of the factors was done by using Alternating
Least Squares (ALS). Although the WMF method has proven to give
good results, all non-observed user-item combinations are weighted
at the same rate, leaving still a lot of uncertainty in this implicit
information.

A slightly different approach in capturing the uncertainty of
implicit data was taken by [9]. In this work, user and item biases
were introduced in a logistic approach of WMF known as Logistic
MF. This method even performs well under low numbers of latent
factors, leading to improved scalability compared to regular WMF
while achieving comparable performance in terms of recall. How-
ever, this method was focused on evaluation by Mean Percentage
Ranking (MPR) and underperforms for the evaluation methods used
in our research (based on our own experiments).

[14] tried to model the implicit uncertainty problem using a
latent variable describing whether or not a user has viewed an item
(in the case where view data is not directly available). With WMF
being a special case of this method, their results are better in terms
of precision and recall measures. However, because of the relatively
slow Expectation Maximization (EM) algorithm that was used, this
method has problems handling large datasets.

More recently, [7] extended theWMF framework to a model they
called eALS (after their proposed optimization method) by creating
negative feedback weights based on item popularity, also making it
possible to distinguish the probability for a user of having seen an
item. Since eALS learns latent factors from the whole interaction
matrix, it achieves higher accuracy than sampling-based methods.
The authors only weighted the negative feedback, regarding posi-
tive feedback uniformly.

In the current literature for implicit CF methods, the best per-
formance in terms of precision is obtained by DL models. The
introduction of Deep Learning (DL) in the field of RS happened
relatively late, with the first DL for RS workshop at ACM RecSys in
2016 [10]. Many attempts used neural networks mainly to model
auxiliary information like audio in music recommendation [16]
or textual analyses for the recommendation of news articles [4].
More recently, the focus of DL methods has successfully expanded
to improve MF methods [6]. In the classical MF approach, latent
item and user vectors can only be combined using a dot product,



Weighted Neural Collaborative Filtering SAC ’23, March 27-31, 2023, Tallinn, Estonia

Table 1: Overview of research contributions for implicit Model-based CF.

Reference Type Output Way of modeling uncertainty
[8] MF pointwise confidence weights
[9] MF pointwise user and item biases
[14] MF pointwise latent viewing variable
[7] MF pointwise confidence weights
[6] NeuMF pointwise -
[5] NeuMF pairwise -

leading to linear interactions. Therefore, classic MF models fail to
pick up more complex relationships. The main contribution of deep
learning in this context is the fact that it enables to learn non-linear
relations as well. [6] proposed the Neural Matrix Factorization
(NeuMF) model, a deep neural network model that unifies MF and
the Multi-Layer Perceptron into one model for implicit feedback,
leading to top-notch and reproducible results [3].

Another successful application of DL was done by [5]. The au-
thors applied a pairwise technique called Bayesian Personalized
Ranking (BPR) in a neural network context. BPR [20] uses a dif-
ferent optimization criterion that directly optimizes for pairwise
ranking instead of pointwise evaluation and makes use of stochastic
gradient descent. Although this method is more efficient, it can not
result in pointwise estimates making its application more limited.

While most of the research in Model-based approaches is fo-
cused on finding relevant products without regarding timing, other
researchers focus on using the order in which items were interacted
with as the main source of information [22], [23]. Making use of
interaction order information is not in the focus of our research.

3 PRELIMINARIES
We first formalize our problem and discuss existing research related
to it. In Section 3.1, we present Matrix Factorization and its exten-
sion Weighted Matrix Factorization for implicit feedback. Next, we
discuss the Neural Matrix Factorization model in Section 3.2.

3.1 Weighted Matrix Factorization (WMF)
First let us define a user-item interaction matrix R ∈ RM×N where
M denotes the number of users and N the number of items. Each
user-item pair (u, i) is represented by the element rui = R(u, i)
in this matrix. The value of rui is a measure of the number of
interactions user u had with item i (in our context, how often the
user purchased the item) and R+ denotes the set of user-item pairs
that are non-zero. The set of user-item pairs without interactions
is denoted by R−, making R+ ∩ R− = ∅.

The goal of Matrix Factorization (MF) is to decompose the matrix
R into two latent matrices of lower dimensions such that their prod-
uct approximates R. More precisely, we aim to find two matrices
P ∈ RM×K and Q ∈ RN×K that are latent factor matrices for users
and items. This way, the latent feature space is of dimension K ,
where K should be much lower than both N andM . Each element
rui can then be estimated as

r̂ui = p
T
u qi , (1)

where pu is the latent feature vector of length K for user u, and qi
the latent feature vector of length K for item i .

If R were filled with explicit ratings, this model could readily be
estimated by minimizing the difference between rui and r̂ui using
a loss function with sufficient regularization. Typically, this is done
via gradient descent algorithms. However, in the case of implicit
feedback, we have to deal with the uncertainty of the interactions.
[8] introduced a weighted regression function where a notion of
confidence wui is defined for each interaction rui in R+. [7] ex-
tended this WMF framework by creating negative feedback weights
ci for each item. This way, they made it possible to distinguish the
probability for a user of having seen an item, but regarded positive
feedback uniformly. In this research, we investigate weighting both
the positive and negative feedback in a single WMF model.

