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Abstract. Aspect-Based Sentiment Classification (ABSC) models are
increasingly utilised given the surge in opinionated text displayed on the
Web. This paper aims to explain the outcome of a black box state-of-the-
art deep learning model used for ABSC, LCR-Rot-hop++. We compare
two sampling methods that feed an interpretability algorithm which is
based on local linear approximations (LIME). One of the sampling meth-
ods, SS, swaps out different words from the original sentence with other
similar words to create neighbours to the original sentence. The second
method, SSb, uses SS and then filters its neighbourhood to better bal-
ance the sentiment proportions in the localities created. We use a 2016
restaurant reviews dataset for ternary classification and we judge the
interpretability algorithms based on their hit rate and fidelity. We find
that SSb can improve neighbourhood sentiment balance compared to SS,
reducing bias for the majority class, while simultaneously increasing the
performance of LIME.

Keywords: aspect-based sentiment classification · explainable artificial
intelligence · sampling methods

1 Introduction

In today’s world, the amount of opinionated text shared on the Web is growing
at unprecedented speeds. All of this text can be very valuable in gauging the
public’s perception of a given topic and thus allowing a brand to learn more
about their customers to improve an existing product or service [3]. Sentiment
analysis [6] has also been shown to be useful for consumers trying to make
more informed decisions, allowing them to evaluate a given product or service
more holistically, based on the aggregated opinions of many past customers [17].
A subfield of sentiment analysis is Aspect-Based Sentiment Analysis (ABSA)
where the sentiment is computed with respect to aspects of the entity of inter-
est [15]. ABSA comprises two steps: Aspect Detection (AD), which determines
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the aspects [18], and Aspect-Based Sentiment Classification (ABSC), which de-
termines the sentiment related to the previously discovered aspects [1]. We focus
on ABSC. The main downfall of deep learning models for ABSC is their black
box nature. Interpretability algorithms aim to solve this issue.

This paper aims to explore a state-of-the-art deep learning model, used for
ABSC using one interpretability technique and two sampling methods on a
restaurant reviews dataset. [19] introduces the Hybrid Approach for ABSA using
BERT embeddings (HAABSA++), which is the basis of our work through its
back up algorithm, LCR-Rot-hop++ (Left-Centre-Right separated neural net-
work with Rotatory attention repeated for a number of iterations). We focus on
LCR-Rot-hop++ due to its good performance.

We group interpretability algorithms by the taxonomy proposed by [9]. We
split the algorithms into intrinsic or post-hoc, and local or global. We analyse
post-hoc algorithms because an intrinsically interpretable Deep Neural Network
(DNN) would suffer greatly in terms of accuracy. Then, we aim for local inter-
pretability algorithms as our main goal is to explain to an individual the result
produced by the model. In use cases such as these, a global approach may offer
an interpretation which is too vague or even not applicable to the individual
requesting an explanation. Thus, we employ post-hoc, local interpretability al-
gorithms.

Furthermore, the chosen interpretability algorithm should require creating a
local neighbourhood of instances around the prediction it aims to explain. This
allows it to cater better to the instances explained locally, as methods that do
not use a local neighbourhood have difficulties in gaining valuable insight in
individual outcomes. Additionally, the sampling methods should feed the inter-
pretability algorithm with roughly equal proportions of class instances, in our
case, negative, neutral, and positive sentiment opinions. This is important as
otherwise, the DNN becomes biased towards the majority class. Therefore, us-
ing a local neighbourhood and making sure to balance the sentiment proportions
of its instances should increase the performance of the interpretability algorithm.

The central research question is thus “Which sampling method and post-hoc,
local classifier configuration is best suited to increase the interpretability of LCR-
Rot-hop++?”.

