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Abstract. Ensuring fairness in automated systems is critical in today’s
data-driven landscape. Prior work has exposed algorithmic bias in pop-
ular name matching systems, particularly affecting names from certain
racial backgrounds, but the root causes and effective solutions remain un-
derexplored. This paper introduces FairNM, a novel system that reduces
bias through token-based similarity scoring, a Siamese Neural Network-
based Short Name Module, and Name Weighting. Using a novel test
bench and fairness metric, we show that FairNM achieves accurate fuzzy
name matching while significantly improving fairness. Its performance is
especially valuable in Web-based contexts requiring high recall and fair-
ness, such as fraud detection, where mismatches can have serious impact.
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1 Introduction

With the rise of machine learning, data-driven algorithms are increasingly used
in high-stakes decisions, such as loans [14] and hiring [15]. A key method in
these systems is Entity Matching (EM), which identifies records referring to the
same real-world entity. Within EM, fuzzy name matching aims to match name
variations caused by formatting differences, typos, or misspellings.

However, names often encode sensitive characteristics like race, ethnicity,
or religion [12], making name-based systems vulnerable to bias. While many
studies compare name matching algorithms [3,4,7,16], fairness has received little
attention. One exception [10] found that popular algorithms perform worse for
names of Asian origin, which was attributed to differences in name length. But,
this work did not explore other linguistic factors or propose mitigation strategies.

This paper addresses those gaps by introducing FairNM, a novel system that
improves fairness in fuzzy name matching without sacrificing accuracy. Unlike
prior studies that classify individuals by race, we group names by linguistic
origin, recognizing that language-based differences (e.g., Chinese vs. Japanese
names) are more meaningful than broad racial categories. We define fairness as
equal treatment across these linguistic groups.

Due to the lack of existing name datasets with language labels, we created
our own, using methods from [1, 17]. The dataset and code are available at:
https://github.com/yuanliueur/FairNM.



The rest of the paper continues as follows. Section 2 discusses data acquisition
and cross-lingual name characteristics. Section 3 details the experimental setup
and fairness metric. Section 4 presents the results and Section 5 the conclusion.

2 Data

This section describes the data used in the paper, including the construction of
the name database and a descriptive analysis. Identifying bias in name charac-
teristics across linguistic origins offers insight into potential algorithmic bias.

2.1 Name Database Generation

Due to the lack of available name databases with linguistic information, we
generated our own data, inspired by previous work in ethnicity classification
[1, 17]. Using a custom Web scraping tool, we collected data from Wikipedia.

Starting from a root category for a specific country on Wikipedia1, we em-
ployed a Breadth-First Search (BFS) algorithm to retrieve all subcategories up
to a depth of four. We then applied filtering criteria to these subcategories, as
outlined below with examples:

1. Contains people: German people by occupation;
2. Contains s of : Members of the German Football Bond;
3. Ends with s: German footballers.

Non-person entries were filtered out. From each country’s subtree, we ex-
tracted names at the leaf level and excluded entries unrelated to the target
language. A schematic of the Chinese example is shown in Fig. 1.

Fig. 1. Web scraping process for Chinese names, with filtered-out entries indicated.

This process was applied to various root categories, resulting in 260,150
names across 13 language groups, as detailed in Table 1.

Most names follow the Western format (first name followed by last name), but
Chinese and Korean names often reverse this order. To standardize formatting,
we swapped name order for these groups, except where a Vowel-Consonant-
Vowel pattern or known compound surname suggested a different structure. For
instance, ‘Jin Baofang’ is reordered to ‘Baofang Jin’, while ‘Xiaolan Bao’ remains
unchanged, as the multiple vowels in ‘Xiaolan’ suggest a first name.
1 The root page for ‘Chinese’: https://wikipedia.org/wiki/Category:Chinese_people.



Table 1. Obtained Wikipedia name database categorized per language with examples.

Language # Names Example Name Root Category

BRI 57,385 Sarah Wigglesworth British
FRA 36,683 Hervé Berville French
GER 29,286 Magdalena Neuner German
IND 26,146 Sukhbir Sinha Indian
ITA 21,769 Marcello Farabegoli Italian
RUS 17,801 Alexander Abrosimov Russian
JAP 16,612 Toshizō Nishio Japanese
SPA 14,462 Begoña Sánchez Spanish
POR 13,632 Candido Rondon Portuguese, Brazilian
CHI 13,378 Baofang Jin Chinese

ARAB 7,036 Mohamed Al-Fayed Egyptian, Iraq, Saudi Arabian
KOR 5,960 Seung-hyun Choi South Korean
Total 260,150

2.2 Data Descriptive Analysis

Two key patterns were identified across language groups in the name database:
differences in name length and name uniqueness. As shown in Fig. 2, most lan-
guages exhibit name lengths between 13 to 18 characters, while Chinese and
Korean names clearly peak at shorter lengths. Name uniqueness also varies sub-
stantially: Korean and Chinese surnames are far less diverse, consistent with
reports that only 288 Korean surnames exist [5] and that the top five Chinese
surnames are shared by 433 million people [18]. In contrast, these languages
show increased variability in the first name.

