Weakly-Supervised Sentence-Based Aspect Category and
Sentiment Classification

Olaf Wallaart?, Flavius Frasincar®*, Finn van der Knaap?

¢ Erasmus University Rotterdam, PO Box 1738, 3000 DR, Rotterdam, the Netherlands

Abstract

Sentiment analysis extracts the sentiment of content creators, enabling users to easily gain valuable insights
from such data. Most existing methods rely on supervised learning approaches using labeled data. However,
the retrieval of such labeled training data is difficult and expensive, especially for new domains and/or
languages. This work focuses on simultaneously detecting aspect categories and sentiment polarities for a
given sentence in a weakly-supervised setting. Two methods are proposed that combine an unsupervised
labeling algorithm with a neural network architecture. The first proposed two-step model (SB-ASC) takes
seed sentences as input for the labeling algorithm. By leveraging the power of pre-trained Sentence-BERT
embeddings, the method is able to understand the contextual meaning of sentences to create a high-quality
labeled dataset. This dataset is used by a class imbalance-robust BERT-based neural network that jointly
learns latent features of aspect categories and the corresponding sentiment. The second proposed method
(WB-ASC) uses the same neural network structure but takes seed words instead of seed sentences as input
for the labeling algorithm. We conclude that SB-ASC outperforms WB-ASC as well as baselines and state-of-
the-art weakly-supervised methods for aspect sentiment detection, achieving F1 scores for aspect category
detection of 71.35%, 86.99%, and 73.86%, and F1 scores for sentiment classification of 89.24%, 89.98%, and
75.58% for the SemEval 2016 restaurant-5, restaurant-3, and laptop datasets, respectively. Furthermore,
using domain-specific contextual language models boosts performance.

Keywords: Aspect-based sentiment analysis, Weakly-supervised learning, Neural network, Sentence-BERT,
Focal loss

1. Introduction

The amount of unstructured data generated by users on the Web is growing, with the global amount of
digital data predicted to exceed 175 zettabytes by 2025 [1]. With this trend, the importance of techniques to
structure, analyze, and interpret unstructured data continues to grow. A relevant source of unstructured data
for organizations, but specifically for retailers, is digitally retrieved customer review data [2, 3, 4]. Reviews

are highly relevant for retailers as they entail information about customer satisfaction with respect to existing

*Corresponding author; tel: +31 (0)10 408 1340; fax: +31 (0)10 408 9162
Email addresses: olafwallaartQgmail.com (Olaf Wallaart), frasincar@ese.eur.nl (Flavius Frasincar),
573834fk0student.eur.nl (Finn van der Knaap)

Preprint submitted to Knowledge-Based Systems March 3, 2025



services and products [5]. It also allows for a more targeted market segmentation and service development [6].
For small companies, it might be possible to obtain their customers’ opinions manually. However, analyzing
huge amounts of review data becomes labor-intensive and time-expensive for large companies. Sentiment
analysis is a Natural Language Processing (NLP) sub-task that aims to extract the sentiment and opinions in
a given piece of text and combines this information into useful results for companies, researchers, and users
[7].

In practice, however, one might not only be interested in the overall sentiment but also in someone’s
sentiment with respect to various aspects. Aspect-Based Sentiment Analysis (ABSA) [8] takes into account
this more fine-grained approach by identifying people’s sentiments towards specific aspects. Despite being
more difficult, ABSA yields more in-depth results. ABSA consists of three sub-tasks: (1) Opinion Target
Extraction (OTE) aims to identify aspect terms within a given piece of text, (2) Aspect Category Detection
(ACD) helps in identifying the topics or categories debated in opinionated texts and can be used to connect
found aspect terms to predefined aspect categories, and (3) Sentiment Classification (SC) detects the sentiment
towards the found aspects. This research focuses on simultaneously performing two of the three tasks, namely
ACD and SC, which is also referred to as Aspect-Sentiment Detection (ASD). ACD and SC are usually done
sequentially. However, both classification tasks can benefit from each other if they are trained simultaneously
[9].

Supervised ABSA algorithms have achieved high performance on evaluation tasks [10, 11, 12]. However,
obtaining such labeled training sentences is difficult and expensive, especially for new domains and/or
languages [13]. To tackle this issue, weakly-supervised neural models only require minimal input and have
shown great potential, especially methods that only require a domain-specific set of predefined keywords for
each aspect/sentiment [9, 14]. Yet, these methods also have their shortcomings, for example, Bidirectional
Encoder Representations from Transformers (BERT) [15] is used by Kumar et al. [14] to create semantically
coherent class vocabularies which are later used to label sentences. However, BERT does not leverage the full
semantic information of a sentence. To address the above limitation, we propose to leverage Sentence-BERT
(SBERT) [16] to directly create semantically-relevant sentence embeddings. Given a corpus of documents
containing sentiment expressions, we develop a classifier for the aspect-sentiment pair that is present in
a sentence (we assume that only one aspect is present in a sentence), such that we can output its aspect
category and corresponding sentiment label. To achieve this, we perform ASD without using labeled datasets.
The only input required by the user is a small set of domain-specific seed sentences (or seed words) for each

aspect and/or sentiment. We formulate the following research question:

Can we improve weakly-supervised ASD using domain-adapted context-aware sen-

tence embeddings?

Thus, we leverage the power of domain-adapted context-aware SBERT embeddings [16] and combine

this with a semi-supervised joint neural network structure based on BERT to predict aspect and sentiment



simultaneously. Creating an algorithm that classifies aspect and sentiment simultaneously can lead to
better results and a more accurate classification [9]. Our proposed solutions are made publicly available at
https://github.com/ofwallaart/SBASC.

The contributions of this work can be summarized as follows:

e We propose an algorithm to perform weakly-supervised ASD. First, we create a labeled training
dataset from a large unlabeled dataset by assigning aspect and sentiment labels using domain-adapted
context-aware SBERT embeddings [16]. To this end, we compute the cosine similarity between the seed
sentences and unlabeled sentences to assign the most probable aspect and sentiment labels to each
sentence. In the second step, a BERT-based neural network is trained to further improve aspect and

sentiment classification by learning latent features from the generated labeled dataset.

o We experiment with a loss function called focal loss [17], which is able to handle class imbalance, an
often occurring feature in ABSA datasets, without considering the class distribution. A comparison is
made with a model that uses a noise-robust loss function called Generalized Cross Entropy (GCE) [18]

to see if the performance of existing methods can be further improved by altering the loss function.

o We investigate if using a domain-specific post-training procedure for transformer-based language models

where existing models are enriched with domain knowledge further improves performance.

o We analyze the performance of our model on restaurant and laptop reviews. We show that using seed
sentences instead of words gives a boost in performance, providing state-of-the-art results for the defined
ASD task. Using our findings, organizations are able to extract relevant aspect categories and the

corresponding sentiment from unstructured data to enhance customer satisfaction.

The rest of the paper is structured as follows. Section 2 discusses previous work related to ASD. Next,
Section 3 gives an overview of the used data. Then, in Section 4, we present the sentence labeler and neural
network algorithm followed by, in Section 5, an evaluation of the results. Last, Section 6 presents concluding

remarks and topics for future research.