We consider one interpretability technique that satisfies our desired prop-
erties: Local Interpretable Model-Agnostic Explanations (LIME) [12]. We in-
troduce two sampling methods that are used by the interpretability algorithm:
Similarity-based Sampling (SS), which is similar to the method introduced by
[12], and Similarity-based Sampling with balanced sentiment (SSb), which is an
extension of SS. Our goal in this paper is to Sample and Interpret LCR-Rot-
hop++ (SI-LCR-Rot-hop++), in order to gain insight into the model predic-
tions.

SS works by changing a given percentage of the words in the initial sentence
x with other words in the embedding space that are similar (i.e., words between
which the distance in the embedding space is relatively small). SSb filters the
neighbours of x based on the sentiment they show when being fed into LCR-
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Rot-hop++, aiming to get as close as possible to creating neighbourhoods that
are of equal size for each of the three labels.

Our first contribution stands in increasing the class balance using SSb and
a tuned version of SSb. The second contribution stands in improving the per-
formance of LIME, especially as we perform sensitivity analysis on a key hyper-
parameter of our sampling methods. We gain a better understanding of what
factors have a positive impact on LIME, allowing us to optimise its results, si-
multaneously improving its neighbourhood class balance and performance. The
code for our paper is written in Python 3.6.5 and made publicly available on
GitHub, https://github.com/VladMiron00/SI-ABSA.

This paper is structured as follows. Section 2 discusses the development of
our base model, as well as our interpretability technique, positioning them in the
literature. Section 3 shows the characteristics of our data. Section 4 presents in
more detail the base deep learning model, sampling approaches, interpretability
algorithm, and evaluation measures used. Section 5 discusses the results ob-
tained by our sampling approaches, interpretability algorithm, and performs
sensitivity analysis on an influential hyperparameter of our sampling methods
to improve the class balance and performance of our interpretability algorithm.
Lastly, Sect. 6 gives our conclusion and suggestions for future work.

2 Related Works

This section showcases the latest developments regarding the topics researched.
Subsection 2.1 reviews the current literature surrounding ABSC. Subsection 2.2
presents adjacent work regarding the black box interpretability algorithms used.

2.1 Aspect-Based Sentiment Classification

Aspect-Based Sentiment Analysis (ABSA) aims to capture the sentiment of as-
pects discussed in text [15]. It includes the steps of Aspect Detection (AD)
responsible for finding the discussed aspects [18] and Aspect-Based Sentiment
Classification (ABSC) responsible for determining the sentiment concerning the
previously discussed aspects [1]. We focus on ABSC and assume the aspect to
be given.

In previous work, [16] took an ontology approach to ABSC. Observing how
the ontological approach failed from time to time in detecting the sentiment,
researchers proposed using a deep learning model as a backup, employing a
hybrid approach to solve the shortcomings of ABSC, also known as the Hybrid
Approach for ABSA (HAABSA) [20]. The first version of what would become
the backup DNN of HAABSA was introduced by [21] under the name of LCR-
Rot, which stands for Left-Centre-Right separated neural network with Rotatory
attention. This DNN splits the sentence into the target (which is the centre or
the aspect) and its left and right contexts, assigning weights to the words in the
different parts of the sentence based on how important they are with regard to
the target.
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Then, [20] applied an improved version of LCR-Rot, LCR-Rot-hop, which
iterates over the rotatory mechanism of LCR-Rot multiple times to ensure con-
sistency. The latest HAABSA extension is presented by [19] as LCR-Rot-hop++,
which improves LCR-Rot-hop by adding a hierarchical attention layer to DNN.
Furthermore, LCR-Rot-hop++ changes the context-independent word embed-
dings of LCR-Rot-hop to the context-dependent BERT embeddings. This allows
LCR-Rot-hop++ to better deal with word polysemy.

2.2 Black Box Interpretability Algorithms

Based on the current literature we note that the interpretability of deep learning
attention models for ABSC has not been studied to a large extent [2], [4], [14].

That said, diagnostic classification has been tried on HAABSA, namely with
the contribution of [8]. This implementation used LCR-Rot-hop as the backup
for the ontological approach. Its findings show that context representation is the
main factor in determining the relations between the target and other words
in the sentence. Furthermore, the performance of the model determining the
sentiment value shown concerning the target does not greatly vary along with
the 10 iterations (hops) that were implemented. [5] conducts a similar study and
obtain comparable results, using LCR-Rot-hop++ instead of LCR-Rot-hop.

