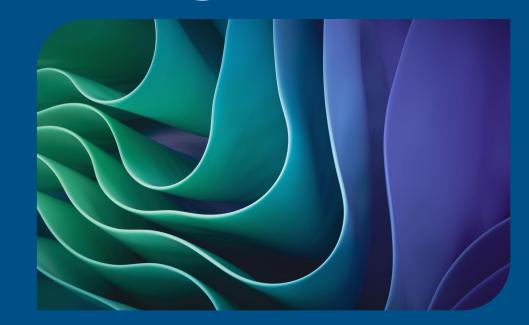
FairNM: Fairness in Name Matching

Yuan Liu and Flavius Frasincar



- 1. Motivation and Contribution
- ^{2.} Data and Data Insights
- 3. Methodology
- 4. Evaluation and Results
- ^{5.} Conclusion
- 6. Future Work and References

- 1. Motivation and Contribution
- ^{2.} Data and Data Insights
- 3. Methodology
- ^{4.} Evaluation and Results
- ^{5.} Conclusion
- ^{6.} Future Work and References

Person names are increasingly used in automated high-stakes decisions (e.g., hiring, fraud detection) through Entity Matching (EM) techniques

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring, fraud detection) through Entity Matching (EM) techniques
 - Example: can we find this applicant on our blacklist?

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring, fraud detection) through Entity Matching (EM) techniques
- A common method in EM, called Fuzzy Name Matching, focuses on linking different variations of the same name

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring, fraud detection) through Entity Matching (EM) techniques
- A common method in EM, called Fuzzy Name Matching, focuses on linking different variations of the same name
 - Example: Johnny Smith refers to the same person as John Smith

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring, fraud detection) through Entity Matching (EM) techniques
- A common method in EM, called Fuzzy Name Matching, focuses on linking different variations of the same name
- Previous work highlighted algorithmic bias in Fuzzy Name matching tasks between racial groups

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring, fraud detection) through Entity Matching (EM) techniques
- A common method in EM, called Fuzzy Name Matching, focuses on linking different variations of the same name
- Previous work highlighted **algorithmic bias** in Fuzzy Name matching tasks between racial groups
- However, underlying causes remain unexplored, and no effective mitigation strategies have been proposed

Names can encode **sensitive information** about a person

Ethnicity:

Jamal vs Hiroshi

Socioeconomic Status

Alastor vs Destiny

Gender Identity

- Sarah vs Eric

Religious Preference

- Mohammed vs Ezekiel

Contributions

- Investigate underlying factors contributing to bias
- Introduce a novel fairness measure and test bench for evaluating algorithmic bias
- Propose mitigation strategies to improve fairness in name matching

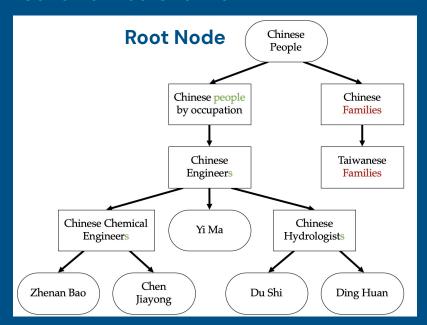
- 1. Motivation and Contributions
- ^{2.} Data Collection and Insights
- 3. Methodology
- 4. Evaluation
- ^{5.} Conclusion
- 6. Future Work and References

 Group names by linguistic origin instead of race

- Group names by linguistic origin instead of race
- No public labeled dataset for this task

- Group names by linguistic origin instead of race
- No public labeled dataset for this task
- Built a custom dataset via
 Wikipedia scraping,
 filtering, and manual
 curation

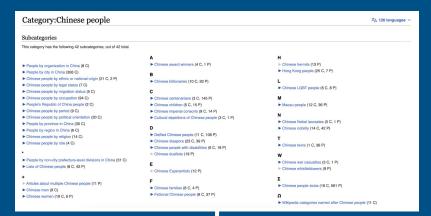
Schematized Overview



Leaf Node

- Group names by linguistic origin instead of race
- No public labeled dataset for this task
- Built a custom dataset via
 Wikipedia scraping,
 filtering, and manual
 curation

Root Node



Leaf Node

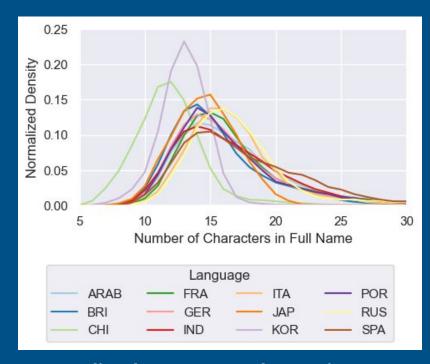
- Group names by linguistic origin instead of race
- No public labeled dataset for this task
- Built a custom dataset via
 Wikipedia scraping,
 filtering, and manual
 curation

