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Abstract

E-commerce has grown a lot in recent years and so has the research performed in this field. In this paper we

estimate order satisfaction by predicting outcomes of relevant variables at the moment an order is made, such

that companies can act on this signal. In order to deal with data that is not known at the order date (i.e.,

lagged missing data), we propose an extension of an existing generative imputation method. The Generative

Adversarial Imputation Network (GAIN) is suitable for data imputation on tabular datasets. A more stable

method is the Wasserstein GAIN (WGAIN). In this paper, we propose to improve this method by adding

the Gradient Penalty to WGAIN resulting in WGAIN-GP. We perform experiments on a large dataset from

a Dutch online retailer. Using WGAIN-GP we obtain a better accuracy of 61% at the order date compared

to 54% and 53% obtained by GAIN and WGAIN, respectively.

Keywords: Generative Adversarial Imputation Network, Data Imputation, Decision Tree

1. Introduction

Nowadays, more and more people buy products online. Online retailers feel the need to predict order

satisfaction in order to keep customers happy. For example, [1] investigated how product attributes, average

consumer ratings, and single affect-rich positive or negative consumer reviews influence the online purchasing

decisions of younger and older adults. In these online shops the online retailer sometimes functions as

an intermediary. This means order satisfaction can be greatly dependent on the product supplier (i.e.,

the partner). Measuring order satisfaction can be summarized in an overview of order satisfaction per

partner. This allows an online retailer to quickly respond to partners whose performance is not good enough.

The sooner order satisfaction can be predicted, the earlier this response can be. Furthermore, predicting

order satisfaction can help to foresee possible issues during the order execution. Once again, the faster the

prediction, the earlier the company can act upon this.
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In this paper, we aim to predict order satisfaction based on order data from a Dutch online retailer.

This can be treated as a multi-class classification problem. In order to devise a method to find the correct

match labels, the choice for decision trees seems logical. An advantage of decision trees is that they have

a high interpretability. However, a disadvantage is that they have a high variability, which means a single

decision tree might yield very inaccurate results. For this reason, usually single decision trees are combined

to improve the accuracy, and this technique is classified as an ensemble method [2].

However, the problem we face can also be seen from another perspective. In our case, we do not consider

the class labels directly, but we rather try to infer the labels from the characteristics of some underlying

variables, which we call leading variables. Once the outcomes of these leading variables are known, classifi-

cation can be made with certainty. Therefore, the uncertainty of predicting lies in correctly predicting the

outcomes of these leading variables. As the information of the leading variables only becomes available later

in time, waiting for this information leads to accurate predictions. This has one main disadvantage, namely,

the relevance of the predictions decreases. As relevance is of great concern to us, we therefore cannot wait

until the outcomes of the leading variables become available. For this reason we aim to predict (impute)

outcomes of the leading variables as soon as possible, ideally at the moment at which the order takes place.

This leads us to the following research question:

How to accurately predict outcomes of leading variables immediately after the order date?

Predicting outcomes of the leading variables immediately raises the following sub-question:

How can we treat data that is not known at the order date, but we know will come available later on in

time?

To answer these questions, we need to refine our understanding of what predicting the outcomes of leading

variables exactly entails. Since our aim is to predict the outcomes of leading variables as soon as possible,

and we miss the data for some period in time, we can treat the outcomes as missing data. By taking this

perspective, we can therefore argue that we try to impute missing data. Hence, we look for methods which

are able to impute missing data. For this, it is important to know the kind of data that is missing when there

are no constraints. There are three types of missing data [3]. The first one is data Missing Completely At

Random (MCAR). Second, there can be data Missing At Random (MAR). This is the case when missingness

solely depends on the observed variables. Third, data can be Missing Not At Random (MNAR) when the

missingness depends on the observed and unobserved variables. In this paper, we assume that our data is

MAR. That is, we assume that we can predict outcomes of our leading variables by looking at data available

at the moment the order is made.
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Given that we assume our missing data is MAR, we can narrow our search for methods which are able to

deal with data that is MAR. Data imputation is an important topic in machine learning [4, 5, 6, 7]. For this,

we can consider both discriminative (e.g., MICE [8, 9] and k-NN [10]) and generative methods (e.g., VAE

[11] and GAN [12]). However, research concentrating on generative methods is most recent [13, 14, 15] and

has been shown to produce better results than the ones concentrating on discriminative methods [3]. We

define deep generative models as multilayer neural networks that generate samples corresponding to the data

distribution. Deep generative models can be divided in two groups: Variational Autoencoder (VAE) [11]

and Generative Adversarial Network (GAN) methods [12]. The most important difference between the two

is that the VAE aims to explicitly model the data distribution, while the GAN tries to implicitly model the

data distribution. VAEs allow for very specific feature selection on generated data and they allow modifying

existing data. For this reason they have been shown to be successful in syntatic Web Service discovery

[16]. [17] describes a method using VAEs as an alternative for GAN in data imputation. Despite the fact

that GANs are harder to train than VAEs they usually generate more realistic samples with a higher level

of variability. By modelling the data implicitly as in GANs, we overcome some problems that arise when

explicitly modelling the data. An example of such a problem is that in maximum likelihood estimation with

complex functions as in VAE, it can occur that we approximate intractable probabilistic expressions [12].

Next to this advantage over VAEs, GANs have been evolving ever since they were introduced in 2014. They

have shown their contribution in areas of image generation and text generation [18]. In the past, the GAN

framework also has been translated to work well with tabular data, the type of data we are dealing with in

this paper. We illustrate this with an experiment with an Intensive Care Unit dataset done by [19]. Here,

GANs are used to figure out the distribution of a multivariate time series dataset where the GAN outputs

values that were missing for some samples. The goal in this experiment is to quickly find missing values that

could help predict whether the patient dies in a hospital.

In this paper we focus on data imputation and therefore we do not use the GAN (regular) framework,

but the GAN imputation framework as in [3]. As a result the GAN is renamed to a Generative Adverserial

Imputation Network (GAIN). GAIN has been evaluated in multiple studies against other state-of-the-art

methods often providing better results [20, 21, 22, 23, 24]. Not all leading variables in our dataset are

suitable for GAIN. Depending on the distribution of the leading variables, we also consider reducing leading

variables to binary variables. In case the leading variable has a highly imbalanced distribution, where one

outcome has a very high probability, the use of a GAIN framework is too complicated. For this reason,

we propose an alternative imputation method for these instances in the form of multinomial sampling.

Multinomial sampling is a simple method, as it does not take any characteristics of an order into account.

However, its usage can be justified if it helps us know with very high certainty (say 96% or higher) what
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the outcome is beforehand. In these circumstances it is questionable if the usage of more complex methods,

such as the GAIN framework will add any real value, given the computational time it takes to train these

methods.

For the variables which we intend to impute with the use of the GAIN framework, we must note that

in the literature it is shown that the original GAN and GAIN frameworks might be too unstable to train

[25]. Therefore, we also use an alternative method: Wasserstein GAIN (WGAIN). WGAIN is more stable

compared to GAIN because it uses an alternative cost function to solve the issue of a vanishing gradient

that restricts parts of the GAIN to work properly. Besides this, we propose an improved version of WGAIN

called the WGAIN-GP. The WGAIN-GP enhances the WGAIN method by using a gradient penalty instead

of weight clipping to make sure constraints are met. With a large clipping parameter it can take long for

weights to reach their optimum. Using the penalty to create a flexible boundary reduces training time needed

to obtain good results.

Although we compare three generative imputation methods (GAIN, WGAIN, and WGAIN-GP), we

cannot conclude how well generative methods as a class perform in our setting. For this reason, we also

propose a baseline method. This baseline is based on predicting outcomes using multinomial sampling, for

which the empirical distributions of the data are used. The reason to include this baseline is merely to see

if more advanced methods are able to outperform a very simple model.

The main contributions of this paper are as follows. Our first contribution is adding the gradient penalty

to the WGAIN method. Our second contribution is that we focus on lagged missing data and not on regular

missing data. To our knowledge this type of data has not been previously investigated with a generative

imputation method. Third, and, last we apply the proposed method to predict customer satisfaction for

orders, which is unique in the literature. The developed code in Python is available from https://github.

com/DaanSc/wgain-gp.

This paper is structured as follows. In Section 2, we review the relevant literature. Afterwards, in Section

3, we describe our proposed method WGAIN-GP. Then, in Section 4, we discuss the data used in our research.

After that, in Section 5, we explain the methodology needed for using WGAIN-GP and multinomial sampling

in our problem. Subsequently in Section 6, we compare and evaluate the results. Finally, in Section 7, we

summarize the key findings and state further recommendations. We give an overview of all the terms and

definitions in this paper in Table 1.
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Term Definition

AUC Area Under the Curve

Ceteris Paribus Testing Only changing one hyperparameter, while keeping all others fixed.

Distributional Resem-

blance

How well the distribution of the imputed values of a variable matches the

true empirical distribution of the actual data. This can be represented in

terms of histograms and Precision-Recall Distribution plots.

GAN Generative Adversarial Network

GAIN Generative Adversarial Imputation Network

Lagged Data Data that is currently missing, but known at a later point in time.

Leading Variables A group of variables which concern the cancellation, delivery date, return,

and case of an order. Knowing the outcomes of these variables implies

knowledge about the match labels.

Marginal Contribution The moment in time between the order date and 30 days after the order date

in which a leading variable is able to change the match label of an order.

MAR Missing At Random

MCAR Missing Completely At Random

MNAR Missing Not At Random

Multinomial Sampling A way to impute missing data based on the observed distributions. For this

the binomial/multinomial distribution is used.

Relevance Assumption The relevance assumption relates to the trade-off between the accuracy and

relevance of the prediction of the outcomes of leading variables. When the

relevance assumption is stated, we are interested in obtaining predictions

immediately after the order date.

RMSE Root Mean Square Error

RMSPE Root Mean Square Percentage Error

To be Active A leading variable is said to be active if it influences the match label of an

order.

WGAN Wasserstein Generative Adversarial Network

WGAN-GP Wasserstein Generative Adversarial Network with Gradient Penalty

WGAIN Wasserstein Generative Adversarial Imputation Network

WGAIN-GP Wasserstein Generative Adversarial Imputation Network with Gradient

Penalty

Table 1: Glossary of terms.