An interpretability algorithm which satisfies our desired characteristics is the
Local Agnostic attribute Contribution Explanation (LACE) [10]. This rule-based
algorithm brings interpretability to a prediction by analyzing the joint effect of
subsets of features that can be formed out of the initial feature pool on the
model outcome. This model is local because the prediction to be explained is in
the vicinity of the feature value subsets chosen. We eliminate LACE from our
analysis because it uses an ad-hoc method to generate its classifiers.

Another interpretability algorithm that fits our desired properties was intro-
duced by [13], being named Anchor. Anchor is a rule-based method that works
by selecting a set of instances in the neighbourhood of the instance we want to
explain. It assesses which features in the set of local instances are most influen-
tial. We eliminate Anchor from our analysis because of its slow convergence.

[7] proposes SHAP, a method that works using the principles of cooperative
game theory. SHAP calculates a coefficient that shows how important a feature
is for each subset of features it can be included in and then averages out the
importance coefficient over all possible subsets. We exclude this approach from
our analysis because it does not make use of a neighbourhood sampling method.

3 Data

The data used in this paper follows the preprocessing rules and manipulations
of [19], using the same SemEval 2016 Task 5 Subtask 1 Slot 3 dataset [11].

The descriptive statistics of the sentences remaining after preprocessing are
presented in Table 1, where train and test data represent the basis of our anal-
ysis. The sentences which could not be classified by the ontology approach are
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Table 1: Sentiment labels within the filtered SemEval 2016 datasets.
Dataset Negative Neutral Positive Total

Freq. % Freq. % Freq. % Freq. %

Train data 489 26 72 3.8 1319 70.2 1880 100
Test data 135 20.8 32 4.9 483 74.3 650 100
Rem. test data 82 33 22 8.9 144 58.1 248 100
Used test data 8 32 2 8 15 60 25 100

collected in “remaining test data”, which is the dataset that LCR-Rot-hop++
should run on as a backup for the ontology. To avoid long run times (as each
instance requires its own local model) we create a smaller dataset that emulates
“remaining test data”. Thus, “used test data” aims to have similar sentiment pro-
portions to “remaining test data”, while trimming down the number of instances
from 248 to 25. The dataset “used test data” is fed in all LCR-Rot-hop++ runs.

As the positive class is present in a clear majority of instances, it causes the
ontological approach to disproportionately classify incorrectly the neutral and
negative instances within the test sample. This created bias for the majority class
explains why neutral and negative sentiment sentences increase in proportion
within “remaining test data”.

4 Methodology

In this section, we present the methods behind the analysed ABSC model. Sub-
section 4.1 presents this paper’s chosen model for ABSC, LCR-Rot-hop++. We
explore LCR-Rot-hop++ using different sampling methods applied on the in-
terpretability algorithm. Subsection 4.2 shows the sampling methods used by
our interpretability algorithm. Subsection 4.3 discusses the used interpretability
algorithm. Lastly, Subsect. 4.4 presents evaluation measures for the sampling
methods and interpretability algorithm.

4.1 LCR-Rot-hop++

As [19] describes, LCR-Rot-hop++ splits the input (a sentence), into three parts:
the left context, the centre, and the right context. The centre is the aspect target
value of the sentence, having T words, where T may be larger or equal to 1.
A sentence may look like “this restaurant is amazing”, where “this” is the left
context, “restaurant” is the target, and “is amazing” is the right context. These
words are then embedded using BERT, a method based on transformers.

