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Abstract

Automated feature engineering (AutoFE) and automated machine learning (AutoML) can both be used in a

machine learning project to improve the efficiency of a data scientist. In recent years, different algorithms

have been developed for both sub fields independently of each other. In this study, the use of AutoFE in

combination with AutoML has been evaluated for the first time to determine if AutoFE can increase the

model accuracy, while not increasing the computation time. A data fusion meta-learning approach was

extended, generalized, and applied to an AutoFE method and then further combined with a pre-existing

AutoML method. In the meta-learning approach, more than 150 online data sets were used to create models

that recommended the best operator to apply to a certain feature. Using twelve evaluation data sets, we

show that combining AutoFE and AutoML is indeed valuable. The accuracy measure used was increased on

average by 0.54% compared to using AutoML alone. For multiple data sets, the use of AutoFE significantly

outperformed a strategy in which no feature engineering was done, while in the remaining data sets it

never significantly performed worse. Therefore, it can be concluded that it is beneficial to combine this

computationally efficient AutoFE method with AutoML.

Keywords: automated feature engineering, automated machine learning, feature construction, feature

selection, meta-learning

1. Introduction

Machine learning (ML) is one of the most booming subfields of computer science and data analytics

nowadays [1]. As companies gather more data, the potential of data-driven projects becomes more evident.
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Machine learning is a broad concept encompassing many algorithms that discover meaningful results by

learning and using information captured in the data. In this paper, we focus on supervised classification

problems, which are ML problems that use data to explain or predict a discrete target variable. In general, a

machine learning project can be illustrated using the ML life cycle, which is shown in Figure 1 [2].

Figure 1: The machine learning life cycle.

In this paper, we limit our main focus to step 3 from Figure 1, on general and automatic algorithms for

feature engineering, in relation to steps 4 and 5. It is assumed that the output of step 2 in the ML life cycle is

one data table with raw data. Then, feature engineering can be used to enrich the raw data in step 3 by using

or removing the original features to create new and potentially more useful ones. This can largely improve

the performance of the machine learning model which is selected, trained, and evaluated in the next steps [3].

The well-known concept “Garbage In, Garbage Out” is also related to this phenomenon [4]. With ML model

we denote any trained machine learning algorithm or sequence of algorithms. Usually, the three steps of the

ML life cycle, namely feature engineering, model selection, and model evaluation, are repeated in manual

machine learning until the researcher is satisfied with the results and a final model is obtained.

In recent years, more focus has been given to the automation of both the feature engineering and the

modeling part of the ML life cycle. This is due to the increasing shortage of skilled data scientists [5, 6] and,

specifically for feature engineering, due to the large time spent on this stage by a researcher (50% to 70% of

the total project time) [7, 8]. Furthermore, manual feature engineering can be tedious, limited by creativity,

problem- and data-specific such that useful relations and features can easily be missed out in practice [9].

The automated fields of research are called automated feature engineering (AutoFE) and automated machine

learning (AutoML). The relationship between AutoFE and AutoML can easily be captured by the following

equation: model = AutoML(AutoFE(data)), where the resulting model after applying AutoML and AutoFE

is at least as good as the model obtained after applying AutoML on the data.

Contrary to AutoFE, there already exists several well-integrated methods for AutoML [10, 11, 12] that

have been applied in practice [13]. The independent potential of both subfields has been shown with different
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time-consuming algorithms, but a feature engineering algorithm has been rarely combined with AutoML to

efficiently improve the output produced by AutoML [3, 14, 15, 16].

Most AutoFE algorithms have only been tested with fixed, standard ML algorithms, for example only

with a standard random forest. However, a feature set which performs well on one ML model does not

necessarily perform well on another model [17]. Furthermore, most existing algorithms are time consuming,

implying that there is currently no promising, general, and time-efficient AutoFE method available. The

long computation time also applies to AutoML algorithms which usually need several hours to find a good-

performing ML model. Hence, adding all feature engineering possibilities to the AutoML search space could

further increase the computation time, making it an inefficient solution. In this paper, we would, therefore,

like to answer the following research question:

Can automated feature engineering be used to increase the accuracy of the general automated machine

learning process for supervised classification tasks, while not increasing the computation time?

For clarification, feature engineering can be seen as a combination of feature construction and feature

selection. In feature construction, new features are created as functions of the original features. Feature

selection is used to guarantee that only the most relevant features are constructed or kept, and that irrelevant

and redundant ones are removed from the data [18]. Certain topics are not in the scope of feature engineering

in AutoFE. Feature extraction, which includes principal component analysis (PCA) and other techniques, is

not considered a part of developed feature engineering algorithms. It is included as a possible preprocessing

algorithm in AutoML. Data integration, imputation, and outlier removal are also out of the scope of our

research. AutoFE should not be confused with automated data integration, which combines multiple related

data tables into a single one [19]. For this research, the data is assumed to be a single, complete data set with

a discrete target variable.