2. Related Work

In this section we first discuss previous work on GANs for imputation. After this, we state our contribu-

tions to the existing literature. Finally, we elaborate extensively on how we use existing methods to devise

our proposed WGAIN-GP method.
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2.1. Generative Adversarial Network

In the GAN framework there is both a generative and a discriminative model. The generator aims

to generate fake data, of which the distribution closely matches the real data. After this data has been

generated, it is passed to the discriminator. The discriminator then has to determine whether the incoming

data was generated or not. It does so by comparing how close the generated data resembles the actual data

[12]. In the mean time, the generator tries to fool the discriminator by producing fake data that is of ‘good’

quality. We can think of an example involving policemen and criminals as described in [12]. The policemen

can be seen as the discriminator while criminals trying to fabricate fraudulent money can be viewed as the

generator. The goal is to eventually create fake instances that resemble the real dataset. Because of the

competition that arises in this game, both the policemen and criminals improve their methods until the fake

currency is identical to the real currency. There are several GAN frameworks that can handle missing data.

The most prominent ones are MisGAN [26], VIGAN [27], CollaGAN [28], and GAIN [3] according to [13].

However, in this paper we will not focus on the first three methods for the following reasons. First, VIGAN

is used to address the missing data problem in multi-view data analysis (i.e., different views describe specific

context), but we do not have this type of data. Second, GAIN generally outperforms MisGAN for tabular

data, which can be due to the reason that MisGAN suffers more from mode collapse [29]. Finally, CollaGAN

is used for imputation of missing image data, but we do not review images. We discuss the GAIN framework

in the next section.

2.2. Generative Adversarial Imputation Network

Instead of generating samples, like in the GAN framework, our goal is to fill in missing (future) data.

A GAIN can be used for this purpose [3]. The GAN principle remains, but the goals of the generator and

discriminator are different. The generator first needs to fill in the missing data, after which the discriminator

must recognize which data is imputed and which is not. In the GAN framework, the discriminator differen-

tiates the complete sample in terms of real and fake data, while in the GAIN framework, the discriminator

receives the entire dataset consisting of parts which are imputed and parts which are not. Therefore, the

discriminator does not need to determine whether the data is real or generated, but rather which part of the

data was already there and which part is imputed. As a consequence, the input matrix for the discriminator

is a combination of real and imputed data, where the imputed data is created from random noise that is

passed through the generator. Hence, the discriminator outputs an estimated mask matrix which gives the

probability that a value from the real data is observed. To help the discriminator with assigning these

probabilities, the GAIN method provides extra information to the discriminator by means of a hint matrix.

This hint matrix gives the discriminator partial information about missing data in the original sample and
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helps to ensure that the generator actually learns to generate data like the true data distribution. In [3] the

missing data is assumed to be MCAR, but the authors showed that GAIN is also working for MAR and

MNAR data.

In [23], the performance of the GAIN method is compared with state-of-the-art imputation methods.

The authors show that GAIN outperforms the other methods in terms of the Root Mean Squared Error and

Fréchet Inception Distance. Moreover, [24] also compared GAIN with other methods and come to the same

conclusion that GAIN performs better. Other works [20, 21, 22] also obtained similar results. Figure 1 gives

a schematic overview of GAIN.

Original data (X)

x11 X x13 x14 x15

x21 x22 x23 X X

x31 X x33 X x35

Random matrix (Z)

0 z12 0 0 0

0 0 0 z24 z25

0 z32 0 z34 0

Data matrix (X̃)

x11 0 x13 x14 x15

x21 x22 x23 0 0

x31 0 x33 0 x35

Mask matrix (M)

1 0 1 1 1

1 1 1 0 0

1 0 1 0 1

Step

Loss calculation

Training from generator loss

Training from discriminator loss

Observed data

Unobserved data

Hint rate

Value assigned by discriminator

Generator (G)Loss (MSE)

+

Imputed matrix (X̂Z)

x11 x̄12 x13 x14 x15

x21 x22 x23 x̄24 x̄25

x31 x̄32 x33 x̄34 x35

Hint matrix (H)

1 0.5 1 0.5 1

1 1 1 0 0.5

1 0 1 0.5 1

Hint creator

Discriminator

(D)

p11 d12 p13 p14 p15

p21 p22 p23 p24 d25

p31 p32 p33 d34 p35

Loss (Cross

entropy)

Back
prop

agat
ion

Back propagation

Figure 1: The overall architecture of the GAIN algorithm.
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2.3. Wasserstein Generative Adversarial Imputation Network

When using a GA(I)N, several problems can arise [25]. If the generated model distribution q is far away

from the real data distribution p, the generator is unable to learn the distribution. When the generator is

not working properly, the gradient for the generator diminishes and is not able to provide learning feedback

effectively. On the other hand, when the discriminator is optimal, the generator can improve because of the

correct information produced by the discriminator. Reason for this problem can be found in the Jensen-

Shannon (JS) divergence. This is used in GA(I)Ns to determine the divergence of the two distributions q and

p. The metric does not work well when two distributions are not overlapping. When the distributions are

not overlapping the same value for the distance is returned and the gradient vanishes [25]. The discriminator

will learn to reject this input, but will never get out of this local optimum. Since the input does not change,

it provides no new feedback to the generator. The result is that the generator will keep providing the same

output. This phenomenon is called mode collapse. As such, the GA(I)N cannot learn and consequently there

is no convergence to the real distribution.

To overcome the previous issue of a vanishing gradient, [25] proposes to use an alternative cost function,

namely the Wasserstein distance instead of the JS divergence used in GA(I)Ns. By using this Wasserstein

distance, the gradient becomes smoother over the whole range. Even when two distributions do not overlap,

the Wasserstein distance can still provide a meaningful and smooth representation of the in-between distance,

in contrast to the JS divergence metric. The Wasserstein GAN (WGAN) learns regardless of whether the

generator is performing well or not. By using this new metric the discriminator does not really classify as

imputed or not anymore. The discriminator changes from a classifier to a critic and instead of predicting

probabilities, it now predicts scores. These scores correlate to how much the discriminator thinks the

samples from the generator are imputed or not. Since the discriminator cannot really discriminate between

real and fake quantitative data, we rename the discriminator to critic. For a missing values situation, the

aforementioned WGAN can be transferred to WGAIN by combining GAIN with WGAN [13]. WGAIN

provides comparable results to GAIN and other well-known imputation methods and outperforms these

when there is less than 30% of missing data [13]. Additionally, WGAIN results in more stable training than

GAIN. Figure 2 gives a schematic overview of WGAIN.
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Original data (X)

x11 X x13 x14 x15
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+
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x11 x̄12 x13 x14 x15
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Critic (C)
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p21 p22 p23 p24 c25

p31 p32 p33 c34 p35

Loss (Wasser-

stein)

Weight Clipping

Train
1 step

Train
n
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Figure 2: The overall architecture of the WGAIN algorithm.

2.4. Wasserstein Generative Adversarial Network with Gradient Penalty

In order to minimize the WGAN cost function, the slope should not exceed the value 1 in the neighbour-

hood of the point of interest (i.e., Lipschitz-1 constraint), otherwise the function of the critic is intractable.

However, it is difficult to enforce this constraint. In [30], in which the WGAN was proposed, weight clipping

was used to enforce the Lipschitz-1 constraint. However, the authors mentioned that weight clipping is not

be the most mathematical sound way of enforcing this constraint [30]. When the clipping parameter is large,

it can take a long time for any weights to reach their optimum. This makes it harder to train the critic
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till optimality. When the clipping parameter is small on the other hand, it can easily lead to vanishing

gradients when the number of layers is big or when batch normalization is not used [30]. This problem can

be solved by the WGAN-Gradient Penalty (WGAN-GP) which uses a gradient penalty instead of weight

clipping to enforce the Lipschitz-1 constraint [30]. The penalty removes the need for clipping and can create

a flexible boundary compared to WGAN with clipping. The idea is that WGAN-GP penalizes the model

if the gradient norm moves away from its target norm value equal to 1 [30]. This WGAN-GP can also be

adjusted to WGAIN-GP in a missing values problem, as discussed in the next section.

3. Wasserstein Generative Adversarial Imputation Network with Gradient Penalty

In this section, we explain thoroughly how to use the previous work on GAIN, WGAIN, and WGAN-GP

to construct the WGAIN-GP. Just like the WGAN-GP finds its roots in the WGAN, the WGAIN-GP is a

method building on the WGAIN method [13]. Similar to WGAIN, we first denote an N ×K (random) data

matrix: X = (X1, ..., XK). Here K corresponds to the number of features in the matrix and X1, ..., XK are

vectors of size N . Therefore any element of X can be represented as xij , for i = 1, ..., N and j = 1, ...,K.

We say all values in this matrix come from the distribution P (X). After this, we introduce a matrix M,

containing the binary values 0 or 1. The matrix M functions as a mask and provides information about which

values we do (not) observe. As such, the distribution of the mask matrix is dependent on the distribution

of the missingness present in the data. When Mij is 1, this corresponds to xij in X being present. On the

other hand, whenever Mij is 0, it aligns with xij in X being missing. Furthermore, we introduce a matrix

X̃ that inserts zeros at elements where values in X are missing,

X̃ = X⊙M, (1)

in which ⊙ stands for an element-wise computation. We want to fill in the missing values in X with the help

of data points that are not missing in M and X̃. The idea is to make this possible in a generative manner

[13]. In order to do so, we establish Z as an i.i.d. normally distributed (N(0, σ2)) matrix with random

values, in which we usually take σ2 = 1. Consequently, we can define another matrix X̄,

X̄ = G(X̃,M, (1−M)⊙ Z), (2)

where G(·) is the generator function. We then introduce the imputed data matrix,

X̂Z = X⊙M+ X̄⊙ (1−M). (3)
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Based on the mask matrix M we generate a hint matrix H, conditional on the columns we want to

impute. The hint matrix can have three values: 0, 0.5, and 1. Whenever an element of the hint matrix

equals 0, this implies that the corresponding element in M also equals 0. Similarly, whenever an element of

the hint matrix equals 1, the corresponding element of M equals 1. If an element of the hint matrix has the

value 0.5, the corresponding element in M can either be 0 or 1. The hint matrix thus gives hints about which

elements are imputed and which are not. The value 0.5 is provided to contaminate information, coming from

observed and unobserved data in M, about which elements are imputed and which are not. How many

elements we want to contaminate depends on the hint rate. A higher hint rate implies less contamination,

while a lower hint rate provides more contamination. This hint matrix is sent to the critic in combination

with the imputed data matrix X̂Z.