In order to generate a measure of whether a user is interested in
an item or not, the binary variable matrix B ∈ {0, 1}M×N is defined,
with elements bui being

bui =

{
1, rui > 0
0, rui = 0.

(2)

The model is then estimated by minimizing the following loss
function:

L =
∑

(u ,i)∈R+
wui (1 − b̂ui )

2 +
∑

(u ,i)∈R−

ci b̂
2
ui + Λ(pu ,qi ), (3)

where Λ(pu ,qi ) = λ(
∑M
u=1 | |pu | |

2 +
∑N
i=1 | |qi | |

2) is a regularization
term with regularization constant λ.

3.2 Neural Matrix Factorization (NeuMF)
One of the best performing methods in the field of CF is the Neural
Matrix Factorization (NeuMF) model [6]. This method combines
the simplicity from the field of MF with the complexity of Neural
Network models.

The problem of MF can easily be rewritten in a Neural CF (NCF)
framework. If we take the binary user-item interaction matrix of
implicit feedback B, the model-based recommendation problem can
be abstracted as learning b̂ui = f (u, i |Θ), where f (·) denotes the
function that maps the model parameters Θ to the predicted score
b̂ui . Note that in the case of MF, the latent factors are combined
using a dot product, leading to a linear model of the latent factors.

The limitation to linearity prevents MF methods from picking
up complex user-item interactions in the low-dimensional latent
space [6], especially in the case of sparse data. This issue can partly
be solved by drastically increasing the number of dimensions K ,
but this severely hurts computation times and may lead to severe
cases of overfitting, especially when the interaction matrix is very
sparse [18]. This results in a worse generalization of the model. A
class of models that is known to be able to pick up these complex
interaction patterns are Neural Network models, most noteworthy
Multi Layer Perceptron (MLP) models.

On the other hand, we do not want to disregard the MF model
completely, as it is known to generate good (and relatively inter-
pretable) results. Although MLP models are more appealing than
shallow models in the sense that more complex features can be
learned between users and items automatically, shallow models
such as CF are particularly well-known to be good at capturing and
learning the similarity and implicit relationships between items
[24]. Therefore, the idea of NeuMF is to rewrite the MF model to
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a neural framework, also known as Generalized MF (GMF), and
then combine the results with those of a deep neural network. This
network consists of a standard Multi-Layer Perceptron (MLP) that
is able to learn the non-linear interactions. A schematic version of
the NeuMF model is shown in Figure 1.

The first element of this model thus requires an NCF view on
MF. Following the notation of [6] we will call this the GMF, but
note that it is just a rewritten MF model. Rewriting an MF to a GMF
is quite simple, as we can see MF as a network with a single hidden
layer with the following mapping function:

ϕGMF (pGMF
u ,qGMF

i ) = ⟨pGMF
u ,qGMF

i ⟩ (4)

The latent vectors pu and qi are given the superscriptGMF to make
clear they are used in the GMF-part of the NeuMF model and we
use the notation ⟨a,b⟩ = aTb for the dot product. The output layer
can then be constructed as b̂ui = aout (h

TϕGMF (pGMF
u ,qGMF

i ))

with activation function aout (·) and edge weights h. In the case of
simple binary GMF, aout (·) is the identity function and h a vector
of ones.

The second element of NeuMF is a standard MLP, where the first
layer consists of concatenating the user and item vectors for the in-
teractions: z1 = ϕMLP

1 (pMLP
u ,qMLP

i ) = pMLP
u qMLP

i . Subsequently,
for the next L layers we have for the x-th layer:

ϕMLP
x (zx−1) = ax (HT

x zx−1 + βx ) (5)

with weight matrix Hx , bias vector βx , and activation function
ax (·) with subscript x for the corresponding layer.

Both elements are combined in the following way, allowing the
GMF and MLP parts to learn separate embeddings:

b̂ui = σ (γT ϕGMF ϕMLP
L ) (6)

where γ determines the weights between the GMF results and the
final layer of the MLP.

Figure 1: Visual representation of the Neu(W)MF model

For the NeuMF model, the negative loglikelihood is taken as loss
function:

LNeuMF = −
∑

(u ,i)∈R

bui loд(b̂ui ) + (1 − bui )loд(1 − b̂ui ) (7)

Estimation then relies on minimizing the negative loglikelihood
(by SGD). Note that this leads to solving a binary cross-entropy
loss and that this method puts equal weight to all of the user-item
interactions.

4 METHODOLOGY
We first discuss the different weighing schemes that can be applied
to the WMF model. Next, we integrate weights on the positive and
negative feedback into the NeuMF model, leading to a new model
that we propose to call NeuWMF.

4.1 WMF with positive and negative weights
To the best of our knowledge, the combination of implementing
different levels of confidence in both positive and negative feedback
into a WMF model has not been researched yet, although one
could expect this to give a significant improvement to the model
performance. Previous research efforts are summarized in Table 2.