Language	# Names	Example Name	Root Category
BRI	57,385	Sarah Wigglesworth	British
FRA	36,683	Hervé Berville	French
GER	29,286	Magdalena Neuner	German
IND	26,146	Sukhbir Sinha	Indian
ITA	21,769	Marcello Farabegoli	Italian
RUS	17,801	Alexander Abrosimov	Russian
$_{ m JAP}$	16,612	Toshizō Nishio	Japanese
SPA	14,462	Begoña Sánchez	Spanish
POR	13,632	Candido Rondon	Portuguese, Brazilian
$_{ m CHI}$	13,378	Baofang Jin	Chinese
ARAB	7,036	Mohamed Al-Fayed	Egyptian, Iraq, Saudi Arabian
KOR	5,960	Seung-hyun Choi	South Korean
Total	260,150		

Data Insights

Data Insights

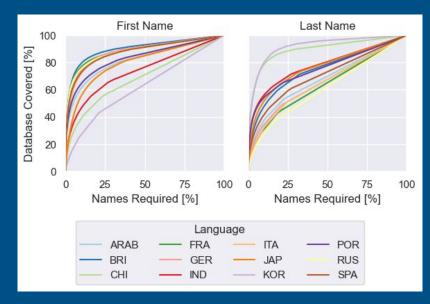
 Chinese and Korean full names are typically shorter and have less variation in name length



Normalized Name Length Density

Data Insights

- Chinese and Korean full names are typically shorter and have less variation in name length
- Chinese and Korean names have lower variation in last name, but higher variation in first name



Percentage of Unique Names Required to Cover Percentage of Database

- 1. Motivation and Contributions
- ^{2.} Data Collection and Insights
- 3. Methodology
- 4. Evaluation
- ^{5.} Conclusion
- ^{6.} Future Work and References

- Simulate real-world Fuzzy Name Matching using a screening list scenario

- Simulate real-world Fuzzy Name Matching using a screening list scenario
- Evaluate performance across different linguistic groups by using single origin screening name lists

- Simulate real-world Fuzzy Name Matching using a screening list scenario
- Evaluate performance across different linguistic groups by using single origin screening name lists
- Introduce name variations to create realistic fuzziness in the input