We can train the critic and the generator by minimizing a loss function. To properly explain how we

find the loss function used in the WGAIN-GP method, we have to elaborate on the loss functions used in

the GAIN and WGAIN method, first. The GAIN method has as main components the generator and the

discriminator instead of the generator and the critic which we use in the WGAIN and WGAIN-GP methods

[3]. We train the generator in the GAIN with the help of the standard squared loss function given by

Equation 4

LMSE(X̂Z, X̄) = ∥X̄− X̂Z∥2. (4)

The motivation of this loss function is as follows. The generator generates data for all elements in X̃. That is,

it generates instances for the data of which we know the actual outcomes as well as for the missing elements.

During training, we do not know the values of the missing data, but we do know the values of the data being

present. Therefore, the use of this loss function is to force the generator to generate data of the present

instances which resemble the present instances as good as possible. Since the data that is missing follows

the same distribution as the data that is not missing, the generator also indirectly learns how the values of

the missing data can be generated. Thus, this loss function aids in finding the quality of the imputations.

However, it does not help us with finding the location of the imputations. Since we also need to know where

to impute values, this loss function does not help enough with learning the correct conditional distribution

of X̂Z. One way to get a better performance by the generator, is introducing a discriminator that tries to

figure out which instances of X̂Z are imputed values and which instances are values coming from the original

data X. If the discriminator has a hard time to distinguish the real values from the imputed values that

means the generator has done a good job in providing values for the missing variables.

We can extend the previous loss with the Earth Mover’s distance (EM distance), also called the Wasser-

stein distance [13]. This distance has a similar function as the aforementioned loss function, it aims to learn
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the conditional distribution of X̂Z better. Please note, the WGAIN renames the discriminator to critic, C.

Next, we define C(X̂Z,H) which takes the concatenated result from X̂Z and H as input and is producing

real values that are high for the given data or imputed data hat is not distinguished from the given data.

We then introduce the Lipschitz constraint, which is needed for tractability. As shown in the WGAN-GP

method [30], the constraint is provided in the form of a gradient penalty. For the WGAIN-GP method

we make an extension to the EM distance using the gradient penalty described in [30]. The critic C and

generator G have their own weights and play an iterative two player minimax game (adversarial training). In

this game the critic aims to differentiate missing values from values that where already there since the start

of the training process while the generator tries to stop the critic from being able to make that separation.

In conclusion, we need to minimize the 2 loss functions below. First we look at the function we need to

minimize in order to train the critic,

JC = EX̂Z,M,H

[
−M⊙ C(X̂Z,H)] + (1−M)⊙ C(X̂Z,H) + λGP

(
∥∇X̂Z

C(X̂Z,H)∥2 − 1
)2

]
. (5)

Second we look at the function we need to minimize in order to train the generator,

JG = EX̂Z,M,H

[
−(1−M)⊙ C(X̂Z,H) + λMSELMSE(X̂Z, X̄)

]
, (6)

were λMSE helps us to adapt for the impact coming from the squared loss function. Both Equation 5 and 6

update the weights w using the Adam optimization algorithm, since it improves performance for WGAN-GP

according to [30].
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x11 X x13 x14 x15

x21 x22 x23 X X

x31 X x33 X x35

Random matrix (Z)

0 z12 0 0 0

0 0 0 z24 z25

0 z32 0 z34 0

Data matrix (X̃)

x11 0 x13 x14 x15

x21 x22 x23 0 0

x31 0 x33 0 x35

Mask matrix (M)

1 0 1 1 1

1 1 1 0 0

1 0 1 0 1

Step

Loss calculation

Training from generator loss

Training from critic loss

Observed data

Unobserved data

Hint rate

Value assigned by critic

Generator (G)Loss (MSE)

+

Imputed matrix (X̂Z)

x11 x̄12 x13 x14 x15

x21 x22 x23 x̄24 x̄25

x31 x̄32 x33 x̄34 x35

Hint matrix (H)

1 0.5 1 0.5 1

1 1 1 0 0.5

1 0 1 0.5 1

Hint creator

Critic (C)

C(X̂Z,H)

p11 c12 p13 p14 p15

p21 p22 p23 p24 c25

p31 p32 p33 c34 p35

Loss (Wasser-

stein)

Gradient Penalty

Train
1 step

+ C(X̃,H)

Train
n

steps

Figure 3: The overall architecture of the WGAIN-GP algorithm.

Given these loss functions, we now explain how the WGAIN-GP in its entirety can be constructed.

Compared to GAIN [3], the last activation layer of the critic changes slightly. Rather than using a sigmoid

activation function, a hyperbolic tangent (tanh) activation function is used. This is done, such that the

same structure as in WGAIN [25] is followed. Consequently, the interpretation of the output of the critic

changes. We can no longer give a probabilistic measure of how likely it is that an element is imputed or not,

since the range of tanh does not have a range of 0 to 1. Rather, negative values indicate poor imputations

(lower bounded by minus 1), while positive values (upper bounded by 1) indicate good imputations. This
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interpretation follows the same line as in [25]. Additionally, the critic has more training epochs than the

generator, as suggested in [25]. This is done to prevent the generator to dominate over the critic. Lastly,

batch normalisation cannot be used whenever the Wasserstein loss with gradient penalty is used. The argu-

mentation for this change is that the gradient penalty penalizes the norm of critic’s gradient independently

for every input, and not for the entire batch [30].

Algorithm 1 WGAIN-GP

Require: b, the batch size; γ, the learning rate; λGP , the gradient penalty coefficient; λMSE , the MSE
coefficient

1: while weights have not converged do
2: for i = 1, ..., ncritic do
3: Get b values from the dataset {xi}bi=1, the mask distribution {mi}bi=1 and the hint distribution
{hi}bi=1

4: Draw b samples from the normal distribution of Z, {zi}bi=1

5: Draw b samples from the uniform distribution U [0, 1], {ϵi}bi=1

6: x̃i ← xi ⊙mi;
7: x̄i ← g(x̃i,mi, (1−mi)⊙ zi);
8: x̂zi

← xi ⊙mi + x̄i ⊙ (1−mi);
9: Update weights of C using Adam with θ1 = 0, θ2 = 0.9, learning rate γ = 10−4 and gradient:

10: ∇JC = ∇[− 1
b

∑b
i=1 mi ⊙ C(x̂zi ,hi) +

1
b

∑b
i=1(1−mi)⊙ C(x̂zi ,hi)] +

1
b

∑b
i=1 λGP (∥∇x̂zi

C(x̂zi
,hi)∥2 − 1)2;

11: end for
12: Get b values from the dataset {xi}bi=1, the mask distribution {mi}bi=1 and the hint distribution {hi}bi=1

13: Draw b samples from the normal distribution of Z, {zi}bi=1

14: Draw b samples from the uniform distribution U [0, 1], {ϵi}bi=1

15: x̃i ← xi ⊙mi;
16: x̄i ← g(x̃i,mi, (1−mi)⊙ zi);
17: x̂zi ← xi ⊙mi + x̄i ⊙ (1−mi);
18: Update weights of G using Adam with θ1 = 0, θ2 = 0.9, learning rate γ = 10−4 and gradient:
19: ∇JG = ∇[− 1

b

∑b
i=1(1−mi)⊙ C(x̂zi

,hi) + λMSE
1
b

∑b
i=1 ∥x̄i − x̂zi

∥2];
20: end while
21: return C and G

The pseudocode for this WGAIN-GP algorithm can be found in Algorithm 1. The time complexity of

this algorithm is O(b ·d ·k ·e), where b is the number of samples, d is the number of features, k is the number

of layers in C and G, and e is the number of epochs. We first need to draw some samples and we need to

define the hyperparameters. We choose Adam with θ1 = 0, θ2 = 0.9, we set learning rate γ = 10−4, and

ncritic = 5. Then, we repeat several steps until convergence of the algorithm (the weights have not changed

by more than ϵ = 10−6). These steps include updating the weights w of C using Adam as optimization

algorithm with pre-specified parameters as given in the pseudocode. Then, both the gradient of the critic

and the generator need to be updated and these steps are repeated until convergence. Figure 3 gives a

schematic overview of the WGAIN-GP method.
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4. Data

In this section we give a description of our dataset and an overview how we prepared the data for our

research. The data consists of orders from an online retailer in the Netherlands in 2019 and 2020 up until

the 16th of December 2020. The term ‘missing data’ is used to denote data that is not yet available at that

specific point in time. The same reasoning holds for data that is to be imputed: Delivery Days, Case, and

Return. The dataset consists of both continuous and categorical data.

4.1. Data Pre-processing

The pre-processing procedure aims to prepare the data in such a way that incorrect data points are

deleted, faulty data is extracted, and redundant data is removed. Furthermore, the data is transformed and

new data is added. With the use of the provided date-time data, the following new variables are created:

Promised Delivery Days, Cancel Days, Shipment Days, Delivery Days, Return Days, and Case Days. These

variables represent the number of days between the order date and the relevant event. If an order is cancelled

for example, it will not be delivered. In such a case the number −2 is used to identify this situation. In case

the variable is unknown, the value −1 is used. These number classifications will help the decision tree, which

will be introduced in Section 5, to identify the direction in which the order needs to go through the tree. We

also set boundaries to treat non-logical data and adhere to the online retailers requirements. The promised

delivery days cannot be negative and cannot exceed thirty days. Cancellations are only looked back at for a

maximum of ten days after ordering, so we omit cancellations longer than this time period. The same idea

holds for fulfilment, cases, and return, where the maximum is 13 days, 13 days, and 30 days when the order

has been made, respectively. Based on the distribution of the total order price we only take values between

e5 and e2000. By setting these boundaries we select most of the orders. Only 1% of the dataset is omitted

when applying these limits. Thus, we treat orders below or above this range as outliers. Omitting those

creates a smoother distribution which makes it easier for the GAIN network to learn the distribution.

The age of the seller (Seller Age) is added as a new feature. We take the difference between the registration

date of the seller compared to the order date as age. Normalizing these ages, by minmax scaling, gives us

a histogram which can be seen in Figure 4. When looking at this figure, we see that there are not that

many sellers with an age above approximately 0.6, which represents the normalized value. However, since

normalization depends on the maximum value, these suppliers influence the range of sellers. Therefore, we

propose to take an upper boundary of 8 years as age for a seller. If a seller has an age exceeding this value,

we set its age to 8 years. By doing so we decrease the maximum value, which means our normalization

becomes more spread out, as can be seen when looking at Figure 5.
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We now take a look at the different distributions of delivery dates (Delivery Days), cancellation days after

the order date (Cancel Days), number of days before first case after order date (Case Days), and return days

after the order data (Return Days). In Figure 6 we note that the distribution of delivery data is relatively

spread out, but for cancellation, case, and return, we have highly imbalanced distributions.