[8] introduced a weighted regression function where a notion
of confidence wui is defined for each interaction rui in R+. This
confidence is based on the number of interactions user u had with
item i . Before giving the definition of our WMF model we need to
make a comment about interactions with high repurchase levels.
In this situation, building confidence weights using the number of
interactions between u and i might result in getting a bias towards
fast-moving products. For example, a basic good like milk (that
you probably buy every week) will have a much larger weight
than washing liquid (that you only need to buy every once in a
while). To remove this bias, we define the confidence weightswui
not on the absolute number of interactions rui but on the relative
frequency of buying an item compared to other users r̃ui . We define
r̃ui = rui/r̄i , where r̄i is the average number of purchases of item i
of users that ever interacted with it (mean excluding 0). We then
use a logarithmic scheme to define the weights:

wui = 1 + α log(1 + r̃ui/ϵ). (8)

The reasoning behind the weightswui is that the more interactions
a user has with an item, the more confident we can be that the user
actually likes the item. The rate of increase is controlled by the
constants α ∈ R+ and ϵ ∈ R+∗ . The logarithm stems from the idea
that this effect decreases for larger amounts of interactions.

While it is clear that all interactions in R+ can be seen as positive
feedback (a user must have at least some level of interest in an
item before interacting with it), the combinations in R− are more
ambiguous. A user may have chosen not to interact with an item,
may want to interact with it later, or may not have seen it at all. To
model the last of these explanations, [7] proposed to differentiate
the weighting of user-item combinations in R− based on popularity.
The authors argue that all other factors being equal, popular items
are more likely to be known by users in general. Therefore, if a user
did not interact with a popular item it is more probable that the
item is irrelevant than that it is unknown. They formalize this in
the parameter ci , based on item popularity fi :

ci = c0
f
η
i∑N

j=1 f
η
j

. (9)

where fi = |R+i |/
∑N
j=1 |R

+
j | is the fraction of users having inter-

acted with item i compared to the other items. We denote the users
that interacted with item i as R+i . The parameter η ∈ R controls the
effect of popularity: a value of 1 would lead to a linear relationship
between popularity and weight. Setting η ∈ (0, 1) leads to relatively
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lower weights ci for very popular items in the sense that the mar-
ginal gain of higher popularity on the weight is damped. Values
above 1 lead to an increase in marginal gain. Moreover, c0 ∈ R+

is a scaling parameter that needs to be tuned. The value ci can be
interpreted as the confidence that if i is missed by users, this is true
negative feedback.

Table 2: Overview of differentWMFweighting schemes in selected literature.

Model Positive feedback Negative feedback
WMF_pos [8] weighted (wui ) uniform (ci = 1)
WMF_neg [7] uniform (wui = 1) weighted (ci )
WMF_pos_neg weighted (wui ) weighted (ci )

The objective is to find b̂ui = pTu qi , where we use the loss func-
tion from Equation 3. Although the optimization of the loss with
respect to both pu and qi is a complex problem, we can make use
of the fact that if either the user factors pu or the item factors qi
are fixed, the cost function becomes quadratic with respect to the
other. Thus, we can derive an analytical expression for the global
minimum while holding either the item or user factors fixed and
iterate between the two. In order to start this procedure, the matri-
ces P and Q are randomly initialized. If the negative weights are
constant over all items, we can use a computational trick as in [8]
and minimize the loss function using Alternating Least Squares
(ALS). As we propose to differentiate the negative weights based on
item popularity, we need to use the slightly slower element-wise
Alternating Least Squares (eALS) method from [7].

4.2 Weighted NeuMF (NeuWMF)
To implement the idea of different levels of confidence in the posi-
tive and negative feedback, we propose an extension to the NeuMF
model that takes both into account in a similar way as in the WMF
model. Therefore, we call this method NeuWMF.

In the input layer of the original NeuMF, every user-item inter-
action that ever happened is labeled as 1, regardless of how often
it occurred. Like in the WMF model from the previous section, we
want to include information about how often a certain user bought
an item in order to model the uncertainty of item preference when
using implicit data. More specifically, we use the number of pur-
chases compared to the number of purchases of the average buyer
r̃ui . To do so, we still make use of a variablewui that is set up like
in Equation 8 (sowui would be equal to 1 for all user-item combi-
nations in R−). Theoretically, the weight of a user-item interaction
can therefore be in the range [1,∞). In a similar way to the WMF
model, we still want to have an output predicting whether or not a
user would be interested in an item.

Model estimation can be done in a similar fashion to Equation
3, using a squared loss with a regularization term that takes both
the GMF and MLP parameters into account. Note that we chose
to use the L2-loss for consistency with the WMF model, whereas
the original NeuMF makes use of a binary cross-entropy loss term.
In Section 5.2.3, we will show that the effect of this change on the

performance of the model is small.

L =
∑

(u ,i)∈R+
wui (1 − b̂ui )

2 +
∑

(u ,i)∈R−

ci b̂
2
ui

+ λ(
M∑
u=1

(| |pGMF
u | |2 + | |pMLP

u | |2) +
N∑
i=1

(| |qGMF
i | |2 + | |qMLP

i | |2))

(10)

Due to the sparsity and size of the interaction matrix, it is in-
feasible to directly calculate the sum over all user-item pairs in
R−. In the original NeuMF, this problem is addressed by uniformly
sampling some negative feedback instances in each iteration. That
is, for every positive user-item feedback, we sample n negative
user-item combinations. It has been empirically shown by [19] that
oversampling the most popular - and thus most informative - items
can largely help improve convergence without negative effects on
performance. In our case, the most informative items are the ones
with high negative feedback weights.