Main contributions. Previously, it was stated that AutoFE and AutoML have never been researched

together. Finding out if and how these two fields of research can be combined in a valuable manner is,

therefore, one of the main contributions of this paper. Another significant contribution of this work is the

extension of a recently developed AutoFE method, namely Learning Feature Engineering (LFE) developed

by Nargesian et al. [15]. LFE is a computationally efficient data fusion meta-learning approach which uses
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several online data sets to learn the feature construction operators that are most suitable for a given type of

feature. This model is extended by incorporating more construction operators, a feature selection method,

more feature types, and more types of classifiers.

Organization of the paper. The remainder of this paper is structured as follows. In Section 2, we

present and discuss the relevant literature regarding AutoFE and AutoML and conclude which directions will

be explored in this paper. The chosen approach is explained in detail in Section 3. Next, the results of the

proposed methods are evaluated in Section 4 after which conclusions are made and suggestions for future

research are stated in Section 5. The code, the data sets, and specific details which can be used to implement

our methods can be found at https://github.com/Casper-de-Winter/GELFE.

2. Literature Review

Feature engineering algorithms and their relevant aspects have been studied by many researchers. In this

section, we present a literature review on all subjects which are covered in the scope of our research and

discuss why we decided to explore the meta-learning approach for AutoFE. In the following sections, we

discuss relevant feature construction and selection techniques and the AutoFE and the AutoML methods.

As most research related to automatic feature engineering focuses on binary classification problems, the

presented techniques will also be reviewed from that point of view [14, 15, 20]. In Section 2.1, more

background information is given on feature construction and selection. Relevant AutoFE and AutoML

methods are presented in Sections 2.2 and 2.3, respectively.

2.1. Feature Construction and Selection

Feature Construction. Many operators and techniques have been proposed to construct new features

from the raw data. Most of them are unary or binary operators which apply a transformation to one or two

features, respectively, to generate a new one. Ternary or in general n-ary operators have hardly been used for

AutoFE and will therefore also not be considered in this research.

Unary operators can, for example, use scalers and power transformations to alter the distribution of

the feature or discretize a numerical feature into an appropriate categorical one. Binary operators try to

capture the relevant relation between two features in a brand new one. Examples of binary operators are

basic arithmetic operators such as addition and multiplication, and group-by operators which categorize the
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numerical data according to another categorical feature. Constructed features can be used again with another

operator to construct even more features. It is specific to each data set the operators that produce the most

useful features [3, 21]. However, the drawback of using several different operators is that the number of

possible features which can be constructed goes to infinity. This is often where feature selection methods

come into play within feature engineering.

Feature Selection. Filter and wrapper are both feature selection methods that have been used within

feature engineering algorithms. Wrapper methods evaluate subsets of features and constructed features using

an ML algorithm [22]. These methods are already computationally expensive for simple ML algorithms, and

are thus not general. Using AutoML as a wrapper function is definitely not computationally efficient and will

thus not be considered. Filter methods are faster and more general heuristic selection methods, and can be

divided in similarity-based, statistical-based, and entropy-based methods [23]. These different methods can

also be combined, for example in a dual feature selection and weighted representation framework [24]. In

general, the algorithms in the similarity-based and statistical-based groups all select features individually,

which means that they only look at relevance and not at redundancy. In feature engineering, where multiple

(20) versions of a relevant feature can be generated, addressing redundancy is essential. Therefore, we focus

on entropy-based methods.

This family of selection methods chooses, in every step, the extra feature with the highest potential, given

the target variable and the already selected features. Entropy-based methods can, in general, only be applied

to categorical data. The linear generalization of these methods is called conditional mutual information

(CMI) [23] and its formula can be found in Equation 1. In this formula, I(·) is a function that calculates

the information shared, feval is the evaluated feature, y is the target variable, X the current set of features

containing features fi, and w1 and w2 are weights for the different terms.

CMI feval = I( feval, y)− w1

∑
fi∈X

I( feval, fi) + w2

∑
fi∈X

I( feval, fi|y) (1)

The first term is equal to Information Gain [25]. The middle term is a penalty for the information

shared between the evaluated feature and X, while the final term is a bonus for the information gained when

the evaluated feature is incorporated into X, given the target variable. This is done to not add seemingly

relevant but redundant features. Examples of different versions of the CMI formula are Conditional Infomax
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Feature Extraction (CIFE) [26] and Minimum Redundancy Maximum Relevance (MRMR) [27]. In CIFE,

for example, both weights are 1 to make all terms equally important, whereas MRMR uses w1 = |X| and

w2 = 0 and therefore mainly focuses on redundancy. For more background on CMI, we refer to the work of

Li et al. [23].