Fig. 2. Cross-lingual comparison of (left) full name length and (right) percentage of
unique names required to cover database.



3 Methodology

This section describes the experimental setup and the components of the FairNM
algorithm designed to enhance fairness and accuracy.

3.1 Test Bench

We simulate a fuzzy name matching task in which a query name must be linked
to the correct entity within a screening list, where names are artificially modified.
The test database contains 36,000 names (3,000 samples per language group). By
running the test bench with screening lists of different linguistic origins, we can
assess performance discrepancies across language groups. As shown in Fig. 3, the
test bench consists of two steps: a High Recall Filter, which efficiently eliminates
clear non-matches, and a Similarity Calculation step, where similarity scores are
computed for the remaining candidate pairs using both the proposed FairNM
algorithm and the normalized Levenshtein distance2 [11], identified as the best-
performing benchmark in previous works [9, 10].

Fig. 3. Schematic overview of the test bench.

Name fuzziness is introduced through the Name Variation Generator by ap-
plying the variations proposed in [10], extended with swapped name tokens, of
which examples are provided in Table 23.

To pre-filter candidates, we employ an inverted-index n-gram filter (using
padded trigrams). Query and screening names are indexed, and only candidates
with an overlap coefficient greater than 0.5 are retained for similarity scoring.
This approach ensures full recall while substantially reducing computational cost.

2 We use the RapidFuzz Python package: https://pypi.org/project/rapidfuzz/.
3 A fat-finger error swaps a character with its neighboring key on a QWERTY key-

board.



Table 2. Example of output of name variation generator.

Name Variation Output

Full Name Juan de Salamanca
Swapped Names de Salamanca Juan
Random Deletion Jun Cerezo de Salamanca
Fat-finger Error Juan Cerezl de Salamanca

3.2 FairNM

FairNM is a novel name matching solution that improves fairness by combining
three key enhancements, as previously summarized in Fig. 3.

Token-based Similarity Calculation. We adapt a variation of the token-
based approach in [17] to relieve the challenges of handling swapped and merged
tokens. Given two names, we construct all name token combinations, including
merged forms (e.g., matching ‘JuanCerezo’ with both ‘Juan’ and ‘Cerezo’). Each
pair is scored using normalized Levenshtein similarity, and an optimal one-to-one
alignment is computed based on the highest scores. Merged tokens are kept only
if their score exceeds all corresponding individual token matches. The resulting
score is the average of the best-aligned token similarities. A full pseudocode of
the alignment process is provided in Algorithm 1.

To illustrate the working principle, let us consider the matching name pair
(‘Ahmed Mohammed Ahmad’, ‘Ahmad Achmed’) of which the optimal token-
based normalized Levenshtein similarities are shown below.

Ahmed Mohammed Ahmad
Ahmad × × 1.00
Achmed 0.83 × ×

The resulting similarity score is computed by averaging the matched scores,
yielding (1.0 + 0.83)/2 = 0.92. In contrast, the conventional normalized Leven-
shtein similarity would have yielded a score of 0.45, whilst the similarity between
the names can be considered significantly higher.

Short Name Module. Short Name Module (SNM) enhances accuracy in cases
where both name tokens are shorter than four characters, as shorter tokens are
more susceptible to distortion from typographical errors. For these instances,
we employ a Siamese Neural Network (SNN) specifically trained on short-token
similarity (see Appendix A for training details). This module is particularly
effective in reducing fairness disparities for linguistic groups, such as Chinese
and Korean, where shorter names are more prevalent.



Algorithm 1 optimalAlignment
Input: allSim, a dictionary which keys are the location of the assessed token in name1
(e.g., (0, 1) if merged first and second name, etc.) and the values are lists containing
tuples that are sorted on simScore from high to low. The tuples are formatted as:
(token1, token2, location token1, location token2, simScore).

