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Abstract. Aspect-Based Sentiment Classification (ABSC) has attracted
a lot of attention in recent years. Some of the best performing mod-
els for ABSC are the hybrid ones and the ones based on deep learn-
ing. This work presents a model for ABSC dubbed HAABSA4GCN,
as an extension to the state-of-the-art hybrid model HAABSA++. The
HAABSA4GCN model combines a domain ontology from HAABSA++
with a novel backup model based on the Graph Convolution Neural
(GCN) network, dubbed 4GCN. This backup model uses four graphs:
syntactic, semantic, lexical, and ontological. For the evaluation, the Se-
mEval 2015 and SemEval 2016 datasets are used. The evaluation results
show that HAABSA4GCN outperforms HAABSA++, suggesting that
the combination of different graphs within the model increases the predic-
tion accuracy. In addition, 4GCN performs better than HAABSA4GCN,
implying that 4GCN is better in dealing with cases that the domain
ontology can decide upon.

Keywords: Aspect-based sentiment classification · Graph convolution
neural network · Domain ontology

1 Introduction

In the information age, individuals freely express their opinions about various
topics, including products, media, and people. Approximately 47% of consumers
actively share their thoughts and experiences through reviews on websites like
Google, Yelp, Facebook, and TripAdvisor, enriching the digital landscape with
user-generated content [9]. This surge in online feedback provides businesses with
valuable insights into customer opinions, aiding in informed decision-making for
product development, leading to better product quality, and market competi-
tiveness. By monitoring brand positioning and managing customer satisfaction,
businesses can better understand market perceptions and make necessary ad-
justments to enhance overall customer satisfaction.

To gain insights from textual data, the most valuable field is sentiment anal-
ysis. This involves a natural language processing task to categorise text with a



sentiment score that reflects the author’s opinion, emotion, or attitude, typically
as positive, neutral, or negative. Sentiment can be computed at three levels: doc-
ument, sentence, or aspect. Document level analysis assigns a single sentiment
to the entire text, sentence level evaluates each sentence separately, and Aspect-
Based Sentiment Analysis (ABSA) assesses sentiment towards specific entities
or aspects within the text [20].

ABSA encompasses two main phases: Aspect Detection (AD), which iden-
tifies aspects, and Aspect-Based Sentiment Classification (ABSC), which deter-
mines the sentiment related to these aspects [20]. The primary goal of ABSC
is to associate aspects with their corresponding opinions, a challenging task re-
quiring contextual understanding. Recent efforts [7] use attention mechanisms
to prioritise crucial text sections for sentiment analysis, capturing subtle word
relationships. However, these mechanisms do not inherently distinguish between
aspects. Hierarchical attention mechanisms have been introduced to address this
[11]. [23] proposed the HAABSA++ model that significantly enhanced sentiment
prediction. Despite this, the complexity of language can still pose challenges for
accurate ABSC.

Graph Neural Networks (GNNs) are proven to effectively handle the complex-
ity of assigning opinions to specific targets, considering the challenges presented
by language [28]. However, GNNs have limitations, such as ignoring dependency
types and varying encoding techniques that can affect model stability [30]. To ad-
dress these issues, different graphs are used in GNNs: syntactic (Syn), semantic
(Sem), lexical (Lex), and knowledge (Kno) graphs.

Recent studies have developed several models that make use of GNNs for
ABSA. The Relational Graph Attention Network (R-GAT) model uses a syn-
tactic graph [26]. The Dual Graph Convolutional Network (DualGCN) leverages
syntactic and semantic graphs [12]. The dependency connections and the usage of
dependency types are combined in the T-GCN model [22]. Lexical and seman-
tic graphs are covered in the Bi-level interactive Graph Convolution Network
(BiGCN) [29]. Last, an ontological graph is used in [13] where the relationship
between an opinion/aspect word and words from the domain ontology is analysed
and exploited for ABSA.