2.2. Automated Feature Engineering

In the previous section, we showed that the selection problem cannot, in general, be solved to optimality.

This can certainly not be done when construction is used to create an infinite number of new features. Due

to this, different types of heuristic algorithms were designed to automatically apply feature engineering on

a new data set. We can distinguish between algorithm-specific, expansion-reduction, metaheuristic, and

meta-learning methods for AutoFE.

Algorithm-specific methods are designed to optimize performance for a single machine learning al-

gorithm, such as FICUS in a decision tree learning [21] or a stack of convolution and pooling layers in a

convolutional neural network, for automated feature extraction [28]. As AutoML focuses on many different

algorithms, these methods are not general and hence, cannot be applied.

Expansion-reduction methods focus on expanding the feature space with many features after which a

selection method is used to only keep the most promising features. ExploreKit, created by Katz et al. [14],

creates all possible features given a data set and several operators, after which a relatively fast selection

method is used to evaluate the features. However, even for moderately sized data sets, this algorithm could be

running for a day due to the enormous expansion. In other researches, random subsets of constructed features

are added and evaluated [29]. The results using this approach were not always promising since the number

of random subsets and evaluation were still considerably large. Also an expansion-reduction method that is

considered is a strategy that combines feature selection from machine and human experts [30]. However, for

this, professionals are thus needed.

Most work on automated feature engineering has been focused on meta-heuristics, which is a large

family of general and powerful heuristic algorithms for optimization. Due to the enormous search space in

which new, relevant features can be found, a metaheuristic can be used as an intelligent search algorithm.

Examples of metaheuristic algorithms adapted for feature engineering are evolutionary algorithms as genetic

programming, harmony search, and particle swarm optimization [31, 3, 32, 33, 34]. In most approaches,
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random feature sets are created and evaluated using filter or wrapper methods in order to evolve towards a

final feature set. These methods are general in terms of exploring a large feature space, but often take quite

long and therefore are not efficient. The most recently developed sub-field of automated feature engineering

uses meta-learning [15]. This can be seen as a part of machine learning which uses an algorithm that learns

from past experiences to improve the performance on current problems. In meta-learning for AutoFE, a

large selection of data sets is used to create meta-data and train meta-models or meta-classifiers for each

construction operator. The meta-models then store the knowledge about which feature-operator combinations

improve the classification task the most. This training phase only needs to be done once, and here it is

important that the implemented method can generalize different features to a standard set of meta-features

that captures their distribution. Afterwards, given a new feature set, the trained meta-models are used to

predict the operator which impacts the classification performance the best. The main advantage of this

approach is that, after the meta-models have been trained, the computational cost of recommending an

operator is very small.

The described meta-learning method Learning Feature Engineering (LFE) by Nargesian et al. [15]

is seemingly the most efficient approach, beating expansion-reduction methods on both accuracy and

computation time. The main disadvantage of LFE is that it is not yet general: only one ML algorithm is

used to determine the meta-target variable in the meta-data sets and the LFE approach can only be used for

numerical features. However, it is possible to add multiple ML algorithms to the training phase while only

affecting the training time. Due to these reasons, LFE is chosen as the AutoFE method to be extended and

implemented in this paper. In our extension we will not limit ourselves to numerical features and will also

incorporate categorical features. Furthermore, we will incorporate 20 more operators and three additional

training algorithms. Finally, we will apply selection methods to decide between multiple recommended

operators. This last idea can be seen as a combination between meta-learning and expansion-reduction.

Meta-learning is used to expand the feature space by recommending new features, after which a selection

method filters only the features that are suitable for a particular classification problem.

2.3. Automated Machine Learning

In this section, we describe how AutoML works, which methods are implemented, and why automated

feature engineering can be of any help. The two most used and researched types of AutoML implementations
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are genetic programming and Bayesian optimization. Examples of these two types are, respectively, the

Tree-based Pipeline Optimization Tool (TPOT), developed by Olson et al. [11], and Auto-SKLearn [10],

which is a continuation of Auto-Weka [35]. TPOT uses genetic programming by generating populations

of different pipelines and evaluating them using cross-validation until a complete ML pipeline is evolved.

Auto-SKLearn, on the other hand, uses Bayesian optimization to find a good pipeline. These pipelines can

consist of multiple preprocessing techniques and classifiers. Usually, both AutoML methods take several

hours to find good pipelines. The evolved pipelines and performance of both AutoML methods are relatively

similar and we have chosen to use TPOT as it has been shown to converge slightly faster [36].