Original Name: John Smith Doe

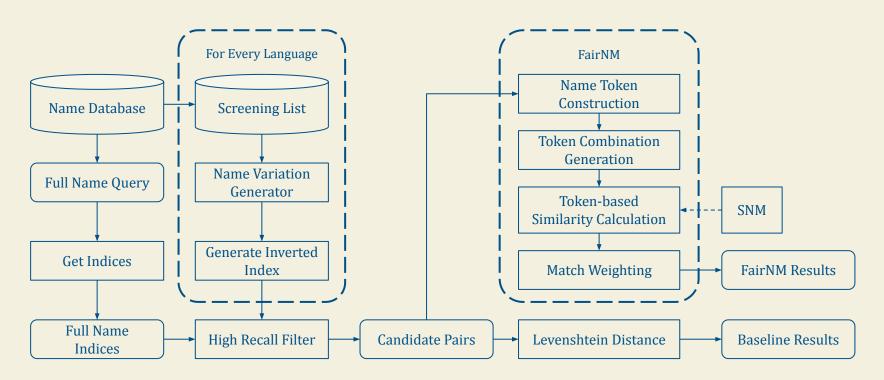
- Swapped Tokens: Doe John Smith

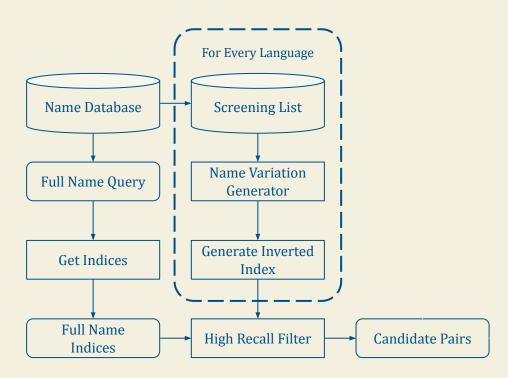
- Random Deletion: Jon Smith Doe

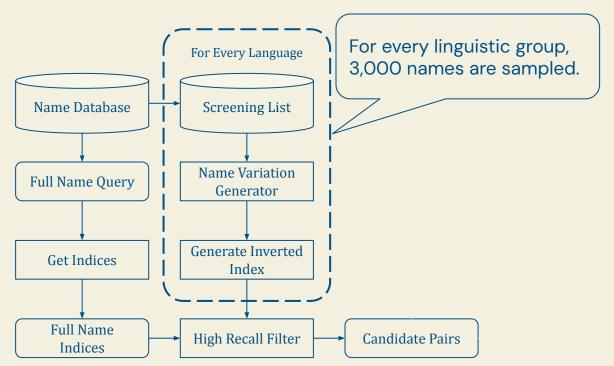
Fat-Finger Error: Jonh Smith Doe

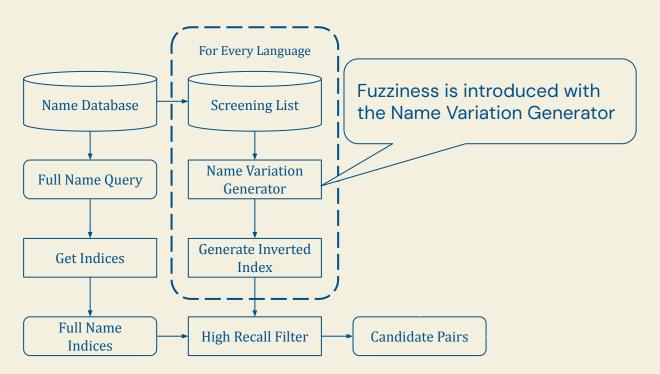
- Simulate real-world Fuzzy Name Matching using a screening list scenario
- Evaluate performance across different linguistic groups by using single origin screening name lists
- Introduce name variations to create realistic fuzziness in the input
 - Original Name: John Smith Doe
 - Swapped Tokens: Doe John Smith
 - Random Deletion: Jon Smith Doe
 - Fat-Finger Error: Jonh Smith Doe
- **Objective:** Accurately link each name variation back to its original canonical form

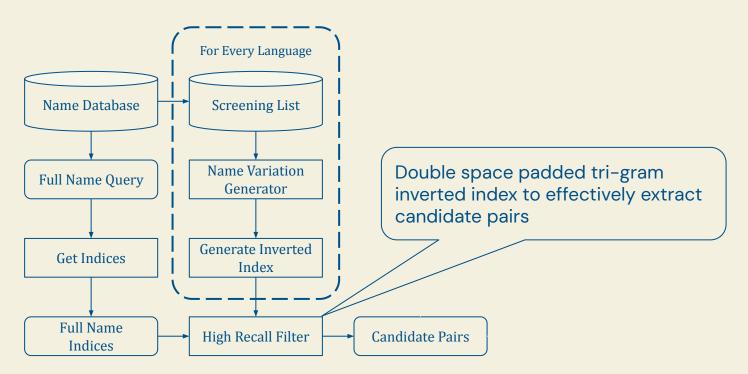
Test Bench Overview



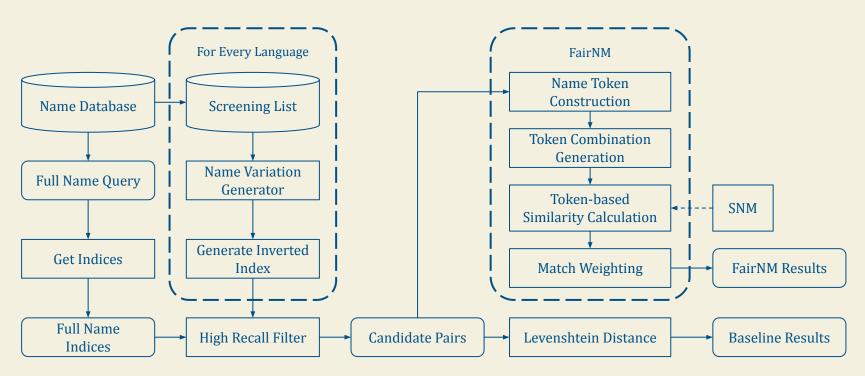








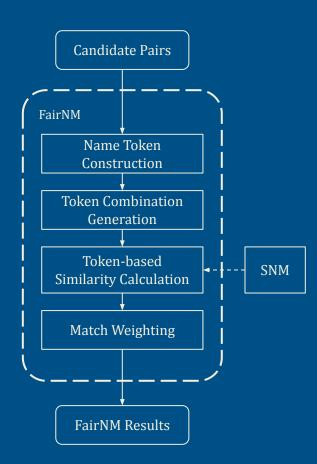
Step 2 Similarity Scoring



FairNM Overview

Modules

- Token-based Normalized Levenshtein Similarity
- 2. Short Name Module (SNM)
- 3. Match Weighting



