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ABSTRACT
The amount of online shops is growing daily and many Web
shops focus on the same product types, like consumer elec-
tronics. Since Web shops use different product representa-
tions, it is hard to compare products among different Web
shops. Duplicate detection methods aim to solve this prob-
lem by identifying the same products in different Web shops.
In this paper, we focus on reducing the computation time
of a state-of-the-art duplicate detection algorithm. First,
we construct uniform vector representations for the prod-
ucts. We use these vectors as input for a Locality Sensitive
Hashing (LSH) algorithm, which pre-selects potential dupli-
cates. Finally, duplicate products are found by applying the
Multi-component Similarity Method (MSM). Compared to
original MSM, the number of needed computations can be
reduced by 95% with only a minor decrease by 9% in the
F1-measure.

CCS Concepts
•Information systems→ Entity resolution; Deduplica-
tion; Clustering and classification;

Keywords
Duplicate detection; locality-sensitive hashing; Web shop
products

1. INTRODUCTION
A wider range of products than ever before is available on

the Web, due to the rapid growth of Web shops. Many Web
shops sell the same products but use different representa-
tions for their products compared to other Web shops. It is
possible that a Web shop provides additional information on
a certain product which another Web shop does not provide,
like customer ratings, accessories, or other product-related
information, or uses different terminology to represent the
same information.
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It can be time consuming for customers to find the prod-
uct that matches their requirements best, due to the differ-
ent product representations. Also, it is impossible to com-
pare all products from all Web shops manually. Web shop
comparison sites, like kieskeurig.nl, have been developed to
search the Web to find products that meet the requirements
of a query. These sites aggregate data automatically from
various Web shops. In this process it is necessary to perform
product duplicate detection, to determine which Web shops
offer the same product. Duplicate detection is not only used
to find the duplicate products among different websites, but
can also be applied to match a user query to products as
close as possible. Fundamentally, duplicate detection comes
down to the search for the nearest neighbors of products.
However, duplicate detection is time consuming when all
products have to be compared to each other, one by one,
especially for large data sets. To decrease the computation
time, we propose an approach based on Locality-Sensitive
Hashing (LSH) [8] which reduces the number of compar-
isons. By using this technique for every product a set of
nearest neighbors can be selected. To find duplicates of a
product only the set of neighbors is considered, which leads
to a reduction in the number of performed comparisons.

Applying LSH is not as easy as it may seem due to the
use of different product representations across Web shops.
The fact that not all Web shops provide the same informa-
tion makes it necessary to first construct a general product
representation which fits all products. For this general rep-
resentation the model words of a product title are extracted.
Model words are defined as words consisting of both numeric
and non-numeric tokens. These model words are employed
to produce a product binary representation that allows prod-
ucts to be compared to one another. Finally, we define the
nearest neighbors as the products which have a similar bi-
nary representation.

The structure of the paper is as follows. In Section 2,
we describe related work in the fields of LSH and dupli-
cate detection. Then, in Section 3, we propose the general
structure of our method for duplicate detection. Next, in
Section 4, we give the general product representation using
model words from the product title. Section 5 explains the
used LSH and Section 6 contains the adjustments made to
the Multi-component Similarity Method, a state-of-the-art
method for product duplicate detection. We illustrate our
method by means of an example in Section 7. Next, the re-
sults of our work are presented in Section 8. Last, Section 9
presents our conclusions and suggestions for further work.



2. RELATED WORK
In literature there are several duplicate and near-duplicate

detection algorithms described, such as LSH and a blocking
framework for Entity Resolution (ER). Entity resolution is
the problem of defining and grouping different manifesta-
tions of the same real world object [6] which is similar to
duplicate detection. LSH is used to find similar entities
and has already been applied successfully for finding quickly
nearest neighbors in large databases [12].

The topic of nearest neighbor search deals formally with
a set S of n points in d dimensions. The goal is to build
a data structure such that given a query point q, the point
closest to q can be found quickly. A well-known problem in
this field is the curse of dimensionality [3], i.e. the query
search time usually grows rapidly in the dimension d.

In order to address this dimensionality problem, [8] pro-
poses Locality-Sensitive Hashing (LSH). The key idea of
LSH is to use hash functions such that the probability of
collision is much higher for points that are close to each
other than for those that are far apart. An advantage of
this method is that the running times are much lower com-
pared to brute-force approaches.