2. Related Work

The goal of ABSA is to find the sentiment of a group of people towards a certain topic. Joint ASD
proposes to extract the aspect categories and determine the corresponding sentiment simultaneously. The
main advantage is that combining these two tasks allows one to use sentiment information to find aspect
categories and vice versa [8]. In this review, we mainly focus on previous work concerning the joint task of
unsupervised or weakly-supervised ASD.

Most early methods are syntax-based approaches [19, 20]. They revolve around creating and utilizing
aspect and sentiment lexicons. Existing lexicons can be leveraged, or algorithms can be developed to build

lexicons automatically. Hu and Liu [19] use a frequency-based method to identify frequent nouns to build



an aspect lexicon, whereas Qiu et al. [21] build aspect and sentiment lexicons from some seed words and
syntactic rules. Zhao et al. [22] aim to generalize some of these syntactic structures. The biggest shortcoming
is that this method requires users to specify syntactic rules. Furthermore, such methods rely heavily on the
accuracy of text parsing methods (e.g., Part-of-Speech (POS) taggers) which are not error-free [8].

Early unsupervised or weakly-supervised models are mainly based on Latent Dirichlet Allocation (LDA)
[23]. Although LDA was originally developed for topic modeling, the application can be adjusted to also
suit the needs of sentiment analysis by biasing the model to utilize some a priori knowledge, often in the
form of sentiment lexicons. Lin et al. [24] propose the Joint Sentiment-Topic (JST) model. This weakly-
supervised model modifies the original LDA model by including an additional sentiment layer and by using a
domain-independent sentiment lexicon for supervision. Huang et al. [25] further extend this framework by
including sentence-level structural knowledge to detect topics and sentiment simultaneously. The proposed
method considers each sentence within a review as having its distinct topic mixture, meaning that the topic
probability distribution for each sentence in a review is unique. In contrast, traditional models treat an
entire review as a single topic mixture rather than individual sentences. As a result, the proposed method is
able to outperform traditional LDA-based approaches for topic detection and sentiment detection for online
reviews. Zhao et al. [26] employ a different approach called MaxEnt-LDA where the authors integrate a
discriminative maximum entropy approach into LDA. In addition, Wang et al. [27] aim to solve the problem
of inaccurate approximations for the posterior distribution over topics by using a two-layer structure model
inspired by Restricted Boltzmann Machines (RBMs). A downside of the RBM-based method is that it relies
on substantial amounts of prior knowledge such as POS tagging and sentiment lexicons.

Like LDA approaches, Zhou et al. [28] propose a topic modeling approach to model the joint distribution
of topics and sentiments. However, many existing methods disregard the possibility that words and topics
are conditionally dependent, which could result in certain topics having equivocal representations. To
address this challenge, Zhou et al. [28] introduce a Weakly-supervised Graph-based Joint Sentiment Topic
(W-GJST) model, adopting a joint sentiment topic model and an edge-gated graph convolutional network to
construct a graph representation of topics and words, allowing the model to investigate the hidden dependency
relationships between them. Furthermore, the authors utilize a multi-label topic classifier alongside an
unsupervised self-training approach, eliminating the need for labeled data and pre-defined topic terms. This
self-training method takes advantage of topic and word embeddings, as well as conditional topic distributions
obtained from the W-GJST model, to train a neural network using unlabeled data. In contrast to many of the
above-mentioned topic modeling approaches, we do not model the distribution of topics and sentiments in this
work. Instead, we focus on creating a labeled dataset by leveraging semantically coherent class vocabularies,
which are constructed using a limited amount of seed words or sentences.

Similarly, Zhuang et al. [9] propose a model where users only need to provide a small set of seed words
for each aspect class and each sentiment class as well as an unlabeled corpus of reviews. It extends the

autoencoder-based method by He et al. [29] to a joint model by predicting aspect and sentiment labels and



also includes a regularization method to integrate user guidance into the modeling process. Two models are
proposed. The first model, Aspect Sentiment Autoencoder (ASA), has two parallel autoencoder structures for
aspect and sentiment, respectively. Based on the observation that some sentiment words are specifically used
for a certain aspect, the second model, Joint Aspect Sentiment Autoencoder (JASA), exploits the correlation
between aspect and sentiment words in sentences by using a joint autoencoder structure. The second model
outperforms the first model, confirming the hypothesis that exploiting the correlation between aspect and
sentiment words in sentences is beneficial.

Huang et al. [30] propose Joint Aspect Sentiment Topic Embedding (JASen), which learns a joint topic
representation for each sentiment-aspect pair. This representation is created in the same embedding space as
words so that the surrounding words of topic embeddings properly describe the semantics of topics. JASen
outperforms all the baselines on both restaurant and laptop SemEval datasets.

Bhattacharjee and Gangadharaiah [31] propose a topic modeling approach based on a Variational Auto-
Encoder (VAE) that performs ABSA without requiring fine-grained labels for either aspects or sentiments. By
feeding transformer sequence embeddings into a VAE model, the model learns a document-topic distribution
and a token-topic distribution. The proposed approach is able to outperform JASen for most evaluation
measures. Yet, while the method allows for the detection of multiple aspects in a document, document-level
supervision (i.e., the overall document-level sentiment is used) is employed in contrast to JASen and our
approach, which is not always readily available.

Kumar et al. [14] introduce the Context-aware Aspect category and Sentiment Classification (CASC)
model, a BERT-based semi-supervised hybrid approach that consists of the following steps. The first step
takes a small set of seed words for each aspect category and sentiment class to construct respective semantically
coherent class vocabularies with the help of a BERT [15] contextual model. The second step makes use of
these constructed vocabularies along with POS tags to label a subset of sentences from the training corpus.
Due to the semi-automated labeling process, noise may be induced in the labels during the process. Hence,
the last step builds a noise-robust deep neural network for aspect and sentiment classification. Results show
that the method outperforms current models such as CAt [32], ABAE [29], and JASen (where CAt and ABAE
only extract aspects). However, CASC has its limitations. A disadvantage of BERT is that no independent
sentence embeddings are computed. To derive sentence embeddings from BERT, each sentence pair must
be processed separately, which is computationally infeasible for large datasets. Reimers and Gurevych
[16] address this problem by introducing SBERT, adding a pooling operation to BERT’s output to create
fixed-sized sentence embeddings. These embeddings are then fine-tuned on semantic textual similarity data
using siamese network structures. The weights are updated to produce semantically meaningful embeddings
that can be compared using cosine similarity, enabling quick identification of semantically similar sentences.
Therefore, we build upon CASC but leverage SBERT embeddings to derive semantically meaningful sentence
embeddings to create a high-quality labeled dataset for the joint task of ASD.

More recently, Large Language Models (LLMs) have emerged in the context of ABSA, with zero- and



few-shot settings indirectly representing an unsupervised or weakly-supervised setting. For example, Zhang
et al. [33] aim to provide a comprehensive overview of the capabilities of LLMs in the framework of sentiment
analysis. Although LLMs outperform smaller language models in few-shot learning settings, they generally
struggle to generalize to more difficult tasks. Similarly, for more complex tasks like ABSA and ASD in this
work, it has been shown that LLMs perform modestly [34, 35]. For those reasons, this work concentrates on
a comparison between the proposed approaches and state-of-the-art approaches for weakly-supervised ASD,

and leaves a direct comparison with LLMs as future work.