In the NeuWMF setting, we can also test the performance when
sampling the negative feedback using the weighting from Equa-
tion 9. From the values ci that are obtained by this formula, we
sample negative feedback in the following way. The ensemble of
item weights is normalized to c̃i , so

∑N
i=1 c̃i = 1. Every negative

item is then sampled from a multinomial distribution where the
probability to sample item i is equal to c̃i . So, we approximate the
real loss function term

∑
(u ,i)∈R− ci b̂

2
ui with

∑
(u ,i)∈R−

s
b̂2
ui , where

R−
s is the sampled version of R−. Note that E(

∑
(u ,i)∈R−

s
b̂2
ui ) =∑

(u ,i)∈R− (P((u, i) ∈ R−
s )b̂

2
ui ) =

∑
(u ,i)∈R− c̃i b̂

2
ui , so we take the

negative item weights into account in an implicit manner.
To learn the model parameters, the following loss function is

then used:

L =
∑

(u ,i)∈R+
wui (1 − b̂ui )

2 +
∑

(u ,i)∈R−
s

b̂2
ui

+ λ(
M∑
u=1

(| |pGMF
u | |2 + | |pMLP

u | |2) +
N∑
i=1

(| |qGMF
i | |2 + | |qMLP

i | |2)).

(11)

This loss function can be optimized by performing Stochastic Gra-
dient Descent (SGD). However, to obtain faster convergence we use
the Adaptive Moment Estimation (Adam) [11]. This method adapts
the learning rate for each parameter on the momentum informa-
tion from the previous iteration. Therefore, learning rates are more
efficiently chosen.

Both the GMF and MLP parts of the NeuWMF model have the
same input but have separate and independent embedding layers.
We make use of four embedding layers, two for the GMF and two
for the MLP part. These layers turn positive integers (indexes) into
dense vectors of fixed size, mapping high-dimensional input into a
lower-dimensional space such that similar inputs are nearby. For
example, the first embedding layer in Figure 1 is the embedding of
users in the GMF. The embedding layer is initialized with random
values generated from a normal distribution. We use an embedding
size of 20 for the GMF and 16 for the MLP. As separate embedding
layers are used for items and users in each part, this leads to respec-
tively 40 and 32 neurons in the first layer of the NeuWMF model.
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Every user-item combination (including sampled negatives) and the
corresponding label are fed to the model. Every user is represented
by one-hot encoding into the space of all users (of dimension M)
and mapped to a lower-dimensional space, much like the MF model.
The number of embeddings in the GMF part is chosen to be close
to the number of factors that was used in the WMF model, making
the comparison of model performance more natural.

In the GMF part, the embedding layer is followed by a simple
multiplication of the resulting vectors (the inner product from
WMF). In the MLP part, we make use of several hidden layers with a
ReLU activation function. All these layers use a normal initialization
of the weights as well. Excluding the embedding layer, we use the
optimal MLP set-up from the NeuMF model, using 3 layers with
respectively 32, 16, and 8 neurons. The 8 resulting activations from
the MLP part are concatenated with the single activation from the
GMF part. This is the input for the final layer, which consists of a
single output with sigmoid activation function.

As can be seen from Equation 7, the original NeuMF model with
binary loss function does not make use of any regularization terms.
In the binary case without feedback weights, overfitting might not
be too much of a problem in the context of predicting user-item
combinations, as every user-item combination can only have one
unique observation. However, in the NeuWMF we add extra infor-
mation on the number of interactions leading to increased risk of
overfitting. There are several possible locations to include a regu-
larization term, the most natural one being described in Equation
11. Here, we put the same regularization term λ over all neurons in
the embedding layers of the GMF and MLP parts of the model. We
briefly experimented with distinguishing separate regularization
constants λGMF and λMLP , but found no significant advantage and
leave a systematic study to further research. Alternatively, we can
also add regularization terms in all of the hidden layers of the MLP
as well as in the concatenation layer that combines the GMF and
MLP outputs. As the input layer of the NeuWMF model contains
the most neurons, regularization in this layer can be expected to
have the most impact and we leave exploration of the other layers
to future research. The model is trained using the batch size of 256
from the NeuMF model. We use no dropouts in order to keep the
model structure simple but in the future we would like to exper-
iment with it. In every epoch all positive feedback instances are
used, but new negative instances are sampled.

4.3 Evaluation
Like [6], we use Hit Ratio (HR) and Normalized Discounted Cumu-
lative Gain (NDCG) as evaluation measures. The Hit Ratio gives a
shallow understanding of success by considering if the interacted
item is in a list of recommendations or not, whereas NDCG helps
for a better understanding by setting higher scores to hits at higher
ranks within such a list. On top of that, we also introduce a slightly
modified version of the NDCG that helps us to focus on new user-
item interactions by only rewarding relevant combinations if they
did not happen before.