Token-based Normalized Levenshtein Similarity

- Uses normalized
 Levenshtein similarity per token combination
- Handles swapped tokens and finds optimal alignment

Example:

Yuan Lin vs Enzo Liu, Yuan

	Yuan	Lin
Enzo	0.00	0.00
Liu	0.00	0.67
Yuan	1.00	0.25

Token-based Normalized Levenshtein Similarity

- Uses normalized
 Levenshtein similarity per token combination
- Handles swapped tokens and finds optimal alignment

Example:

Yuan Lin vs Enzo Liu, Yuan

	Yuan	Lin
Enzo	Χ	X
Liu	X	0.67
Yuan	1.00	X

Average score of **0.84**

Token-based Normalized Levenshtein Similarity

- Uses normalized
 Levenshtein similarity per token combination
- Handles swapped tokens and finds optimal alignment
- Also checks for merged tokens

	YuanLiu
Yuan	X
Liu	X
YuanLiu	1.00

Short Name Module (SNM)

- Siamese Neural Network (SNN) trained on short name tokens (<4 char)
- Boosts performance for languages with typical short name tokens

Example:

Yuan Lin vs Enzo Liu, Yuan

	Yuan	<u>Lin</u>
Enzo	X	X
<u>Liu</u>	Χ	
Yuan	1.00	X

Average score of **0.84**

Short Name Module (SNM)

- Siamese Neural Network (SNN) trained on short name tokens (<4 char)
- Boosts performance for languages with typical short name tokens

Example:

Yuan Lin vs Enzo Liu, Yuan

	Yuan	<u>Lin</u>
Enzo	X	X
<u>Liu</u>	Χ	0.23
Yuan	1.00	X

Average score of **0.62**

Match Weighting

- Weights name tokens using Inverse Document Frequency (IDF)
- Reduces emphasize on matches in common names

$$simScore = \sum_{m=1}^{M} \frac{w_{m1} + w_{m2}}{w_{tot}} \times sim_{m}$$

	Ho-young (74.8%)	Lee (25.2%)
Hyun-Jun (72%)	0.36	X
Lee (28.0%)	X	1.00

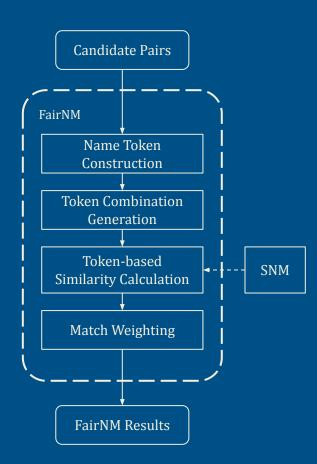
Unweighted Score: 0.68

Weighted Score: $0.53 (\downarrow 0.15)$

FairNM Overview

Modules

- Token-based Normalized Levenshtein Similarity
- 2. Short Name Module (SNM)
- 3. Match Weighting



- 1. Motivation and Contributions
- ^{2.} Data Collection and Insights
- 3. Methodology
- 4. Evaluation
- ^{5.} Conclusion
- ^{6.} Future Work and References

- Performance:
- Fairness:

Goal: Evaluate and balance the trade-off between Performance and Fairness

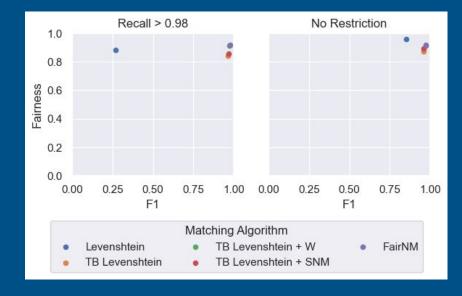
- Performance: F1 score
 - Measured in recall-restricted and unrestricted setups
- Fairness:

Goal: Evaluate and balance the trade-off between Performance and Fairness

- Performance: F1 score
 - Measured in recall-restricted and unrestricted setups
- Fairness:
 - Existing metrics (e.g., Equalized Odds) focus only on recall or precision parity
- Goal: Evaluate and balance the trade-off between Performance and Fairness.