4.1.1. Normalizing

We normalize non-categorical variables with use of a minmax scaler to make them suitable for the model.

For this we normalise in such a way that all values are in a range between 0 and 1. As we explain in Section

5.4, we impute data by means of a neural network for the generator. This neural network uses a sigmoid

activation function for our neural network in the final layer, which outputs values in between 0 and 1. As

a result, by initially having our data in the same range, we make the conversion of renormalization much

easier. The variables we normalize are the following: Quantity Ordered, Total Price, and Seller Age.
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Figure 4: Normalized distribution for variable seller age if we do not take 8 years as a lower bound.

Figure 5: Normalized distribution for variable seller age if we take 8 years as a lower bound.

4.2. Adding External Variables

In order to better detect and explain patterns we find in our dataset, we add several external variables.

Based on the order date we add the Order Weekday and the Order Month. This data helps us understand

the time context. Furthermore, we add some holiday data as external variables. Each holiday is added as

a new column, where two weeks prior to the actual holiday, the holiday value is activated by a dummy.

We believe the effect of the holiday is best captured two weeks before the actual holiday. This way, four

new columns are added: Christmas, Saint Nicholas, and Easter. Other external variables such as weather,

temperature, and traffic jams will definitely have an impact on the delivery process. The downside is we do
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Figure 6: The distributions of delivery dates, cancellation days after the order date, number of days before first case after order
date and return days after the order data.

not know the location of the supply depot and the package destination. This makes the use of these three

variables not useful in our experiment, since we lack this detailed information.

4.3. Embedding Categorical Variables

In tabular data, one usually needs to make appropriate transformations for categorical variables. This

implies a form of one-hot encoding, in which all levels in a categorical variable are split in different columns

and subsequently are given either a value of 1 if the level matches with the observation and 0 otherwise. This

approach comes with a couple of drawbacks. First of all, with a high cardinality in the levels and/or high

number of observations, one would obtain sparse matrices. Secondly, one-hot encodings lead to equidistant

distances between all the levels of a categorical variable, while in reality these distances may differ from

level to level. As a result, using one-hot encoding makes it difficult to obtain the intrinsic properties

of categorical variables. For these reasons, we propose a different type of transformation on categorical

variables, named embedded layerings [31]. With embedded layerings, categorical variables are mapped into

a function approximation with Euclidean distances. The mapper is trained using neural networks. In [31], it

is shown that this approach yields computational advantages over traditional transformations of categorical

variables. In particular, the embeddings result in better generalisations for neural networks for sparse data.

Furthermore, it is shown using embeddings that result from the mappings of categorical variables into the
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neural networks can be used as features in other machine learning methods. In fact, in [31] it is explained

that using these embeddings as features for categorical variables could lead to higher prediction accuracy.

5. Methodology

To explain what our methodology entails, we need to explain the difference between our main method-

ological framework and the multiple processes that help the framework work properly. Thus, we first discuss

what the main framework looks like and how we can use it to predict what label (or match) our order gets.

After this, we are able to elaborate on the processes within the framework. While explaining the idea behind

our framework, we consider a multi-class classification problem, a so-called matching system. In this system

we aim to predict the quality of an order by labeling the order with the client being in an happy, unknown,

or unhappy state. The three labels we attach to these outcomes are therefore respectively a Happy Match,

an Unknown Match, and an Unhappy Match.

5.1. Framework Architecture

5.1.1. Labeling Matching Labels

In this subsection, we explain the framework architecture behind our matching system. To understand this

architecture, it is important to first look at the distinctions between the different match labels we established.

Therefore, we briefly summarise the characteristics and size of all these different match outcomes with the:

• Unhappy Match (12%): All orders for which the order went wrong in at least 1 aspect. These

aspects are:

1. Cancellation: The order is cancelled within 10 days.

2. Delivery : The order is delivered after the promised delivery date.

3. Return: The order is returned within 30 days after the order takes place.

4. Case: At least one case is made within 30 days after the order takes place.

• Unknown Match (31%): All orders for which the delivery date is not known and no cancellation,

return or case takes place.

• Happy Match (57%): All orders which do not result in an Unknown or Unhappy Match.

Comparing these descriptions of the order labels, we see the classification of an order can be deduced

from knowledge about the variables related to the cancellation, delivery, return, or case of an order. We call

these variables the leading variables. Once these leading variables are known, it becomes clear what type of
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match we have to label an order with. However, at the order date most of this information is not known. One

approach to obtain information about the leading variables is waiting until information becomes available.

In time, this results in a high accuracy of our predictions because we know exactly what the outcome of the

matching system is. On the downside, the relevance of our predictions decreases as we need to wait a while

before we can make them. In other words, there is a trade-off between the accuracy and the relevance of our

prediction of the matching outcome of an order. To obtain high relevance, we need to know the outcomes

of the leading variables as soon as possible, ideally right after the order is made. Therefore, we set up a

framework in which we try to deduce the outcomes of these leading variables. Among other things, this

framework helps us to know at what moment in time a leading variable influences the outcome of a matching

label. We investigate this further with the concept of a marginal contribution for leading variables in the

next section.

5.1.2. Marginal Contributions of the Leading Variables

We say a leading variable has a marginal contribution when it is able to change the label an order receives.

To illustrate this, we take a random order with the label Unhappy Match. Given this label, we know the

order is cancelled and/or delivered too late and/or returned and/or at least one case is made. However, we

do not know which variable is actually triggering the Unhappy Match label. Leading variables triggering a

match label is what we call Active Variables. We cannot deduce whether only one leading variable is active,

or multiple. Therefore, based for the label Unhappy Match, we note the following:

The leading variable concerning the return of an order depends on the leading variable concerning the

delivery date, due to the fact that a product related to the order only can be returned if it has been delivered.

An order is only cancelled if it is not yet delivered. An order only can be returned whenever it is delivered.

Therefore, cancellation and return cannot be active at the same time. Additionally, once an order is cancelled

it cannot be delivered. As a result, cancellation and delivery cannot be active at the same time. The leading

variables are able to change the label of an order to an Unhappy Match at the following moments in time:

• Cancellation: Between the order date and the delivery date, with a maximum of 10 days after the

order date.

• Delivery : Once the delivery date is beyond the promised delivery date.

• Return: Only if the delivery date is unknown or the delivery was on time.

• Case: Only when the order was not cancelled, the delivery was on time and the order is not returned.

Furthermore, only the first reported case changes the label.
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Figure 7: Timeline from the moment an order is placed at t0 until the first case at t3.

Based on these observations, we are able to create the following ordering of the leading variables:

Cancellation > Delivery > Return > Case, where ‘>’ means that the variable on the left occurs at an

earlier moment in time than the variable on the right. We show this in a timeline in Figure 7. Now that

we have these marginal contributions in place, we can create the framework architecture of our matching

system.

5.1.3. Model Framework in a Tree Structure

The order of the leading variables we create based on the marginal distributions can sequentially be

represented in a tree type of structure. Figure 8 shows such a tree. This tree can be decomposed into 3

different types of nodes. First of all, we have the order node. Second, we have decision nodes in which the

outcome to one of the leading variables needs to be decided. Lastly, we have the outcome nodes in which

the match outcome of the order is provided.

Considering Figure 8, we can see that it is possible to deduce the match label of an order using values

of the leading variables. In case a leading variable becomes active for the Unhappy Match, we label the

order as Unhappy. Whether an order is labeled as an Unknown Match is mostly determined by the leading

variable Delivery Date. This variable can be decomposed in a categorical variable with one of the following

3 classes: Late Delivery, Unknown Delivery, and On Time Delivery. These labels depend on the type of

delivery date. In the first instance, the actual delivery date is beyond the promised delivery date, while in

the second instance the delivery date of an order is not known during the order process. One example in

which this occurs is for orders which are delivered by mail. In these situations, the delivery date of the order

is not tracked, since no signature by the customer is required whenever the order is delivered. Consequently,

the order date is set to unknown. The last label corresponds to orders in which the delivery date is before

or at most at the same date as the promised delivery date.
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Figure 8: The model framework in a tree architecture. The numbers after Return and Case indicate the distinct return/case
situation in the tree.

Once values of the leading variables are known, Figure 8 shows us different roads for classifying an order.

However when these leading variables are still unknown, the tree does not provide any information about

how information from these lagged variables can be obtained. In order to find this information, we need

to recall the importance of the accuracy versus relevance trade-off. If we are only interested in accurate

predictions, the best option is to wait until true information comes in. However, this decreases the relevance

of the predictions we make. An alternative approach is to find methods able to predict outcomes of the

leading variables as soon as possible, accepting the risk of making less accurate predictions. We assume our

goal is to find predictions of outcomes of the leading variables immediately after an order is made such that

we can make the framework in Figure 8 concrete. We name this the Relevance Assumption.

5.2. Concrete Model Instantiation

5.2.1. Empirical Distributions & Prediction Method Decisions

We need to decide how we want to predict outcomes of the leading variables. To do so it is important

to understand how we can treat every leading variable. First of all, in the tree in Figure 8 we see that

the outcomes of all leading variables can be represented as discrete choices. Additionally, we see that these

discrete choices are of two types: binary decisions or decisions consisting of more than 2 levels (3).

More concretely, we convert the outcomes for the leading variables Cancellation, Return and Case to

a binary decision outcome, while we attribute to the outcome for the leading variable Delivery Date three
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Leading Variable Yes No
Cancellation 0.003 0.997
Return 1 0.063 0.937
Case 1 0.049 0.951
Return 2 0.061 0.939
Case 2 0.023 0.977

Table 2: Empirical distributions (over the years 2019 and 2020) for the leading variables as depicted in Figure 8. ‘Yes’
corresponds to activation of a leading variable. The numbers after Return and Case indicate the ’unknown delivery’-path (1)
and ’on time delivery’-path (2).

different levels. In order to understand how likely all these outcomes are, we provide the empirical distri-

butions of all leading variables. As such, we consider the probabilities for the leading variables with binary

outcomes in Table 2 and the outcomes for the leading variables Delivery Date in Table 3.