3. Data

We use unlabeled review data from multiple domains (restaurant and laptop) for training. For the
restaurant data, we use unlabeled restaurant reviews from a public Yelp dataset!. For the laptop data, we
leverage unlabeled Amazon reviews under the laptop category collected by McAuley et al. [36]2.

For evaluation, we use the SemEval 2016 Task 5 Subtask 1 dataset [37]. This XML-structured database
contains a training and test set for multiple domain reviews (including restaurant and laptop) for which
sentiment-labeled aspects are provided. An example from the restaurant domain of the SemEval 2016 test
set is given in Figure 1. Each sentence is labeled with aspect targets and aspect categories, as well as the

corresponding sentiment polarities.

<sentence id="en_BlueRibbonSushi_478218345:3">
<text>The entire staff was extremely accomodating and tended to my every need .</text>

<Opinions>
<0Opinion target="staff" category="SERVICE#GENERAL" polarity="positive" from="11"
to="16"/>
</0Opinions>
</sentence>

Figure 1: A sentence from the SemEval 2016 test set.

We follow a similar data processing procedure as in the works of Huang et al. [30], Kumar et al. [14], and
Zhuang et al. [9], and hence, entity types are regarded as aspect classes. We ignore the attributes of entities as
the information is too fine-grained. For the restaurant dataset, we neglect the entity type RESTAURANT since
such sentences do not express aspect-specific opinions. Despite not being directly obvious, we notice that
Kumar et al. [14] use a different number of aspect categories (i.e., FOOD, AMBIENCE, and SERVICE), whereas
other works use a total of five aspect categories (i.e., AMBIENCE, DRINKS, FOOD, LOCATION, and SERVICE).
Kumar et al. [14] merge the FOOD and DRINK categories together to a single FOOD category. Furthermore,
the authors merge AMBIENCE and LOCATION to form the AMBIENCE category. In this way, they follow the
approach of He et al. [29] where evaluation is done only on the three major aspects found in the data. In

order to make a fair comparison between all models, we compute and report the results of all models for
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both the 3-class restaurant (restaurant-3) dataset as well as the 5-class restaurant (restaurant-5) dataset.
For the laptop dataset some rare entity types are removed and only the following eight entity types are kept
as aspect classes: BATTERY, COMPANY, DISPLAY, KEYBOARD, MOUSE, 0S, SOFTWARE, and SUPPORT. Last, in line
with other research [9, 14, 30], we remove sentences with multiple labels or with neutral sentiment polarities
for training and testing to simplify the problem and prevent ambiguity in results. The data distribution of
the three considered datasets is as follows. In the restaurant-5 and restaurant-3 datasets, we have 17,027
training instances and 643 test instances. In the laptop dataset, we have 14,683 training instances and 306

test instances.

4. Methodology

The goal of this paper is to develop a method to perform unsupervised or weakly-supervised ASD where
we aim to simultaneously extract two closely related elements from a review sentence to form a pair (aspect,
sentiment). Formally, the problem can be defined in the following way. Given a sentence X; from the
unlabeled input corpus X = [X1, Xa,... Xy], a predefined set A of aspect categories, and a predefined set
S of sentiment polarities, the ASD task aims to detect the pair (a,s) that X; entails in natural language
meaning, where a is an aspect category in A and s is a sentiment polarity in S. Note that from the above
definition, we assume that only a single pair is present in each sentence X;.

We first create a labeled training dataset from a large unlabeled dataset by assigning aspect and sentiment
labels using SBERT embeddings [16], which is described in Section 4.1. In the second and final step, a neural
network is trained with the aim of further improving aspect and sentiment classification by learning latent
features from the previously labeled dataset. Section 4.2 presents the structure and inner workings of the

neural network.

4.1. Labeled Dataset Creation

We propose two methods for creating a labeled dataset from a small set of user-provided data. Both
methods leverage the power of SBERT embeddings to derive semantically meaningful sentence embeddings
(i.e., semantically similar sentences are close in vector space). Original BERT [15] models show strong
performance on semantic textual similarity tasks. A disadvantage of BERT is that no independent sentence
embeddings are computed. To derive sentence embeddings from BERT, every sentence pair needs to be fed
into the neural network. However, especially for large datasets, doing so requires an infeasible amount of
computation. SBERT adds a pooling operation to the output of pre-trained BERT to derive a fixed-sized
sentence embedding. SBERT then fine-tunes these pooled embeddings on semantic textual similarity data
by using siamese network structures. The weights are updated in such a way that the produced sentence
embeddings are semantically meaningful and can be compared with cosine similarity. This makes it possible
to quickly find semantically similar sentences. Using this semantic textual similarity search, we propose a

method called Sentence-Based Aspect and Sentiment Classification (SB-ASC). The method uses seed sentences



for each aspect category and sentiment polarity to create a labeled dataset. The second approach, called
Word-Based Aspect and Sentiment Classification (WB-ASC), follows a similar starting point as previous
literature by using seed words to create a labeled dataset but with SBERT. Both approaches are explained in

the following sections.

4.1.1. Labeler Using Seed Sentences

As discussed previously, the construction of BERT makes it unsuitable to quickly perform a semantic
similarity search between a large set of sentences since sentence embeddings are not directly available. To
leverage the full semantic meaning of a sentence with the goal of constructing a labeled dataset, we opt to
use pre-trained SBERT embeddings to derive fixed-size sentence embeddings. In our proposed methods we
use the all-mpnet-base-v2 SBERT model for English datasets. The model has a dimension size d of 768, is
fine-tuned on a dataset of 1 billion sentence pairs, and provides the best performance for semantic textual
similarity of all pre-trained models in the work of Reimers and Gurevych [16].

Since SBERT is able to efficiently embed entire sentences, we opt to differ from previous literature that
often takes words as seeds [38, 39] for aspect and sentiment categories. Instead, we opt to provide a small
set of seed sentences per aspect and sentiment category. Obtaining these sentences can be done by using
a small sample of existing unlabeled datasets, but can also be fictional as long as the seed sentences entail
some value for the relevant aspect or sentiment. We argue that obtaining or creating these sentences takes
similar or very little extra effort compared with the seed word set creation. For brevity we only show the
labeling process for the aspect categories A, however, we follow the same procedure for the sentiment set S.