The following classifiers are included in TPOT, each one also contains several hyperparameters which

need to be determined: ‘Random Forest’, ‘Decision Tree’, ‘Extremely Randomized Trees’, ‘Linear Support

Vector Machine’, ‘Logistic Regression’, ‘Gradient Boosting’, ‘Extreme Gradient Boosting’, ‘Gaussian Naive

Bayes’, ‘Bernoulli Naive Bayes’ and ‘k-Nearest Neighbors’. These classifiers can also be stacked, meaning

that the prediction of one model acts as an extra feature for another algorithm. The AutoML pipeline can

also apply preprocessing techniques. While this may seem redundant when also applying AutoFE, the

preprocessing techniques are specific to each classifier and significantly more simple. Some examples of

these techniques are feature extraction methods and univariate filter selection methods that do not take

redundancy into account. The only technique which explores feature interaction is called ‘Polynomial

Features’ which simply adds all products of features to the feature space without doing any selection. The

main drawback of these preprocessing techniques is that they are applied to all features and not only the

relevant ones, as in AutoFE. These unnecessary computations make the method more inefficient. Also,

adding more advanced construction and selection functions to AutoML would further increase the run time,

making it even more inefficient. Hence, AutoFE could possibly be an efficient alternative or complement to

this stage of AutoML.

It has been shown that AutoML is able to improve the accuracy and execution time of a data science

project using these automatic and intelligent methods to find a good ML pipeline [11]. However, drawbacks

related to the computation time and the preprocessing techniques exist. Using automated feature engineering,

we would like to engineer a data set which results in an improved final accuracy and a lower computation

time to find good ML pipelines. We believe that having a general and fast AutoFE block in front of AutoML
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is preferred over adding more complexity to the current AutoML implementations. This means that AutoFE

is executed first by applying construction and selection techniques, and is then followed by AutoML which

applies optional and additional preprocessing techniques and selects the best classifiers. An advantage of this

is that the AutoFE method can be made very general. Preprocessing techniques which are specific to certain

ML classifiers or certain larger data sets do not need to be taken into account within AutoFE. Furthermore,

the engineered data set using AutoFE does not necessarily have to be used in combination with AutoML.

3. Methodology

In this section, we present the automated feature engineering method which we will explore in this

research and explain the techniques which are used. As the described LFE method by Nargesian et al. [15] is

quite basic, we present the methodology of a more general and extended version of it which will be called

Generalized Extended Learning Feature Engineering (GELFE). GELFE can be split into two phases. In

Section 3.1, the training phase is covered in which several online data sets are used to create meta-data

and build meta-models for each operator. This should be done once such that the meta-models can then be

used to engineer new features for an unseen data set. This feature engineering phase, which exploits the

previously built meta-models to construct and select features, is explained in Section 3.2. Finally, we explain

how GELFE is evaluated in Section 3.3.

3.1. Training Phase

The training phase is the key part of the meta-learning approach for feature engineering. The meta-models

or meta-classifiers which are trained in this phase will be used on any new data set to recommend which

operators to consider for each feature. The idea is to use the information about whether it is useful to apply

a certain operator on a certain feature to build effective meta-models. The necessary input to create these

meta-models are several different data sets, multiple operators, and different classifiers which are used to

determine which modifications lead to an improvement. A complete overview of the training phase can be

found in Figure 2 and in the next paragraphs each part is explained in more detail.

Data Sets. Many different features from multiple data sets are needed in order to create good meta-

models. For this, we use a large number of online available machine learning data sets from the OpenML

repository [37]. A main advantage of OpenML is that labels, indicating whether a feature is numerical or
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Figure 2: The complete process of the training phase of GELFE.

categorical, are provided for each feature and these are a necessary input for the meta-models. The data

sets, which can all be found on GitHub (https://github.com/Casper-de-Winter/GELFE), are downloaded and

adapted using several criteria since not all of them are suitable for our research. Namely, the number of

instances should be larger than or equal to 500 to ensure that the results found when adding an extra feature

are significantly sound and stable. Also, the number of features should be larger than 4 and smaller than

500. The upper limit of 500 is chosen as data sets with thousands of features will, otherwise, be excessively

present in the final meta-data. Furthermore, the target variable in all data sets should have at most 10 classes.

All multiclass classification problems were transformed to binary problems by converting the largest class to

a 1 and the remaining classes to a 0. A small number of missing values is allowed and these are imputed using

the Gower distance [38] due to the presence of both numerical and categorical features. Finally, identical data

sets or different versions of the same data set were manually deleted. After performing these modifications

165 data sets were left.