The regular HR is the most simple evaluation measure. If we
rank our predicted relevance scores per user, we can create a list of
recommended items for each user. More formally, the link between
the rank rkui and the relevance bui for a certain user u is rkui =

|{j : b̂uj ≤ b̂ui }|. If for a certain user, an item appears in the top k
items of a recommended list (rkui ≤ k) and was actually bought
during the test period, we call it a hit. Let us define the number of
hits appearing in the top k list of user u as #hitsu@k . The HR for a
single user u is then calculated as

HRu@k =
#hitsu@k

|Testu |
, (12)

where Testu is the set of hold-out positive interactions for user u.
To get a single measure, the HR is averaged over all users in the test
set. The HR is rather intuitive but does not account for the order
in which items are recommended. Therefore, we now define the
NDCG which will be the main measure throughout this research.
To also address the order of top-ranked recommendations, define
NDCG for each user as

NDCGu@k = Zk

k∑
i=1

2tu ,i − 1
loд2(i + 1)

, (13)

where tu ,i represents the real relevance of the ith item on the list of
user u. In our case, it is a dummy being 1 if the item is in the users’
test set and 0 if not. Note that in this case, the numerator simplifies
to tu ,i . Zk is a normalizer giving NCDG of 1 for the perfect ranking,
being a ranking with only items on top that actually appear in the
test set. To get a single measure the NDCG score is then averaged
over all users in the test set.

As we are mainly interested in generating recommendations of
products a user never bought before, we also introduce a slightly dif-
ferent version of this measure, which we will call the ‘NDCG New’.
Instead of marking all items bought in the test period as relevant,
we only reward those that were bought in the test period for the
first time. That is, we train the models on the train data, disregard
the resulting scores of all items that user u already interacted with,
and rank the rest of the items based on b̂ui .

Note that we defined both the HR and NDCG on a list of length k .
Typically, the number of unique supermarket items a user interacted
with is in the hundreds. However, we usually want a recommended
list to be a lot shorter than that. This results in relatively low but
more realistic evaluation scores.

5 EXPERIMENTS
We will now describe the experimental setting of our research as
well as both the offline and online experiments we performed. Our
implementations and an anonymized version of our dataset can be
found on GitHub1.

5.1 Experimental settings
We evaluate the performance of our models on a dataset containing
an anonymized version of purchases in the Dutch online supermar-
ket Picnic. Note that because of the fact that we are working with
purchase data, all user-item interactions consist of users buying an
item.

To reduce the number of data points fed to the model, we use
a pre-aggregation of the purchase data. For every user-item com-
bination we take a sum of the number of purchases over time. We
do this both during a train period and a test period, where the test

1https://github.com/Stan-Hennekes/thesis-weighted-neural-collaborative-filtering
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period is later in time. The model is trained on purchase behavior
during the train period and evaluated on a test period that follows
immediately after. This approach resembles the leave-one-out ap-
proach used in other research [6], that artificially splits the latest
purchase for each user as a test instance. However, our collective
time-split mimics the real-life implementation of an RS better, as
in practice we want to be able to make recommendations for all
users at the same moment in time. In production, the available
information would also be the purchase history of every user until
present.

Another reason to choose this method is the repurchase property
of grocery data. In the setting of most RS, it is highly unusual that a
user interacts many times with a single item (books, movies, news
articles). Noteworthy counter-examples are grocery shopping and
music recommendation. In the latter contexts, the leave-one-out
approach of a single item is not very intuitive; the item that has
been left out is likely to be an item the user already interacted with
before.

The dataset of the online supermarket was chosen in the follow-
ing way. The assortment that is available to a customer depends
on the region he or she is living in, as the availability of items and
capacity of the supply chain is dependent on the local delivery area.
Therefore, only users of one specific area at a time are taken into
account. We focused on one of the regions where the company has
been active for the longest period of time. Purchase data over two
years (2017-2018) is taken as train set and we use the following
year (2019) as test set. This relatively long test period is taken be-
cause of the fact that users tend to stay in their regular purchase
patterns and new purchases are therefore relatively rare. Further-
more, by evaluating over a full year we reduce any seasonality
effects in purchasing behavior that are known to be common in
grocery shopping (most noteworthy the periods before Christmas
and Easter).

To make sure that users have enough history to base their prefer-
ence on, we only consider users that ordered at least 5 times (being
the point where they ordered on average about half of the products
they ever will). Users should also have at least one order in the
test period to base evaluation on and items should be sold in both
periods. The top 10 most popular items are left out of the model to
prevent them from dominating the latent variables.

As a final check, we assure users and items to have enough
positive feedback to build the model on by requiring a user to have
bought at least 50 unique items and each item to be bought by at
least 50 unique users. Note that these assumptions are relatively
mild compared to other research, which often focuses on only the
top 5% or even top 1% of most active users. In the end, our analyses
are built on an interaction matrix with 5636 users and 4134 items.
The sparsity of the train and test matrices are 0.0545 and 0.0379.

