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ABSTRACT
The Aspect-Based Sentiment Classification (ABSC) models often
suffer from a lack of training data in some domains. To exploit the
abundant data from another domain, this work extends the original
state-of-the-art LCR-Rot-hop++ model that uses a neural network
with a rotatory attention mechanism for a cross-domain setting.
More specifically, we propose a Domain-Independent Word Selec-
tor (DIWS) model that is used in combination with the LCR-Rot-
hop++ model (DIWS-LCR-Rot-hop++). It uses attention weights
from the domain classification task to determine whether a word
is domain-specific or domain-independent, and discards domain-
specific words when training and testing the LCR-Rot-hop++ model
for cross-domain ABSC. Overall, our results confirm that DIWS-
LCR-Rot-hop++ outperforms the original LCR-Rot-hop++model un-
der a cross-domain setting in case we impose a domain-dependent
threshold value for deciding whether a word is domain-specific
or not. For a target domain that is highly similar to the source
domain, we find that a moderate attention threshold yields the best
performance, while a target domain that is dissimilar requires a
high attention threshold. Also, we observe information loss when
we impose a too strict restriction and classify a small proportion of
words as domain-independent.
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1 INTRODUCTION
The evolution of the Web has changed how people think and make
decisions. Furthermore, the recent development of social media
and e-commerce platforms has opened the forum for people to
exchange their opinions on social events or products and services
on the market. As a result, the number of opinionated texts on the
Web and the importance of understanding them is rapidly grow-
ing. However, it is difficult to summarize this public opinion as an
enormous number of opinionated texts and reviews are available.
To solve this issue, the current research has proposed a Natural
Language Processing (NLP) task so-called Sentiment Analysis (SA)
that identifies the overall sentiment of a given text [11].

One of the branches of SA is Aspect-Based Sentiment Analy-
sis (ABSA). It consists of two tasks: Aspect Detection (AD), which
identifies the aspect in the text and Aspect-Based Sentiment Classifi-
cation (ABSC) which determines the sentiment about the previously
found aspect [1]. This research focuses on ABSC. In practical ap-
plications, it is difficult to train ABSC models to a sufficient extent,
because of the limited number of input sentence data. This issue
is prominent in certain domains while other domains have a suf-
ficient amount of data. To exploit this data imbalance, a number
of approaches have been proposed by various studies. For exam-
ple, [17] fine-tunes the upper layers of LCR-Rot-hop++ to increase
cross-domain adaptability. Also, [19] introduces the BERTMasker al-
gorithm that transforms the input sentences into domain-invariant
sentences by masking the domain-related words and training the
model using domain-agnostic words. Additionally, [9] extends the
LCR-Rot-hop++ model with Domain Adversarial Training (DAT)
method to construct a cross-domain DAT-LCR-Rot-hop++ model.

Nevertheless, the first fine-tuning approach partially requires the
sentiment-labeled target domain data. Similarly, the BERTMasker
model performs the best when it utilizes part of the sentiment-
labeled target domain data. Also, BERTMasker cannot process
the ABSC task. Thus, these models are not suitable for a cross-
domain ABSC where sentiment-labeled data are not available in a
domain of our interest. To solve this issue, we propose a Domain-
Independent Word Selector (DIWS) model and apply it to the LCR-
Rot-hop++ model (DIWS-LCR-Rot-hop++). This model utilizes at-
tention weights from a domain classification task to decide whether
a word is domain-specific or domain-independent. It only uses
domain-independent words to train and test the LCR-Rot-hop++
model. Unlike fine-tuned LCR-Rot-hop++ [17] and BERTMasker
[19], we can train the model only using data from other domains
with sufficient sentiment-labeled texts. As DAT-LCR-Rot-hop++
shares the same advantage, we use it as a benchmark model to as-
sess the performance of the proposed DIWS-LCR-Rot-hop++ model.

https://doi.org/10.1145/3555776.3577633
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In this paper, we apply the DIWS model to the LCR-Rot-hop++
model yielding the DIWS-LCR-Rot-hop++ model. To this end, we
aim to verify whether the combination of DIWS and LCR-Rot-hop++
outperforms the naive cross-domain ABSC performance of LCR-
Rot-hop++, where we train and test the model with a completely
different domain data without any adjustment to LCR-Rot-hop++.
Furthermore, to verify the degree of effectiveness of discarding the
domain-specific words, we compare the accuracy level under differ-
ent strictness levels of deciding whether a word is domain-specific
or domain-agnostic. More specifically, we incrementally increase
the proportion of discarded words by relaxing the discarding thresh-
old and verifying the trade-off between domain adaptability and
information loss. Additionally, we compare against the accuracy of
the DAT-LCR-Rot-hop++ model and the original LCR-Rot-hop++
model under a cross-domain setting to assess the performance of
our proposed model.