Next, three Bidirectional Long Short-Term Memory (Bi-LSTM) models are
used, each Bi-LSTM corresponding to a different part of the sentence. The system
consists of four parts: the left and right contexts which are used to obtain one
target representation for the left context and another target representation for
the right context, and the two target representations which are used to produce
the left and right context representations. The rotatory attention mechanism
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is continuously used to change the representation of the different parts of the
sentence for the hierarchical attention mechanism, which takes them as input
and weights them. After attaining these four weighted representations, LCR-
Rot-hop++ proceeds to feed them back into the rotatory attention mechanism
and weigh them again using the hierarchical attention mechanism for the desired
number of iterations.

After the last rotation, the final representations of the four parts are used as
input for the Multi-Layer Perceptron (MLP). The MLP uses a softmax function
to output the aspect-level sentiment predictions.

4.2 Sampling Methods

As the “S” in SI-LCR-Rot-hop++ suggests, the sampling methods are a key
part of our paper. Their existence is required for the approach of LIME, as it is
based on creating a local neighbourhood around the prediction x ∈ X (X is the
set of instances) that it aims to explain. The neighbourhood it creates is denoted
as Zx, where z ∈ Zx is a perturbed sample, being similar to x in many regards,
except for a couple of features which are changed. The feature changes refer to
swapping one or more words f from the original sentence x with other words
that are similar out of the set of F features which compose the used SemEval-
2016 restaurant reviews datasets. We create local neighbours by changing words
(features) only in the left or the right context of the original sentence x.

Since a sentence x is originally represented as a sequence of word embeddings,
we change its format to input it into our algorithms. We achieve this by using the
modified x′ instances, which are a binary representation of x indicating which
features f ∈ F are contained within the sentence x, x′ ∈ {0, 1}|F |.

Algorithm 1 shows how interpretability algorithm mx (in our case LIME)
functions for any given instance x ∈ X. The explanation that algorithm mx

provides for x is denoted ξm(x). The neighbourhood size Zx is denoted as nx.

Algorithm 1 Using mx to explain prediction of b(x)

Arguments of method: Black box model b, interpretation model mx, instance x ∈ X, desired
neighbourhood size nx

Z′
x ← ∅

for i ∈ {1, 2, ..., nx} do
z′
i ← apply sampling method on(x)

Z′
x ← Z′

x ∪ z′
i

end for
ξm(x)← mx(Z

′
x, b)

return ξm(x)

The size of the neighbourhoods created by the Similarity-based Sampling
method (SS) and the Similarity-based Sampling method with balanced senti-
ment (SSb) differ, as SS creates neighbourhoods of 5000 local instances, while
SSb trims down the initial, larger, neighbourhood created by SS to a balanced
neighbourhood of 150 perturbations for each instance x.
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4.2.1 Similarity-based Sampling Method. LIME needs to have a neigh-
bourhood of local instances generated around an input instance. The Similarity-
based Sampling (SS) method is similar to that of [12]. It works by analysing
the embedding space for each word w1 in sentence x and finding another similar
word. The first step in this task is assigning a POS tag to the elements of set F ,
consisting of all the different words in the SemEval-2016 datasets. The possible
tags are noun, verb, adjective, adverb, adposition, and determiner. Assuming
the same POS tag for w1 and w2, the distance between the 2 words is calculated
by the formula:

D(w1, w2) = 1− w1 · w2

||w1||||w2||
. (1)

Algorithm 2 generates a local instance z′ for any x ∈ X via SS. We transform
the local instance z to attain the binary representation of the instance, z′.

Algorithm 2 Using SS to generate a local instance z′ for instance x
(apply SS(x))

Arguments of method: instance x ∈ X
z ← ∅
for w1 ∈ x do

change boolean← change function(change probability)
if change boolean is True then

distances← ∅
for w2 ∈ F do

distances← distances ∪D(w1, w2)
end for
top n words← pick top n words(distances)
z ← z ∪ picking algorithm(top n words)

else
z ← z ∪ w1

end if
end for
z′ ← transform(z)
return z′

Algorithm 2 changes the words in the left and the right contexts of the
original instance x with other words in the dataset which are similar. It iterates
through each word w1 ∈ x, deciding if it has to replace said word or not.