5.2 Offline experiments
We will now perform several experiments on real historic purchase
data with the models described in the previous sections. In Sec-
tion 5.2.1, we discuss some model choices specific to our context,
such as the tuning of hyperparameters. Thereafter, we turn to an
overview of the offline model performance compared to several
baselines and explore the differences between some versions of our

NeuWMF model in Sections 5.2.2 and 5.2.3. We end this section by
a comparison of the most recommended items in the best WMF
and NeuWMF models.

5.2.1 Hyperparameter settings. Both the WMF and the NeuWMF
models contain several hyperparameters that need to be chosen
wisely, most noteworthy the weights we assign to the positive and
negative feedback. If we define the expression ofwui and ci as in
Equations 8 and 9, we can tune the hyperparameters α , ϵ , c0 and
η. Furthermore, we have to choose an appropriate regularization
constant λ and the number of factors K . Since the required time to
train the model is considerable, we took the following approach to
find optimal hyperparameters. At first, a random search over all
hyperparameters was performed (sampling every hyperparameter
uniformly from a specified interval). The hyperparameters and
intervals in which searches were performed are shown in Table 3.
Subsequently, the best hyperparameters resulting from this search
are partially optimized one by one. That is, all hyperparameters are
held constant except for one, of which the optimal value is found
using a line search over an interval around the optimal value of the
grid search. We use the NDCG New as evaluation measure. This
optimal value then replaces the previous one in the tuning of the
next hyperparameter. Tuning was done on a random subset of 1000
items and 1000 users from the training data to speed up the process.

In this work, we use the length of a recommended list k =
20 for all evaluation measures. This value represents the average
number of items a user explores on a page in grocery app. From
hyperparameter tuning on our experimental dataset, it follows that
the effects of ϵ and η are of relatively little importance and we
use values of respectively 1 and 0.5. For ϵ this means no special
treatment to r̃ui and for η this is a default value [7].

Next to the ones already introduced in the WMF part, one of the
most important choices we need to make for the NeuWMF model is
the number of negative samples n. Furthermore, we experimented
with different user/item embedding sizes for both the GMF and
MLP parts of the model.

Table 3: Ranges of hyperparameters in theWMFmodel, NeuWMFmodel and
both models used for tuning by grid search and chosen values after partial
optimization.

Parameter Range Used
K {1, 2, 3, ..., 200} 20
αWMF [0, 20] 12
cWMF

0 [0, 100000] 50,000
λWMF [0, 10000] 500
αNeuWMF {0.25, 0.5, 0.75, 1, 1.25, 1.5, 2, 5, 10, 12} 1
cNeuWMF

0 {100, 1000, 10000, 50000} 1000
λNeuWMF {[0, 10−4], 1, 10, 100, 500} 0.00005
n {0, 1, 2, 3, 4, 5} 3
emb. size GMF {10, 20, 30, 40} 20
emb. size MLP {8, 16, 24} 16
ϵ [0.5, 1.5] 1
η [0, 1] 0.5

5.2.2 Comparison to baselines. Based on the train and test set of
historic purchase data, we can compare the performance of our
models to some baselines. The resulting evaluation measures are
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shown in Table 4. Note that we are only sure that an item was
relevant if it was bought during the test period. However, not all
relevant items were seen, leading to relatively low evaluation scores
for all methods.

Table 4: Results of WMF and NeuWMF models and baselines. Evaluation
scores are calculated over the test set.

Model NDCG NDCG New HR
Random 0.03815 0.01972 0.00348
ItemPop 0.35442 0.14820 0.04897
WMF_neg (wui = 1) 0.35335 0.14992 0.04948
WMF_pos (ci = 1) 0.39809 0.15994 0.05002
WMF_pos_neg 0.40989 0.16671 0.05649
NeuMF 0.42499 0.16853 0.06092
NeuWMF 0.42618 0.16998 0.06111

The first baseline consists of a random recommendation, where
every user-item combination gets a random relevance score be-
tween 0 and 1. The second baseline is a non-personalized approach
called ItemPop. This method simply gives the highest relevance
scores to the most popular items. Therefore, the top k most popular
items amongst all users are given as recommendations for every
user u. In the evaluation measure NDCG New, both baselines are
evaluated for only the items each user did not buy during train-
ing. Therefore, these measures take a form of personalization into
account even though both baseline models are non-personalized.

Furthermore, several versions ofWMF andNeuMFmodels are op-
timized and estimated. TheWMFmodel is estimated as (i)WMF_neg
using only negative weights with eALS like [7], (ii) WMF_pos using
only positive weights with ALS like [8], and (iii) WMF_pos_neg
using both with eALS, as described in Table 2. Every model is eval-
uated using its optimal values for α and c0 (if applicable), but the
regularization constant λWMF is constant over the three WMF
models. The benefit of combining positive and negative feedback
weights in the WMF model is immediately clear. Furthermore, it
can be seen that including positive weights has a larger impact on
performance than including negative weights.

For the NeuWMF model, regular binary NeuMF is used as a base-
line. This vanilla NeuMF does not make use of any regularization.
The same number of negative samples is used as for the NeuWMF
model. Note that this model already has superior performance over
the best WMFmodel. An extra gain in performance can be achieved
by using our weighted NeuWMF model with L2-loss.