We start with a set of seed sentences X® associated with a € A. For each seed sentence set X we

compute its SBERT sentence representation as:

H® = SBERT(X"). (1)

| X% xd
Here | X?| is the number of seed sentences in X* and d is the hidden dimension size of the chosen SBERT

model. Similarly, we compute SBERT embeddings for each unlabeled sentence X; € X as:

HSBERT — SBERT(X,). (2)

1X;1xd
We are now able to directly compare the embedded seed sentences with unlabeled sentences from the
training dataset. However, since the set of seed sentences is limited to a small amount (in this work the
seed set consists of five sentences for each category), they might not contain all the semantically relevant
information to fully describe an aspect. For example, the seed set could contain specific semantic structures
or might not be able to capture the aspect in a general sense. Therefore, we add (concatenate) the average of

embeddings to the seed embeddings set:
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Preliminary research shows that adding the average embedding of seed sentences improves the performance
of the final models. Next, we compare an unlabeled training sentence to any of the provided aspects. To
compute the semantic similarity between sentences, we use the cosine similarity between (average) SBERT
embeddings [16]. The cosine similarity between two vectors is defined as the dot product of two vectors

divided by the product of their lengths:

. -y
cosine(z,y) = Ek (4)

which can easily be extended to a pairwise computation for matrices. Hence, for each seed set, we compute:
a

C'L'j
1x1

= cosine(l{f,thERTT), (5)

so that €% € RUXIFDXIX] These cosine similarity scores for each training sentence with respect to each
seed sentence in X® and their average are transformed into a single similarity score by taking the maximum

value over the seed set:

a __ a
m§ =~ max -y, (6)
1x1 ISZS‘XQ|+1

where m® is a vector of size |X| containing the highest similarity score between a training sentence and
any sentence from seed set X* and their average. The operations described in Equations 1, 3, 5, and 6 are
performed for each aspect category a € A. Lastly, we compute the arg max of all m® by concatenating the
maximum aspect scores vectors:

a __

€T~

j = argmax m$ (7)

ac 7’
where z§ € A. For a given sentence X;, we assign aspect category x; as a label if its respective cosine

Tj

;' is above a certain threshold A,. A similar approach is followed for each sentiment polarity

similarity score m
s € S so that we end up with a max polarity score vector. We also require the cosine similarity score for
sentiment to be above a threshold As before X is assigned a sentiment label. The hyperparameters A\, and
s play an important role in improving the quality of assigned labels since they influence the amount of noise
(i.e., labels that do not have a high similarity score to any aspect and sentiment) that is included in the
labeled training dataset. An example of the used seed sentences for the FOOD category in the restaurant-5
dataset is shown in Table 1. FEach seed sentence is fictitious but contains at least one different word from the

seed words in order to make the sentences representative of the aspect and sentiment categories (the seed

words have been reused from CASC and JASen). In addition, we limit the number of seed sentences to five.



By implementing such rules, we address the potential bias introduced by the generation of seed sentences, as
we provide the model with an equally diverse set of sentences while still representing each aspect/sentiment

category similarly to using seed words.

Table 1: Example seed sentences for the aspect category FOOD for the restaurant-5 dataset.

Food

the food is good,

this is the best sushi buffet we ever had ,

all the dishes tasted the same .

the pizza at old chicago is actually pretty good,
hamburgers bland and buns dry and cold .

The final result is a labeled training corpus X C & that is used in the neural network step to further
train and improve our model. Note that the original seed sentences X* and X* are not added to the labeled
dataset X. When one uses fictional seed sentences, these sentences might be good to generally describe a
certain aspect but could fail to truthfully capture semantic structures in terms of the actual source data.
Since we want to create a labeled corpus that is as close to the real data as possible, we only use sentences in
the labeled training corpus that are from the unlabeled corpus. However, when one uses seed sentences that
are picked from the unlabeled dataset, the sentences will indirectly also be in the labeled training corpus
since they have a cosine similarity score of 1 with themselves. The labeler using seed sentences as input is

visualized in Figure 2.

Aspect seed
sentences

Polarity seed

Unlabeled input sentences
sentences

SBERT ENCODER

Aspect sentence Train sentence Polarity sentence
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A 4

similarities similarities
Assign aspect label Assign polarity label
with highest cosine with highest cosine

similarity similarity

h

r
If aspect score above A, P.i\lD polarity score above X,

h 4

Labeled training dataset

Figure 2: Visual representation of the labeler that uses seed sentences as input.
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4.1.2. Labeler Using Seed Words

Next to our sentence labeler, we propose a model that only needs a set of seed words instead of seed
sentences. An example of the used seed words for the restaurant-5 dataset is shown in Table 2. We have the
same labeling information as in previous work of Huang et al. [30] and Kumar et al. [14]. However, for this
method, we still use SBERT for its ability to match semantic similar sentences. The proposed method uses
seed words to find relevant seed sentences that, in turn, can be used to match with unlabeled documents. In
other words, this word-based approach is used to bootstrap the previously described sentence-based approach.
Formally, we start with a set of seed words L* associated with a € A. Each set L® contains |L?| seed words.

The goal is to construct a set of sentences X* so that we can follow the same procedure as in Section 4.1.1.

Table 2: Example seed words for the restaurant-5 dataset.

Aspect/Sent.  Keywords

Location location, street, block, river, avenue

Drinks drinks, beverage, wines, cocktail, sake

Food food, spicy, sushi, pizza, taste

Ambience ambience, atmosphere, room, seating, environment
Service service, tips, manager, waitress, servers

Positive good, great, nice, excellent, perfect

Negative bad, terrible, horrible, disappointed, awful

Comparing a single word with an entire sentence is possible with SBERT since the word will be regarded
as a single-word sentence. However, since a single word is lexically and semantically very different from a
sentence, the performance of textual similarity tasks is likely to drop. To overcome this, we propose two
approaches to finding related seed sentences.

The first approach encodes every single seed word from the seed set, computes cosine similarities with
all training sentences, and appends the most similar training sentence for each seed word to the set of seed
sentences. The second approach takes all seed words and uses them to create a single sentence. This sentence
is then encoded using SBERT and its cosine similarity is computed with all the training sentences. We
then take the top |L®| sentences with the highest cosine similarity score. However, for the seed sentences
to represent all seed words, we make sure that every seed word occurs at least once in any of the selected
sentences. In other words, we select the sentence from all training sentences containing seed word [* that has
the highest cosine similarity. Lastly, we concatenate the two sets of training sentences together to obtain a
single set of seed sentences X = X U X

From this point, we follow the same procedure as before to construct a predicted aspect and sentiment for
each training sentence. We again only include those sentences in the labeled training set X, that have cosine
scores above thresholds A, and A for aspect and sentiment, respectively. Figure 3 gives a visualization of the

labeler that uses seed words as input.
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Figure 3: Visual representation of the labeler that uses seed words.

4.2. Joint BERT-Based Neural Network

In this section, we introduce a joint deep neural network that uses a BERT-based architecture for

simultaneous aspect and sentiment classification.

4.2.1. Model

From the previous step, we obtain a labeled dataset X,. However, we are not able to successfully annotate
all sentences in X. This is partially caused by the filtering procedure where we do not label sentences that
have cosine scores below the pre-defined threshold values A, and A\s;. Another cause is the fact that in some
sentences the aspect and sentiment are expressed implicitly. Although SBERT is able to understand semantic
features, training a neural network on domain-specific data might improve performance since it is able to
learn more complex features.

BERT is built as a multi-layer bidirectional transformer encoder that is largely based on an attention-based
transformer model proposed by Vaswani et al. [40]. The model consists of several stacked self-attention and
point-wise, fully connected layers. The architecture of a single encoder layer consists of two sub-layers. The
first is a multi-head self-attention mechanism. The second layer is a position-wise fully connected feed-forward
network. Furthermore, every sub-layer is surrounded with a residual connection [41] and subsequently a
normalization layer [42]. In this work, for all datasets, the BERT model is architecturally equivalent to the
base implementation (bert-base-uncased) in the work of Devlin et al. [15] where the model consists of 12
encoder blocks/layers, a hidden dimension size d of 768, and 12 self-attention heads.