Based on the results of Table 2, we see imbalanced empirical distributions for the leading variables

Cancellation, Return, and Case. This is most apparent for the leading variable Cancellation, which has a

probability of 0.997 of no cancellation occurring. Consequently, if we rely on binomial sampling for predicting

the outcome of Cancellation, we expect that the probability of making a wrong prediction is close to 0. For

this reason, we decide to use multinomial sampling for the prediction of this leading variable. For the

empirical distributions related to the leading variable Return, we see again a high level of bias towards

no activation, although these probabilities of not being activated are lower than for the leading variable

Cancellation. With empirical probabilities 0.937 and 0.939 of no return occurring for Return 1 and Return

2 respectively, the probability of making a wrong prediction is still low but not expected to be close to

0. As a result, we apply a more advanced prediction method to find the outcome of this leading variable.

When we consider the empirical distributions for the outcomes of the leading variable Case, we find levels of

imbalance in between those of Cancellation and Return. In particular, we see that the empirical probability

of no activation for Case 1 has value 0.951, which is in the neighbourhood of the empirical distributions

corresponding to Return 1 and Return 2. The empirical probability of no activation for Case 2 has value

0.977 and is closer to that of Cancellation. Since we expect the probability of making a wrong prediction

for these two instances of the leading variable Case to be small but not close to 0, we use a more advanced

prediction method to determine the outcome of this leading variable.

Level Empirical Probability

Late Delivery 0.036

Unknown Delivery Date 0.338

On Time Delivery 0.626

Table 3: Empirical distributions (over the years 2019 and 2020) of the different levels for the leading variable Delivery Date as
depicted in Figure 8.

Next, we consider the empirical distributions related to the leading variable Delivery Date in Table 3.
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Based on these results, we note that On Time Delivery occurs most of the time, followed by Unknown

Delivery Date. On the other hand, Late Delivery seems to have a much lower empirical probability of

occurring. For the prediction of this leading variable, we also use a more advanced prediction method.

5.2.2. Model Tree using WGAIN-GP

Based on the above argumentation, we conclude that we use binomial sampling for the prediction of the

outcomes of the leading variable Cancellation, while we use a more advanced prediction method for all other

leading variables. In this paper, we make use of our newly introduced generative model WGAIN-GP in

order to predict the outcomes of these leading variables. With the use of this prediction method, we obtain

a concrete model instance compared to the general model framework of Figure 8. In Figure 9, we apply

multinomial sampling method as the prediction method for the decision node related to the leading variable

Cancellation. For the other decision nodes, we use WGAIN-GP. However, as the WGAIN-GP method has

never been applied before, we also implement a model similar to the one in Figure 9 with the WGAIN

method and the GAIN method. Adding the GAIN method seems interesting as it uses a different loss

function than WGAIN and WGAIN-GP. Since GAIN, WGAIN, and WGAIN-GP have similarities, we want

to have a baseline to compare these three methods. We take the most simple baseline possible, where we

apply multinomial sampling to the nodes where we applied WGAIN-GP, WGAIN, or GAIN. This helps to

see if our advanced methods can outperform a relatively simple model.

Next, we elaborate on the the training procedure of the GAIN, WGAIN, and WGAIN-GP methods.

From now on for brevity of notation, the three methods are concatenated together under the name GAIN

if we do not specify any further. In this paper, we use a combination of multinomial sampling and GAIN

imputation to make predictions of the activation of the leading variables. However, the model framework of

Figure 8 can also be used in conjunction with other prediction/imputation methods.

5.3. Test and Training Regime

5.3.1. Training and Test-split

We use a sample of 945,362 observations. This sample is split into two parts. One part is used for training

decision nodes corresponding to predictions of the leading variables, while the second part is used to test

performance of the overall tree model. Here, we use 2/3 (631,287) for the evaluation of the overall model,

while we use the other 1/3 (314,075) to train prediction methods.

5.3.2. Training Data

Training Datasets. In order to impute outcomes of the leading variables Delivery Date, Return, and Case,

it is important to take into account the relative ordering of the these leading variables. For example, the
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Figure 9: The decision tree used to classify an order as one of the matches: Happy Match, Unhappy Match, or Unknown Match.
The percentages are probabilities used to end up in a specific node and are calculated based on the conditional probability of
ending up in this node.

imputation for the leading variable Delivery Date depends on the outcome of the leading variable Cancel-

lation. In this situation it only seems logical to impute the outcome of the leading variable Delivery Date

if an order is not canceled. Thus, we only require the information of all non-canceled orders whenever we

want to impute the outcomes for the leading variable Delivery Date. Similarly, for imputation of the leading

variables Delivery Date and Case we need to take the prior information into account. Here, we can think of

a situation in which the imputation for the leading variable Return relies on the outcome of the the leading

variable Delivery Date. In case an order is delivered late, we do not need to impute the outcome for the

leading variable Return as this does not have any marginal contribution. Whenever we want to impute the

outcome of leading variable Return, it is therefore important to understand which information to use. The

two examples above illustrate the importance of using information for all the decision nodes in Figure 9

with caution. Since it is not desired to use the same information everywhere, we only use conditioned data.

The idea is to remove parts of the data which cannot be used to impute the outcomes of the corresponding

leading variables. For example, when we impute the outcome for the leading variable Delivery Date we

remove all canceled orders. Similarly, when we impute the outcome for the leading variable Return we only

use information of all orders with the corresponding delivery date. Here, for Return 1 we use information of

all orders with an unknown delivery date, while for Return 2 we only use information of all orders with an

on time delivery date. As a result of this procedure, the number of observations used for leading variables,

which rely more on other leading variables, is lower. In Table 4 we show the number of observations used

for all decision nodes in Figure 9.
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In Table 4, we see that from the total training sample of 314,075 observations, we use 305,808 for

the training of the leading variable Delivery Date. Then, of these 305,808 observations, we use 102,816

observations for the training of Return 1 and 191,851 for Return 2. Note that these two numbers do not add

up to 314,075, since some observations are removed due to the label Late Delivery. Lastly, of the 102,816

observations used of Return 1, 96,3476 are used for the training of Case 1. On the other hand, of the 191,851

observations of Return 2 180,181 are used for Case 2.

Leading Variable Number of Observations
Delivery Date 305,808
Return 1 102,816
Case 1 96,3476
Return 2 191,851
Case 2 180,181

Table 4: Data splits over decision nodes used for the imputation of the leading variables

Validation Performance on Training Data. During the imputation training process of the leading

variables the data is split into 5 folds. Based on these folds we apply stratified 5-cross validation to evaluate

the performance under different settings of the hyperparameters. To determine the best hyperparameters

a grid search over a range of hyperparameter values is done. In order to evaluate the performance of the

GAIN methods under a set of hyperparameters, we consider two types of performances. For the first type of

performance, we look at a metric directly related to training data, while the second metric uses validation

data.

Evaluation on the Training Set: For the training data, our goal is to obtain a generator able to

generate realistic samples which can be used for data imputation. As such, we train a generator and

discriminator/critic accordingly. In order to evaluate the performance of this training process, we evaluate

how well the generated samples resemble the distribution of the empirical data. Secondly, we investigate if

the training process has converged by means of a stopping criterion.

Distributional Resemblance:. During training of a GAIN, we need to consider the performance. To this end

we can consider how well the distribution of the imputed data resembles the actual empirical distribution

of the data. This can be visualised by means of a histogram. However, these histograms do not provide

us with any numeric estimation. Fortunately, we can still obtain a numeric valuation, if we convert the

histograms into Precision Recall Distribution plots (PRD-plots), as is proposed in [32]. First of all, we need

two distributions: a reference distribution p and a learned distribution q. In our instance, p corresponds

to the true empirical distribution, while q corresponds to the distribution obtained by one of our GAINs.

Based on these two distributions, precision intuitively measures the quality of samples from q, while recall

measures the proportion of p that is covered by q. Hence, we can say that precision measures the quality of
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the generated samples, while recall measures the diversity of the generated samples. Since this is based on

a distribution, we do not obtain a single point but rather an entire set of points that can be visualised into

plots. PRD-plots can be converted into a numeric value, if we consider the area under the curve (AUC) of

these plots. Since PRD-plots are embedded in squares with a length and width of 1, the maximum AUC

equals one, while the minimum AUC equals zero. Therefore, if we convert the PRD-plots to the corresponding

AUC-values, we have a numeric interpretation of the resemblance of the imputed data distribution compared

to the actual data distribution.

Stopping Criterion:. A stopping criterion is needed when training the GAIN. Adding more epochs after

training has already converged does not add value, so we add another convergence criterion besides the

number of training epochs. This criterion is based on the loss function of the generator. The goal of the

stopping criterion is to control if the loss of the generator has converged. In order to do so, we track the

relative change of the loss of the generator. In case this relative change in absolute value is smaller than

the small number ϵ (in which we set ϵ = 10−6), we might have evidence that the loss of the generator has

converged. However, to make this claim only after one epoch might be too optimistic. Therefore, we add

a counter which tracks how often the relative change is subsequently smaller than ϵ. In case this happens

more than a specified number of times, we stop training. We set this predetermined number equal to 50 and

the maximum number of training epochs equal to 1000.

Evaluation on the Validation Set: The goal of evaluation on the test set is to see how the model

predicts on unseen data. We denote the True Positive as TP, the True Negative as TN, the False Positive

as FP, and the False Negative as FN. We then use the following metrics:

• Accuracy = TP+TN
TP+TN+FP+FN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 = 2 · Precision·Recall
Precision+Recall

• Weighted F1: Based on the F1-score, we can compute a weighted F1-score by computing the F1-score

for every label in a categorical variable and subsequently multiplying them by the probability of this

label occurring within the categorical variable. Say that a categorical variable has C of such labels and

that πc is the gold test data probability of label c occurring, where c = 1, 2, ..., C. Then the weighted

F1 score can be calculated as follows: Weighted F1 =
∑C

c=1 πcF1c, where
∑C

c=1 πc = 1.

To evaluate the training of the GAIN methods on the test set we use the weighted F1-score, while for

the evaluation of the overall model tree we use all discussed metrics.

With the use of these metrics the overall evaluation procedure is as follows. First we train one of the GAIN

methods on one of the training dataset, for a prespecified number of epochs. During these epochs, the goal is
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to return a generator which has the best distributional resemblance. The best distributional resemblance is

given by means of the AUC value. After the generator with the best distributional resemblance is found the

next step is to check the imputation quality of this generator. For this we use the validation data, in which

we measure the imputation quality by means of the weighted F1-score. The motivation for the usage of the

AUC-score for the training data and the weighted F1-score on the validation set and not the other way around

is as follows. During training, we update the weights and biases of the generator multiple times. As a result,

we encounter different versions of the generator, some of which have better imputation quality than others.