5.2.3 Isolating the main components of NeuWMF. To describe the
effects of the NeuWMF model in more detail, we conducted addi-
tional experiments based on the changes that were made to the
NeuMF model to arrive at the NeuWMF model.

Experiment I: Positive feedback. In the NeuMF model, the
weights given to every user-item combination are binary. In our
NeuWMF model, we make use of the positive weightswui instead.
If we isolate the effect of this change by creating a NeuWMF_pos
model (using the same naming conventions as for the WMF), we
get the results shown in Table 5. No regularization is used for a fair
comparison and therefore only regular NDCG and HR are shown.
It can be seen that using weighted positive feedback has a posi-
tive impact on all evaluation measures compared to using binary

weights. This effect is the main reason that NeuWMF outperforms
NeuMF.

Table 5: NeuMF model with L2-loss versus the NeuWMF model with positive
weights and uniform sampling of negatives. No regularization is used.

Model NDCG test HR test NDCG train HR train
NeuMF_L2 0.42275 0.06086 0.58519 0.05931
NeuWMF_pos 0.42566 0.06125 0.58933 0.05971

Experiment 2: Negative feedback. In the original NeuMF
model, the negative user-item instances are sampled uniformly. In
our NeuWMF model, we make use of the negative weights ci as the
probability to be sampled. If we isolate this effect in a NeuWMF_neg
model, we get the results shown in Table 6. It can be seen that sam-
pling using negative weights improves performance on the train
set, but regularization will be needed on the test set.

Table 6: NeuMFmodelwith L2-loss versusNeuWMFmodelwithnegative feed-
back sampling (but no positive weights). No regularization is used.

Model NDCG test HR test NDCG train HR train
NeuMF_L2 0.42275 0.06086 0.58519 0.05931
NeuWMF_neg 0.41174 0.05963 0.60190 0.06179

Experiment 3: L2-loss. As mentioned in Section 3, the NeuMF
model makes use of a binary cross-entropy loss function for es-
timation. To enable natural comparison to the WMF model, we
chose to use an L2-loss function. In Table 7 the performance of
the model under both loss functions is shown. It can be seen that
the differences in performance are small, with a slight preference
towards the L2-loss when regarding new items only. This validates
our hypothesis that changing the loss function of the NeuMF from
cross-entropy loss to L2-loss does not hurt performance too much.

Table 7: Result of the NeuMF model using L2-loss (NeuWMF without any
weights) versus vanilla NeuMFmodel with cross-entropy as the loss function.
No regularization is used.

Model NDCG NDCG New
NeuMF_L2 0.42275 0.16997
NeuMF_cross-entropy 0.42499 0.16853

Experiment 4: Regularization. The NeuMF model without
feedback weights does not use any regularization terms. In the
binary case without feedback weights, overfitting might not be too
much of a problem in the context of predicting user-item combina-
tions, as every user-item combination can only have one unique
observation. However, in the NeuWMF we add extra information
on the number of interactions leading to increased risk of overfit-
ting. This effect is shown in Table 8. By using regularization in the
embedding layer of the NeuWMF, the performance on the test set
improves significantly in terms of both normal NDCG and NDCG
New. This leads to the best performing model in our context, as we
focus on NCDG New in the test set.



Weighted Neural Collaborative Filtering SAC ’23, March 27-31, 2023, Tallinn, Estonia

Table 8: Result of NeuWMFmodel using L2-loss with versus without regular-
ization in the embedding layer.

Model NDCG train NDCG test NDCG new test
NeuWMF_no_reg 0.57242 0.40117 0.14736
NeuWMF_with_reg 0.49353 0.42618 0.16998

5.2.4 Interpretation of most recommended items. As we are evalu-
ating based on the highest-ranked items per user, it is of interest
to study the items that are ranked top most often. As can be seen
in Table 9, the items that are generally ranked high over all users
are quite generic. This can of course be expected, as a personal-
ized model averaged over all users again boils down to the most
popular products. Also, note that the amount of users having the
same first-ranked product is lower for the NeuWMF model, indicat-
ing that NeuWMF is better than WMF in picking up personalized
preferences other than the most popular items.

Table 9: Most first-ranked articles for WMF_pos_neg and NeuWMF model

WMF_pos_neg # users NeuWMF # users
Seedless white grapes 842 Minced beef 708
Bin bags 729 Bin bags 409
Mushrooms 647 Seedless white grapes 344
Garlic 627 Garlic 297
Avocado 526 Avocado 283
Washed spinach 297 Tangerines 255
Minced beef 279 Onions 233
Onions 217 Medium eggs 228
Tangerines 184 Mushrooms 200
Medium eggs 173 Cauliflower 171

5.3 Online experiments
Apart from the theoretical performance of the RS that was shown
in the previous section, it is also of high importance to test the
practical usability of the predicted relevance scores. We created
a page based on our NeuWMF model that was shown to a group
of users selected in the same way as the Picnic set described in
Section 5.1. In order to test the page, some business logic had to be
applied, for example to meet profitability standards. Specifically, the
items were selected based on a score representing the usefulness of
including item i in the test page defined asuse f ulnessi =marдini ∗

(Maxu (b̂ui ) − Minu (b̂ui )) ∗ Meanu (b̂ui ) ∗ NBi , where NBi is the
fraction of users that has never bought product i before. From this
list the top available products were selected, resulting in a page of
40 different items.