This research contributes to the current literature by propos-
ing a method named Domain-Independent Word Selector (DIWS)
to better train an existing state-of-the-art ABSC model (LCR-Rot-
hop++) for cross-domain sentiment analysis tasks. Moreover, this
proposed model is not only applicable to ABSC but also to other
types of SA, which implies its wide applicability in the field of senti-
ment analysis. To the best of our knowledge, the idea of discarding
the domain-specific words while training a deep learning method
for the ABSC task is new. The Python source code and data are
available at https://github.com//ejoone/DIWS-ABSC.

The structure of the rest of the paper is as follows. In Section
2, we introduce the methodologies for ABSC and cross-domain
SA in the current literature in detail and discuss their relevance
to our research. In Section 3, we introduce the used datasets and
the cleansing process. In Section 4, we elaborate on the theoretical
framework, structure and mathematical formulations of the models
that this paper investigates. In Section 5, we display the results and
make comparisons between competing methods to answer the re-
search question. Last, Section 6 provides a summary of the findings,
introduces the theoretical and practical implications, discusses the
limitations of our research, and proposes future research ideas.

2 RELATEDWORK
In this section, we present work related to our research. First, in
Subsection 2.1, we present approaches for ABSC. After that, in
Subsection 2.2, we describe solutions for cross-domain sentiment
classification.

2.1 Aspect-Based Sentiment Classification
There exist two major approaches to ABSC: knowledge-based and
machine learning-based. This paper focuses on the second approach
which uses machine learning algorithms. In detail, the neural net-
work models and attention models are widely used. For example,
[3] introduces Recursive Neural Networks (RecNNs) to this field by
proposing an Adaptive Recursive Neural Network (AdaRNN). Also,
Recurrent Neural Network (RNN) is one of the popular methods
in SA [14, 20]. However, the main drawback of an ordinary RNN
methodology is the long-term dependency problem, which refers
to the tendency that the prior information to be dissolved when

the input sequence is too long [7]. To address this issue, [7] sug-
gests a special type of RNN model called Long Short-Term Memory
(LSTM). Unlike traditional RNN models, LSTM employs additional
gate nodes to control the information transfer between hidden
layers. The authors allow LSTM to efficiently learn long-term re-
lationships of data. Nonetheless, LSTM processes the information
sequentially, which leads to a tendency that LSTM output converges
to the latest input pattern. To address this concern, [5] suggests
a bidirectional LSTM (bi-LSTM). It adds a reverse direction LSTM
layer to the original LSTM network and uses both forward and
backward LSTM layers to obtain a final result.

Furthermore, [23] proposes a Left-Center-Right separated neural
network with Rotatory attention (LCR-Rot) that demonstrates high
performance when an aspect contains multiple words by capturing
the contextual information around the aspect. LCR-Rot is an exten-
sion of bi-LSTM and it utilizes three separate bi-LSTM networks,
which correspond to the left context, target aspect, and right con-
text, respectively. Also, rotatory attention helps to better model the
relationship between the target aspect and left/right context, which
allows the model to capture the most important words. [23] has
confirmed that LCR-Rot outperforms other LSTM-based models.
Additionally, LCR-Rot-hop is an extension of LCR-Rot proposed by
[18]. It iterates the rotatory attention mechanism multiple times as
it better exploits the interactions between the target aspects and
right/left contexts. To even better represent the contextual informa-
tion, [16] proposes LCR-Rot-hop++ which replaces non-contextual
word embeddings of LCR-Rot-hop (GloVe) to a contextual word
embeddings (BERT). Also, it adds an extra attention layer to obtain
hierarchical attention. [16] has shown that LCR-Rot-hop++ in com-
bination with a domain ontology (HAABSA++) outperforms other
models on ABSC. In this research, we focus on LCR-Rot-hop++ and
aim to incorporate the DIWS model inspired by the BERTMasker
network of [19] to extend LCR-Rot-hop++ to the cross-domain
setting.

2.2 Cross-Domain Sentiment Classification
Cross-domain sentiment analysis aims to solve the insufficient
training data problem in one domain by leveraging the data from
other domains. Unsupervised domain adaptation is one of the
approaches to address the training data shortage problem. [24]
proposes a representation learning model that selects important
domain-independent pivot words. Also, [10] identifies pivots using
a hierarchical attention transfer mechanism. Moreover, [6] and [21]
extend the domain adaptation to the multi-domain setting.

Another approach to cross-domain sentiment analysis is the
shared-private framework [2]. This approach is based on the rea-
soning that removing the domain-specific tokens would improve
the domain-invariance of the input sentence. Hence, the gradient
reversal layer is included before the domain classification step and
it helps to select the tokens that reduce the performance of the
domain classification task and consider corresponding words as
domain-agnostic words.