However, better imputation quality does not necessarily imply a better distributional resemblance. In some

instances, the imputation quality can be improved by only predicting one of the outcomes (low distributional

resemblance). This is especially true in case one of the outcomes is overrepresented. Therefore, using the

weighted F1-score for finding the best generator might yield a generator which has relatively high imputation

quality but bad distributional resemblance. In order to prevent this bias from occurring, on the training

data we use the AUC-score as evaluation measure.

Both F1-score and AUC are useful to report for imbalanced data. As our variables are imbalanced we

decided to report these measures next to accuracy.

5.4. GAIN Implementation on Dataset

The GAIN framework is used when we try to predict the outcomes of the leading variables Delivery Date,

Return, and Case at the order date. The idea is to consider the outcomes of these leading variables as missing

data that we want to impute. We assume that we can impute the missing data by using the information

of relevant features. In our particular situation, this corresponds to using data available at the order date

provided in Table 5. In this table we first state the names of all variables we intend to use. Secondly, we

mention the types of the variables. Besides continuous, count, and dummy variables, we also incorporate

categorical embedding variables. The latter are embedded using embedding layers.

5.4.1. Embedding Layers

In Table 5, we have multiple categorical variables. Some of these have multiple levels (more than two),

while others have exactly 2 levels (dummies). For all categorical variables with more than two levels which

are used as features, we apply embedding layers.

In order to build the adapted GAIN network, we need to add embedding layers within the GAIN archi-

tecture. Usually the embedding layers are placed in front of the first layer of the model. In our situation,

this implies that we need to add the embedding layer to the network corresponding to the generator. As a

result, the weights of the embedding layers are trained using the loss function of the generator. Adding this

embedding layer in front changes the network architecture in the following way:
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Feature Variable Type Function
Case Dummy Imputation
Christmas Dummy Feature
Country Availability Dummy Feature
Country Origin Dummy Feature
Delivery Date Categorical (3 levels) Imputation
Easter Dummy Feature
Fulfillment Type Dummy Feature
Order Month Categorical Embedding (12 levels) Feature
Order Week Categorical Embedding (52 levels) Feature
Order Weekday Categorical Embedding (7 levels) Feature
Product Group Categorical Embedding (60 levels) Feature
Promised Delivery Days Count Feature
Quantity Ordered Count Feature
Saint Nicholas Dummy Feature
Seller Age Count Feature
Total Price Continuous Feature
Return Dummy Imputation
Year Dummy Feature

Table 5: The used variables: names, types, and functions

1. We need to decide upfront which variables we want to embed and which ones not. Here we make the

assumption that we cannot embed variables which we want to impute, because then we would try to

impute values we are training.

2. We only add random noise to the variables we do not embed. Since we are not imputing the variables

we are embedding, we do not have to add random noise to the embedded variables.

The output dimension of the embedding layers is not necessarily fixed. Consequently, the output dimen-

sion of the embedding layers can be treated as a hyperparameter. We discuss the other hyperparameters

next.

5.4.2. Hyperparameters and Hyperparameter Tuning

To train the GAIN methods we need to consider hyperparameters. Our approach in finding the correct

hyperparameters is to vary some, while keeping others fixed. The main reason why we use this approach

is to save computational time. In order to determine which variables we need to vary, we apply semi-

supervised pre-training. During this training we try several values of a single hyperparameter using three

different reasonably high batch-sizes. These batch sizes are 1024, 2048 and 5096. Using these batch sizes,

we observe how a hyperparameter affects the training process. This is what we call ceteris paribus testing.

The hyperparameters are listed below:

Batch Size: Generally smaller batch sizes lead to more stochastic behaviour and they are less expensive

in terms of memory used. Larger batch sizes, on the other hand, result in less stochastic behavior and require

more memory. We use the batch size as hyperparameter and also use it for ceteris paribus testing.

Hint Rate: The hint rate states the fraction of observations of which we provide the state to the

discriminator/critic. Although we can treat the hint rate as a hyperparameter for which we can try different
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values, we observed from empirical testing that changing the hint rate in a ceteris-paribus fashion does not

have a large influence on the output results. Since the hint rate does not seem to influence the results much,

we keep this hyperparameter fixed and select a hint rate of 0.5. This is based on the hint rate used in [3].

Output Dimension of the Embeddings: The output dimension of embedding layers is a hyperpa-

rameter, since it is not fixed beforehand. However, an important question to ask is whether changing output

dimension significantly influences the process of training a GAIN method. In order to test this, we apply

ceteris paribus testing. Using the smallest possible output dimension, which is equal to one, an output di-

mension of five, and the largest possible output dimension (the number of levels) of the categorical variable,

the training process and accuracy performance do not change significantly. However, the computational time

increases since the dimension of the problem increases. Therefore, in order to save computational time, we

use an output dimension of one everywhere.

λ-penalties: We have two λ-penalties, one concerning the MSE loss of the generator and one concerning

the gradient penalty loss of the critic. Note the latter penalty is only added for the WGAIN-GP method. The

effect of a higher λMSE is putting emphasis on the MSE loss of the generator, while a higher level of λGP puts

more restrictions on deviating from the Lipschitz-1 constraint. From empirical testing in a ceteris-paribus

fashion, we observe that different values of λMSE have a similar impact on the training process. Therefore,

we keep this parameter fixed and use a value of 100. This value originates from the original GAIN work [3].

Neural Network: Within the generator and discriminator/critic, general neural network hyperpa-

rameters are described. Number of Layers (Discrete Choice): The number of layers can be treated as a

hyperparameter. We use a simple feed forward neural network with 1 hidden layer. This is based on the

structure of the original GAIN [3]. Output Dimension of Layers (Discrete Choice): The output dimen-

sion of every layer in the neural network (except for the last layer of the discriminator/critic) can vary and

therefore can be treated as a hyperparameter. However, we intend to keep these dimensions fixed and rely

on the structure given in [3].Type of Activation Function for Layers (Discrete Choice): Within every layer

we can choose a different activation function. For example, the ReLU, tanh or sigmoid activation can be

used. For different activation functions the performance of the model in terms of AUC and weighted F1-score

can change. In this paper, we fix the activation functions for all layers. In the next subsection we explain

this model set-up. The Use of Batch/Layer Normalization (Binary Choice): By introducing batch/layer

normalization to our generator and discriminator/critic, the training process of one GAIN method changes

considerably. Moreover, the activation function of the last layer of the generator must be bounded between

0 and 1 for our method to work properly. This is because we have normalized our data in a range between

0 and 1 (we use a sigmoid activation for the last layer), whereas batch normalization standardizes the data.

Therefore, if the last layer of the generator does not transform the output to a value between 0 and 1, the

30



output will go beyond the actual output when we denormalize the data. This is especially true for the ReLU

activation function, which is unbounded.

5.4.3. Layers of the Neural Networks

In this paper, we use a neural network structure similar to the original GAIN paper [3]. To explain what

this means we start with our data which is represented by means of a data matrix. Every column represents

a feature (or variable). All these features need to pass through the GAIN methods in their entirety. For

this to work well, the neural networks in the form of the generator and discriminator/critic need to know

beforehand what the input dimension of the data is. This input dimension can be derived by considering

the number of features in our data matrix. Given this number, we multiply it by two to obtain the correct

input dimension. The reason why we need to multiply it by two is that the mask matrix of our data matrix

needs to pass through the GAIN methods as well. Therefore, we concatenate the data matrix and mask

matrix and pass them through the GAIN methods. From now on we abbreviate this input dimension to Dim.

Consequently, we make use of a feedforward neural network with one hidden layer for both the generator and

the discriminator/critic. In [3] dense layers are used everywhere, with a hyperbolic tangent (tanh) activation

function for all layers besides the last one. In this paper we deviate from this by replacing the tanh activation

functions with ReLU activation functions. We prefer ReLU over tanh to prevent saturation from occurring.

Furthermore, when a critic is involved in our imputation method we apply a tanh function for the last layer

as proposed in [25].

As a last deviation from the original paper, we apply batch normalisation for the generator and dis-

criminator and layer normalisation for the critic. The argumentation for the inclusion of these two types of

normalization is as follows. Although the data which enters a neural network usually is normalized before-

hand, this does not necessarily imply that the normalized range is attained when the data is transformed

within the layers. The reason for this is that certain activation functions can stretch out the original input

data to go far beyond the normalized range. Here we can for example think about the ReLU activation

function, which is unbounded. As a result, when data passes from one layer to the other it is possible that

Generator Type of Layer Activation Function Output Dimension
L1 Dense Layer & Batch Normalization ReLU Dim
L2 Dense Layer & Batch Normalization ReLU ⌊Dim

2 ⌋
L3 Dense Layer Sigmoid Dim
Discriminator Type of Layer Activation Function Output Dimension
L1 Dense Layer & Batch Normalization ReLU Dim
L2 Dense Layer & Batch Normalization ReLU ⌊Dim

2 ⌋
L3 Dense Layer Sigmoid Dim
Critic Type of Layer Activation Function Output Dimension
L1 Dense Layer & Layer Normalization ReLU Dim
L2 Dense Layer & Layer Normalization ReLU ⌊Dim

2 ⌋
L3 Dense Layer Tanh Dim

Table 6: Network layers for the Generator, Discriminator (GAIN) and Critic (WGAIN(-GP)). Li, denotes the layer for i = 1, 2, 3.
Dim corresponds to the number of features in our data matrix.
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the data is not normalized anymore. To solve this issue, batch normalization can be added to a neural

network. With batch normalization, we add a batch normalization layer, which is placed after a layer with

an activation function. In this layer, the batch is normalized by subtracting the mean and dividing by the

standard error, such that the normalized mean is 0 and the normalised standard deviation 1 [33].

As an alternative to batch normalization, layer normalization also can be applied. With layer normal-

ization, we change the batch normalization layer to a layer normalization layer. The difference between

the layer normalization layer with the batch normalisation layer is that this layer does not normalize the

batches. Rather, the normalization is applied on all the features. If we represent our input data as a matrix

in which the rows correspond to observations and the columns to features, we can therefore say that batch

normalization normalizes with respect to the rows, whereas layer normalization normalizes with respect to

the columns [34]. Table 6 shows networks for respectively the generator, discriminator, and critic. Note that

the output dimensions of the layers are similar to the ones used by [3] and [13].

6. Results

In this section we present the results of our methodology. The results are split into four parts. In the

first part, we discuss the results related to the imputation of the leading variables separately, while in the

second part we elaborate upon the results of the overall model tree. In the third part, the results for the

variables related to the leading ones. Last, in the fourth part, we give suggestions on how to further improve

the results.