The amount of information on the Web has risen the last
years, due to i.a. the increased possibilities to store large
amounts of data on the Web combined with the possibilities
of automatic extraction of information from raw data [11].
This effect has influence on the rise of highly heterogeneous
information spaces (HHIS). Main characteristics of HHIS are
non-structured data, high levels of noise, and large scale
databases. In HHIS, ER has two forms: Dirty ER (input
comprises a single entity collection) and Clean-Clean ER
(the process of detecting duplicate pairs among two hetero-
geneous, duplicate-free, but overlapping collection of enti-
ties) [1, 5]. The data set used for this paper can be seen
as a Clean-Clean ER since there are no duplicate products
within a Web shop. [11] focuses on Clean-Clean ER. Data
blocking is used in order to scale large volumes of data. Dif-
ferent blocking methods are discussed under which Token
Blocking, Attribute Clustering Blocking, and Comparison
Scheduling. The data used in this paper has similar charac-
teristics to HHIS. We use an Attribute Clustering Blocking
approach to exploit character patterns in the title attribute
of the product description. We focus on title-based block-
ing method to detect duplicates due to the fact that titles
provide a good summarization of a product and we want to
keep processing times as low as possible.

The aim of this paper is to extend the Multi-component
Similarity Method (MSM), which applies an adapted version
of hierarchical single linkage clustering on a matrix contain-
ing dissimilarities between products [13]. Although MSM
achieves a high F1-measure, computation times are large.
The calculation of the dissimilarity between two products
takes a significant amount of time. Moreover, the dissimi-
larity between all pairs of products is calculated. Our paper
aims to reduce the computation time of the MSM by reduc-
ing the number of pairwise comparisons.

In order to decrease the number of comparisons and thus
the computation time LSH is applied as a pre-selection step.
This is done using hash functions that divide all the prod-
ucts into several buckets. Ordinary hashing will obtain a
good performance when products are exact semantic copies
of each other [12]. LSH is more applicable to duplicate de-
tection of Web products, since it searches for the n-nearest

neighbors of a product. Due to the varying product repre-
sentations products will differ too much among each other
to use ordinary hashing, which makes it better to perform a
local search within a set of candidate nearest neighbors. The
working of LSH is described in many previous studies [2, 10,
12] and is similar to our LSH implementation described in
Section 5.

In literature the evaluation of duplicate detection algo-
rithms is twofold. In [11], the quality of blocks is evaluated
in terms of pair completeness and pair quality. The first
measures the fraction of duplicates sharing a block. The lat-
ter metric measures the average number of duplicates found
per comparison performed. The quality of the duplicate
detection algorithm overall is usually evaluated with the F1-
measure [4, 13].

3. METHOD OVERVIEW
As mentioned in the previous section, the approach pro-

posed in this paper for product duplicate detection is based
on extending MSM with LSH. Figure 1 gives an overview
of our approach called Multi-component Similarity Method
with Pre-selection (MSMP).

Extract
model words

Products

Apply Locality-
Sensitive Hashing

Apply Multi-
component Sim-
ilarity Method

Duplicate products

Binary product vectors

Nearest neighbors

Figure 1: General overview of MSMP

For every product, the title is used to extract model words
and obtain a binary vector representation of the product.
The binary vectors are then compressed to a signature vec-
tor by min-hashing. These signature vectors are used to
obtain the corresponding nearest neighbors using LSH. The
nearest neighbors of a product, which is a subset of all prod-
ucts, are used to reduce the number of product comparisons
in the final step of the algorithm. Each step of the proce-
dure depicted in Figure 1 is discussed in more detail in the
following sections.

4. EXTRACTING MODEL WORDS
The main idea of the method presented in this paper is

to apply LSH as a pre-selection of products before using a
clustering method to obtain duplicates. LSH can be applied



to various forms of data. The title of a product often con-
tains descriptive and distinctive information concerning the
product. Therefore, information from the title, which is part
of the product description, can be effectively used for hash-
ing. In this paper, we will use model words from the title to
create binary vectors representing the product based on the
data from the title, in a similar way as in [13]. These binary
vectors will be used to find the nearest neighbors by LSH.
The formal definition of a model word can be expressed by
a regular expression (regex). We use the following regex:

[a-zA-Z0-9]*(([0-9]+[ˆ0-9, ]+)|([ˆ0-9, ]+[0-9]+))[a-zA-Z0-9]*

The regex recognizes three different types of tokens: al-
phanumerical, numerical, and special characters. A model
word contains at least two of these three types. Model
words capture essential information about a product, e.g.,
32", 720p, 60Hz, 32SL410U, etc. Another advantage of using
model words over regular words is that they are not ap-
pearing as often as regular words reducing the size of the
representation scheme and thus the involved computation
time.