On the other hand, [22] uses an attention mechanism to select
the domain-specific information from the shared sentence repre-
sentation of the input text. This framework is called shared encoder
with domain-aware aggregation [19]. To take advantage of the

https://github.com//ejoone/DIWS-ABSC
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shared-private and shared encoder with domain-aware aggrega-
tion paradigms, [19] proposes the BERTMasker model that com-
bines these two frameworks. [19] has demonstrated that the BERT-
Masker outperforms existing models in both cross-domain and
multi-domain settings.

Nevertheless, it is not possible to fully utilize the BERTMasker
network in a cross-domain setting. The BERTMasker model con-
sists of two parts: shared and private. The shared part masks the
domain-specific tokens and uses the unmasked words to train the
sentiment classification model so that it can process the cross-
domain sentiment analysis. On the other hand, the private part
uses the masked tokens to learn the domain-specific sentiment via
an attention mechanism using training data of the target domain.
The private part may effectively enhance the performance in the
multi-domain setting because it is possible to use the labeled target
domain data to train the private part of the model. However, in the
cross-domain setting, BERTMasker cannot utilize its private part
since the target sentiment labels are unavailable.

Moreover, BERTMasker is not designed for the ABSC task. Sev-
eral attempts have been made to perform ABSC under the multi-
domain and cross-domain settings. For example, [17] applies cross-
domain fine-tuning to LCR-Rot-hop++, which is an ABSC model.
More specifically, the authors fine-tune the upper layers of LCR-
Rot-hop++, because the upper layers contain more domain-specific
information while the lower layers represent general language char-
acteristics [17]. However, the fine-tuning procedure requires the
training data with sentiment labels from a target domain. Thus, it
is a multi-domain ABSC model and we cannot directly compare
this model to the cross-domain DIWS-LCR-Rot-hop++ model.

Additionally, [9] suggests the DAT-LCR-Rot-hop++ model that
combines Domain Adversarial Training (DAT) [4] with LCR-Rot-
hop++ so that it can perform cross-domain ABSC. Unlike [17], it
does not require training data from a target domain. It replaces the
final Multi-Layer Perceptron (MLP) layer with a domain adversarial
component, which consists of two feed-forward MLPs. One is a
domain discriminator with a gradient reversal layer. It allocates
higher importance to the domain-agnostic words that cannot clas-
sify domain well. The other one is a class discriminator that aims
to predict the sentiment label of an aspect in the sentence.

To continue exploring cross-domain aspect-based sentiment anal-
ysis, this research exploits the attention mechanism to select the
domain-independent words from the input sequence. The DIWS-
LCR-Rot-hop++ and DAT-LCR-Rot-hop++ models are based on the
same reasoning that paying less or even no attention to the domain-
specific words that are crucial for a domain classification task would
improve the cross-domain performance of ABSC. However, there
are some differences between the two models. First, the DIWS-
LCR-Rot-hop++ model sequentially trains the DIWS component
and LCR-Rot-hop++ component while DAT-LCR-Rot-hop++ jointly
optimize the LCR-Rot-hop++ and domain class discriminator by
letting parameters from LCR-Rot-hop++ affect the discriminator
loss. Unlike DAT-LCR-Rot-hop++, in DIWS-LCR-Rot-hop++, DIWS
parameters and LCR-Rot-hop++ parameters do not affect each other.
Second, DIWS-LCR-Rot-hop++ discretely excludes domain-specific
words that pass a certain attention threshold but DAT-LCR-Rot-
hop++ allocates less importance to the domain-specific words rather
than discarding them.

3 DATA
This research uses review data in five different domains to execute
our proposed sentiment analysis. We summarize the used domains,
datasets, sample size, and the distribution of sentiments in Table 1.

Table 1: Distribution of sentiment polarities.

Data Size Negative Neutral Positive

Freq. % Freq. % Freq. %

Hotel [12] 264 55 21 10 4 199 75

DVD Player [8] 313 172 55 0 0 141 45

Digital Camera [8] 395 74 19 0 0 321 81

MP3 Player [8] 676 262 39 0 0 414 61

Cell Phone [8] 284 70 25 0 0 214 75

Note that the MP3 player review data has the maximum sample
size while other domain data such as hotel, DVD player, digital
camera, and cell phone contains a relatively small amount of sam-
ples. Hence, we use MP3 player review data to train our proposed
cross-domain DIWS-LCR-Rot-hop++ model. Such domain is called
the source domain. On the other hand, data in other domains are
used to test the performance of trained cross-domain DIWS-LCR-
Rot-hop++. Such domains are called target domains. Note that
DIWS-LCR-Rot-hop++ requires a pair of one source domain and
one target domain to train the model and assess its performance.
We fix the MP3 player as a source domain for every pair. Hence,
this research examines the performance of DIWS-LCR-Rot-hop++
for the following domain combinations: MP3 Player-Hotel, MP3
Player-DVD Player, MP3 Player-Digital Camera, and MP3 Player-
Cell Phone.