– findNext(token) : Finds next best available match for a token in name1 and adds
it to bestMatch dictionary

1: bestMatch ← {}
2: matchedNames ← {}
3: for all key, value ∈ allSim do
4: token1, token2, loc1, loc2, simScore = first entry of value
5: if token2 /∈ matchedNames.keys then
6: bestMatch[key] = (token1, token2, loc1, loc2, simScore)
7: matchedNames[token2] = key
8: else ▷ If we already found a match for this token2
9: if simScore > bestMatch[key].get(simScore) then

10: findNext(bestMatch[key].get(token1))
11: bestMatch[key] = (token1, token2, loc1, loc2, simScore)
12: else
13: findNext(token1)
14: for all key ∈ bestMatch do ▷ Analyze merged tokens
15: if len(key) > 1 then
16: if sim merged tokens > sim separate tokens then
17: remove separate tokens from bestMatch
18: else
19: remove merged tokens from bestMatch
20: return bestMatch

Match Weighting. Match Weighting aims to increase emphasize on rare names
while reducing focus on common ones. To derive weights, we create an up-
sampled dataset of 50,000 full names per language code. Each name is tokenized,
and the frequency of each distinct token (nt) is counted in this dataset. Hereafter,
the weight (wt) per name token is calculated using ‘inverse document frequency’,
wt = log (N/nt), where N is the total number of distinct name tokens.

During similarity scoring, each matched token pair receives a combined weight
based on the sum of the individual token weights. These combined weights are
normalized by their total sum (wtot), and the final weighted similarity score is
computed as:

simScore =

M∑
m=1

wm1 + wm2

wtot
× simm

where M denotes the number of matched token pairs, wm1 and wm2 are the
weights of the tokens from each name, and simm is the corresponding similarity



score. To illustrate, consider the following example, with token weights shown
in parentheses:

Ho-young (74.8%) Lee (25.2%)
Hyun-Jun (72.0%) 0.36 ×
Lee (28.0%) × 1.0

This results in a weighted score of

0.720 + 0.748

2
× 0.36 +

0.280 + 0.252

2
× 1.0 = 0.53.

Without weighting, the perfect match in the most common Korean surname
‘Lee’ would dominate the score (yielding 0.68). However, applying match weight-
ing appropriately reduces the influence of common tokens, leading to a more
balanced and fair similarity assessment.

A summarizing overview of the proposed FairNM Similarity Calculation is
presented in Algorithm 2.

Algorithm 2 FairNM Similarity Calculation
Input: A name pair containing two full names, where name1 is the name with the
least tokens.

– combGen(name1, name2) performs all required steps up until Token Combination
Generation from Fig. 3;

– SNM(token1, token2) returns SNM token similarity;
– normLev(token1, token2) returns normalized Levenshtein token similarity;
– sortMatch(dict) returns a dictionary where the found matches per token of name1

are sorted from high to low based on their simScore;

1: allComb = combGen(name1, name2)
2: allSim ← {}
3: for all combination ∈ allComb do
4: token1, loc1 = combination[0]
5: token2, loc2 = combination[1]
6: if (|token1| < 4 and |token2| < 3) or (|token1| < 3 and |token2| < 4) then
7: sim = SNM(token1, token2)
8: else
9: sim = normLev(token1, token2)

10: add (token1, token2, loc1, loc2, sim) to allSim
11: sortMatch(allSim)
12: bestMatch = optimalAlignment(allSim)
13: finalScore = matchWeight(bestMatch)
14: return finalScore



3.3 Evaluation Measures

In this section, we discuss the metrics used to assess and compare the perfor-
mance and fairness of the matching algorithms. While performance evaluation
in EM is well-studied, fairness measures specific to name matching are relatively
scarce in literature.

Performance is assessed via F1 scores under two conditions: a recall-restricted
environment (recall > 0.98), relevant to high-stakes applications such as law
enforcement or healthcare, and an unrestricted environment to reflect general
contexts.

Most fairness metrics in machine learning assume binary classification, where
each instance is assigned a positive or negative label [13]. In contrast, name
matching or EM algorithms may return one, multiple, or no matches, making
fairness assessment less straightforward.

Equalized Odds [8], a common fairness criterion, requires equal True Positive
Rates (TPR) and False Positive Rates (FPR) across groups. However, in name
matching, the abundance of true negatives makes satisfying the FPR condition
trivial. As a result, Equalized Odds reduces to requiring equal recall (TPR),
which is insufficient on its own, since many applications also demand equal pre-
cision.

To address this, we propose a stricter fairness measure combining Equalized
Odds and Predictive Parity [6], requiring parity in both recall and precision
across groups. It is defined as:

1− ∆p+∆r

2
= 1− 1

2

((
max
∀x∈A

px − min
∀x∈A

px

)
+

(
max
∀x∈A

rx − min
∀x∈A

rx

))
(1)

Here, ∆p and ∆r represent the largest differences in precision and recall between
any two subpopulations x ∈ A, where A is the set of all groups. A fairness score
near 1 indicates similar model behavior across groups, while larger disparities
yield lower scores.