We can formalize the procedure of obtaining binary vec-
tors as follows. Let P be the set of product descriptions cor-
responding to the N products we consider in our data. Fur-
ther, let titleMW (p) denote the set of model words within
the title attribute of product p ∈ P . The procedure of ob-
taining binary vectors is shown in Algorithm 1. In the first
part we initialize MW as the set containing all model words
from titles of all product descriptions. Secondly, for every
product p we define a binary vector bp by setting element
i equal to 1 if the title of product p contains model word
i ∈MW .

Algorithm 1 Obtaining Binary Vectors

1: MW = ∅
2: for all products p ∈ P do
3: for all model words mw ∈ titleMW (p) do
4: MW = MW ∪ {mw}
5: end for
6: end for
7: for all products p in P do
8: for all model words mw ∈MW do
9: if mw ∈ title(p) then

10: bpmw = 1
11: else
12: bpmw = 0
13: end if
14: end for
15: end for
16: return bp for all p ∈ P

By applying this algorithm, we have obtained a binary vec-
tor bp for every product in our data set.

5. LOCALITY-SENSITIVE HASHING
In this section we explain how Locality-Sensitive Hashing

(LSH) is used in order to reduce the computation time of
finding product duplicates. LSH is applied on the resulting
binary product vectors described in Section 4.

The main idea is to obtain a rough division of the products
into different buckets, such that the clustering algorithm has
to compare less products. The advantage of hashing is that

it allows a fast mapping between products within a hash
table. In this paper, LSH is used because of its ability to find
nearest neighbors instead of exact duplicates, as explained
in Section 2. Hence, we search for nearly similar products,
in order to find true duplicates. LSH hashes two products
to the same bucket if they are likely to be similar.

5.1 Min-hashing
Before LSH can be used effectively, the technique of min-

hashing is applied. This technique makes the product vec-
tors more compact without losing too much of the origi-
nal information that these vectors contain. Min-hashing is
valuable because the original product vectors are long and
sparse. They contain only 1 for the model words that are
captured in the product title, and a zero for the remaining
model words.

The min-hashing procedure is shown in Algorithm 2. The
minhash of a binary vector is the number of the first row con-
taining 1, after a random permutation of this binary vector
is taken. Each time a minhash is determined, the minhash
value is stored in the signature matrix.

Algorithm 2 Min-hashing

1: n is the number of minhashes
2: P is the set of all product vectors
3: S is an empty signature matrix of size (n, |P |)
4: for all i = 1 to n do
5: for all v ∈ P do
6: Determine for product v under permutation i the

number of the row containing the first 1, x.
7: S(i, v) = x
8: end for
9: end for

Since we use a binary product representation, the Jaccard
similarity between two product vectors allows us to measure
how similar two products are. The cornerstone of the min-
hash approach is that the probability that two rows in the
signature matrix are identical is equal to the Jaccard similar-
ity of the binary product vectors. Therefore, if the signature
matrix is not too small, it will give a shorter, representation
of the original information. In our MSMP method, the num-
ber of permutations is fixed to a percentage of the original
vector length. This is done in order to obtain a representa-
tive summary of each vector. Longer vectors, which contain
a lot of information, get a larger signature matrix than vec-
tors that contain less information. LSH can now be applied
on the signature matrix instead of the product vectors.

5.2 Locality Sensitive Hashing
The general idea of LSH is to identify candidate pairs for

which it must later be determined whether this pair is a
pair of duplicates. The LSH method is depicted in Algo-
rithm 3. LSH is applied on the signature matrix obtained
in Section 5.1. This signature matrix is divided in b bands,
each containing r rows. The choice of b and r must be such
that the following equation holds:

n = r ∗ b, (1)

Here n is the length of the signature matrix. Each column,
partitioned in b bands, of the signature matrix represents
one product. For each band we use a hash function to
hash the vector to a certain bucket. The used hash func-



tion hashes the vector to a bucket which number is defined
by the sequence (string) of the elements (numbers) in the
band. For example, when a band with four rows contains
the values [2, 3, 5, 8] it will hash the corresponding product
to the bucket with number 2358. When two products hash
to the same bucket for at least one band, the products are
considered as a candidate pair. The hashing is done for all
products and all b bands. Next, it is checked which products
are candidate pairs using the hash table structure.