A higher change probability suggests that more words in any given sentence
x are going to be replaced with other words from the dataset. If the decision is to
not change the current word in the sentence, the perturbed instance z receives
the original word w1. If the decision is to change the current word, we start
this process by calculating the distances between word w1 and all of the other
words in its embedding space, words contained in F . Note that the original word
w1 is included in the pool of words which may be chosen for its replacement,
meaning that a change probability of 100% does not guarantee that all words
in all perturbations are different to the ones in the original instance.



8 V. Miron et al.

Next, we create the ranking top n words, where words that are closer to
w1 rank higher. We need to pick out one word from top n words. This ranking
shows which words are closest to w1, assigning a probability to each word.

Said probability is decided by the picking algorithm, which is set for a
weighted pick. The weight is given based on the ranking, where words closer
to the first position in the ranking receive a higher weight and are thus more
likely to be picked. We consider the word chosen a suitable replacement for w1

in sentence x as it is contextually similar and grammatically identical to w1.
After iterating through the words in x we attain the perturbed sentence z,

which we transform into binary format and return as z′, that is output.

4.2.2 Similarity-based Sampling Method with Balanced Sentiment.
Similarity-based Sampling method with balanced sentiment (SSb) builds on top
of SS by aiming to solve its main issue. Because SS creates local instances for x ∈
X by replacing words in x with other similar words, the created neighbours are
bound to be similar to x, and thus to get the same label as the original instance.
Since the original dataset contains a clear majority of positive labelled instances,
this sentiment distribution is likely to carry over to the local instances that SS
creates, possibly affecting the performance of the interpretability algorithms due
to the bias that class imbalance creates for the majority class.

SSb aims to solve this issue and provide LIME with a more balanced set of
instances to train on, achieving this by taking into account the sentiment of the
neighbours created when choosing whether to keep them or not (Algorithm 3).

Algorithm 3 Using SSb for LIME to create a balanced neighbourhood Zb′
x for

instance x
Arguments of method: instance x ∈ X
Zx ← ∅
Zb

x ← ∅
M ← 0
SS neigh size← 5000
SSb neigh size← 150
while M < SS neigh size do

z′ ← apply SS(x)
z ← transform(z′)
Zx ← Zx ∪ z
M ←M + 1

end while
neighs sentiments← get sentiments(Zx)
chosen perturb← get balanced perturb(neighs sentiments, SSb neigh size)
for z ∈ Zx do

if z ∈ chosen perturb then
Zb

x ← Zb
x ∪ z

end if
end for
Zb′

x ← transform(Zb
x)

return Zb′
x

Zb
x is the balanced neighbourhood of instance x. This neighbourhood is ob-

tained by filtering the original, larger, neighbourhood of Zx. Zx is created using
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Algorithm 2 (called by apply SS(x)) and it contains SS neigh size (5000 in this
paper) perturbations. In SSb, we trimmed down the neighbourhood size of SS
to a balanced, smaller, neighbourhood of SSb neigh size (150) perturbations.

We obtain the unbalanced neighbourhood of SS neigh size instances by it-
eratively applying the SS algorithm and saving its output. Then, we run LCR-
Rot-hop++ to obtain the sentiment predictions for each perturbation created
for instance x, using the function get sentiments(Zx). We store the results in
a counter vector, neighs sentiments, which shows how many perturbations of
each sentiment correspond to an instance x. This vector is then fed into the
get balanced perturb() function along with the balanced neighbourhood size to
determine how many perturbations of each sentiment we should keep. Ideally, for
an original neighbourhood of 5000 instances and a balanced neighbourhood of
150 instances, we should have at least 50 perturbations of each of the three sen-
timents in the original neighbourhood. This would allow us to obtain a balanced
neighbourhood of roughly 33.3% of each sentiment.

Last, we iterate through the original set of perturbations Zx and pick out
based on the indexes saved in chosen perturb the local instances that we add to
the balanced set Zb

x. We return this set of neighbours in binary format.