Given a sentence from our labeled dataset X, € X we compute the input representation as:
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Xcz([CLS],wl,...,w|XL|,[SEP]), (8)

where w; is the ith word present in the sentence and | X | is the total number of words present in the sentence.
The appended special tokens [CLS] and [SEP] are used by BERT to indicate the beginning and end of a text
sequence (e.g., a sentence). This sentence is then passed through the BERT model that has been initialized
with post-trained Domain Knowledge BERT (DK-BERT) [43] to obtain the hidden representation H, where

we use the post-trained models of Xu et al. [43] for the restaurant® and laptop? domains:

HBERT — BERT(X,). (9)

(X g l+2)xd

H in Equation 9 is the second-to-last hidden layer. We choose this 11th encoder layer since Kumar et al.
[14] find this layer to have the best latent representation of all tokens in a sentence. The explanation follows
from the use of post-trained DK-BERT. When encoding the sentences, it is assumed that the output of the
last hidden layer is close to its target function (i.e., Masked Language Model and Next Sentence Prediction)
and hence the second-to-last layer encodes embeddings of all the tokens in the sentence.

Next, following Kumar et al. [14], we transform the embeddings of individual tokens into a single vector
to obtain a global contextual sentence representation by applying mean pooling. We ignore the [CLS] and

[SEP] tokens when computing the sentence representation:

[Xc|
hBERT 10
|Xc| Z (10)

where hPFPRT is the word embedding of the ith word. The final step is to pass the hidden sentence

1xd

representation h to two separate linear layers followed by a softmax layer to compute the aspect and sentiment

prediction vectors p® and p®, respectively:

p® = softmax( W, x AT + b, ), (11)
|A|x1 |A|xd dx1 |A|x1
p* = softmax( W, x hT + by ), (12)
|S|x1 |S|xd dx1 |S|x1

where p® and p® are conditional probability distributions, W, and Wy are weight matrices, and b, and b, are

bias terms. A visual representation of the neural network structure is shown in Figure 4.

Shttps://huggingface.co/activebus/BERT-DK_rest
4nttps://huggingface.co/activebus/BERT-DK_laptop
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Figure 4: Visual representation of the neural network structure.

4.2.2. Model Training
Due to the semi-supervised labeling step, we train our neural network on a labeled dataset and hence
consider it as a supervised machine learning problem. The overall loss of our model £ is calculated as the

sum of the aspect classification loss £, and SC loss Ls:
L=L,+ Ls. (13)

In the remainder of this section, we only formulate the loss function for aspect classification. The loss function
for SC is similar.
A commonly used loss function in neural network training is the Categorical Cross-Entropy (CCE) loss

function. It is defined as:

= Z y? x log(p), (14)

1><1 |A|x1 |A|x1

where yi is a vector containing the true aspect category for the jth training observation and pj is a vector
containing the predicted aspect category for the jth training observation.
An advantage of CCE is that it puts more emphasis on difficult samples during training and is, therefore,

able to quickly converge. However, this emphasis on difficult samples becomes problematic when noise is
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present in the dataset since CCE loss tends to overfit the noise present in the data [14]. Some loss functions,
such as Mean Absolute Error (MAE), are robust to noisy labels. However, training with MAE is challenging
due to slow convergence caused by gradient saturation [18]. Zhang and Sabuncu [18] propose the GCE loss
that is more robust to noise, called £, loss. GCE is a generalized mixture of MAE and CCE. The £, loss
function puts less emphasis on difficult samples compared to CCE. Compared to MAE, the weighting in £,

loss can facilitate learning by giving more attention to challenging data points. GCE is defined as:

L, = ZM7 (15)

where a,,, = y;-”p? is the predicted probability against the true aspect label and g, € (0, 1) is a hyperparameter.

However, the GCE loss does not address class imbalance. In order to apply our method to multiple
datasets and real-world scenarios, it is important to address class imbalance. Furthermore, since the datasets
evaluated in this work are unbalanced, dealing with this feature might be more beneficial than dealing with
noise. Lin et al. [17] define another alteration on the CCE function called focal loss that addresses class
imbalance during training. Focal loss applies a modulating term to the cross-entropy loss, naturally handling

class imbalance without having to consider the class distribution. Focal loss is defined as:

Lo==Y (1—ay)"log(ay,). (16)

J

Setting the focusing parameter v, > 0 reduces the relative loss for well-classified examples, putting more
focus on wrongly classified examples, i.e., the scaling factor (1 — a,,)7* decays to zero as confidence in the
correct class increases and hence, this scaling factor can automatically down-weight the contribution of easy
examples during training and put more focus on difficult examples.

Figure 5 shows a comparison between the GCE loss and focal loss. From Figure 5 it is clear that
GCE is indeed a generalization of CCE and MAE, taking only values in between these two functions (for
q € (0,1)). Focal loss shows a more extreme curve (especially when + is large), giving higher loss values
to hard, misclassified examples compared to GCE and lower loss values to well-classified examples. Both
CCE and GCE losses are characterized by the fact that instances classified with high confidence still obtain
a considerable loss. These easily classified samples will (especially for imbalanced data) dominate the loss
and control the gradient, overpowering the smaller and more difficult classes. Depending on the focusing
parameter, focal loss considerably down-weights the loss for these well-classified instances. This makes it
more suitable for addressing imbalances between categories.

For loss minimization, we use backward propagation. We initialize the weight matrices using a uniform
distribution U(—0.1,0.1) and initialize all bias terms to zero. The AdamW optimizer [44] is used to update
the weights and biases. Due to the two-step procedure, one cannot perform a traditional hyperparameter
tuning procedure when evaluating tuning performance on the loss value. This is caused by the fact that the

loss value of the neural network during training is dependent on the choice of A\, and A\s;. Furthermore, one
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Figure 5: Comparison of Categorial Cross Entropy (CCE) loss, Generalized Cross Entropy (GCE) loss, and Focal Loss (FL).
Note that for v = 0 and ¢ — 0 both GCE and FL become CCE and for ¢ = 1 GCE becomes Mean Absolute Error.

should only evaluate on the created labeled dataset and not on a manually annotated evaluation set since
this would devalue the unsupervised aspect of the algorithm’s performance. We therefore choose to perform a
two-step procedure for hyperparameter tuning. We first determine the optimal value of A\, and A4 by fixing
the parameters in the neural network to their default values and choosing the highest F1 score (similar to
the procedure of Kumar et al. [14]). Next, we tune the hyperparameters in the neural network by using the
optimal A values obtained in the first step. For the neural network, the parameters that are tuned include
the learning rate, the parameters of the AdamW algorithm (8; and f2), the batch size, and the v value in
the focal loss functions for aspect and sentiment, v, and ,, respectively. 80% of the labeled training data is
used for tuning the neural network hyperparameters and the other 20% is used for validation, as empirical
studies have shown that such a split often works optimally [45]. After hyperparameter optimization, the
model is trained using the best settings on the entire training dataset. We use a Tree-structured Parzen
estimators (TPE) algorithm [46] for both steps of hyperparameter selection. For the first hyperparameter
tuning step (i.e., tuning A, and \s) the number of evaluation trials is set to 30. For the second step, more

hyperparameters need to be tuned so the number of evaluation trials is set to 75.