Algorithm 3 Locality-Sensitive Hashing

1: P is the set of all product vectors
2: Divide the signature matrix M into b bands, each con-

taining r rows
3: for all b bands do
4: Create an independent hash function i
5: for all v ∈ P do
6: Hash v to a bucket, based on the value of i for the

band
7: end for
8: end for
9: for all buckets do

10: Label all pairs of products in this bucket as candidate
neighbors

11: end for

Note that a higher value of b will give more false positives
and a higher value of r will give more false negatives. Even-
tually the aim is to find a good division of b and r such that
a good balance between the false positives and false nega-
tives is created. A false positive combination means that
two products are categorized as a candidate pair but they
are not actually duplicates. A false negative is an actual
duplicate pair that is not considered as a candidate pair.

In the MSMP method, it is important to lower the number
of false positives, since they will undergo a time-consuming
similarity check when the subsequent clustering is performed,
as described in Section 6. On the other hand, the number
of false negatives also must be small, since false negatives
cannot be labeled as duplicates anymore by the clustering
algorithm. The relation between false positives and false
negatives can be represented by a threshold value t. The
threshold value has the following relation with b and r :

1

b

1
r

= t (2)

Note that using Equations 1 and 2, the values of b and r are
uniquely determined by the values of n and t. Thus, the only
parameters for LSH are n and t. Two items are considered
a candidate pair when they have at least one equal band
hashing to the same bucket in the signature matrix. So, the
choice of n and t directly influences the probability of two
items becoming a candidate pair.

The products categorized as candidate neighbors are the
pairs of products which are checked in the clustering algo-
rithm described next in Section 6. The LSH algorithm has
thus reduced the number of products which will be compared
by the clustering algorithm.

6. MULTI-COMP. SIMILARITY METHOD
After using the LSH algorithm, as explained previously,

we apply the Multi-component Similarity Method (MSM)

as proposed in [13]. An important ingredient of this method
is the similarity function, which calculates the similarity of
two products.

The similarity function consists of three parts. First,
the Key-Value Pairs (KVP) of products are compared. Q-
grams are used to measure the similarity between keys. This
measure uses tokens of q characters, in this case q = 3,
taken from a sliding window from left to right of the strings
containing the key. If the key similarity exceeds a certain
threshold value, the q-gram similarity between the values
is calculated and added with a certain weight to the final
similarity of the two products.

Secondly, the KVP without a key-match are processed by
the Hybrid Similarity Method (HSM) [4]. The model words
from the values of these KVP are extracted and the per-
centage matching model words between the two products is
calculated. The similarity based on this part of the method
is also added with a certain weight to the final similarity of
the two products.

The last part of the similarity measure is based on the
Title Model Words Method [14] similarity making use of the
model words present in the title, and also added with a cer-
tain weight to the final similarity between the two products.
The weights of the three parts of the similarity measure are
dependent on the minimum number of product features the
two products contain and on whether products would be
clustered when only the Title Model Words Method would
have been used. The weighted sum of the similarity values
of the three parts form the final similarity value of the two
compared products.

MSM applies adapted hierarchical single linkage cluster-
ing on a matrix containing dissimilarities between products.
This dissimilarity matrix is pre-processed by putting the dis-
similarity values between two products from the same Web
shop and/or with different brands on infinity. Whether two
products have the same brand, is checked using a list of tele-
vision brands obtained from the Web. The remaining entries
in the dissimilarity matrix are calculated by using the previ-
ously described similarity function for each pair of products.
However, our approach determines the dissimilarity matrix
in an adapted way. The distance between two products is
not only set to infinity if the products are from the same
Web shop or have different brands, but also when they are
not assigned as a candidate pair by the LSH method. By
this adaptation, the number of comparisons and thus the
computation time will decrease.

Adapted hierarchical single linkage clustering is applied
on the previously obtained dissimilarity matrix. The dis-
tance between two clusters is given by the shortest distance
between a pair of products from these clusters. However,
if there is a pair of products with a distance of infinity, the
distance between the two clusters is also infinity. Iteratively,
the two nearest clusters are merged until the smallest clus-
ter distance exceeds a predefined threshold. Products in the
same clusters are considered duplicates.