4.3 LIME

This section discusses the second component of SI-LCR-Rot-hop++, our inter-
pretability method, namely LIME [12]. LIME is a popular model-agnostic in-
terpretability algorithm which samples instances in the neighbourhood of x and
applies a linear approximation to said instances to attain a model that performs
similarly on a local level to the original black box.

For our paper, we are dealing with a ternary classification problem with
the classes K = {−1, 0, 1}, corresponding to negative, neutral, and positive
sentiments, respectively. The underlying interpretable model g is log-linear, as
the method used is the multinominal logistic regression. It works by training 3
(|K|) binary classification models g(k)(x) for each instance x ∈ X, corresponding
to the 3 combinations possible when you consider one of the |K| classes, k, as
the benchmark and you group the other 2 classes under kc. Its formula is:

g(k)(x′) = ln(Pr[b(x) = k|x]) = β
(k)
0 +

∑
j∈F

β
(k)
j x′j − ln(L). (2)

The binary form representation of the instance we aim to explain is x′. The
interpretable model computes the natural logarithm of the probability that the

black box model classifies x as the sentiment k (k ∈ K). β
(k)
j with j ∈ F

represents the marginal effect of feature j on the binary sentiment classification

of x. L is the normalization term, explicited as
∑

k∈K eβ
(k)x′

with β(k) denoting

the vector that contains the set of all coefficients β
(k)
j with j = {0, 1, ..., |F |}.

We can draw interpretability insight from these marginal effects, with the
mention of keeping the number of marginal effects chosen limited. We select a
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maximum of S features with the highest influence to be included in the inter-
pretability model. The influence of feature j (ej) is calculated as the sum of

the absolute marginal effects of feature j on classes k ∈ K, ej =
∑

k |β
(k)
j | with

k = 1, 2, 3.
The interpretation brought by LIME stands in the set S of marginal effects,

corresponding to the top |S| out of |Fx| most influential features of Fx (Fx being
the set of words in sentence x). To determine this set of marginal effects we apply
a weighted multinominal logistic regression trained on Zx according to Equation
2. The neighbourhood of x, Zx, is generated via SS or SSb and the weights
attributed to the local instances included in the neighbourhood depend on the
proximity of the perturbations z′ to x, πx, which is defined by an exponential
kernel, πx(z) = exp(−D(x, z)2/σ2). σ is the width of the kernel and D(x, z) is
the distance function applied on the word embeddings of instances x and z.

4.4 Performance Evaluation

Subsubsection 4.4.1 presents an instance evaluation measure for the sampling
methods picked and Subsubsect. 4.4.2 shows evaluation measures for LIME.

4.4.1 Measure for the Sampling Methods. As previously discussed, achiev-
ing balanced labels within the neighbourhoods created using SS and SSb is im-
portant in training an unbiased model.

One way to quantify the degree of overall balance within our neighbourhoods
is by computing the entropy, calculated as follows:

Entropy = −
∑
k

p(k) log2 p(k), (3)

where p(k) is the proportion of sentences labelled as k ∈ K. The higher the
entropy, the better the balance of sentiments, as the highest entropy value is
achieved when roughly 33.3% of the sentences are of each sentiment.

4.4.2 Measures for LIME. The first performance measure is the hit rate,
which shows how often the interpretable modelmx, trained in the neighbourhood
of instance x, and the black box model b give the same prediction for a given
instance x ∈ X. It is calculated as the number of times b and mx match their
predictions for x ∈ X over the cardinality of X (X being the set of sentences we
create neighbourhoods for). This indicates that a larger hit rate is better.

Another quantitative performance measure is the fidelity, which shows how
often the interpretable model mx and the black box model b give the same
prediction for a local instance in Zx. It is calculated as the number of times b
and mx match their predictions for all instances x and their perturbations over
the cardinality |Zx| ∗ |X|. A larger fidelity value is better.