This study aims to enhance the effectiveness of the HAABSA++ model in
addressing ABSC by combining the syntactic, semantic, lexical, and ontological
graphs in a GCN model. We replace the LCR-Rot-hop++ backup model of
the HAABSA++ model with 4GCN, a novel graph-based neural model using
the four GCN modules operating in parallel, resulting in the new hybrid model
HAABSA4GCN. The Python source code and data are available on GitHub at
https://github.com/DianaKazakova/HAABSA4GCN.

The rest of the paper is organised as follows. Section 2 discusses existing
related research. Then, Sect. 3 presents the used data. Section 4 explains the
methods used in this work, including our newly proposed method. The evaluation
is presented in Sect. 5. Last, Sect. 6 provides the conclusion with suggestions for
future research.



2 Related Works

ABSC is a subtask of ABSA addressing the determination of the senti-
ment polarity of an aspect target word in a given sentence. [2] classifies the
present ABSC models into knowledge-based, machine learning, and hybrid. Hy-
brid models combine the knowledge-based approach with machine learning meth-
ods. HAABSA++ [23] is such a model and has achieved state-of-the-art results
in the class of hybrid models. First, we present graph neural networks, as a spe-
cial class of machine learning methods that have been recently successfully used
for ABSA. Then, we describe hybrid models.

2.1 Graph Neural Networks

Neural networks designed to process graph structures, and pioneered by [19],
were described as a variant of RNNs. [27] divides the GNNs into four distinct
types: recurrent GNNs, convolutional GNNs, graph autoencoders, and spatial-
temporal GNNs. Among these diverse categories, two particular types are pop-
ular and effective: GCNs and GATs.

GCN, introduced by [10], builds on spectral graph convolutional neural net-
works [5]. [10] addresses the lack of self-loops and the use of unnormalised ad-
jacency matrices, by modifying the adjacency matrix to include self-loops and
applying normalisation to the adjacency matrix to preserve feature vectors scales.
However, GCN approaches depend on the graph structure, hence a trained model
can not be directly applied to another graph. [24] introduced GATs, which in-
corporates an attention mechanism to give different importance levels to neigh-
bouring features, improving feature aggregation [8]. In ABSC tasks, the attention
mechanism is also used for the GCN models [4]. However, ABSC tasks employ-
ing GCN or GAT models, often face limitations like, a lack of utilisation of
semantic relationships and sentiment knowledge among words or phrases. These
limitations can be handled with the help of graph modules.

Several works have used a text classification model based on GCN, which
constructs the word relationship graph using word co-occurrence and word-text
relationships [14]. BiGCN [29] combines syntactic and lexical graph modules to
group lexical word pairs based on their co-occurrence frequency. [14] constructs
a text graph tensor describing semantics, grammar, context, and other informa-
tion. [31] used a semantic module in the GCN model to capture the semantic
dependence between multiple aspects and used an attention mechanism to en-
code aspects and context.

[26] presents R-GAT to handle sentences containing multiple aspects, ac-
knowledging the significance of the dependency relation type for the preservation
of syntactical information. Similarly a Type-Aware Graph Convolution Network
(T-GCN) addresses the oversight of dependency types, targeting a more com-
prehensive integration of dependency structures [22]. Moreover, the DualGCN
model addresses parsing inaccuracies and informal expressions using a syntactic
module and identifies semantic relationships using a semantic module [12]. In
addition, BiCGN leverages lexical and semantic information [29].



However, most models based on graph networks overlook the incorporation
of domain ontology information during graph construction [3]. External affec-
tive commonsense knowledge can enrich sentiment feature representations in
sentiment analysis tasks [17]. An ontological graph is used in [13] where the rela-
tionships between an opinion/aspect words and words from the domain ontology
are analysed.

2.2 Hybrid Models

Hybrid approaches for ABSC aim to combine the strengths of knowledge-
based and machine-learning algorithms. [21] creates a specialised ontology for
the restaurant sector, utilising it to compute the sentiment, with an SVM as a
backup model. In more recent studies, neural networks have been utilised as a
backup model. Recently, the domain-specific ontology of [21] was used with an
attention-based model using hierarchical attention and deep contextualised word
embeddings (BERT). This combination led to the development of HAABSA++,
which includes the LCR-Rot-Hop++ neural network as the backup model [23].