7. IMPLEMENTATION EXAMPLE
To illustrate our method described in the previous sec-

tions, we use an example consisting of five products. The
products are described by means of a KVP representation.
Every product description contains, among other values, an
attribute for title. As mentioned in Section 4 the binary vec-
tors representing the products are obtained by using model



words from the title attribute. The titles of the products in
our example are listed in Table 1. The product combina-
tions (2,3) and (4,5) are in fact duplicates. We will apply
the steps discussed in Sects. 3-6 to this example.

Product ID Title Web shop
1 SuperSonic 32” 720p LED HDTV SC-3211 Newegg
2 Samsung UN46ES6580 46-Inch 1080p 120Hz 3D HDTV Amazon
3 Samsung 46” 1080p 240Hz LED HDTV UN46ES6580 Newegg
4 Toshiba - 32” / LED / 720p / 60Hz / HDTV Bestbuy
5 Toshiba 32” 720p 60Hz LED-LCD HDTV 32SL410U Newegg

Table 1: Example of five products having different
title attributes

In the first part of the algorithm, the model words are
extracted from the title attributes and a binary vector is
obtained as a product representation for every product. The
procedure as described in Section 4 results in the binary
vectors of Table 2.

Product ID
Model word 1 2 3 4 5
720p 1 0 0 1 1
1080p 0 1 1 0 0
60Hz 0 0 0 1 1
120Hz 0 1 0 0 0
240Hz 0 0 1 0 0
3D 0 1 0 0 0
SC-3211 1 0 0 0 0
UN46ES6580 0 1 1 0 0
46-inch 0 1 0 0 0
32L410U 0 0 0 0 1

Table 2: Example of binary vector product repre-
sentations

We have obtained binary vectors for all products. These
vectors represent the model words present in the title of
each product. The length of the binary vectors is 10 in this
example. In case the number of available products is high,
the length of the vectors will be large since more model
words appear in the titles.

The size of the previously obtained sparse vectors can be
reduced by compressing the binary vectors to signature vec-
tors using min-hashing. We now compress the binary vectors
in the example to signatures of length n = 4. Hence, we need
4 permutations pi of the 10 rows of the binary vectors:

p1 = [1, 6, 2, 9, 3, 10, 8, 4, 5, 7]

p2 = [6, 1, 5, 9, 10, 3, 7, 2, 8, 4]

p3 = [5, 7, 8, 3, 6, 1, 2, 10, 4, 9]

p4 = [2, 7, 4, 3, 9, 8, 10, 5, 6, 1]

The permutations p1-p4 as shown above will be used to
obtain the signature vectors for products 1-5. These permu-
tation have been generated randomly. The retrieved signa-
ture vectors for the products are listed in Table 3.

These signature vectors are the input vectors for the LSH
algorithm. For this example we fix the number of bands b
at 4. Consequentially the number of rows r within a band
is equal to 1, since the relation n = b ∗ r should hold and n
is equal to 4. Products i and j will be classified as neigh-
bors by LSH if the signature vectors are equal in at least 1
band. Since r = 1, we need the signature vectors to have

Product ID
Permutation 1 2 3 4 5

p1 1 2 3 1 1
p2 2 1 3 2 2
p3 2 3 1 4 4
p4 2 1 1 4 4

Table 3: Example of signature matrix product rep-
resentations

at least 1 row with equal entries in order to consider the
corresponding products as candidate pair. In the example,
products 1 and 2 are not neighbors, since they have differ-
ent entries in all rows. Products 2 and 3 will be classified as
neighbors because they have the same value in permutation
4. The neighbors obtained after LSH are given in Table 4. If
products i and j are neighbors, the element of the matrix in
Table 4 is equal to 1. We assume products are not neighbors
with themselves.

Product j
Product i 1 2 3 4 5

1 0 0 0 1 1
2 0 1 0 0
3 0 0 0
4 0 1
5 0

Table 4: Example of potential product duplicates

Recall from the beginning of this section that product
combinations (2, 3) and (4, 5) are in fact duplicates. LSH
has classified these pairs as neighbors.