Ten of these data sets are later used for the evaluation of our method and the remaining 155 data sets will

be used to create meta-models. Together, these data sets contain over 5,000 different features and have a

median of 3,000 instances. The number of data sets we use is lower than the number of data sets of Nargesian

et al. but we believe that the applied filtering was necessary to standardize the sizes of the data sets and

remove identical ones.

Operators. For each of the 34 different operators selected for this research, a meta-model is created.

These operators can be split based on the number of input features and the type of each feature.
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Of the 19 unary operators, 15 of them are for numerical features. The first eight numerical unary operators

all change the distribution of the feature. These operators are the natural logarithm, the inverse, the square

root, the inverse square root, the square, the cube, the robust standardizer, and the arctangent operator. The

next unary numerical operator is the quantile operator which transforms the feature values according to their

order. More specifically, the smallest value becomes a zero, the largest a one, and all the others are linearly

scaled based on their order. The remaining six numerical operators transform the feature into a categorical

one. This group includes the equal frequency discretizer with 5 and 10 bins, the equal range discretizer with

5 and 10 bins, the bigger-than-zero operator, and the median-split operator.

Of the 19 unary operators, the remaining four operators are for categorical features. In TPOT and

its Python implementation, categorical features should be one-hot encoded before using them as input.

This means that ordinal categorical features can lose some crucial information. Therefore, the first unary

categorical operator is the Cat-to-Num operator which alters the type of the newly constructed feature. The

second operator is the frequency encoder which determines the new values based on the frequency of each

category. The final two operators, the binary and the backward difference encoder, are encoders which can

work better than the standard one-hot encoding. We have also explored automated grouping operators, but

these turned out to be not effective.

The fifteen binary operators consist of nine numerical-numerical operators and six numerical-categorical

operators. Categorical-categorical operators have not been explored as they do not seem useful and have

not been implemented in AutoFE algorithms before. The list of numerical-numerical operators consists

of basic mathematical operations such as addition, subtraction, absolute difference, multiplication, and

protected division. Protected division is division in which the value zero is returned when dividing by zero

[31, 20]. More complex numerical-numerical operators are the ln-times operator, the hypotenuse operator,

the larger-than operator, and the quadrant operator. The last two operators return a categorical feature with

two and four levels, respectively.

The set of numerical-categorical operators mostly consists of group-by-then operators. These operators

can be used to group numerical values of a feature based on the value of a categorical feature. An example

is the average price in the product category to which that product belongs to. The mean, median, and the

standard deviation can be saved using three of these operators. Two other operators use the feature value
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and these group statistics to create new features, and are called the minus-group-median operator and the

group-standardize operator. The final operator is the one-hot-numerical operator which splits the numerical

feature into multiple columns (one per category) with numerical information if category is present and zeroes,

otherwise.

Classifiers and Determining the Meta-Target Variable.

Every feature set will be tested with multiple classifiers to create the meta-target variable. Four different

default ML classifiers have been chosen for this testing procedure: ‘Logistic Regression’, ‘Random Forest’,

‘Linear Support Vector Machine’, and, ‘k-Nearest Neighbors’. To limit the computation time, more classifiers

were not implemented. We believe that these four classifiers, from different model families, give a good

indication of the performance of AutoML when changing a feature.

For each data set, benchmark scores for all classifiers are found using 5-fold cross-validation with the

balanced accuracy score (BACC). Then, the data set is slightly changed for one feature set and one operator.

The constructed feature is added to the data set or, when the unary operator constructs a new feature that is of

the same type as the original feature, it replaces it. In order to avoid data leakage, the operators are applied to

each test set using the information from the train set. Afterwards, the same four classifiers are applied to the

modified data set to find four new BACC scores, and if at least one of these scores is significantly larger than

the benchmark, the meta-target variable becomes one (ỹ = 1).

One significant improvement is enough as it is not known beforehand the type of model that would work

well on any new data set. If a feature-operator combination shows an improvement on one classifier, the

information can be valuable for AutoML when applying a similar classifier. A significant improvement

is defined as the minimum of one percentage point of the BACC score and a five percent increase of the

BACC score compared to the gap between the benchmark score and 1. This last term means that when the

benchmark score is 0.9, the new score should be at least 0.9 + 0.05 × (1 − 0.9) = 0.905 to be significant.

This necessary improvement is chosen to prevent very small improvements caused by randomness to be

significant.

Meta-features. At this moment, we can create for each operator, a list of meta-target variables for

different feature sets. In order to create useful meta-models, information about the feature sets should be

saved as meta-features. An advantage of using meta-features is that it allows us to relate the usefulness
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of an operator to the distribution of the feature by, for example, saying that a certain operator works best

for features with a high skewness. Many different meta-features have been implemented in this research.