HAABSA++ has achieved state-of-the-art results for the sentiment classifi-
cation task. The process unfolds in distinct phases. Firstly, it uses the ontology
from [21] to identify aspect-related sentiment. If the ontology provides inconclu-
sive results due to neutral sentiments (not modelled in the ontology), conflicting
sentiments, or lack of coverage, the LCR-Rot-hop++ neural network is acti-
vated. Combining the neural network with the ontology improves accuracy over
using the neural network alone and enhances the interpretability of the results.
HAABSA++ represents a significant advancement in the field of ABSC, skill-
fully detecting nuanced expressions of sentiment through semantic information
and structural dependencies.

3 Data

For our research, the datasets SemEval 2015, Task 12, Subtask 2 [16] and
SemEval 2016, Task 5, Subtask 1 [15] are used. Previous ABSA works have cho-
sen SemEval datasets, indicating their reliability and relevance, and facilitating
meaningful comparisons to our research. Besides, we use the same evaluation
measures proposed by SemEval to maintain a fair comparison with the existing
models. The datasets consist of reviews from various domains. Since our ap-
proach relies on an ontology designed for the restaurant domain, we focus only
on the restaurant datasets. These consist of online reviews in English, annotated
by human linguists, and formatted in an XML structure.

Each review comprises multiple sentences that each may contain aspects.
In cases where a word in the sentence does not explicitly identify the aspect
category, the target is marked as NULL.

As in this work we are doing a sentiment classification task, we consider only
sentiment polarity datasets, where each observation consists of a sentence, the
target aspect within the sentence, and its corresponding polarity—negative (-1),



neutral (0), or positive (1). The opinions with implicit targets were excluded for
this dataset.

Table 1 summarises the distribution of sentiment polarities in our datasets,
highlighting the prevalence of positive sentiment and the rarity of neutral senti-
ment. Furthermore, both training sets show class imbalance. The SemEval 2016
dataset exhibits a slightly more similar distribution between training and test
data than the SemEval 2015 dataset. However, the 2016 test set displays more
imbalance than the 2015 test set, featuring fewer negative examples but more
positive examples. Also, we can note that the 2016 dataset is larger than the
2015 dataset.

Table 1. The number of observations and the distribution of polarity (for the SemEval
2015 and SemEval 2016 datasets).

Positive Neutral Negative Total
Frequency % Frequency % Frequency % Frequency

SemEval 2015 train 962 75.3 36 2.8 280 21.9 1278
SemEval 2015 test 353 59.1 37 6.2 207 34.7 597
Total (Av. for %) 1315 67.2 73 4.5 487 28.3 1875

SemEval 2016 train 1319 70.2 72 3.8 489 26.0 1880
SemEval 2016 test 483 74.3 32 4.9 135 20.8 650
Total (Av. for %) 1802 72.25 104 4.35 624 23.4 2530

4 Methodology

In this section, our methodology is presented. First, we introduce the refer-
ence HAABSA++ model. Then, we present our novel 4GCN model.

4.1 HAABSA++

The HAABSA++ model, developed by [23], first uses a rule-based method
based on a domain sentiment ontology [21] to determine the sentiment of a
given aspect. Then, the LCR-Rot-hop++ neural network model is employed for
handling sentences for which the ontology is inconclusive.

The domain sentiment ontology predicts sentiment using predefined classes,
class relations, and axioms. It has three main classes: SentimentValue, Aspect-
Mention, and SentimentMention [21]. SentimentValue assigns Positive and Neg-
ative subclasses to words or phrases expressing sentiments, excluding Neutral
due to its intrinsic ambiguity. AspectMention represents mentions of specific
features or attributes. SentimentMention categorises sentiment expressions into
three types: Type-1 for general positive or negative sentiment, Type-2 for a par-
ticular category of aspect mentions, and Type-3 for aspect category dependent
mentions. Furthermore, the classifier checks for negation and inverts the senti-
ment polarity if a certain concept is negated.