A high value is needed for both the hit rate and fidelity to ensure that the
interpretability model is true to the original black box. To judge the balance
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Table 2: Sentiment proportions given the sampling methods.
SI Comb. Negative Neutral Positive Entropy

Freq. % Freq. % Freq. % Value

SS for LIME 42737 34.2 410 0.3 81853 65.5 0.95
SSb for LIME 1219 32.5 221 5.9 2310 61.6 1.2

between the hit rate and the fidelity we propose to use the harmonic mean
of the two. This measure is used as a proxy for the overall performance of the
configuration ran, with a higher value being better. The formula for the harmonic
mean in our case is:

Harmonic Mean =
2

1
Hit Rate + 1

Fidelity

. (4)

5 Results

In this section we present the results of our proposed method evaluation. Subsec-
tion 5.1 evaluates our proposed sampling methods with regards to the sentiment
proportions created. Subsection 5.2 compares the hit rate and fidelity achieved
by LIME under different sampling methods. Subsection 5.3 performs sensitiv-
ity analysis on a key hyperparameter of our sampling methods to improve the
tuning of SSb and the performance of LIME using SSb.

5.1 Sampling Methods

The results in Table 2 correspond to LCR-Rot-hop++ classification aggregated
over the 25 instances x ∈ X from “used test data” and their respective neigh-
bours. The sampling methods need to be run for LIME, which gets fed 5000
local instances for each sentence x for SS and 150 local instances for SSb. The
change probability is set to 50%.

Table 2 shows how SSb impacted the proportions of sentiment labels for
LIME compared to SS. The number of negative and positive labelled sentences
gets marginally decreased, while the neutral category is increased almost twenty
times in frequency (from 0.3% to 5.9%). Thus, the entropy increases from 0.95
under SS to 1.2 under SSb, showing the overall improvement in label balance.

5.2 Interpretability Algorithms

To find the best sampling method configuration for LIME, we measure the hit
rate and fidelity, as shown in Table 3. We calculate the harmonic mean to judge
the overall performance of a given configuration.

Looking at the harmonic mean of the hit rate and the fidelity, we notice SSb
performing better than SS. The reduced sample used, containing 25 out of the
248 sentences, may be the reason for values of 100% for the hit rate.
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Table 3: Hit rate and fidelity of LIME given the sampling methods.
SI Combination Hit Rate Fidelity Harmonic Mean

% % %

LIME with SS 100 90.1 94.8
LIME with SSb 100 91.1 95.4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0

20

40

60

32.1 33.5 34.3 32.6 32.5 31.2 31.7 31.1 32.1 30.6

1.7 4 4.5 5.9 5.9 7.1 7.1 7.2 7.7 7.9

66.2 62.5 61.2 61.5 61.6 61.7 61.2 61.7 60.2 61.5

10.2 11.4 11.6 12 12 12.3 12.3 12.3 12.5 12.4

Negative Neutral Positive Entropy × 10

Fig. 1: Sensitivity analysis of SSb for the sentiment distribution under LIME, x-axis
shows the value of change probability in presented run.

5.3 Sensitivity Analysis

In the previous sections, we find that SSb is a useful extension, being able to
improve both the class balance, measured by the entropy, and the hit rate and
fidelity judged jointly using the harmonic mean. We are now interested if we are
able to bring a further beneficial effect to our interpretability algorithm by itera-
tively altering an influential hyperparameter, change probability, with the intent
of finding out what value brings the best results. We use change probability with
values from 10% to 100% with 10% increments for LIME with SSb. We do not
perform this analysis for SS because we have observed how it underperforms
both in terms of class balance and performance measures compared to SSb.

Figure 1 shows an increasing trend for the class balance of LIME as the
change probability shifts from 10% to 90%, where it achieves its peak entropy
of 1.25. The results up to the run using a 90% change probability show that
altering the original sentence x to a larger extent leads to neighbouring sentences
that are more likely to receive labels different from the label of x (more diverse).