Examples of meta-features for numerical features are the mean, variance, median, range size, mode, mode

frequency, and bin frequencies after applying an equal range discretizer. This last meta-feature was the only

one originally used in LFE, all the remaining ones are extensions of this research. Furthermore, information

about the relation between the feature and the original target variable is saved using their correlation and

other measures that describe possible different feature value distributions for instances belonging to y = 1

and to y = 0.

For categorical features, the meta-features include the number of categories as well as the frequencies

of the different category levels. Again, the original target variable is used to find differences in the feature

distribution for values belonging to y = 1 and y = 0 and to find their correlation. A high correlation can, for

example, suggest that the feature is ordinal. For binary operators, the used meta-features capture information

about both input features and their relation. One can think of the correlation, the rate of both means, or

both ranges. For some numerical-numerical operators, the order can be important. Therefore, two meta-

observations are saved for each feature set with possibly different meta-target variables. One observation

contains first the information of the first feature and then of the second feature, and the other one in the

reverse order. During the feature engineering phase, both orders should be evaluated. Details and formulas

of all the implemented meta-features can be found in an addendum on GitHub (https://github.com/Casper-de-

Winter/GELFE).

Meta-models. The meta-features and meta-target variables compose the meta-data that is used to train

the meta-models. One meta-model is trained for each operator and, in the feature engineering phase, is

used to decide the operator that will most likely improve the prediction accuracy of a new feature set. In

other words, the objective of the meta-models is to accurately predict whether it is useful to apply that

operator to a feature set. Furthermore, the prediction probability scores of the different meta-models should

be comparable.

Due to the second reason, it is chosen to use hyperparameter tuning on one ML classifier to build the

meta-models instead of, for example, using AutoML. The random forest classifier is chosen as it is known

to perform well on a wide range of predictive problems [39] and has one of the best performances over
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many data sets and all classifiers in AutoML [40]. Based on the hyperparameter options used in AutoML

for a random forest classifier and the ranges and options found in online case studies, a large parameter

grid was formed to tune the classifier. Specific details about the tuned parameters and their ranges can be

found in GitHub (https://github.com/Casper-de-Winter/GELFE). Then, a random grid search with 5-fold

cross-validation and the F1-score is used to determine the best model among the set of different models

which can be formed using the grid. As the objective is to find a model which can correctly predict if an

operator is useful on a certain feature set and the focus is not on correctly predicting the zeroes, the F1-score

has been selected as the performance measure.

3.2. Feature Engineering Phase

These trained meta-models can be used to automatically engineer new feature sets for any new input data

set. For a new data set, the feature types, labeling each as numerical or categorical, should be added as input

in order to know which operators can be applied to which features. In Figure 3, an outline of the feature

engineering phase is shown. In this section, we explain both parts in which feature engineering takes place,

for unary and binary operators, respectively, and explain how the additional feature selection method can be

used.

Figure 3: The complete process of the feature engineering phase of GELFE.

First, the meta-models for the unary operators are used to improve the feature space. This is done such

that the features which are created can, thereafter, be used to create more new features using the binary

operators. A feature set is initially transformed to its corresponding meta-features and used as input for all

suitable meta-models. Instead of using the meta-model to predict a one or a zero, the random forests are used
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to predict the probability of a one given the meta-feature. This probability can be seen as a recommendation

score between 0 and 1 for the expected effectiveness of the operator on that feature set.

In LFE, Nargesian et al. only selected the best of all these recommendation scores for every original

feature, given that the score was higher than 0.5 [15]. Disadvantages of this approach are that the current

features are not taken into account, that adding multiple new features based on the same feature can be

convenient, and that when the number of features is large, say one hundred, one hundred extra features are

added. A large amount of extra features does not help the AutoML procedure as it will become much slower

and probably include irrelevant transformations.

Therefore, given all the recommendation scores of all feature-operator combinations, the highest

max unary or max binary (two constants) are selected in the two phases, respectively. These limita-

tions are based on the number of original features and can vary between 7 and 20. Other imposed limits

are that at most two features are allowed to be constructed using the same feature set (one or two features

depending on operator arity), that of these two operators, at most one is allowed to be a discretizer, and that

at most half of the constructed features are allowed to be created using the same operator. Since evaluating

every pair of features with every binary operator meta-model can be significantly time consuming, random

feature pairs are evaluated in the binary phase for at most 15 minutes. The AutoFE method would lose

efficiency if it would take hours to process all feature pairs in order to construct only a small number of

features. All constructed features are always added to the feature set, and we leave the possible removal of

an original feature to the selection method.

A multivariate filter selection method can be used in combination with the recommendation scores to

engineer the final feature set. The original feature set is expanded and then the selection method chooses the

most promising max unary or max binary ones. For this, we use CIFE, which is a special case of CMI,

the entropy-based selection method which was explained in Section 2.1. This algorithm is chosen due to its

simplicity and proven performance [41].