Nevertheless, the ontology encounters inconclusiveness in three scenarios:
prediction of conflicting sentiments (both positive and negative) for a target, in-
stances with no hits due to the limited coverage of the ontology, or the sentiment
is neutral. To address these limitations, the LCR-Rot-hop++ model is used as
a backup model.

The LCR-Rot-hop++ model was enhanced by [25] with multiple iterations of
rotatory attention to better distinguish sentiment words. [23] further improved
it using hierarchical attention and contextual word embeddings (BERT), leading
to the refined LCR-Rot-hop++ model.

4.2 4GCN

4GCN is a GNN-based model using four GCN graphs: SynGCN, SemGCN,
LexGCN, and KnoGCN. These graphs are used in parallel, each taking a BERT-
encoded sentence as input and applying graph convolutions to produce updated
hidden representations, incorporating syntactic, semantic, lexical, and domain-
specific ontology information. The results of every graph, the modules’ last hid-
den representations of the aspect terms, are then concatenated to obtain the
final output representation. The resulting vector is reduced to three dimensions
through a fully connected layer. Last, a softmax function is applied to compute
the probabilities associated with each sentiment class. The class with the highest
probability is selected as the final label.

Encoding. The initial phase of the neural network classifier involves transform-
ing each sentence s to understand its hidden contextual meaning. This transfor-
mation is achieved by leveraging a pre-trained BERT model to generate encod-
ings of sentences, as BERT has been proven to excel in these kinds of tasks [12,
23]. BERT uses the [CLS] and [SEP] tokens to derive aspect-aware hidden sen-
tence representations. Each sentence is first tokenised into words or subwords.
Then, BERT combines these tokens with two unique tokens: [CLS] at the be-
ginning and [SEP] at the end of the sentence. Another [SEP] token is used to
construct a sentence-aspect pair (s, t) as an input for our model. This process
allows BERT to distinguish between the aspect of a sentence and the context
where the polarity is expressed. The optimal encoding is shown in Eq. (1).

[CLS] sentence [SEP] aspect [SEP] (1)

For instance, given the sentence “The selection of desserts was small”, we

input it into BERT-large to generate aspect-aware hidden representations h
(0)
i

of 1024 dimensions for each word i in sentence s (word embeddings are averages
of token embeddings initially produced by BERT). The encoded input format
is “[CLS] The selection of desserts is small [SEP] selection [SEP]”, where the
word selection was encoded as an aspect of the sentence. Moreover, sentences
are extended with padding to achieve a uniform length of 100 tokens, ensuring
consistent dimensions across all inputs.



Graph Convolutional Network. The fundamental structure of each network
layer is expressed in Eq. (2). Each element Aij in matrix A signifies the con-
nection between the i-th and j-th nodes (nodes denote words). Specifically, Aij

equals 1 if the i-th node is linked to the j-th node, and 0 otherwise. Moreover, the
adjacency matrix A, consisting of binary values (0s and 1s), can be the discrete
output from a dependency parser. For the i-th node at the l-th layer, its hidden
state representation, formally denoted as hl

i, undergoes an update according to
the following equation:

h
(l)
i = σ

 n∑
j=1

AijW
(l)h

(l−1)
j + b(l)

 (2)

where n is the number of words in a sentence, W (l) is the weight matrix, b(l) is
the bias term, and σ is an activation function.

This research employs the ReLU activation function for the graph convolu-
tion layers. Each module creates a graph over s using a distinct approach: Syn-
Graph for syntactic information, SemGraph for semantic relations, LexGraph
for lexical dependencies, and KnoGraph for ontology relations. The associated
adjacency matrices A are utilised to perform graph convolutions, following Eq.
(2), for multiple layers.