6.1. Imputation Quality of the Leading Variables

In Table 7 we present the results regarding the imputation quality of the leading variables. For every

leading variable, the results in the first column correspond to the baseline. Whenever we use the baseline,

we apply multinomial sampling. As we base the probabilities of multinomial sampling on the empirical

probabilities of Tables 2 and 3, the AUC-scores are equal to 1 for these.

Before we explain the results of Table 7, two remarks need to be made. First of all, for the imputation of

the leading variable Cancellation, we use multinomial sampling under all methods, which is why all results

are the same. Secondly, since all methods have a level of stochasticity within them, we rely on the usage of

a seed in order to replicate results. The seed value is set to 5 everywhere.

Cancellation. For the imputation regarding the leading variable Cancellation, we see high accuracies and

weighted F1-scores. This is not surprising, given that 99.7% of all orders are not canceled. Also note that

the AUC-score is 1 everywhere, since the empirical distribution is used to generate the outcomes.
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Cancellation Delivery Date Return 1
Base GAIN WGAIN W-GP Base GAIN WGAIN W-GP Base GAIN WGAIN W-GP

Batch-Size * * * * * 2048 2048 1024 * 2048 2048 2048
AUC 1 1 1 1 1 0.992 0.995 0.974 1 0.998 1 1
Accuracy 0.991 0.991 0.991 0.991 0.428 0.641 0.610 0.709 0.869 0.855 0.866 0.874
Weighted F1 0.991 0.991 0.991 0.991 0.429 0.581 0.543 0.664 0.875 0.868 0.874 0.879

Case 1 Return 2 Case 2
Base GAIN WGAIN W-GP Base GAIN WGAIN W-GP Base GAIN WGAIN W-GP

Batch-Size * 2048 2048 2048 * 2048 2048 2048 * 2048 2048 2048
AUC 1 1 1 0.998 1 1 1 0.981 1 1 1 1
Accuracy 0.920 0.824 0.919 0.914 0.870 0.891 0.866 0.872 0.944 0.935 0.940 0.951
Weighted F1 0.913 0.861 0.914 0.912 0.875 0.868 0.874 0.879 0.913 0.861 0.914 0.912

Table 7: Results of GAIN of imputation at the order date. The symbol * indicates irrelevance of the batch-size (multinomial
sampling). Text in bold indicates best results while results in italics indicate worst results. Base = baseline; W-GP = WGAIN-
GP.

Delivery Date. When we consider the results of the leading variable Delivery Date, we first of all see

AUC-scores close to 1 for all GAIN methods. This indicates that all GAIN methods resemble the underlying

empirical distribution closely. In terms of accuracy and weigthed F1-scores, we see that all GAIN methods

outperform the baseline. In terms of accuracy all GAIN methods improve at least upon the baseline with

18.2 percentage points, while for the weighted F1-score the GAIN methods outperform the baseline with at

least 11.4 percentage points. Additionally, WGAIN-GP outperforms both GAIN and WGAIN in terms of

these two measures. The accuracy of WGAIN-GP is 6.8 percentage points higher than that of the second

best GAIN method, while the weighted F1-score of WGAIN-GP exceeds the second best GAIN method by

8.3 percentage points.

Return. In order to evaluate the results of the leading variable Return, we need to consider the results for

both Return 1 and Return 2 as depicted in Table 7. For this, let us first elaborate upon the results for

Return 1. To start off, we see that the AUC-scores of all GAIN methods are close to 1, or rounded to three

decimals equal to 1. Comparing these results to those of the leading variable Delivery Date, we see that

these AUC-scores are higher in the case for Return 1. In order to understand why this is the case, we need

to recall the binary nature of the leading variable Return. Since this leading variable consists of two levels, it

is easier to obtain higher AUC compared to a (leading) variable with more than two levels (Delivery Date).

In terms of accuracy and weighted F1-score, we have that all GAIN methods have performance which are

in line with the baseline. Inspecting these results more closely, we see that WGAIN-GP outperforms all

methods marginally, while the original GAIN performs worst. By moving to the results of Return 2, we

see results which are comparable to those of the results of Return 1. Similarly to the results of Return 1,

we find AUC-scores close or equal to 1 and accuracy and weighted F1-scores comparable with the baseline.

Inspecting these results more closely, we find that the accuracy of GAIN is highest, while the weighted

F1-score for WGAIN-GP is higher than all other methods.

33



Case. Similar to the results the leading variable Return, in order to evaluate the results of the leading

variable Case we need to consider the results for both Case 1 and Case 2. For this purpose, we first examine

the results of Case 1. In terms of AUC-scores, we see all GAIN scores have AUC-scores close to 1 or rounded

equal to 1. The argumentation for these values is the same as for the leading variable Return: the leading

variable Case has two levels. When we move to imputation quality measures by means of the accuracy and

weighted F1-scores, we first of all note that the original GAIN method performs worse than the baseline.

For the other two GAIN methods, we have similar performances compared to the baseline. If we consider

the results of Case 2, we are able to draw conclusions analogous to those of Case 1. First of all, the rounded

AUC-scores are all equal to 1. Moreover, the imputation quality of GAIN is worse than the baseline, whereas

the results of WGAIN and WGAN-GP are more in line with the baseline. More precisely, we find an accuracy

of WGAIN-GP which exceeds the baseline by 0.007 percentage points.

6.2. Results on Main Model

6.2.1. Distributional Resemblance

In Table 8, we show the distributions over all match labels using all different imputation methods. In

brackets we show the deviations per match label from the actual distributions. In the last column we provide

the mean absolute deviation (MAD) compared to the actual distribution. Based on the results of Table 8,

let us provide an overview of all results.

Method Happy Match Unknown Match Unhappy Match MAD

Actual 0.571 (*) 0.308 (*) 0.121 (*) *

Baseline 0.572 (0.001) 0.299 (-0.009) 0.129 (0.008) 0.006

GAIN 0.605 (0.034) 0.286 (-0.022) 0.109 (-0.012) 0.023

WGAIN 0.617 (0.046) 0.262 (-0.046) 0.121 (0.000) 0.031

WGAIN-GP 0.557 (-0.014) 0.364 (0.056) 0.079 (-0.042) 0.037

Table 8: Distribution over all the match outcomes for all the different methods. The results in brackets indicate the deviation
of the match label under the prediction method from the actual distribution (the maximum value is shown in bold).

Baseline. If we inspect the results of the baseline in Table 8, we see the baseline closely matches the actual

distribution. The level with the largest absolute deviation is that of the Unknown Match with a value of

0.009. Furthermore the MAD equals 0.006, which indicates small deviations from the actual distribution as

well.

GAIN. By examining the results of GAIN in Table 8 we observe larger deviations than under the baseline.

The minimum absolute deviation of the GAIN method comes from the Unhappy Match with a value of

0.012. This value exceeds the maximum absolute deviation of the baseline (0.009). The maximum absolute
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Happy Match Unknown Match Unhappy Match
A W-F1 F1 P R F1 P R F1 P R

Baseline 0.434 0.424 0.571 0.571 0.571 0.304 0.308 0.299 0.123 0.120 0.128
GAIN 0.543 0.538 0.662 0.643 0.682 0.473 0.492 0.456 0.113 0.119 0.108
WGAIN 0.531 0.517 0.656 0.632 0.682 0.441 0.480 0.408 0.131 0.130 0.131
WGAIN-GP 0.619 0.609 0.716 0.725 0.707 0.605 0.559 0.659 0.115 0.144 0.095

Table 9: Results with imputation at the order date. Text in bold indicates best result, text in italics worst result.
A = Accuracy; W-F1 = Weighted F1; F1 = F1-score; P = Precision; R = Recall

deviation is equal to 0.034 and is derived from the Happy Match label. With a MAD of 0.023, we additionally

see a higher MAD than under the baseline. Inspecting Table 8 more closely, we find that the Happy Match

label is overrepresented whereas the Unknown and Unhappy Match labels are underrepresented.

WGAIN. Considering the results of WGAIN in Tables 8, we are able to make a couple of observations.

First of all, we see the Unhappy Match label closely resembles the actual distribution since the deviation

from the actual empirical distribution equals 0 if we round the distributions up to 3 decimals. In contrast,

absolute deviations for the Happy and Unknown Match labels are larger with a value of 0.046 (positive for

the Happy Match and negative for the Unhappy Match) for both match labels. Consequently, the MAD for

WGAIN exceeds that of both the baseline and GAIN.

WGAIN-GP. In order to evaluate the distributional resemblance for WGAIN-GP compared to the actual

empirical distribution, we need to have a look at the last rows of Tables 8. Based on these numbers,

we see WGAIN-GP has the highest absolute deviations of all methods. The minimum absolute deviation

corresponds to the Happy Match with a value of 0.014. This value is larger than the minimum absolute

devations of all other prediction methods. Moreover, the largest absolute deviation coming from the Unknown

Match (0.056) is larger than that of all other prediction methods. As a result the MAD of WGAIN-GP also

is the largest of all prediction methods. In terms of the deviation values in Table 8, we find that the

Unknown Match label is overrepresented. As a result, the labels of the Happy and Unhappy Match are

underrepresented.

6.2.2. Accuracy Results

In Table 9, we present the match label results for all the imputation methods. In order to obtain an

understanding for all the represented numbers, we first evaluate the overall performance. Secondly, we

elaborate upon the results of the different match labels.

Overall Performance. If we have a look at the accuracies (A) and weighted F1-scores (W-F1) of Table 9,

we are able to compare the results between all methods. Based on the results of both accuracy and weighted

F1-scores, we see all GAIN methods outperform the baseline. In addition, WGAIN-GP performs best both

in terms of accuracy and weighted F1-score with values of 0.619 and 0.609, respectively. The accuracy of
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WGAIN-GP is 7.6 percentage points higher than that of the second most accurate method (GAIN). In terms

of weighted F1-scores WGAIN-GP outperforms the second best method based on this metric (GAIN) by 7.1

percentage points. In order to evaluate why WGAIN-GP performs best, it is useful to examine the results

of the different match labels.

Happy Match. For the Happy Match label, we see all methods outperform the baseline in terms of F1-score,

precision and recall. Furthermore, as WGAIN-GP outperforms GAIN with a percentage point differences of

5.4 and WGAIN with a percentage points difference of 6 in terms of F1-score, WGAIN-GP outperforms the

other two GAIN methods based on this measure. In order to explain why, it is useful to take the results of

precision and recall into account. For precision, we have that WGAIN-GP outperforms GAIN and WGAIN

respectively by 8.2 and 9.3 percentage points, while WGAIN-GP outperforms these two methods in terms of

recall by 2.5 percentage points. Thus WGAIN-GP outperforms the other two methods based on F1-scores

which can be both explained from precision and recall. Of these 2 metrics, precision seems to have the most

influence, since these deviations are higher. Since the Happy Match label accounts for 57.1% of all orders,

this partially explains why WGAIN-GP outperforms the other two GAIN methods in terms of accuracy and

weighted F1-score.

