FairNM: Fairness in
Name Matchmg




Agenda

Motivation and Contribution
Data and Data Insights
Methodology

Evaluation and Results
Conclusion

Future Work and References

FairNM: Fairness in Name Matching



Agenda

Motivation and Contribution
Data and Data Insights
Methodology

Evaluation and Results
Conclusion

Future Work and References

FairNM: Fairness in Name Matching



FairNM: Fairness in Name Matching

Motivation



FairNM: Fairness in Name Matching

Motivation

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring,
fraud detection) through Entity Matching (EM) techniques



FairNM: Fairness in Name Matching

Motivation

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring,
fraud detection) through Entity Matching (EM) techniques
- Example: can we find this applicant on our blacklist?



FairNM: Fairness in Name Matching

Motivation

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring,

fraud detection) through Entity Matching (EM) techniques
- A common method in EM, called Fuzzy Name Matching, focuses on linking different

variations of the same name



FairNM: Fairness in Name Matching

Motivation

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring,
fraud detection) through Entity Matching (EM) techniques
- A common method in EM, called Fuzzy Name Matching, focuses on linking different
variations of the same name
- Example: Johnny Smith refers to the same person as John Smith



FairNM: Fairness in Name Matching

Motivation

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring,
fraud detection) through Entity Matching (EM) techniques

- A common method in EM, called Fuzzy Name Matching, focuses on linking different
variations of the same name

- Previous work highlighted algorithmic bias in Fuzzy Name matching tasks between
racial groups



FairNM: Fairness in Name Matching

Motivation

- Person names are increasingly used in automated high-stakes decisions (e.g., hiring,
fraud detection) through Entity Matching (EM) techniques

- A common method in EM, called Fuzzy Name Matching, focuses on linking different
variations of the same name

- Previous work highlighted algorithmic bias in Fuzzy Name matching tasks between
racial groups

- However, underlying causes remain unexplored, and no effective mitigation strategies
have been proposed
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Ethnicity:
- Jamal vs Hiroshi
Socioeconomic Status

MOtivation - Alastor vs Destiny

Gender Identity

Names can encode sensitive
information about a person

- Sarah vs Eric
Religious Preference

-  Mohammed vs Ezekiel
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Contributions

- Investigate underlying factors contributing to bias
- Introduce a novel fairness measure and test bench for evaluating algorithmic bias
- Propose mitigation strategies to improve fairness in name matching
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Schematized Overview

Root Node
Data Chinese people Chinese
Colle C t i On by occupation Families
Chinese Taiwanese
- Group names by linguistic e e
origin instead of race — C‘( l \Ch:
- NO pUinc |abe|ed dataset Engmeer < YiMa Hydrologists
for this task
- Bu.I|F a cystom d.ataset via (ZhemBaO) < Chen > DmgHuan
Wikipedia scraping, yors

filtering, and manual Leaf Node
curation
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Root Node

Category:Chinese people 2 120 languages v
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Language # Names  Example Name  Root Category
ata BRI 57,385 Sarah Wigglesworth British
FRA 36,683 Hervé Berville French
o GER 29,286 Magdalena Neuner German
‘ O e C t 1 O n IND 26,146 Sukhbir Sinha  Indian
ITA 21,769 Marcello Farabegoli Italian
RUS 17,801 Alexander Abrosimov Russian
JAP 16,612 Toshizo Nishio Japanese

_ . H . SPA 14,462 Begofia Sanchez  Spanish
G rou p names by I In g ul St IC POR 13,632 Candido Rondon  Portuguese, Brazilian
1cin 1 CHI 13,378 Baofang Jin Chinese
ori g In Instea d Of race ARAB 7,036 Mohamed Al-Fayed Egyptian, Iraq, Saudi Arabian
- NO public |abe|ed dataset KOR 5,960 Seung-hyun Choi South Korean

Total 260,150

for this task

- Built a custom dataset via
Wikipedia scraping,
filtering, and manual
curation
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- Chinese and Korean full 5 i 5 -
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Data Insights

- Chinese and Korean full
names are typically shorter
and have less variation in
name length

- Chinese and Korean names
have lower variation in last
name, but higher variation in
first name
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Methodology

- Simulate real-world Fuzzy Name Matching using a screening list scenario
- Evaluate performance across different linguistic groups by using single origin
screening name lists
- Introduce name variations to create realistic fuzziness in the input
- Original Name: John Smith Doe
- Swapped Tokens: Doe John Smith
- Random Deletion: Jon Smith Doe
- Fat-Finger Error: Jonh Smith Doe
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FairNM: Fairness in Name Matching