5. Evaluation

In this section, we compare and evaluate the proposed models. Before discussing the performances of
our proposed models, we first present the performance measures that are used to evaluate the results. Then,
the baseline and ablation models for comparison are discussed. Next, we discuss the hyperparameter tuning

process. Thereafter, we show the performance results for all considered models.

5.1. Fxperimental Framework

5.1.1. Performance Measures
Evaluation is performed on a similar test dataset to that used by Zhuang et al. [9] to gauge the performance

of the proposed models against baseline methods. We evaluate the performance of the models for aspect
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classification and sentiment classification separately. The evaluation measures used are accuracy, macro-
precision (macro-P), macro-recall (macro-R), and macro-F1 scores. The macro scores are defined as the mean
of the individual label-wise scores. Since the F'1 score combines the precision and recall measures and is

designed to work well on imbalanced data, we use it as our main measure for comparing model performance.

5.1.2. Baseline Models

We compare our models to the following baseline models:

e CosSim: For each aspect and sentiment we compute the average embedding of seed words using a
word2vec model trained on the training corpus. By computing maximum cosine similarities between
the seed embeddings and each test sentence (by averaging all word embeddings in a test sentence) we

classify aspect and sentiment.

e CosSim-Sentence: Similar to CosSim, however, we compute the average embedding of a set of seed
sentences instead of seed words by averaging all individual word embeddings present in the seed sentence.
These average seed sentence embeddings are then compared to each test sentence for classification (by

computing maximum cosine similarities).

o BERT [15]: We use the pre-trained BERT language model (12-layer, 768-hidden, 12-attention, uncased)
with a classification layer on top. The model is fine-tuned by weakly labeling the unsupervised corpus
to generate a training set in the following way: If a sentence contains a seed word from an aspect
or sentiment seed set, we label it correspondingly. Two separate models are trained for aspect and

sentiment.

o JASen [30]: A weakly-supervised model that jointly learns aspect and sentiment representations in a
single embedding space using an adaptation of the Skip-Gram model [47]. Next, a convolutional neural
network is used as the classifier by training it on pseudo-labels given by the cosine similarity between

document embeddings and topic embeddings from the created embedding space.

o CASC [14]: A weakly-supervised model using post-trained DK-BERT and a small set of seed words

for labeled data preparation. Next, a neural network using labeled data is used for ASD.

The method proposed by Zhuang et al. [9] called JASA shows similar performance to CASC and is also
interesting to include as a comparison. However, the code from JASA is not readily available. Hence, we
cannot guarantee to exactly reproduce results. Moreover, a one-on-one comparison with our results is also
difficult since Zhuang et al. [9] use different training data (the test set is similar, but might also be slightly
different due to preprocessing). Results are only available for the restaurant-5 and laptop datasets, and we,

therefore, only perform a weak comparison between our results and the results reported by Zhuang et al. [9].
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5.1.8. Ablation Models
In order to analyze the performance of individual parts of the models and to understand the effectiveness
of different key components, we perform an ablation study. By removing important model components one

after another, one can observe and reason how certain elements of the model perform and interact. The

following ablation models for both SB-ASC and WB-ASC are proposed:

e (SB/WB)-ASC: Our full Sentence/Word-Based Aspect and Sentiment Classification model as proposed

in Section 4 using the seed sentence labeler from Section 4.1.1 or seed word labeler from Section 4.1.2.

 (SB/WB)-ASC w/o DK: We omit the use of a post-trained BERT language model on domain
knowledge as proposed by Xu et al. [43] in the neural network step. Instead, we use the pre-trained

base model of BERT (12-layer, 768-hidden, 12-attention, uncased).

e (SB/WB)-ASC w/0o DL: We omit the neural network step altogether and only use the SBERT
sentence labeler as proposed in Section 4.1. The aspect classification of a test sentence is done by
finding the largest cosine similarity between the test sentence vector and the aspect vocabulary vectors.
The same process is followed for SC. In other words, we omit the threshold values and label every

sentence regardless of their cosine similarity score.

e (SB/WB)-ASC w/o SBERT: Instead of using pre-trained SBERT to create sentence embeddings in

the sentence labeler step, we use the unweighted average of post-trained BERT word embeddings.

o (SB/WB)-ASC w/o FL: We replace the focal loss function with a GCE loss function so that the

neural network part of our model is similar to the model proposed by Kumar et al. [14].

5.2. Hyperparameter Tuning

In this section, we briefly discuss the results of the hyperparameter tuning process of the SB-ASC and
WB-ASC models. Table 3 shows the optimal hyperparameters. From this, we observe that a pattern occurs
for the thresholds A, and As, which determine if an aspect category or sentiment category is assigned to a
sentence, respectively. The hyperparameter tuning process assigns a higher value to the threshold for the
aspect categories compared to the threshold for the sentiment categories for all domains. As a result, the
model needs stronger evidence to assign an aspect category. This might be because aspects are more specific

and their incorrect assignment could confuse downstream tasks (i.e., SC).

5.3. Performance Results

The performance of all considered models for all datasets is shown in Tables 4 and 5. They report results
for ACD and SC, respectively. SB-ASC outperforms the baseline methods on most measures. For many tasks,
SB-ASC significantly outperforms multiple baseline methods when evaluating F1 scores. When SB-ASC is not

significantly different compared to a baseline, the compared baseline is never able to significantly outperform
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Table 3: Optimal hyperparameters for the proposed models.

SB-ASC WB-ASC
Restaurant-5 Restaurant-3  Laptop  Restaurant-5 Restaurant-3  Laptop
Aa 0.65 0.7 0.7 0.55 0.6 0.5
As 0.55 0.5 0.45 0.5 0.4 0.3
Learning rate le-6 le-6 le-6 le-6 le-5 le-6
B1 0.99 0.9 0.99 0.95 0.97 0.99
B2 0.999 0.95 0.92 0.97 0.999 0.97
Batch size 36 12 12 24 12 18
Ya 2 4 1 4 4 4
Vs 4 4 4 4 4 4

SB-ASC. For the ACD, SB-ASC outperforms by a large margin, whereas for SC performance is generally not

significantly different from the top-performing baselines.

Table 4: Comparison of methods using accuracy (A), macro-precision (P), macro-recall (R), and macro-F1 score (F1) on ACD.
Results are the average over 5 individual training runs. The largest values are in bold. For CosSim, CosSim-Sentence, BERT,
JASen, CASC, SB-ASC w/o FL and WB-ASC significance levels are given (*, ** *** for 10%, 5%, and 1%, respectively) for the
paired, one-sided t-test assessing the null hypothesis of the mean macro-F1 score of the method being smaller than or equal to
the mean macro-F1 scores of SB-ASC.