SynGCN Module. To exploit syntactic relations in a sentence and construct
the graph for the SynGCN module, the dependency parser is first used to obtain
the dependency tree of every sentence [22]. In a dependency tree, each word is
represented as a node, and the edges between nodes signify the syntactic depen-
dencies. The root of the dependency tree, often an artificial symbol, represents
the main governing element in the sentence.

The general results of a dependency tree can be represented by three elements
(xi, xj , ri,j), where ri,j is a dependency type between xi word and xj word.
Moreover, the adjacency matrix A = {aij}n×n is utilised to record the existence
of an edge between xi word and xj word and n is the number of words in
a sentence. Consequently, A is a 0-1 matrix where aij equals 1 if there is an
edge between xi word and xj word and aij equals 0, otherwise. Additionally,
the relation type matrix R = rijn×n is created to obtain the dependency type
between xi and xj words if there is an edge between them. Given the set of
dependency relations R, the corresponding type embeddings erij are generated.

In evaluating the importance of an edge for sentiment polarity within a sen-
tence, the weighting of edges by their contribution is proposed. In detail, for
every edge connecting words xi and xj , the l-th GCN layer leverages the hid-

den vectors h
(l−1)
i and h

(l−1)
j derived from the (l-1)-th GCN layer for xi and xj

words. The initial hidden vectors, h
(0)
i and h

(0)
j , are obtained from the BERT

encoder. Subsequently, hidden vectors are combined with the corresponding type
embeddings erij . Equations (3) and (4) represent the concatenation process for
the words xi and xj :

s
(l)
i = h

(l−1)
i ⊕ erij (3)



and
s
(l)
j = h

(l−1)
j ⊕ erij (4)

where ⊕ denotes the concatenation operator.

Next, a weight p
(l)
i,j (contribution) of an edge for the sentiment polarity is

computed with the following formula:

p
(l)
ij =

aij · exp
(
s
(l)
i · s(l)j

)
∑n

j=1 aij · exp
(
s
(l)
i · s(l)j

) (5)

To transform the dimension of erij to h
(l−1)
i we used trainable matrix W

(l)
R

of the l-th GCN layer. Therefore, the type embeddings are transformed into the
hidden representations by the following equation:

h
(l−1)′

i = h
(l−1)
i +W

(l)
R · erij (6)

Lastly, the output of xi at the l-th layer from the SynGCN module is com-

puted by applying p
(l)
ij to Eq. (2):

h
(l)(sym)
i = σ

 n∑
j=1

p
(l)
ij W

(l)h
(l−1)′

j + b(l)

 (7)

where W (l) and b(l) denote the trainable parameters in the l-th GCN layer, and
σ refers to the ReLU activation function.

SemGCN Module. The SemGCN module is constructed via a self-attention
mechanism to analyse semantic associations. Self-attention can capture semanti-
cally related terms of each word in a sentence [12]. Computing the attention score
of each pair of elements in parallel, the attention score matrix A(l)(sem) ∈ Rn×n

is constructed as follows:

A(l)(sem) = softmax

(
Q(l)WQ ×

(
K(l)WK

)T
√
d

)
(8)

where Q(l) and K(l) are both equal to the hidden representation of the previous
layer H(l−1). WQ and WK are learnable weight matrices, and d is the number
of features for each node (word).

The semantic graph representation H(l)(sem) is obtained from the SemGCN

module using Eq. (2), where h
(l)(sem)
i ∈ Rd is a hidden representation of the ith

node at the l-th layer.

h
(l)(sem)
i = σ

 n∑
j=1

a
(l)(sem)
ij W (l)h

(l−1)
j + b(l)

 (9)

where W (l) and b(l) denote the trainable parameters in the l-th GCN layer, and
σ refers to the ReLU activation function.