The unexpected result is in the last run, using a probability of changing
the words of 100%, where we notice a slight decrease in the balance of senti-
ments compared to the run using 90%, as entropy drops from 1.25 to 1.24. It
seems that as the hyperparameter of interest reaches high values, the balance
of sentiments becomes a matter of chance. Therefore, it is possible that as the
change probability exceeds 90%, the impact on the balance of sentiments be-
comes unpredictable, as it may improve or not across runs or datasets.

Figure 2 shows the impact of the varying change probability on the fidelity
and hit rate of LIME, measures which are summed up using the harmonic mean.
There is a clear up trend in the performance of the models as the mentioned
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Fig. 2: Sensitivity analysis of SSb for the quantitative measures of LIME, x-axis shows
the value of change probability in presented run.

hyperparameter increases in value. Thus, a more diverse neighbourhood improves
performance. A peak harmonic mean of 96.2% is reached for a change probability
of 70%.

One interesting observation regarding Fig. 2 concerns the fact that a trade
off between the hit rate and the fidelity appears as the probability to change a
feature increases. This is to be expected as higher probabilities of changing a
word imply a more diverse set of neighbours in terms of the range of vocabulary.
Thus, as the sentences in the neighbourhood Zx start to differ more from x, LIME
gets less trained to recognize and correctly classify x, reducing the hit rate. At
the same time, LIME gets used to training on a broader range of neighbours,
recognizing the varying sentiments they have, leading to an increase in fidelity.

Another interesting observation about Figure 2 is that the benefit of increas-
ing the word replacement probability ceases to exist as the probability to change
a word reaches or exceeds 80%. Although more word replacements create more
diverse sentences and more balanced label proportions, from about 80% word
replacement probability onward, the perturbed sentences start to not make as
much grammatical or contextual sense as before.

For example, given a word replacement probability of 100%, the sentence
“the owner is belligerent to guests that have a complaint.” (where “owner” is the
target) turned in one of the perturbations into “an owner was belligerent about
drinks which use the disappointment.”. In contrast, for a change probability of
50%, one perturbation looked like “this owner is belligerent to people that make
a request.”. This is just an anecdote, but it goes to show that using high feature
changing probabilities risks creating neighbours which are not representative
of a real review left by a customer, reducing the performance obtained by the
interpretability algorithm.

To conclude on our results concerning LIME, it seems that in our runs a
change probability of 70% is optimal, as it reaches the best value for the har-
monic mean, while drastically improving sentiment balance compared to SS. To
be exact, the class balance measured by the entropy increases from 0.95 under
SS to 1.23 under tuned SSb. Further, the harmonic mean of the hit rate and the
fidelity increases from 94.8% under SS to 96.2% under tuned SSb.
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6 Conclusion

In this work, we propose SSb, an extension of a sampling method (SS) to im-
prove the balance of sentiments of the sentences that the interpretability al-
gorithm (LIME) uses. We further improve the performance of LIME by per-
forming sensitivity analysis on a key hyperparameter for the sampling methods,
change probability. We measure sentiment balance using the entropy and the
model performance using the harmonic mean of the hit rate and fidelity. We find
optimal results by setting the change probability at 70% when running SSb.
This configuration yields an increase in the entropy (and thus in the class bal-
ance) from a value of 0.95 under SS to 1.23 under tuned SSb. The harmonic
mean increases from 94.8% under SS to 96.2% under tuned SSb. Thus, we man-
age to find a configuration that improves both the class balance and the model
performance simultaneously for LIME.

A possible future research opportunity lies in further improving the method
of balancing sentiment proportions of the perturbations. This may be achieved
by using both BERT embeddings and sentiment-aware BERT embeddings. The
sampling method may replace a word in sentence x only with another word that
is close in the BERT embedding space (being a contextually feasible replace-
ment) and far in the sentiment-aware BERT embedding space (increasing the
chance that the replacement will change the original sentiment label attributed
to the sentence). This way, we will build on purpose rather than by chance per-
turbations which are not only suitable neighbours given the context but also
diverse in sentiment.
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