Restaurant-5 Restaurant-3 Laptop
A P R F1 A P R F1 A P R F1
CosSim 64.29 50.61 51.15 46.20%**  80.13 74.38 73.62 73.93%*%  63.13 65.33 62.99 61.73%**
CosSim-Sentence 41.80 36.79 36.67 30.62%*%  59.38 57.10 61.96 55.22%*% 48,14 51.53 49.43 47.60%F*
BERT 71.48 56.72 69.83 58.25%**  68.84 66.01 71.62 66.78%**  63.39 62.43 60.73 59.78%**
JASen 84.14 65.80 71.66 66.90 87.18 84.30 85.36 84.75%*%  69.38 69.77 69.83 6751+
CASC 40.06 54.46 59.40 38.02%*%  81.73 77.76 84.34 T7.44%%%  68.08 70.12 70.47 67.87F%*
SB-ASC 88.34 73.71 7283 71.35 88.65 89.26  85.17 86.99 76.29 T74.73 T74.54 73.86
SB-ASC w/o DL 81.80 60.10 77.40 63.28 88.58 84.86 85.33 8491 72.64 71.28 72.68 71.48
SB-ASC w/o DK 87.71 63.30 66.29 64.21 84.01 83.31 79.41 80.95 71.07 72.98 67.60 66.92
SB-ASC w/o SBERT 50.70 43.92 52.90 36.74 67.57 67.04 76.09 64.99 41.30 51.96 41.57 37.54
SB-ASC w/o FL 88.57 63.50 67.43 65.16 86.87 87.00 84.97 85.68* 73.94 65.73 68.71 65.03%**
WB-ASC 83.27 60.81 70.26 63.89* 83.20 78.91 87.82 81.34***  57.65 60.94 57.32 57.33%**
WB-ASC w/o DL 76.83 55.22 69.42 57.44 78.96 74.60 83.69 76.70 61.89 63.44 62.89 62.27
WB-ASC w/o DK 82.58 58.17 63.28 60.19 82.87 77.46 85.65 80.13 51.14 57.38 48.29 47.83
WB-ASC w/o SBERT  47.62 53.67 56.85 44.74 85.61 80.26 86.61 82.45 48.99 50.61 50.92 47.52

Table 5: Comparison of methods using accuracy (A), macro-precision (P), macro-recall (R), and macro-F1 score (F1) on SC.
Results are the average over 5 individual training runs. The largest values are in bold. For CosSim, CosSim-Sentence, BERT,
JASen, CASC, SB-ASC w/o FL and WB-ASC significance levels are given (*, **, *** for 10%, 5%, and 1%, respectively) for the
paired, one-sided t-test assessing the null hypothesis of the mean macro-F1 score of the method being smaller than or equal to
the mean macro-F1 scores of SB-ASC.

Restaurant-5 Restaurant-3 Laptop
A P R F1 A P R F1 A P R F1
CosSim 76.39 76.41 78.18 76.00%%*F  76.02 76.28 77.95 75.70%%*F  70.36 70.47 70.42 70.35%**
CosSim-Sentence 64.88 66.74 67.60 64.74*%F  65.19 66.82 67.67 65.03%**  62.28 62.39 62.11 61.99%**
BERT 68.19 69.55 59.85 58.35%F*F  66.07 73.86 55.46 49.64*%*  52.05 73.11 53.11 48.32%**
JASen 80.47 81.30 76.31 78.40%%F  80.29 81.77 75.94 TT.23%¥%F  74.27 74.39 74.26 T4.22%%*
CASC 89.86 88.98 90.41  89.40 88.74 87.79 88.62 88.15 76.24 76.86 77.08 76.94
SB-ASC 89.98  89.50 89.04 89.24 90.80 91.13 89.21 89.98 75.90 76.79 75.68 75.58
SB-ASC w/o DL 86.63 85.74 85.62 85.68 86.95 86.19 85.94 86.06 75.24 75.27 75.19 75.20
SB-ASC w/o DK 80.78 80.62 77.52 78.34 81.83 83.14 77.92 79.26 70.36 70.52 70.23 70.20
SB-ASC w/o SBERT 86.03 85.21 87.34 85.62 88.48 87.90 90.19 88.21 63.32 76.85 64.11 58.76
SB-ASC w/o FL 89.93 90.84 87.71 88.83 89.97 90.68 88.06 88.98 71.99 75.35 71.56 70.76%F*
WB-ASC 66.25 74.78 55.23 49.58%** 72,76 74.42 66.16 66.55%**%  62.21 69.26 61.50 57.63***
WB-ASC w/o DL 76.98 75.68 74.14 74.70 76.18 74.86 73.45 73.45 65.47 71.51 64.85 62.30
WB-ASC w/o DK 61.12 45.76 49.35 40.42 66.72 65.48 58.92 57.71 59.61 64.52 58.90 54.92
WB-ASC w/o SBERT  63.58 67.03 51.51 42.36 63.95 61.75 53.94 49.12 56.09 56.04 55.96 55.88
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The cause for the above results might be twofold. First, the results indicate that SB-ASC obtains
substantial benefits from using the semantically meaningful sentence embeddings from SBERT and is able to
use this information to correctly detect the aspect category present in a sentence. Second, using the focal
loss function to handle class imbalance is more important for ACD in our datasets than dealing with noise.
Comparing F1 scores with the best baseline methods on ACD, SB-ASC outperforms by a margin of 4.45 pp
(percentage points), 2.24 pp, and 5.99 pp on the restaurant-5, restaurant-3, and laptop datasets, respectively.
Note that for the restaurant-5 and restaurant-3 datasets, JASen is the best baseline method. For the laptop
dataset, CASC is the best baseline method. For all datasets, SB-ASC significantly outperforms CASC and
for the laptop and restaurant-3 datasets SB-ASC significantly outperforms JASen. This indicates a more
stable performance over different datasets for SB-ASC, indicating that it is more robust to different datasets
and out-of-domain applications compared to CASC and JASen.

When comparing SB-ASC and CASC on SC, SB-ASC does not always outperform CASC. However, the
difference in performance is small and never significantly different. Hence, we conclude that the performance
on SC is similar.

Weakly comparing our results to JASA, we conclude that for the restaurant dataset (only restaurant-5 is
reported in JASA) SB-ASC outperforms JASA on both tasks. For ACD, SB-ASC outperforms JASA by 3.65
pp on the F1 score (the reported JASA F1 score is 67.70). For SC, SB-ASC outperforms by 8.12 pp (81.12
F1 score). The results for the laptop dataset are less conclusive. JASA outperforms SB-ASC on ACD by
4.11 pp (77.97 F1 score). However, SB-ASC is able to perform better, albeit marginally, for SC by 1.28 pp
(reported F1 score is 74.30).

The results of our proposed WB-ASC model are modest, as SB-ASC always outperforms WB-ASC. We
conclude that the proposed labeling algorithm that finds seed sentences based on a list of seed words is not
able to provide high-quality labels. Considering the performance of SB-ASC, the quality of the seed sentence
set created by WB-ASC is inferior to that of a manually created set, indicating the importance of finding
representative seed sentences.