Methodology

- Simulate real-world Fuzzy Name Matching using a screening list scenario
- Evaluate performance across different linguistic groups by using single origin
screening name lists
- Introduce name variations to create realistic fuzziness in the input
- Original Name: John Smith Doe
- Swapped Tokens: Doe John Smith
- Random Deletion: Jon Smith Doe
- Fat-Finger Error: Jonh Smith Doe
- Objective: Accurately link each name variation back to its original canonical form
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Token-based

Normalized oo (e Vi
Levenshtein - T
Similarity Enzo 0.00 0.00

Liu 0.00 0.67

- Uses normalized
Levenshtein similarity per Yuan 1.00 0.25
token combination
Handles swapped tokens
and finds optimal alignment
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Token-based

Normalized L -
Levenshtein — -
Similarity o | X X

- Uses normalized L K 0.67
Levenshtein similarity per Yuan 1.00 X
token combination
Handles swapped tokens Average score of 0.84

and finds optimal alignment




Token-based
Normalized
Levenshtein
Similarity

- Uses normalized
Levenshtein similarity per
token combination
Handles swapped tokens
and finds optimal alignment
Also checks for merged
tokens
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YuanLiu
Yuan X
Liu X
YuanLiu 1.00
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Example:

ShOI't Name Yuan Lin vs Enzo Liu, Yuan
Module voan i
(SNM) Enzo X X

>

- Siamese Neural Network Ly A
(SNN) trained on short Yuan 1.00 X
name tokens (<4 char)
Boosts performance for Average score of 0.84

languages with typical short
name tokens




FairNM: Fairness in Name Matching

Example:

ShOI't Name Yuan Lin vs Enzo Liu, Yuan

MOd“le Yuan Lin
(SNM) Enzo X X
- Siamese Neural Network s K 0.23
(SNN) trained on short Yuan 1.00 X
name tokens (<4 char)

Boosts performance for Average score of 0.62
languages with typical short
name tokens
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Ho-young | Lee (25.2%)

Match SR

° ° Hyun-Jun
Weighting I e
Lee (28.0% 1.00
- Weights name tokens using B ) A
Inverse Document
Frequency (IDF) Unweighted Score: 0.68
Reduces emphasize on Weighted Score: 0.53 (V0.15)

matches in common names

M

c Wm1 + Wm2 5
simScore = g — X S1My,

w
m—1 tot
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Evaluation

- Performance:

- Fairness:

- Goal: Evaluate and balance the trade-off between Performance and Fairness
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Evaluation

- Performance: Fl1score
- Measured in recall-restricted and unrestricted setups
- Fairness:
- Existing metrics (e.g., Equalized Odds) focus only on recall or precision parity

- Goal: Evaluate and balance the trade-off between Performance and Fairness
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Evaluation

- Performance: Fl1score
- Measured in recall-restricted and unrestricted setups
- Fairness: Novel Metric
- Existing metrics (e.g., Equalized Odds) focus only on recall or precision parity
- We propose a new fairness metric combining recall + precision parity. In this
metric a score of 1.0 means perfect Fairness between subgroups.
- Goal: Evaluate and balance the trade-off between Performance and Fairness

1 Ap + Ar ] 1 : n :
- ————— — 1 — < ma — 1min ma — mimmrnr
2 2 ‘v’xe}fclpx ‘v’a:éApx Vxe}jlrx ‘v’xg}él v
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Recall > 0.98 No Restriction

Results
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Recall > 0.98 No Restriction

Results

- Both F1 and Fairness increase,
especially under recall
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- Each module contributes _ :
. Matching Algorithm
Independenﬂy and Levenshtein e TB Levenshtein + W
complementa rily TB Levenshtein e 1B Levenshtein + SNM

- Match Weighting provides the
largest fairness gain, especially in Token-Based
recall-restricted scenarios = Match Weighting

- No Fairness—performance Short Name Module
trade-off: FairNM shows both can
be improved simultaneously




Agenda

Motivation and Contributions
Data Collection and Insights
Methodology

Evaluation

Conclusion

Future Work and References

FairNM: Fairness in Name Matching

52



FairNM: Fairness in Name Matching

Conclusion

- There are significant differences in name characteristics across linguistic groups
- The proposed FairNM modules effectively reduce algorithmic bias, each addressing
different fairness dimensions

- FairNM performs especially well in high-recall settings, where fairness is paramount
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Future Work

Explore additional linguistic groups;

Investigate different “sub-categorization strategies” beyond linguistic origin;
Validate performance on real-life dataset;

Benchmark against recent LLM techniques.
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Further
Information

- Code is written in Python
- Code is available under: https://github.com/yuanliueur/FairNM
- Contact: yuanliuenzo@gmail.com if you have further questions
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