For robustness of the experiment, we remove some samples in
case of the presence of implicit aspects. An implicit aspect refers
to the situation where the aspects appear as non-noun words and
are implied in the sentence. We removed the samples with such
characteristics as the machine learning algorithm cannot process
such data [17]. Table 2 shows the results of the cleansing process.

Table 2: Cleansed datasets.

Domain Removed: implicit aspects (%)

Hotel 22.1
DVD Player 27.4
Digital Camera 19.2
MP3 Player 20.3
Cell Phone 15.9

4 FRAMEWORK
Our proposed DIWS-LCR-Rot-hop++ model uses DIWS module to
identify and discard domain-dependent words from the original
input text and process the transformed text using LCR-Rot-hop++.
First, in Subsection 4.1, we explain the overall structure of the
DIWS-LCR-Rot-hop++. Second, in Subsection 4.2, we elaborate on
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the DIWS model for the cross-domain sentiment analysis task. Last,
in Subsection 4.3, we introduce the LCR-Rot-hop++ model.

4.1 DIWS-LCR-Rot-hop++ Structure
The overall structure of DIWS-LCR-Rot-hop++ is as follows. First,
DIWS models the input sentence using pre-trained BERT and ob-
tains corresponding word embeddings. Second, it processes domain
classification tasks for both source and target domains via the feed-
forward attention layer. In this process, attention weights are com-
puted by a softmax function and we take a linear combination of the
attention weights and hidden representation of sentence words as
sentence representation. This linear combination is fed into the sig-
moid activation function and we obtain the model’s prediction for
the domain of the input sentence. Note that the optimal attention
weights of each word in an input sentence are determined by gradi-
ent descent and back-propagation algorithm. Afterward, we select
the domain-independent words by discarding the words that have
attention weights higher than a certain attention threshold. We
classify such words as domain-specific words. This step is based on
the reasoning that the word with high attention weight has a high
contribution to the domain classification task, and such words are
domain-specific words that specifically appear in a certain domain.

Afterwe identify domain-independent and domain-relatedwords,
we move on to the LCR-Rot-hop++ part of the model and compute
the final sentiment prediction probabilities. Figure 1 visualizes the
algorithm of the model and Figure 2 displays the graphical overview.

Figure 1: Overall representation of the DIWS-LCR-Rot-hop++
model.

4.2 Domain-Independent Word Selector
This section explains the mathematical formulations of Domain-
Independent Word Selector (DIWS). Consider a sequence of BERT
word embedding {ℎ1, ℎ2, ..., ℎ𝑁 }, transformed from input sentence
𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }. The preliminary attention score for the 𝑖𝑡ℎ
word is:

𝛼𝑖
1×1

= ℎ𝑖
1×𝑑

𝑇 𝑉
𝑑×1

, (1)

where the𝑉 ∈ R𝑑 is a context vector that is used as a query vector to
find a word that is more important and informative for an accurate
domain classification. We process these attention scores with the
softmax function to obtain corresponding attention weights for
every 𝑖 = 1, ..., 𝑁 :

𝛼𝑖
1×1

=

𝑒𝑥𝑝 ( 𝛼𝑖
1×1

)∑𝑁
𝑖=1 𝑒𝑥𝑝 ( 𝛼 𝑗

1×1
).

(2)

We use this softmax operation again in LCR-Rot-hop++ and refer
to it as the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) function later. Next, we represent the input
sentence with length 𝑁 as a weighted average of word embeddings
ℎ𝑖 by their corresponding attention weights 𝑎𝑖 where 𝑖 = 1, ..., 𝑁 :

ℎ
𝑑×1

=

𝑁∑︁
𝑖=1

𝛼𝑖
1×1

× ℎ𝑖
𝑑×1

. (3)

This process refers to the linear combination layer in Figure 2.
Finally,ℎ is fed to the fully connected layer in Equation 4 to produce
polarity score 𝑠 and it is fed into a sigmoid function in Equation 5
to produce prediction probability 𝑝:

𝑠
1×1

= ℎ
1×𝑑

𝑇 𝑊
𝑑×1

+ 𝑑
1×1

, (4)

𝑝
1×1

=
1

1 + 𝑒𝑥𝑝 (− 𝑠
1×1

) , (5)

where𝑊 ∈ R𝑑 is a weight vector and 𝑏 is a bias term. We train
the values of the parameters such as weight vector and bias term
during the training phase to minimize the loss. The loss function is
the binary cross-entropy:

𝐿𝐷𝐼𝑊𝑆
1×1

= −
𝑀+𝑃∑︁
𝑗=1

( 𝑦 𝑗
1×1

𝑙𝑜𝑔(𝑝 ( 𝑗 )
1×1

) + (1 − 𝑦 𝑗
1×1

)𝑙𝑜𝑔(1 − 𝑝 ( 𝑗 )
1×1

)), (6)

where 𝑦 𝑗 is an actual binary domain label corresponding to 𝑗𝑡ℎ

input sentence and 𝑝 ( 𝑗 ) refers to 𝑗𝑡ℎ domain prediction probability
when there exists𝑀 and 𝑃 (number of) sentences in the source and
target domain, respectively.