Further, one can see that the number of product combina-
tions classified as neighbors is 4. This is smaller than 10, the
maximum number of combinations with 5 products. After
applying LSH we use the MSM method as described in Sec-
tion 6. Combinations of products not classified as neighbors
will not be compared and their dissimilarity will be set to
infinity. Because only 4 out of 10 combinations remain after
LSH, we have reduced the number of comparisons, for this
case, by 60% without losing on performance for duplicate
detection, since all true duplicates will still be considered.

8. EVALUATION
In this section, the results of our proposed MSMP are

evaluated. To assess the performance of our method, we use
it for duplicate detection on a data set of TV’s, obtained
from four different Web shops: Amazon.com, Newegg.com,
BestBuy.com, and TheNerds.net. The data of these shops
consists of 163, 668, 773, and 20 TV’s, respectively. This
gives a total of 1,624 TV’s, of which 1,262 are unique.

In order to analyze the performance of the methods de-
scribed in this paper we apply them to the data as men-
tioned above. For stable results we use bootstrapping and
evaluate performance on every bootstrap. A bootstrap is a
random selection from the data with replacement. The size
of bootstraps used is around 60 − 65% of the data, so ev-
ery bootstrap contains around 1, 000 products. The perfor-
mance measures are computed as the average performance
over all bootstraps.



The main contribution of this paper is the pre-selection
of products before applying clustering. Therefore, we first
analyze the quality of the pre-selection of the products to
be clustered, which is performed by the LSH part in the
MSMP. A detailed description of this part of the methodol-
ogy was given in Section 5. Secondly, we analyze the overall
performance of MSMP.

Performance LSH
The following setup is used to evaluate the performance of
the pre-selection of duplicates by the LSH method.

First, for a fixed input parameter combination, the MSMP
method is run for 100 bootstraps, only now with a modified
perfect similarity function. This function assigns similarity
equal to 1 if two products are in the same bucket and are the
same according to the golden standard, and 0 in all other
cases. The obtained similarities are used for clustering as
described in Section 6. By using a modified perfect similar-
ity measure instead of the default similarity measure in the
MSMP, we are able to isolate the effect of pre-selection by
the LSH method on the end result.

The performance of the LSH method depends on the qual-
ity of the product vectors, the size n of the signature matrix,
and the threshold value t. The size of the signature matrix
has no large impact on the total running time of the clus-
tering algorithm, since computing similarities with MSMP
consumes the most time by far. Since a high value of n will
give more reliable and stable results, we choose n to be 50%
of the product vector length.

The performance of the LSH method, and hence the blocks,
are evaluated in terms of pair completeness and pair qual-
ity. Because we use the modified perfect similarity function
the precision is always equal to 1. Therefore we evaluate
the recall, or pair completeness. This measures the dupli-
cates found as a fraction of the total number of duplicates.
The pair quality is a measure for the average number of
duplicates found per comparison. Hence, it measures the
efficiency of a comparison. Note that the pair quality takes
values on the interval [0, 2] since 1 comparison can lead to
at most 2 found duplicates.

We evaluate the pair completeness and the pair quality
for different threshold values t. A higher threshold value
will lead to less comparisons since less products will be con-
sidered candidate pairs. We are interested in reducing the
running time by reducing the number of comparisons. Since
the number of comparisons has a direct effect on the running
time, we plot the performance measures against the number
of performed comparisons with respect to the total number
of possible comparisons.

More comparisons lead to a higher running time but also
to a higher pair completeness. We analyze the characteris-
tics of this trade-off. Therefore the algorithm is executed for
100 bootstraps for a grid of threshold values t, varying from
0.05 to 0.95 with a step size of 0.05. All results are averaged
over the bootstraps. The number of pairwise comparisons is
given as a fraction of the pairwise comparisons in MSM.

When all comparisons are performed, no information is
lost and the recall is equal to 1. Reducing the number of
comparisons causes our algorithm to loose the ability to find
some duplicates, which deteriorates the performance. One
can note based on Figure 2, that a pair completeness of
0.533 is already achieved when the number of pairwise com-
parisons is reduced with more than 97% with respect to the
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Figure 2: Pair completeness versus fraction of com-
parisons

MSM. Performing 18.3% of the pairwise comparisons gives
a recall of 0.800 and when 74.4% of the comparisons are per-
formed, little information is lost about the duplicates, since
a pair completeness of 0.955 is achieved.