We conclude that SB-ASC has the best overall performance on jointly detecting aspect and sentiment.
CASC often has the best baseline SC performance whereas JASen has the best performance on ACD. When
comparing JASen to SB-ASC, the gain in ACD is small (4.45 pp) but for SC, it is large (10.84 pp) for the
restaurant-5 dataset. With CASC it is the other way around, with a large gain of 33.33 pp for ACD, but
—0.16 pp for SC for the restaurant-5 dataset. The ability of SB-ASC to achieve better results for the joint
task shows its true improvement in performance. The enhanced performance of SB-ASC might be attributed
to the following causes. SB-ASC uses SBERT embeddings which provide high contextual embeddings for
an entire sentence to create a labeled dataset. The algorithm is thus able to create higher-quality labels
for the unlabeled dataset compared to CASC and JASen, which use BERT word embeddings and thus lose
the meaning of full sentences. Next to creating a high-quality, weakly labeled dataset, SB-ASC builds a

BERT-based joint neural network using an imbalance-robust loss function to classify aspect and sentiment
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simultaneously, further improving performance as class imbalance is present in the datasets and CASC and
JASen both do not account for class imbalance. Furthermore, we conclude that our models can be applied to
different languages/domains. All that is needed is a sufficiently large dataset of domain reviews, a pre-trained
SBERT model for a specific language, a pre-trained (or domain knowledge post-trained) BERT model, and a

set of seed words/sentences.

5.3.1. Ablation Models

Comparing the proposed models with the deep learning ablation models, we conclude that even without
the deep learning step SB-ASC’s performance for ACD regularly beats baseline models, whereas for SC
performance is modest. The deep learning step boosts performance by learning latent features in the data for
all SB-ASC models, while also being able to handle noise added in the data due to our labeling procedure.
WB-ASC ablation models perform worse than the full model except for the WB-ASC w/o DL model. It is
interesting to note that when the F1 score for WB-ASC w/o DL is high, the score for the full model usually
improves (e.g., aspect classification for the restaurant-3 dataset). This suggests that there is a certain limit
to the amount of noise that can be introduced in the labeling step. When the labeling process adds too much
noise and the performance of WB-ASC w/o DL is relatively low, the deep learning algorithm is not able to
learn latent features.

As suspected, the results show that using DK-BERT enhances the performance of SB-ASC and WB-ASC
on both tasks. By not using post-trained DK-BERT models, performance drops on average by 6.14 pp for
ACD and 6.86 pp for SC across all datasets and models. This does, however, come at a cost. Training
DK-BERT requires a large amount of extra data for each domain, and this data has to be available. When
this large domain-specific data is not available, one is bound to use BERT models that are trained on a
general corpus.

Comparing SB-ASC with SB-ASC w/o SBERT, the results show the power of using SBERT in our models.
Next to being able to properly capture sentiment, it excels in detecting topics discussed in sentences due to
its ability to understand an entire sentence. The same holds when comparing WB-ASC with WB-ASC w/o
SBERT.

Last, we compare results for SB-ASC to those of SB-ASC without focal loss (using GCE). For ACD, using
focal loss improves the F1 measure for all datasets. Results for SC are less conclusive. We only observe a large
performance difference of 4.82 pp for the laptop dataset. For restaurant-3 and restaurant-5, the performance
increase is small (less than 1 pp). Since class imbalance is more present for aspect categories in our datasets,
the results confirm the ability of focal loss to better handle class imbalances compared to GCE loss. For SC,

classes are more balanced, and hence, focal loss is less beneficial compared to GCE.
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6. Conclusion

In this section, we discuss the contributions of our research followed by the limitations and potential

future work.

0.1. Practical and Theoretical Contributions

This work focuses on weakly-supervised ABSA for different domains. The first proposed two-step model
(SB-ASC) takes seed sentences as input for a labeling algorithm. By leveraging the power of pre-trained
SBERT embeddings, the method is able to understand the contextual meaning of sentences to create a
high-quality labeled dataset. This dataset is used by a class imbalance-robust BERT-based neural network
that jointly learns latent features of aspect categories and corresponding sentiment. The second proposed
method (WB-ASC) uses the same neural network structure but takes seed words instead of seed sentences as
input for the labeling algorithm. Despite the possibility of SBERT matching single words to sentences and
efforts to find representative sentences, this algorithm is generally not able to improve on existing methods
and never outperforms SB-ASC.

Using SB-ASC, we are able to extract relevant aspect categories and their sentiment from unstructured
data by providing a small set of seed sentences. Using seed sentences instead of words gives a boost in
performance, providing state-of-the-art results for the defined ASD task. Furthermore, using domain-specific
contextual language models (post-trained DK-BERT') on the weakly-supervised ASD task boosts performance.

The findings of this work can also be viewed from a supervised learning perspective. Where traditional
supervised methods require large amounts of data to learn latent features, our methods need far less annotated
data. By providing a very small amount of training data that captures the meaning of a certain aspect
category or sentiment, SB-ASC is able to achieve state-of-the-art performance.

Using the proposed models allows retailers to improve customer satisfaction. Companies are able to
accurately analyze large amounts of unstructured data in a timely manner, capturing the most important
opinions. This helps companies with improving their products or services. In addition, our models can also

aid customers, as reviews can help customers make better decisions.

6.2. Limitations

Our work has some limitations. First, our proposed models are only able to predict one aspect label per
sentence. That is, reviews with multiple aspect targets are removed from the dataset. Second, our attempts to
construct or find seed sentences from a list of seed words have not been effective. We argue that constructing
a sentence is not much more time-consuming than constructing seed words. Nevertheless, it is still interesting
to further explore the possibility of finding highly resembling sentences for aspect and sentiment categories
from a set of seed words since it will further move the field of NLP from word-based approaches towards

more contextual, sentence-based approaches.
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6.3. Future work

To address the limitations of our approach, future work could adjust the models to predict multiple labels
per sentence. For example, one can set a threshold value for assigning an aspect to a sentence based on the
probability score for each aspect. Although this approach makes it possible to classify multiple aspects in a
single sentence, it is not possible to assign a sentiment with respect to each detected aspect. To solve this,
the second suggestion is to extend our ASD method with OTE to identify aspect terms in a sentence and
use this information to predict the aspect category and sentiment of this aspect term. To better exploit the
interdependent information between the two tasks, the double task variant of the Left-Center-Right separated
neural network with Rotatory attention using deep contextual word embeddings and hierarchical attention
[48] could be useful. Last, one can also explore performing the ASD task in a sequential manner where first
aspect categories are detected, and then sentiment polarities are predicted for each detected aspect.

Second, future research could focus on enhancing our proposed method of finding relevant aspect and
sentiment sentences from seed words. A suggestion is to create a joint embedding algorithm where both
words and sentences are encoded in the same vector space. Building on this, future research could aim to
perform a sensitivity analysis on the thresholds for assigning aspect and sentiment categories. Furthermore,
one could create a domain-specific post-trained SBERT model to better capture sentence representations for
given domains, however, for this, a large set of domain-specific semantic textual similarity data is needed,
which might not be easy to obtain. Last, as we build upon methods using BERT word embeddings, we opt
for SBERT embeddings. Instead, future work could analyze the effect of sentence embeddings based on other
transformer models due to their promising performance in the field of sentiment analysis, such as Robustly

Optimized BERT [49, 50].
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