The attention weights capture the relative importance of words
in its input sentence for predicting the correct domain [15]. Based
on this interpretation, we assume that the word with higher atten-
tion weights within the sentence is more domain-related.

In this research, we test different threshold values between
domain-specific words with high attention and domain-agnostic
words with low attention. Let us define the set of threshold per-
centiles as 𝐾 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For every input
sentence,

𝑑𝑖 =

{
domain-specific, if 𝛼𝑖 ≥ 𝑄𝐾 ,
domain-independent, otherwise, (7)

where 𝑑𝑖 is a domain-relatedness label associated with every 𝑥𝑖 ,
and𝑄𝐾 refers to a 𝐾𝑡ℎ percentile value of the attention weights for
every word in an input sentence. We discard domain-specific words
to construct domain-invariant input sentence representations for
both source and target domains, so that we can perform domain-
independent training and domain-independent testing using LCR-
Rot-hop++. Last, we fed the transformed input sentences to the
LCR-Rot-hop++ model.

4.3 LCR-Rot-hop++
The LCR-Rot-hop++ model uses three bi-LSTM networks and a
rotatory, hierarchical attention mechanism to classify the sentiment
of a given aspect. This section describes the LCR-Rot-hop++ model
and its mathematical formulations.

LCR-Rot-hop++ uses a sentence 𝑋 as its input, where 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 =
{𝑥𝑡1, ..., 𝑥

𝑡
𝑇
} represents the set of 𝑇 words describing an aspect of

the sentence 𝑋 . Then it splits 𝑋 into three separate components,
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Figure 2: Detailed representation of the DIWS-LCR-Rot-hop++ model.

namely a left context, a target, and a right context. The left context
is a set of words that appear before the target 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , and the right
context is a set of words that appear after the target 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 .

A rotatory attention mechanism aims to distinguish the most
important words in the left context, target, and the right context
for determining the sentiment using a two-step procedure. First, it
calculates the target-aware left and right context representation 𝑟𝑡

𝑙

and 𝑟𝑡𝑟 by considering the information in the target representation
𝑟𝑡 . The initial value of 𝑟𝑡 is determined by the pooling operation
of the hidden states of the target, which is the output of the target
bi-LSTM module:

𝑟𝑡

2𝑑×1
= 𝑝𝑜𝑜𝑙𝑖𝑛𝑔( [ ℎ𝑡1

2𝑑×1
, ..., ℎ𝑡𝑇

2𝑑×1
]) (8)

𝑟𝑡 is then fed in the bilinear attention layer together with [ℎ𝑙1, ..., ℎ
𝑙
𝐿
]

and [ℎ𝑟1, ..., ℎ
𝑟
𝑅
] separately. We illustrate the mathematical formu-

lation for the left context, but the same logic applies to the right
context. The output of the bilinear attention layer is obtained by
multiplying the transposed ℎ𝑙

𝑖
, weights (𝑊 𝑙

𝑐 ), and 𝑟𝑡 , and adding the
bias term (𝑏𝑙𝑐 ), and input the result to the 𝑡𝑎𝑛ℎ activation function
for every 𝑖 = 1, ..., 𝐿:

𝑓 (ℎ𝑙𝑖 , 𝑟
𝑡 )

1×1
= 𝑡𝑎𝑛ℎ( ℎ𝑙𝑖

𝑇

1×2𝑑
× 𝑊 𝑙

𝑐
2𝑑×2𝑑

× 𝑟𝑡

2𝑑×1
+ 𝑏𝑙𝑐
1×1

) (9)

Then we process the obtained score with the softmax function to
obtain the attention score 𝛼𝑙

𝑖
, and get the target-aware left con-

text representation 𝑟 𝑙 by computing a weighted average of the left
context hidden states in terms of the attention scores:

𝛼𝑙𝑖
1×1

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (ℎ𝑙𝑖 , 𝑟
𝑡 )

1×1
) (10)

𝑟 𝑙

2𝑑×1
=

𝐿∑︁
𝑖=1

𝛼𝑙𝑖
1×1

× ℎ𝑙𝑖
2𝑑×1

(11)

Unlike the first step, the second step uses 𝑟 𝑙 and 𝑟𝑟 to construct
the left and right context-aware target representations 𝑟𝑡

𝑙
and 𝑟𝑡𝑟 ,

respectively. The logic is the same as in the first procedure, while

we no longer need to use the pooling operation as we already have
𝑟 𝑙 and 𝑟𝑟 from the first step.