We observe that performing more comparisons leads to
more information about possible duplicates. However, the
information obtained per comparison may decrease. We an-
alyze the characteristics of this trade-off by measuring the
pair quality. Figure 3 shows this trade-off for the exact same
dataset used for Figure 2.
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Figure 3: Fraction of lost duplicates versus fraction
of comparisons

In Figure 3 we observe a rapid increase in the pair qual-
ity when the fraction of comparisons approaches 0. This is
caused by the fact that our data set contains a relatively
small amount of duplicates. Therefore, a high pair quality
is observed only if very little comparisons are performed.
LSH is quite effective: when 0.1% of the comparisons are
performed, on average a duplicate is found every 4 compar-



isons. The pair completeness for 0.1% of the comparisons is
0.44, which indicates that 44% of the duplicates are discov-
ered in this case.

To summarize, a significant increase in pair quality is
achieved by performing very little comparisons. Further-
more, we observe that with respect to MSM a significant
reduction in the number of pairwise comparisons and thus
the computation time can be achieved, while keeping the
deterioration of the recall small.

Performance MSMP
Below we compare our results with the results of MSM [13].
The performance is evaluated with the F1-measure, which is
the harmonic mean of precision and recall. We run MSMP
for different fixed threshold values t. In every run, consisting
of 100 bootstraps, the parameters of the MSM clustering and
similarity methods are optimized over a grid of parameters.
The best performing set of parameters is chosen for every
value of t. Furthermore, the average number of comparisons
is stored for every threshold t.
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Figure 4: F1-measure of MSMP compared to the
benchmark for different fractions of comparisons

In Figure 4 the performance of the MSMP method pro-
posed in this paper is evaluated in terms of the F1-measure.
By LSH we have reduced the number of pairwise product
comparisons with respect to the benchmark we consider, the
MSM method. All results are averages over 100 bootstraps.
The F1-measure of our benchmark, which is 0.525, is also
computed as an average over 100 bootstraps. It is depicted
by the red dashed line in Figure 4. Note that for the bench-
mark all comparisons are performed, thus the fraction of
comparisons is equal to 1.

We observe that a reduction in comparisons achieved by
LSH leads to a lower F1-measure. However, a large decrease
in computation time leads to a minor decrease in perfor-
mance. This trade-off between computation time and F1-
measure is approximately linear up to a reduction of 95%
of the comparisons. Consequently, by performing only 5%
of the comparisons MSMP still achieves, on average, an F1-
measure of 0.477.

We can conclude that for the given product data LSH is
a very powerful method, able to significantly reduce compu-
tations whilst the performance of the target, namely finding

duplicates, is still considerably high. Hence, applying LSH
to model words from the title proves to be an effective way
to reduce computation time.

9. CONCLUSIONS
In this paper, we gave a solution to the scalability problem

of product duplicate detection in Web shops. Our proposed
method builds on the Multi-component Similarity Method
(MSM) [13], a state-of-the-art product duplicate detection
method. We proposed an LSH-based filtering step to lower
the number of necessary comparisons for duplicate detection
by performing a pre-selection of candidate pairs.

First, we described all products by means of a representa-
tion based on model words in the title. Each representation
contains a set of model words that is used to obtain binary
vectors. The length of the binary vectors depends on the
number of model words that appear in all titles of the prod-
ucts. This length can be reduced by compressing the binary
vectors to signature vectors by means of min-hashing. After
min-hashing, the obtained signature vectors are the input
for the LSH algorithm. The vectors are divided in b bands
of r rows and two products are classified neighbors if the sig-
nature vectors are equal in at least 1 band. Finally, we apply
a twofold analysis. First, solely the LSH part of the MSMP
is evaluated, using a perfect similarity function for MSM.
Second, the overall performance of MSMP is evaluated and
compared with MSM.

Our Locality-Sensitive Hashing algorithm reduces the num-
ber of comparisons for MSM by pre-selecting products and
only comparing those products that are classified as neigh-
bors. This reduces the running time of MSM, since less time-
consuming computations of similarity values are required.

Our results show that a significant reduction in computa-
tion time can be achieved by using LSH, at the cost of only
a relative small decrease in pair completeness. For exam-
ple, more than 80% of the duplicates can be found with a
perfect clustering algorithm doing only 18% of all possible
comparisons.