LexGCN Module. To employ a LexGraph to ABSC and represent the re-
lationships between words quantitatively, a global co-occurrence matrix Agc is
constructed [29]. This global co-occurrence matrix Agc is generated using a cor-
pus combining the SemEval training sets with the WebText corpus. The Web-
Text corpus, containing informal language texts, is sourced from NLTK [1] and
is intentionally employed to augment the information in the SemEval training
corpus. Equation (10) presents the global co-occurrence matrix:

Agc = {agcij }N×N (10)

where i and j denote indexes for xi and xj words in the corpus, respectively, and
agcij denotes the co-occurrence frequency between xi and xj words in the corpus
whose vocabulary size is N . The weights of agcij are scaled by the frequency of i
and j in the training corpus. The scaling provides a more balanced representation
of co-occurrence relationships, considering the importance of each word in the
context of the entire training corpus.

The local co-occurrence matrix Alc for each sentence s is constructed to delve
into sentence-level analysis [29]. To reduce overemphasising specific sentence
structures and avoid redundancy, up to one co-occurrence per xi word is tallied
within each sentence when constructing the local co-occurrence matrix. This
matrix, acting as the adjacency matrix for the LexGCN module, is formulated
using Eq. (11),

Alc
s = {alcij}N×N (11)

where i and j denote indexes for xi and xj words in the sentence, respectively,
and alcij denotes the co-occurrence frequency between xi and xj words in the
sentence.

To integrate global word distribution information from Agc into the local
lexical co-occurrence matrix Alc

s , the co-occurrence weights of existing words in
Agc are maintained. Specifically, if the sentence co-occurring word xi and word xj

are present in the training corpus of Agc, alcij is set equal to scaled co-occurrence

of word xi with word xj in the global co-occurrence matrix Agc, otherwise, alcij
= 0.

The output of the LexGraph module for xi at the l-th layer is then obtained
using Eq. (2). The lexical graph representation is presented as H(l)(lex), where

h
(l)(lex)
i ∈ Rd is a hidden representation of the ith node at the l-th layer.

h
(l)(lex)
i = σ

 n∑
j=1

alcijW
(l)h

(l−1)
j + b(l)

 (12)

where W (l) and b(l) denote the trainable parameters in the l-th GCN layer, and
σ refers to the ReLU activation function.

KnoGCN Module. In this work, the domain ontology of [25] serves as struc-
tured representations of knowledge, capturing relationships and dependencies re-
garding the restaurant domain. This ontology is employed to form the KnoGCN



graph. Developing this graph involves the creation of a domain knowledge vo-
cabulary V = {v1, v2, ..., vs}, where s is the vocabulary size.

The process begins with identifying words recognised by the ontology, which
are then utilised to construct a KnoGCN graph within the 4GCN model. Steps
analogous to those outlined for the SynGCN module have been followed to con-
struct the KnoGCN graph. These steps involve creating an adjacency matrix to
represent semantic relations between words recognised by the ontology. Once the
KnoGCN graph is built, we apply a similar approach to weigh the importance of

edges for sentiment polarity. The weighting involves computing importance p
(l)
ij

of each edge, where l represents the GCN layer. The computation of p
(l)
ij involves

utilising the hidden vectors derived from the GCN layers, as well as the type
embeddings associated with each edge within the KnoGCN graph.

Lastly, the output of each word at the l-th layer from the KnoGCN graph is
computed using an adapted version of Eq. (6) utilised in the SynGCN graph. This
output encapsulates the enhanced representation of each word, incorporating a
domain-specific ontology to enrich sentiment analysis capabilities.

Decoding. A final output vector o is created by concatenating the last hidden
layer of every graph constructed within the 4GCN model for aspect term a.

oa = h(L)(SynGCN)
a

1024×1
⊕ h(L)(SemGCN)

a
1024×1

⊕ h(L)
a (LexGCN)

1024×1
⊕ h(L)(KnoGCN)

a
1024×1

(13)

where L represents the last layer for the graph g, and g stands for SynGCN,

SemGCN, LexGCN, or KnoGCN. h
(L)(g)
a is a layer output with dimension 1024.

a is the aspect term used within a sentence.
To decode the results and obtain a C-dimensional output, the vector o un-

dergoes processing through a fully connected layer, yielding a three-component
vector.

ua
|C|×1

= W
|C|×4096

· oa
4096×1

+ b
|C|×1

(14)

where C = 3 for (positive, negative, neutral), a is the aspect term, W and b are
the trainable matrix and the bias, respectively.