We obtain four representations 𝑟 𝑙 , 𝑟𝑟 , 𝑟𝑡
𝑙
, and 𝑟𝑡𝑟 as outputs of

the rotatory attention mechanism. Two context representations
(𝑟 𝑙 , 𝑟𝑟 ) and two target representations (𝑟𝑡

𝑙
, 𝑟𝑡𝑟 ) are then separately

weighted by a hierarchical attention mechanism and updated to
encode global information around the input sentence, not only the
local, left, target, or right contextual information. The logic is similar
to the previous process. For example, the context representations
are updated as follows:

𝑓 (𝑟 𝑙 , 𝑟𝑟 )
1×1

= 𝑡𝑎𝑛ℎ( 𝑟 𝑙𝑇
1×2𝑑

× 𝑊 𝑐
ℎ

2𝑑×2𝑑
× 𝑟𝑟

2𝑑×1
+ 𝑏𝑐

ℎ
1×1

) (12)

𝛼𝑙𝑖
′
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (𝑟 𝑙 , 𝑟𝑟 )) (13)

𝑟 𝑙𝑖
′

2𝑑×1
=

𝐿∑︁
𝑖=1

𝛼𝑙𝑖
1×1

× 𝑟 𝑙𝑖
2𝑑×1

(14)

Using the same logic, we obtain the updated representations 𝑟 𝑙
′
, 𝑟𝑟

′
,

𝑟𝑡
𝑙

′
, and 𝑟𝑡𝑟

′
. [18] argues that it is optimal to repeat this procedure

three times.We inherit this idea and repeat this mechanism for three
hops. The final four representations are concatenated and processed
by aMulti-Layer Perceptron (MLP). The mathematical notation ⊕ in
Equation 15 denotes vector concatenation. Last, we take softmax to
calculate the final prediction probability for each sentiment polarity
(𝑝), which is a 3-dimensional vector as we consider three sentiment
polarities, i.e., positive, neutral, and negative:

𝑟
8𝑑×1

= 𝑟 𝑙
′

2𝑑×1
⊕ 𝑟𝑟

′

2𝑑×1
⊕ 𝑟𝑡

𝑙

′

2𝑑×1
⊕ 𝑟𝑡𝑟

′

2𝑑×1
(15)

𝑝
3×1

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (𝑟 )) (16)

We calculate the final loss function for LCR-Rot-hop++ sentiment
classification by taking the cross-entropy of the predicted sentiment
and actual sentiment label of the 𝑗𝑡ℎ sentence denoted as 𝑎 𝑗 over
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𝑀 input sentences:

𝐿𝑠𝑐 = −
𝑀∑︁
𝑗=1

𝑎 𝑗
3×1

𝑙𝑜𝑔(𝑝 ( 𝑗 )
3×1

) + 𝜆 | |𝜃2 | |2 (17)

where 𝑝 ( 𝑗 ) is the prediction probablity of the 𝑗𝑡ℎ sentence, | |𝜃2 | |2
is a 𝐿2-norm regularization term, which determines the penalty of
having a certain parameter set, and 𝜆 is a weight for this term.

5 EVALUATION
In this section, we present the result of our evaluation. First, in
Subsection 5.1, we evaluate the performance of the domain classifi-
cation. Then, in Subsection 5.2, we present the performance of the
aspect-based sentiment classification on the target domain. Next,
in Subsection 5.3, we compare the results of our proposed model
with the ones of DAT-LCR-Rot-hop++. Last, in Subsection 5.4, we
give insights in the obtained results.

5.1 Domain Classification Performance
Table 3 shows the domain classification accuracy of the DIWS
model. The training sample consists of 80% of the randomly mixed
source and target domain data, and the testing sample consists of
the remaining 20% of the data.

Table 3: Domain classification accuracy of DIWS.

Source-target domain Domain classification test accuracy

MP3 Player - DVD Player 0.824
MP3 Player - Digital Camera 0.884
MP3 Player - Hotel 0.979
MP3 Player - Cell Phone 0.824
Average 0.878

On average, the DIWS model can well classify the source domain
and target domain with an average accuracy of 0.878. It implies
the robustness of the attention weights from the DIWS model. In
particular, the accuracy for the hotel domain is relatively high com-
pared to the other domains. It signals that the difference between
the target domain and the source MP3 player domain is greater for
the hotel domain.

5.2 Aspect-Based Sentiment Classification
Performance

We measure a test accuracy for different values of percentile thresh-
old 𝐾 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Here, percentile thresh-
old 𝐾 implies that the there exists 𝐾% of the words with lower
attention weight than the corresponding attention threshold. Fig-
ure 3 displays the change in test accuracy level as the threshold
percentile increases. Note that 𝐾 = 100 refers to the case that ev-
ery word is classified as domain-agnostic regardless of their DIWS
attention weights. Hence, it represents the original LCR-Rot-hop++
model that is purely trained by MP3 player domain data and tested
on the DVD player data. This interpretation of 𝐾 = 100 applies to
all target domains.