If we use MSM in combination with LSH we can reduce
the number of needed comparisons and thus the computa-
tion time drastically while keeping the performance in terms
of F1-measure relatively high. For example, with 5% of the
comparisons we achieved an F1-measure of 0.477, which is
below to the F1-measure of 0.525 of MSM. Hence, we showed
that our proposed method successfully addresses the scala-
bility issue of product duplicate detection on the Web.

As future work we would like to improve the product vec-
tor representations that are based on more information than
solely the model words from the title, using key-value pairs
from product descriptions and thus provide better input for
the Locality Sensitive Hashing method. Also, we would
like to experiment with other blocking methods, e.g., by
making use of not only words but also q-grams and combi-
nations of these. In addition, other clustering algorithms,
e.g., modularity-based clustering or spectral clustering, are
planned to be investigated in the context of product dupli-
cate detection on the Web. Last, we would like to employ
map-reduce implementations of the proposed algorithms,
i.e., blocking [7], computing dissimilar values for candidate
pairs, and clustering [9], in order to further increase the ef-
ficiency of our solution.



Acknowledgments
The authors of this paper are partially supported by the
Netherlands Organisation for Scientific Research (NWO),
under the Mozaiek project ‘Semantic Web Enhanced Prod-
uct Search (SWEPS)’ (project 017.007.142), and the Dutch
national program COMMIT. We would like to thank Jantijn
Kromwijk and Maarten Lemken for many fruitful discussions
and their help in gathering the data set used in the experi-
ments. Further, we thank SARA Computing and Network-
ing Services for their support in using the Lisa Computer
Cluster.

10. REFERENCES
[1] P. Christen. A survey of indexing techniques for

scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering,
24(9):1537–1555, 2012.

[2] O. Chum, J. Philbin, and A. Zisserman. Near
duplicate image detection: Min-Hash and TF-IDF
weighting. In 19th British Machine Vision Conference.
British Machine Vision Association, 2008.
http://www.bmva.org/bmvc/2008/papers/119.pdf.

[3] K. L. Clarkson. An algorithm for approximate
closest-point queries. In Proceedings of the Tenth
Annual Symposium on Computational Geometry,
pages 160–164. ACM, 1994.

[4] M. de Bakker, F. Frasincar, and D. Vandic. A hybrid
model words-driven approach for web product
duplicate detection. In 25th International Conference
on Advanced Information Systems Engineering,
volume 7908, pages 149–161. Springer, 2013.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE
Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007.

[6] L. Getoor and A. Machanavajjhala. Entity resolution:

Tutorial. http://www.umiacs.umd.edu/˜getoor/
Tutorials/ER VLDB2012.pdf, 2012.

[7] S.-C. Hsueh, M.-Y. Lin, and Y.-C. Chiu. A
load-balanced mapreduce algorithm for blocking-based
entity-resolution with multiple keys. In Twelfth
Australasian Symposium on Parallel and Distributed
Computing, volume 152. Australian Computer Society,
2014.

[8] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In 30th Annual ACM Symposium on
Theory of Computing, pages 604–613. ACM, 1998.

[9] C. Jin, M. M. A. Patwary, A. Agrawal, W.Hendrix,
W. k. Liao, and A. Choudhary. Disc: A distributed
single-linkage hierarchical clustering algorithm using
mapreduce. In 4th International SC Workshop on
Data Intensive Computing in the Clouds, 2013.

[10] Y. Ke, R. Sukthankar, and L. Huston. Efficient
near-duplicate detection and sub-image retrieval. In
12th ACM International Conference on Multimedia,
pages 869–876. ACM, 2004.

[11] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee,
and W. Nejdl. A blocking framework for entity
resolution in highly heterogeneous information spaces.
IEEE Transactions on Knowledge and Data
Engineering, 25(12):2655–2682, 2013.

[12] M. Slaney and M. Casey. Locality-sensitive hashing for
finding nearest neighbors. IEEE Signal Processing
Magazine, 25(2):128–131, 2008.

[13] R. van Bezu, S. Borst, R. Rijkse, J. Verhagen,
F. Frasincar, and D. Vandic. Multi-component
similarity method for web product duplicate detection.
In 30th Annual Symposium on Applied Computing,
pages 761–768. ACM, 2015.

[14] D. Vandic, J.-W. Van Dam, and F. Frasincar. Faceted
product search powered by the Semantic Web.
Decision Support Systems, 53(3):425–437, 2012.