We showed this page to 4,269 users, of which 3,665 were active
in the weeks of the test. 1,413 of these users actually opened the
page and had a look at it. 461 of these users bought at least one item
from the page. We can now compare the conversion of user-item
combinations on this page to how relevant they were predicted to
be by the model.

If we order the predicted relevance scores of the 4,134 items
that we included in our NeuWMF model for each user, we can give
each user-item combination a predicted relevance rank. In doing
so, we leave out the items a user already interacted with, as we
are interested in finding new relevant combinations. We would

expect items that users chose to buy for the first time from the test
page to have a significantly lower predicted relevance rank. Note
that because of the fact that we are not able to show each user
its own personalized top k recommendations due to limitations of
the online grocery app, it makes no sense to talk about our offline
measures HR@k and NDCG@k in this context. The 40 items we
showed on the test page are amongst these 4,134 items. Therefore,
we tested potentially 40 different relevance scores per user, but
not all users had a look at the page and certainly not all of the
ones who did saw all 40 items. In the histograms in Figure 2 we
only show the user-item combinations that were at least viewed2.
These user-item combinations are split into two groups: the ones
that were actually bought in the test set and the ones that were
viewed but not bought. In both cases, we count the number of
times an item from the test page was placed at position x of the
recommended list of a user. As the number of purchased items
makes up for only around 2% of the total views, both histograms
show the number of elements in a bin as the percentage of the
total number of elements. Absolute numbers are shown on top of
each bar. It can be seen that of the user-item combinations with
a purchase a much higher share has a predicted relevance rank
below 100 than the combinations that were only viewed. Performing
a two-sample Kolmogorov-Smirnov to test for the difference in
distribution between these two groups, the null hypothesis of equal
distribution is rejected with a p-value of 0.0008. We chose this non-
parametric approach, as the distribution of the predicted ranks is
hard to figure out due to the personalized rankings for each user.
The median relevance rank for items that were actually bought is
256, in contrast to 327 for the items that were only viewed. This
indicates the practical value of our model, showing that even in the
context where all users get the same recommended items, we are
able to tell which user-item combinations are most likely to occur.

6 CONCLUSION
In this work we set out to estimate the personalized relevance of
items that a user has never interacted with before. In our approach,
we focused on the context of online grocery shopping where esti-
mation can only be based on implicit feedback.

We combined the existing NeuMF and WMF frameworks into
our NeuWMF model, which applies weighted implicit feedback
to the domain of Neural Collaborative Filtering. The concept of
weighting positive feedback stems from the idea that interacting
with an itemmore regularly leads to more confidence that a user has
an actual preference for it. We defined a weighting scheme based
on the relative interaction frequency instead of absolute terms to
prevent a bias towards fast-moving products. We showed that the
NeuMF can be improved by including positive feedback weight
instead of using a binary approach.

For items that a user never interactedwith, we aremore confident
that this is a conscious choice for items that are more popular,
leading toweights on negative feedback.We used negative sampling
based on item popularity to incorporate weighted negative feedback
in the model. This gives an extra boost to performance in terms
of NDCG and HR when extra regularization is applied to prevent

2We regard items as viewed if they were positioned higher than the point where a
user stopped scrolling down the page.
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(a) Purchased user-item combinations during the test.

(b) Viewed, but not purchased during the test.

Figure 2: Histograms of predicted relevance score ranks, both for user-item
combinations that were first bought during the test and those that were
viewed but not bought. The histogram is cut off at 3500 for visualization and
the number of user-item combinations in a bin is shown as a percentage of
the total on the y-axis. Relevance is generally skewed to the left due to the
fact that the average relevance of an itemwas included in the usefulness score
that we used for picking items to show on the test page.

overfitting. Our NeuWMF model can also be estimated by L2-loss
(which is used in WMF models) instead of binary cross-entropy loss
(which is used in the NeuMF model) without harming performance
too much.

We compared our NeuWMF to the combination of positive and
negative feedback weights into a single Weighted Matrix Factor-
ization (WMF) model. We implemented an element-wise ALS opti-
mization method to show that the simultaneous weighting of both
positive and negative feedback leads to improved performance of
the RS. This is true both for evaluation in terms of HR and NDCG
as well as for our modified NDCG evaluation rewarding only new
items. The main source of improvement between the NeuMF and
NeuWMF model is the implementation of positive weights.

In future work, it would be interesting to experiment further with
different functions for the positive weights wui and the negative
weights ci . As an example, based on successful methods focusing
on the order of purchases, like sequential event prediction [13],
we would like to give more confidence to positive feedback that
happened recently. Furthermore, the effect of adding biases on users
and items to a Matrix Factorization model like in [9] to the WMF
and NeuWMF model could be studied, as our user-item relevance
scores are not directly comparable between users, since one user
might generally score higher over items than another user.
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