For example, if an algorithm yields similar precision and recall for Western,
African, and Asian name groups, the fairness score approaches 1. Significant
performance gaps between groups would reduce it accordingly.

4 Results

Figure 4 shows that all three FairNM components improve the F1 score, while
Match Weighting and SNM enhance fairness. Each module contributes individ-
ually, and their combination results in both improved performance and fairness,
especially in recall-restricted environments.

This is remarkable, as improving fairness often comes at the expense of other
performance metrics. For example, fairness-aware decisions in a hiring decision
system, such as adjusting criteria based on race, can reduce bias but may also
lead to the rejection of qualified applicants who would have been approved under
a purely performance-driven approach.



Fig. 4. Impact of FairNM modules (TB = Token-Based, W=Weighted). Dots represent
results for the threshold with maximum harmonic mean between Fairness and F1.

In the recall-restricted setup, the token-based Levenshtein increases F1 but
initially reduces fairness. Match Weighting and SNM mitigate this decline, with
weighting offering the largest improvement. When combined, the modules show
to complement each other, indicating that they tackle different fairness issues.

In the unrestricted setup, fairness drops slightly with token-based Leven-
shtein, but this is largely recovered (< 0.04 loss) when SNM and weighting are
applied. Overall, FairNM shows to be most effective under recall constraints,
which are relevant to high-stakes scenarios where fairness is often critical.

5 Conclusion

This study provides valuable insights into cross-lingual differences in name char-
acteristics and their impact on name matching performance by categorizing per-
son names based on their lingual origin rather than race or ethnicity. The data
descriptive analysis reveals that names of Korean and Chinese origin tend to be
shorter on average and display less variation in family names but more variation
in first names.

A novel test bench architecture is proposed to simulate real-world scenarios
of fuzzy name matching tasks, specifically screening operations. This test bench
facilitates comprehensive testing of name matching across a wide spectrum of
real-life name variations. Additionally, a novel fairness measure is introduced to
analyze the fairness of results in name matching.

Drawing from insights gained in the data analysis and existing research, the
FairNM algorithm is introduced as a novel solution. FairNM adopts a token-
based approach designed to effectively manage challenges posed by missing or
swapped name tokens. Further enhancements, such as the inclusion of SNM
and Match Weighting, are integrated to enhance fairness in the name matching
process.



Benchmarking against the normalized Levenshtein distance, the FairNM al-
gorithm and its individual components demonstrate significant improvements in
both performance and fairness, particularly in recall-constrained environments.
This is particularly relevant as these constrained scenarios typically encompass
high-stakes situations where fairness holds paramount importance.

While this work contributes to the understanding of fairness in the context of
name matching, further research is deemed valuable to enhance this understand-
ing. Specifically, conducting a reassessment using a non-artificial name database
would help validate the proposed method in a real-life setting.
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A SNN Training Setup

The setup of the utilized SNNs is inspired by a previously proposed algorithm
called Deezymatch [9]. SNN consists of two identical artificial neural networks
(i.e., they share their weights and biases) each capable of learning the hidden
representation of a certain input name. Since the work of [2], which focused
on matching location names, strongly resembles our goal, we adopt their best
performing hyperparameters for this research.

To assess the performance of SNN, it is necessary to obtain representative
training and test sets, where the training set can be subdivided in a training and
validation part. The test set is constructed by extracting 3,000 names from each
evaluated language group, specifically for the purpose of executing the previously
presented test bench. Importantly, this test set is not used during the training
process. To train the SNN, a large dataset consisting of name pairs categorized as
either matching or non-matching is required. This dataset is obtained as follows:

1. Sample 50,000 full names, with replacement, from each language code out of
the training set. We opt for a balanced training dataset in terms of language
codes instead of a dataset that represents the original data distribution to
reduce the chance of inherent bias in the training phase.

2. For half of the sampled names, pair each name with one of the four name
variations: full name, swapped names, fat-finger error, or random deletion.
This pairing results in the creation of the ‘matching’ training samples.

3. For the remaining half of the sampled names, ‘mismatching’ training sam-
ples are generated. Half of the samples are linked to a randomly selected
mismatching name, whereas the other half is linked to a mismatching name
with a padded tri-gram overlap coefficient of at least 0.5. This allows the
model to better differentiate between non-matching names that exhibit slight
similarities and those that are distinctly dissimilar.

Following the above steps, we obtain a balanced dataset consisting of 300,000
matching pairs and 300,000 non-matching pairs. This dataset can be further
divided into training (90%) and validation (10%) subsets to facilitate the training
of the algorithm. Note that for the short name module, solely names shorter than
4 characters are sampled.