Unknown Match. For the Unknown Match label, we observe that all GAIN methods outperform the base-

line in terms of F1-score, precision and recall. Furthermore, WGAIN-GP outperforms GAIN and WGAIN

in terms of F1 scores, since the F1 score of WGAIN-GP is 13.2 percentage points higher compared to GAIN

and 16.4 percentage points compared to WGAIN. In order to understand why, we can have a look at the

results of precision and recall under this match label. Here we find that WGAIN-GP outperforms GAIN

and WGAIN in terms of precision by respectively 6.7 and 7.9 percentage points. For the measure recall,

we obtain percentage point differences of 20.3 and 25.1 in favor of WGAIN-GP respectively to GAIN and

WGAIN. Therefore, WGAIN-GP outperforms GAIN and WGAIN both in terms of precision and recall. Of

these two metrics, recall has the largest influence on the deviation in terms of the F1 score, as percentage

point differences based on this metric are higher. As 30.8% of all orders are classified with the Unknown

Match label, this gives an additional explanation for why WGAIN-GP outperforms GAIN and WGAIN in

terms of accuracy and weighted F1-score.

Unhappy Match. For the Unhappy Match label only WGAIN outperforms the baseline. Additionally,

GAIN performs worst in terms of all prediction methods in terms of F1-score. For the metric precision, we

find that WGAIN-GP performs best in terms of the Unhappy Match label, while the original GAIN method

performs here worst too. For recall, we find that WGAIN performs best, while WGAIN-GP performs worst.
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Based on these numbers, we cannot state that the prediction of the Unhappy Match label contributes to

the overall outperformance of WGAIN-GP to the other prediction methods. However, as 12.1% of all orders

are classified with an Unhappy Match label, this label is underrepresented compared to the other 2 labels.

Consequently, the overall influence of this match label on the overall accuracy and weighted F1-score is lower

compared to that of the Happy and Unknown Match.

6.3. Results for the Other Variables

6.3.1. Imputation Quality

In Table 10, the results of the training process of the different GAIN methods for the variables related

to the leading ones are depicted. Note, the optimal configuration can be different for every variable and for

every GAIN method. In this table, the AUC-values and RMSPE/weighted F1-scores are shown.

Shipment Days Transporter Type Transporter Days

GAIN WGAIN W-GP GAIN WGAIN W-GP GAIN WGAIN W-GP

Batch Size 1024 512 1024 512 1024 512 1024 256 256

AUC 0.975 0.977 0.997 1 1 1 0.621 0.731 0.642

RMSPE 0.967 0.964 1.046 ∗ ∗ ∗ 2.04 1.778 1.231

Weighted F1 ∗ ∗ ∗ 0.574 0.646 0.709 ∗ ∗ ∗

Table 10: Results of GAIN of imputation at the order date using batch/layer normalization and sigmoid activation function
for the last layer of the generator. ∗ indicates that this value is irrelevant. W-GP = WGAIN-GP. Text in bold indicates best
results while results in italics indicate worst results.

Shipment Days. Considering the results of the variable Shipment Days in Table 10, we first see good

performances in terms of AUC as all methods are close to 1. However, in terms of imputation quality

improvements can still be made. All methods approximately have a RMSPE equal to 1. Given the range of

Shipment Days (8), this can be considered a large value.

If we compare the methods to each other, we see WGAIN-GP has the highest AUC, while the GAIN

method has the lowest RMSPE. However, all results are quite close to each other.

Transporter Type. If we consider the results of Transporter Type in Table 10, the first notable observation

is the AUC score. With a rounded value (to 3 decimals) of 1, this is a perfect score. Secondly, the average

weighted F1-score greatly differs per method. GAIN performs worst, while WGAIN-GP performs best.

Consequently, the quality of imputations for this variable seems to be best in the WGAIN-GP method.

Transporter Days. For the variable Transporter Days, we see a worse performances of both AUC and

RMSPE compared to predictions made for the other two variables.
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6.3.2. Limitations

Based on results of Table 10, we now elaborate on limitations of the current set-up. These can be

decomposed into two separate parts. The first part has to do with the way we currently represent distributions

of variables we try to impute. The second part deals with distributional resemblance compared to quality of

the imputations.

Model Representation. The results of Table 10 show us a clear difference in performance of predicting

the variables Shipment Days and Transporter Type compared to the variable Transporter Days. This holds

for all methods. To understand this, we need to compare distributions related to these 2 variables with the

help of Figure 10.

(a) (b)

Figure 10: Histograms of actual values for the variables Shipment Days, Transporter Type and Transporter Days.

Considering the two distributions of Shipment Days and Transporter Days in Figure 10, we see the true

empirical distribution of Shipment Days starts with the mode and decreases with every new value. The

true empirical distribution for Transporter Days on the other hand, starts with a mode and then suddenly

drops. After this, a second mode follows and we again see a sharp drop. Finally, the values start to

decrease more gradually. Therefore, comparing the two distributions we see the distribution concerning the

variable Shipment Days can be considered easier to mimic in two aspects. Firstly, it moves more gradually,

and secondly it only has 1 mode. Hence, given the shape of the two empirical distributions it seems the

distribution for the variable Shipment Days is easier to obtain than the distribution for Transporter Days.

Based on these distributions and results in Table 10, we see the different GAIN methods have an easier

task in finding the right distributions for the variables Shipment Days and Transporter Type. Furthermore,
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since all AUC scores are nearly equal to 1 the overall shape is also expected to represent the distributions

as shown in Plot (a) of Figure 10. For Transporter Days on the other hand, we see AUC scores are low.

Therefore, we also show distributions coming from the different GAIN methods by means of Figure 11.

(a) (b) (c)

Figure 11: Histograms of imputed values under GAIN (a), WGAIN (b) and WGAIN-GP (c).

In Figure 11, we see all GAIN methods have different distributions for the variable Transporter Days.

Therefore, it is likely the performances deviate as well.

AUC Compared to Quality of Imputations. From results in Table 10, we generally see a clear distinc-

tion between how well the distribution of imputed data resembles the empirical distribution of actual data

and the quality of these imputations. We derive this from high AUC scores for the variables Shipment Days

and Transporter Type, but the relatively poor values of the RMSPE and the weighted F1-score. Therefore,

the question is how we can improve the values of the RMSPE and weighted F1-score while ideally still ob-

taining high AUC values. To this extend we can for example think about changing the activation functions

of the generator and/or discriminator/critic.

6.4. Improvements Over Current Set-Up

Based on the explained results, we propose the following improvements for future work over our current

model set-up. The dataset needs to be balanced. One of the current issues with our data is the level of high

imbalance for the Unhappy Match label. In order to improve upon this, synthetic data can be added to our

dataset, such that the dataset becomes more balanced. Also, the neural network structures for the generator

and discriminator/critic as depicted in Table 6 might not be the best for our problem at hand. Although our

methods provide high AUC values for the leading variables, the imputation quality can still be improved.

This is especially true for the leading variable Delivery Date, which plays a key-role in determining the match

labels. By improving the performance of the imputation quality of the leading variable, we can increase the
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overall performance of the main model. For a lesser extent this is true for the imputation of Return and

Case. Currently, we perform similarly to the baseline, so the question is if other neural network architectures

can improve on the baseline. However, we see that the performances are already quite high, since the levels

of these leading variables are highly imbalanced. Therefore, the most important goal here is to find a neural

network architecture which improves the imputation quality for the leading variable Delivery Date.

7. Conclusions

This research shows that we have accurately predicted the outcomes of leading variables immediately

after the order date with the use of WGAIN-GP. Using the Wasserstein distance, compared to the Jensen-

Shannon divergence, leads to a better performance in training a generative adversarial imputation network.

By implementing the Gradient Penalty as an addition to the WGAIN method the chance of mode collapse

has drastically reduced. The GAIN methods used in this report show that the distributional resemblance,

by means of AUC scores, show a similar performance. Each method is able to closely resemble the actual

distribution. Measured with F1-score metrics, the WGAIN-GP method has the highest imputation quality of

all methods used. Especially the leading variable Delivery Date is best predicted by the WGAIN-GP method.

For leading variables Return and Case we see a similar performances under all three GAIN imputation

methods. In order to answer the main research question of this paper, we need to consult the results of the

main model tree. Based on these results, we see WGAIN-GP is the best method in predicting the outcomes

of leading variables immediately after the order date with an accuracy of 0.61 and weighted F1-score of 0.609.

Moreover, we see that all GAIN imputation methods improve upon accuracy and weighted F1-score compared

to the baseline, which is based on multinomial sampling. However, the GAIN and WGAIN methods show

mediocre results as they have accuracies of 0.543 and 0.531, and weighted F1-scores of 0.538 and 0.517,

respectively.

In general, our work shows that the proposed WGAIN-GP is an improvement on the existing WGAIN in

imputing tabular data. Thus, WGAIN-GP sets a new state-of-the-art in the realm of GAN-based imputation

models. For our specific domain of improving customer satisfaction this is highly relevant as it allows an

e-commerce company to immediately react after an order is placed to prevent customer dissatisfaction and

possibly avoid customer churn.

In order to improve the current results, we can start with finding ways to make the current dataset

more balanced or with using a different neural network architecture. However, the methods for the leading

variables Return and Case do not outperform the baseline. This is not surprising, since these binary variables

are highly imbalanced given the size of the dataset. As future work we would like to use data augmentation
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methods to balance these variables [35]. On top of this, we can use a different loss function for the generator

and discriminator/critic combining the loss functions for GAIN and WGAIN(-GP). For example, we can

follow the suggestion in [36] which combines the Jensen-Shannon Divergence of the GAIN method with the

Wasserstein Loss of the WGAIN(-GP) method.

We also would like to further investigate a more recent trend of using diffusion models for data imputation

[37, 38, 39]. While GAN-based models can suffer from mode collapse and instability, diffusion models are

more stable because of a well-defined likelihood objective and they do not need a critic. On the other

hand, diffusion models have a slower inference time due to many forward passes, while GAN-based methods

produce outputs faster as they require a single forward pass.
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