To make a sentiment polarity prediction for aspect term a, a softmax function
to ua is applied. It maps the ua for each dimension to a probability.

u′
a

|C|×1

= softmax( ua
|C|×1

) (15)

Then, a sentiment prediction ŷa is made as follows:

ŷa
1×1

= arg max u′
a

|C|×1

(16)

To update model weights through backpropagation, the standard cross-entropy
loss function is used:

L
1×1

= −
∑
a

ya
|C|×1

× log( u′
a

|C|×1

) + λ||Θ||2 (17)



where ya represents a vector containing the true sentiment value for the a-th
aspect, u′

a denotes a softmax probability comprising the predicted sentiment for
the a-th aspect, λ corresponds to the weight assigned to the L2-regularization
term, and Θ represents all trainable parameters.

5 Results

This section presents the obtained results for the proposed HAABSA4GCN
hybrid model and existing models. First, we present a hyperparameter tuning
process applied to all the models. Second, we consider the results obtained from
HAABSA++ and LCR-Rot-hop++ and compare them with HAABSA4GCN
and 4GCN results, respectively. In addition, we compare the results obtained
from DualGCN, R-GAT, BiGCN, and T-GCN models with 4GCN model.

5.1 Implementation Details

The Stanza toolkit, as described by [18], implements the dependency parser
of [6]. This work uses this dependency parser due to its rapid processing and
high accuracy.

We randomly sample 20% of the training data to create a validation set.
The validation set is used to select the model hyperparameters using a Tree-
structured Parzen Estimator (TPE). The highest accuracy on the validation set
highlights the best hyperparameters and relates to the final model.

The word embeddings are initialised using a pre-trained BERT-large uncased
model with 1024 dimensions. To address overfitting, dropout rates of 0.2286 are
applied to each graph g and the concatenated output o. Each graph is configured
with two layers. The Adam optimiser has a learning rate of 0.000011 and a weight
decay of 0.027. The 4GCN model undergoes 15 epochs with a batch size of 4.

5.2 Evaluation

The novel model has been evaluated using the test sets from the SemEval
2015 and SemEval 2016 restaurant datasets. In Table 2 the following comparisons
are made. The HAABSA4GCN model was compared against the HAABSA++
model [23]. Furthermore, the backup models, 4GCN (HAABSA4GCN) and LCR-
Rot-hop++ (HAABSA++), were compared against each other. Accuracy results
for HAABSA++ and LCR-Rot-hop++ were reported from [23].

Interestingly, 4GCN achieves an even higher accuracy when used on the entire
testing sample, outperforming HAABSA4GCN by 0.3 and 1.4 percentage points
for 2015 and 2016, respectively. The ability of the 4GCN model to capture un-
derlying relationships and predict sentiment surpasses that of LCR-Rot-hop++.
This superiority is attributed to the unique combination of various modules
within 4GCN, which enables it to capture a broader spectrum of relationships
within the dataset. While 4GCN achieves a higher classification accuracy, the
interpretability of the hybrid model’s results remains valuable.



Table 2. Comparison of HAABSA4GCN and HAABSA++ and their respective backup
models using classification accuracy.

SemEval 2015 SemEval 2016

HAABSA++ 81.7% 87.0%
HAABSA4GCN 83.1% 87.7%

LCR-Rot-hop++ 81.1% 86.7%
4GCN 83.4% 89.1%

The novel hybrid model and proposed neural network model outperform
previous results of HAABSA++ and LCR-Rot-hop++, respectively. HAABSA-
4GCN outperforms HAABSA++ by 1.4 percentage points for the SemEval 2015
dataset and 0.7 percentage points for the SemEval 2016 dataset. 4GCN outper-
forms LCR-Rot-hop++ by 2.3 percentage points for the SemEval 2015 dataset
and 2.4 percentage points for the SemEval 2016 dataset. The better classification
accuracy of 4GCN compared to HAABSA4GCN indicates that the GCN model
based on four different graphs is more effective at predicting examples classified
by the ontology across the entire testing sample.