As CIFE can only be applied to categorical data, some adaptions have been made. A copy is made of

the feature set in consideration and all numerical features are discretized using an equal range discretizer

with eight bins. Eight bins are chosen as the average between five and ten, which are the bin settings of

the discretizer operators. More advanced discretization algorithms (quantile-based discretization) exist for
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this purpose but have not been implemented to limit the computation time. However, the discretization of

numerical features can lead to a loss of information for certain ML algorithms [42]. Two discretized features

with the same entropy can have very different absolute correlation coefficients. Therefore, we combine CIFE

with the absolute Pearson correlation coefficient when the evaluated feature is numerical. In that case, the

first term in CIFE, see Equation 1, becomes the average between that term and the Pearson correlation. This

heuristic adaptation of CIFE ensures that CIFE is less biased towards categorical features or uncorrelated

numerical features.

CIFE is implemented as follows. First, a Boolean denotes if the original features should be kept or not.

If this is the case, the first selected features are the original features. Then, in each iteration, CIFE adds the

feature with the highest CIFE equation score. Features are added until some limit is reached, which can be

based on max unary and max binary. Only in the binary phase, a complete feature selection is allowed as

seemingly irrelevant original features should not be deleted before exploring the use of binary operators.

In total, six different data sets are engineered in this research. The first is the original data which can be

used as benchmark (A). One uses only the unary operators (B) and two use both unary and binary operators (C

and D), all three without using the selection method. They only select features based on the recommendation

scores. The difference between strategies C and D is that it is allowed in strategy C to construct multiple

features using the same feature set, whereas only the one with the highest recommendation score can be

used in D. The final two engineering strategies (E and F) use the selection method in combination with the

settings of strategy C. In both the unary and the binary phase, the best 50 features are constructed, after

which CIFE is used to select between them. In strategy F, the original features can be replaced, which means

that the final selection procedure starts with an empty feature set instead of the original feature set.

For clarification, we present an overview of the six data sets and all different settings in Table 1. The

number of features in the resulting feature sets of strategies B to F is always higher due to the addition of

constructed features. It should be recalled that max unary and max unary can take the values 7, 10, 15, or

20 depending on the number of features p in the original data set X0. max unary and max unary are 7 if p

is below 10, the parameters are 20 if p is larger than 80, and they are 15 if p is between 40 and 80. These

values are derived from the logic that more informative features can be derived from a larger feature space

and should be added to the data set.
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Table 1: A schematic overview of all engineered data sets used for evaluation.

max same x Unary Phase Unary Selection Binary Phase Final Selection
XA

FE - - - - -
XB

FE 2 Add max unary - - -
XC

FE 2 Add max unary - Add max binary

time limit = 15
-

XD
FE 1 Add max unary - Add max binary

time limit = 15
-

XE
FE 2 Add at most 50 Reduce added fea-

tures to max unary

Add at most 50
time limit = 15

Select p + max unary

+ max binary.
X0 is fixed

XF
FE 2 Add at most 50 Reduce added fea-

tures to max unary

Add at most 50
time limit = 15

Select p + max unary

+ max binary.
X0 is not fixed

3.3. Automated Machine Learning

Each evaluation data set, of which ten are from OpenML and two are internal ones, is split in a training

and testing set using a 60/40 split. All training sets go through the feature engineering phase described in

Section 3.2 while the test sets are stored and used in the evaluation phase described in Section 3.4. The

training sets are altered during the feature engineering phase according to each of the six strategies mentioned

in Section 3.2 and the same modifications are applied to the test set. Only the training sets are used as input

for TPOT in order to evolve ML pipelines.

TPOT uses the inputed training sets to generate ML pipelines by repeating an evaluate-select-crossover-

mutate process for at most three hours. It is important to note that in total, AutoFE and AutoML has three

hours to run, meaning that a higher time spent in feature enginerring implies less time to evolve ML pipelines.

To initialize the algorithm, TPOT uses the training sets to generate 30 random tree-based pipelines. Then, the

evaluation phase begins and TPOT computes the BACC score of each pipeline and ranks them accordingly.

The evaluation stage then selects the top 20 pipelines which simultaneously maximize the classification

accuracy and minimize the amount of operators used. Five copies are made for each of the 20 selected

pipelines and in the crossover stage, 5% of these offsprings have a randomly chosen subtree removed and

replaced with a subtree of another offspring. Finally, 90% of the remaining offsprings randomly suffer a

point, insert, or shrink mutation. This cycle is repeated several times and in each run, the best pipeline is

stored [43, 11].
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Figure 4: Complete overview of GELFE.