- Performance: F1 score
 - Measured in recall-restricted and unrestricted setups
- Fairness: Novel Metric
 - Existing metrics (e.g., Equalized Odds) focus only on recall or precision parity
 - We propose a new fairness metric combining recall + precision parity. In this metric a score of 1.0 means perfect Fairness between subgroups.
- Goal: Evaluate and balance the trade-off between Performance and Fairness

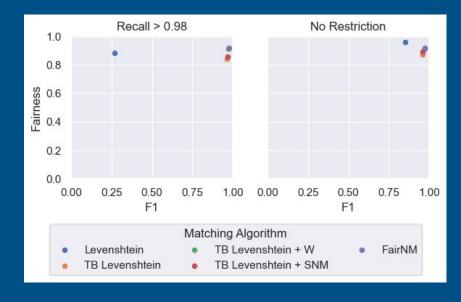
$$1 - \frac{\Delta p + \Delta r}{2} = 1 - \frac{1}{2} \left(\left(\max_{\forall x \in A} p_x - \min_{\forall x \in A} p_x \right) + \left(\max_{\forall x \in A} r_x - \min_{\forall x \in A} r_x \right) \right)$$



■ TB = Token-Based

W = Match Weighting

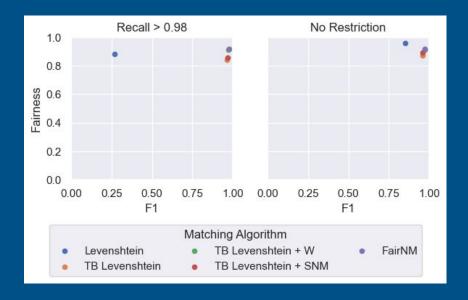
Both F1 and Fairness increase,
 especially under recall
 constraints



■ TB = Token-Based

W = Match Weighting

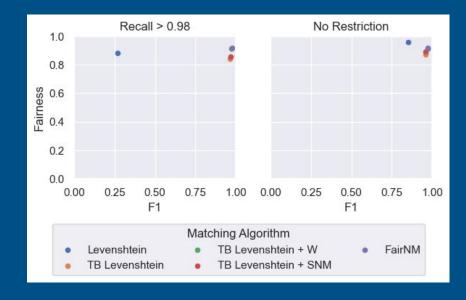
- Both F1 and Fairness increase,
 especially under recall
 constraints
- Each module contributes independently and complementarily



■ TB = Token-Based

■ W = Match Weighting

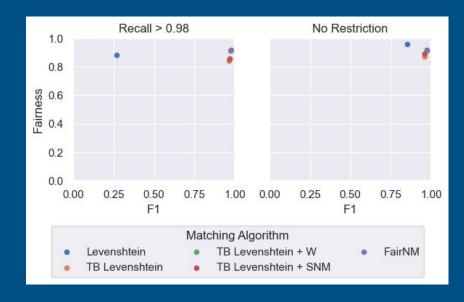
- Both F1 and Fairness increase,
 especially under recall
 constraints
- Each module contributes independently and complementarily
- Match Weighting provides the largest fairness gain, especially in recall-restricted scenarios



■ TB = Token-Based

W = Match Weighting

- Both F1 and Fairness increase,
 especially under recall
 constraints
- Each module contributes independently and complementarily
- Match Weighting provides the largest fairness gain, especially in recall-restricted scenarios
- No Fairness-performance trade-off: FairNM shows both can be improved simultaneously



■ TB = Token-Based

W = Match Weighting

- 1. Motivation and Contributions
- ^{2.} Data Collection and Insights
- 3. Methodology
- 4. Evaluation
- ^{5.} Conclusion
- ^{6.} Future Work and References

Conclusion

- There are **significant** differences in name characteristics across linguistic groups
- The proposed FairNM modules effectively reduce algorithmic bias, each addressing different fairness dimensions
- FairNM performs especially well in **high-recall settings**, where fairness is paramount

- 1. Motivation and Contributions
- ^{2.} Data Collection and Insights
- 3. Methodology
- 4. Evaluation
- ^{5.} Conclusion
- 6. Future Work and References

Future Work

- Explore additional linguistic groups;
- Investigate different "sub-categorization strategies" beyond linguistic origin;
- Validate performance on real-life dataset;
- Benchmark against recent LLM techniques.

References

- Karakasidis, A., Pitoura, E.: Identifying bias in name matching tasks. In: Proceedings of the 22nd International Conference on Extending Database Technology (2019)
- Ambekar, A., Ward, C.B., Mohammed, J., Male, S., Skiena, S.: Name-ethnicity classification from open sources. In: Proceedings of the 15th SIGKDD '09, ACM (2009) In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 49–58. SIGKDD '09, ACM (2009)
- Hosseini, K., Nanni, F., Ardanuy, M.C.: Deezymatch: A flexible deep learning approach to fuzzy string matching. In: Proceedings of the 25th Conference on Empirical Methods in Natural Language Processing. pp. 62–69. EMNLP '20, ACL (2020)

Further Information

- Code is written in Python
- Code is available under: https://github.com/yuanliueur/FairNM
- Contact: yuanliuenzo@gmail.com if you have further questions