For the DVD player domain, the DIWS-LCR-Rot-hop++ test
accuracy varies from 55% to 71%. The lowest accuracy is colored
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Figure 3: Test accuracy of DVD player domain data under
DIWS-LCR-Rot-hop++ model trained with MP3 player do-
main data.

gray and the highest accuracy is colored light gray. The model
attains the lowest accuracy when 𝐾 = 10 and attains the highest
accuracy when 𝐾 = 70. Also, there exists a general trend that the
accuracy increases as we reduce the proportion of domain-specific
discarded words, and achieves maximum accuracy when 𝐾 = 70.
The accuracy drops at 𝐾 = 80 but bounces again as we reduce the
discarded words to the extreme.
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Figure 4: Test accuracy of digital camera domain data under
DIWS-LCR-Rot-hop++ model trained with MP3 player do-
main data.

For the digital camera domain, the DIWS-LCR-Rot-hop++ test
accuracy varies from 66% to 74%. The model attains the lowest
accuracy when 𝐾 = 40 and attains the highest accuracy when
𝐾 = 60. Unlike the DVD player domain, DIWS-LCR-Rot-hop++ has
a decent performance when we discard a large proportion of words.
For instance, the accuracy gap between the maximum accuracy at
𝐾 = 60 and accuracy for the low threshold values 𝐾 = 10, 20, 30 is
not as large as the DVD player domain. Additionally, after having
the highest accuracy at 𝐾 = 60, the accuracy diminishes as 𝐾
increases to the extreme.

For the hotel domain, the DIWS-LCR-Rot-hop++ test accuracy
varies from 63% to 73%. The model attains the lowest accuracy at
𝐾 = 100 and attains the highest accuracy at 𝐾 = 20. Unlike the
other domains, DIWS-LCR-Rot-hop++ performs the best for the
small 𝐾 value (𝐾 = 20), and the accuracy decreases until the model
attains the lowest accuracy at 𝐾 = 100, although there are some
local peaks at 𝐾 = 60 and 𝐾 = 80.

For the cell phone domain, the test accuracy varies from 64%
to 77%. The model attains the minimum accuracy at 𝐾 = 80 and
attains the highest accuracy at 𝐾 = 90, without a clear trend. DIWS-
LCR-Rot-hop++ has a sudden dip and spike at 𝐾 = 80 and 𝐾 = 90,
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Figure 5: Test accuracy of hotel domain data under DIWS-
LCR-Rot-hop++model trained withMP3 player domain data.
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Figure 6: Test accuracy of cell phone domain data under
DIWS-LCR-Rot-hop++ model trained with MP3 player do-
main data.

respectively. After the global maximum accuracy, the accuracy
decreases again at 𝐾 = 100.

5.3 Comparison with DAT-LCR-Rot-hop++
To assess the overall performance of the DIWS-LCR-Rot-hop++,
we compare the results to the DAT-LCR-Rot-hop++ model [9]. For
each target domain, we choose the threshold value 𝐾 that attains
maximum accuracy. Table 4 displays the test accuracy of the two
models.

Table 4: The accuracy comparison between DIWS-LCR-Rot-
hop++ (DIWS++) and DAT-LCR-Rot-hop++ (DAT++).

Source-target domain DIWS++ accuracy DAT++ accuracy

MP3 Player - DVD Player 0.708 0.470
MP3 Player - Digital Camera 0.740 0.693
MP3 Player - Hotel 0.724 0.751
MP3 Player - Cell Phone 0.766 0.742

Note: We train the DAT-LCR-Rot-hop++ with our selection of datasets using its
source code as the original paper does not use our datasets.

On average, DIWS-LCR-Rot-hop++ outperforms DAT-LCR-Rot-
hop++ in three out of four target domains. The hotel domain is the
only target domain that DAT-LCR-Rot-hop++ outperforms DIWS-
LCR-Rot-hop++. For the camera, hotel, and cell phone domains, the
performance difference is small, as it ranges from 0.024 to 0.047. On
the other hand, the DVD player domain experience performance
enhancement to a great extent (0.24). Overall, we conclude that
the DAT-LCR-Rot-hop++ model improves the cross-domain ABSC

performance compared to the DAT-LCR-Rot-hop++ model for the
source and target domains that we use.