In addition to the analysis provided in Table 2, Table 3 presents a comparison
of the prediction accuracy of the 4GCN model with the DualGCN, R-GAT,
BiGCN, and T-GCN models from the literature (all GCN models).

Table 3. Comparison of 4GCN and DualGCN, R-GAT, BiGCN, and T-GCN models
using classification accuracy.

SemEval 2015 SemEval 2016

4GCN 83.4% 89.1%
DualGCN 81.6% 86.9%
R-GAT 81.2% 85.7%
BiGCN 81.1% 88.9%
T-GCN 83.0% 90.3%

In the SemEval 2015 dataset, 4GCN shows strong performance with an ac-
curacy of 83.4%, proving that the introduced extensions have boosted the result.
T-GCN follows closely with marginally lower accuracy of 83.0%, illustrating its
strong ability to handle complex relationships within sentiment analysis using
dependency relations. The DualGCN, R-GAT, and BiGCN models also perform
well, achieving accuracy of 81.6%, 81.2%, and 81.1%, respectively. Although
the HAABSA4GCN is better than HAABSA++, the 4GCN model outperforms
HAABSA4GCN on the SemEval 2015 dataset.

Moving to the SemEval 2016 dataset, 4GCN reaches an accuracy of 89.1%.
Except for the T-GCN model, this performance is significantly higher than its
peers. The leading performance of 4GCN and T-GCN in this dataset is connected
to the usage of the SynGCN graph. This graph presents the dependency relations
in the adjacency matrix for prediction purposes. BiGCN, DualGCN, and R-GAT



have lower accuracy, i.e., 88.9%, 86.9%, and 85.7%, respectively. The reasons for
the higher accuracy of DualGCN and BiGCN are based on using two graphs for
the prediction. DualGCN uses syntactic and semantic information, BiGCN uses
syntactic and lexical information, and R-GAT uses only syntactic information.

Interestingly, every model achieves significantly higher accuracy for the Se-
mEval 2016 dataset than the SemEval 2015 dataset. This disparity can be at-
tributed to the more data available in the training set of the SemEval 2016
dataset, i.e., almost 1.5 times larger (Table 1). This consequently offers more
robust data for model training purposes. In addition, it is notable that even
though HAABSA4GCN is more accurate than HAABSA++ on the SemEval
2016 dataset, the 4GCN model surpasses HAABSA4GCN.

6 Conclusion

This research proposes two models for ABSC: HAABSA4GCN and 4GCN.
The first is a hybrid, two-stage model with a domain-specific ontological classifier
and a backup model, 4GCN, a novel approach based on GNN, employing four
different graphs, specifically, a syntactic graph, a semantic graph, a lexical graph,
and an ontological graph. Additionally, DualGCN, R-GAT, BiGCN, and T-GCN,
four core GCN models, are used for evaluation purposes.

We compare HAABSA4GCN with HAABSA++ [23] to assess whether a
GNN-based backup model could enhance performance over the LCR-Rot-hop++
model. Our findings indicate that the 4GCN and HAABSA4GCN models out-
perform the LCR-Rot-hop++ and HAABSA++ models, respectively. The pre-
diction accuracy of HAABSA4GCN on the SemEval 2015 and SemEval 2016
datasets are 83.1% and 87.7%, respectively. In addition, 4GCN is better than
HAABSA4GCN, with prediction accuracy of 83.4% and 89.1%, respectively.
4GCN also beats DualGCN, R-GAT, BiGCN, and T-GCN on the SemEval 2015
dataset and DualGCN, R-GAT, and BiGCN on the SemEval 2016 dataset.

As future work we suggest experimenting with alternative dependency parsers
for the SynGCN module, as only the Stanza parser was used in this study.
Still, others might provide better results. Additionally, constructing a global co-
occurrence matrix from a large corpus of restaurant reviews could improve the
reliability of the LexGCN module’s adjacency matrix.
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