5.4 Insights
In general, DIWS-LCR-Rot-hop++ performs better than the random
guessing baseline (0.33 if there are three sentiment classes; 0.5 if
there are two sentiment classes) in all domains. For the DVD player
and cell phone domains, it even outperforms the majority guessing
baseline (see Table 1 for the distribution of the sentiment) without
having the information about the sentiment distribution. Further-
more, it improves the cross-domain performance of the original
LCR-Rot-hop++ model (𝐾 = 100) and the DAT-LCR-Rot-hop++
model if we choose the optimal threshold 𝐾 for each target domain.
Next, let us investigate the overall pattern of accuracy level as 𝐾
increases and the reasoning behind the results. First, the results
show that the model performs the best when we discard 10% to
40% of the domain-specific words for three out of the four domains
(DVD player, camera, and cell phone). If we discard too many words
which correspond to the low values of 𝐾 , the accuracy is below av-
erage for most of the data except for the hotel domain. This is due to
the excessive information loss. Accordingly, discarding most of the
domain-specific words that implies keeping the articles (a/an/the)
or linking verbs (be/is/are) would enhance domain-invariance of
the input texts, but it also makes the remaining sentence useless
for ABSC.

On the other hand, the hotel domain obtains its maximum accu-
racy at 𝐾 = 20, where we discard 80% of the words. This difference
is due to the difference in closeness between the source domain and
the target domain. Note that the hotel domain is even more distinct
from the source MP3 player domain compared to the other target
domains such as DVD player, digital camera, and cell phone. The
high domain-classification accuracy for the hotel domain (0.979) in
Table 3 supports this claim, because it would be easier to classify
the domain if there exists a large difference between the target and
source domains. Thus, for the hotel domain, the accuracy gained
from discarding the domain-specific words outweighs the accuracy
drop due to the information loss.

To conclude, the results show that discarding domain-specific
words leads DIWS-LCR-Rot-hop++ to perform better than the orig-
inal LCR-Rot-hop++ model under the cross-domain ABSC task,
while the optimal proportion of remaining words after the dropout
depends on the degree of closeness between the source domain and
the target domain. In general, discarding an excessive proportion
of words even further worsens the performance of DIWS-LCR-Rot-
hop++ compared to the original LCR-Rot-hop++ where we do not
discard any of the words. These findings answer the research ques-
tion. Discarding domain-specific words indeed improves the per-
formance of cross-domain aspect-based sentiment analysis when
we discard 10% to 40% of the words if the target domain and source
domain are not very different. If we drop too many words, the
model experiences a performance drop due to the information loss.
However, if we recognize that the source and target domains are
distinct from each other, we should discard a large percentage of
words (80% for the hotel domain) as the accuracy gained from dis-
carding the domain-specific words outweighs the information loss
effect. The domain classification accuracy from DIWS would be a
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good indication of whether a target domain is very different from a
source domain or not.

6 CONCLUSION
To apply the state-of-the-art LCR-Rot-hop++ model to the cross-
domain setting, this work proposes the DIWS model to select and
discard the domain-specific words. The proposed model for cross-
domain ABSC is the DIWS-LCR-Rot-hop++ model. It utilizes a
domain classification architecture with a feed-forward attention
layer to filter out the domain-specific words with attention weights
higher than a certain threshold. Then we analyze the performance
of our proposed model for 10 different threshold values. Based
on the experiments on 5 datasets, we conclude that without any
sentiment label of the target domain data, our model effectively
enhances the accuracy by discarding the domain-specific words
from source and target domain data.

Furthermore, we have found that there is a danger of informa-
tion loss and thus we should select the threshold between domain-
specific words and domain-agnostic words carefully. In addition,
the results imply that the degree of difference between the source
domain and target domain affects the performance of the DIWS-
LCR-Rot-hop++ model for different threshold values.

Nevertheless, there exist limitations to our research. First, due to
the lack of computational power of the testing PC environment, we
could not apply DIWS-LCR-Rot-hop++ to the large popular datasets
in the field of ABSC. For example, such data includes restaurant do-
main data and laptop domain data from SemEval 2014 [13]. Second,
the performance gain from DIWS-LCR-Rot-hop++ is not always
positive compared to the original LCR-Rot-hop++. If we do not
use the optimal threshold value, the accuracy of our model can
be even less than the original model. Therefore, we advise users
to run the DIWS-LCR-Rot-hop++ using different threshold values
and select the optimal one for the final prediction for every source-
target domain combination. Last, the DIWS-LCR-Rot-hop++ model
sequentially trains the DIWS component and LCR-Rot-hop++ com-
ponent. This sequential training process may prevent the model to
find the global optimal parameter values during optimization.

Several further research directions are available on this topic.
First, the sequential training processes can be merged into a simul-
taneous optimization in which the final loss function is a sum of the
DIWS loss function and LCR-Rot-hop++ loss function. Second, it is
possible to directly utilize the optimal domain-classification atten-
tion weights by allocating lower importance to words in an input
sentence by their attention weights. For example, words with high
attention weights are considered less during the LCR-Rot-hop++
training because they are likely to be domain-specific. Finally, it
is possible to extend the model to the multi-domain setting where
the sentiment-labeled target domain data is partially available. In
this case, one can exploit the shared-private framework and thus
expect even higher performance results.
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