3.4. Evaluation Methodology

The test sets which were previously stored are used, after every minute, to evaluate the accuracy of the

best evolved pipeline and determine if there were any improvements. If evidence shows that AutoFE can

improve the accuracy of the AutoML pipeline within the same total time limit, it can be concluded that

it is indeed beneficial to implement GELFE. Due to the importance of running TPOT for a considerable

amount of time, different train/test splits are not considered. To account for this, an additional bootstrap

method developed by Davison et al. is used to form proper conclusions regarding the best performing GELFE

strategies [44]. Given that the test set has n observations, n observations are sampled a thousand times with
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replacement and the BACC score is calculated for each sample. This can be used to form a 95% confidence

interval of the test accuracy. Using these confidence intervals, it is possible to state whether or not the model

found using one strategy significantly outperforms a model found with another strategy. If the lower limit

of one confidence interval is larger than the upper limit of another confidence interval, the first strategy is

significantly better than the other one.

A complete overview of the GELFE algorithm can be seen in Figure 4. The top part of the graph depicts

the process of converting 155 data sets to meta-features and meta-target variables to train meta-models for

each operator. The middle section then applies the meta-models of each operator on unseen training data sets

in order to generate new features and, subsequently, a new data set. This adapted data set is then inputed into

TPOT to generate ML pipelines. The best pipelines are evaluated using the test set as can be seen in the last

part of the figure.

4. Results

After transforming all feature sets into several meta-observations, which on average took 14 hours per

data set, and after training all meta-models, the GELFE procedure can be evaluated. The relevant results are

presented in this section. All evaluations have been run on a Microsoft Azure Virtual Machine with 4 2.3

GHz Intel Xeon E5-2673 v4 processors and 128 Gbs of RAM.

The twelve data sets used for evaluation vary significantly in both the number of numerical and categorical

features (8 to 167), the number of observations (6,500 to 98,000), and their imbalance levels. First, all

training sets were used to feature engineer the different strategies A to F. It was found that the most applied

operators were discretizers, group-by-then operators, and arithmetic operators such as multiplication. The

AutoFE procedure finished within minutes, except for the strategies which implemented CIFE for larger data

sets. The maximum computation time was around an hour such that AutoML still had enough time to evolve

good pipelines.

Since, in every minute, we save the best-found pipeline for each training set, we can graph the test score

over time. The graphs for the bank-marketing and electricity data sets from OpenML can be found in Figure

5.
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(a) bank-marketing test score over time (b) electricity test score over time

Figure 5: The test accuracy over time for the six AutoFE strategies with bank-marketing and electricity.

Large increases can be found when comparing the scores at the start and at the end of the evolution

process of TPOT. Also, not every evolved pipeline which performs better on the train part results in an

increase of the test accuracy. The time it takes to complete AutoFE can be seen in the bottom left corner as

the strategies with more engineering take more time to start TPOT. It should be noted that another advantage

of using strategy A is that it contains fewer features and thus more AutoML generations can be evaluated

within the three hours. However, at some point in time, almost all feature engineering strategies surpass the

test score found with the benchmark strategy A since useful information is added by GELFE.

In the data set bank-marketing, several strategies significantly outperformed the benchmark strategy. The

best BACC test score of 0.845 is found with strategy E. Using the graph with the test accuracy of electricity,

it can be seen that strategy F, which uses CIFE and allows original features to be deleted, is not robust. This

is the case for multiple data sets. It can be concluded that adding several features on top of the original

ones is more reliable. In Table 2, the results of all twelve data sets are shown. This includes the confidence

interval after three hours, information regarding the best strategy, and the strategies which are significantly

outperformed by the best strategy for each data set.

It can be seen that for most of the data sets, not a single strategy was significantly better than another

and the differences between the six strategies are not large. On two data sets, adult and bank-marketing,
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Table 2: The confidence intervals of all strategies and all data sets after three hours of AutoFE and AutoML. The best score is
underlined and the strategies which are not significantly outperformed by the best strategy are marked in italics.

data set A B C D E F

adult [0.797,0.809] [0.816,0.829] [0.812,0.826] [0.815,0.827] [0.800,0.813] [0.775,0.789]
bank-marketing [0.815,0.832] [0.830,0.847] [0.818,0.836] [0.819,0.838] [0.837,0.853] [0.798,0.818]
electricity [0.908,0.916] [0.914,0.921] [0.905,0.914] [0.914,0.922] [0.912,0.921] [0.798,0.810]
GesturePhase [0.747,0.774] [0.744,0.771] [0.736,0.763] [0.721,0.750] [0.736,0.763] [0.719,0.748]
higgs [0.714,0.723] [0.714,0.723] [0.717,0.726] [0.719,0.728] [0.712,0.720] [0.715,0.724]
house 16H [0.866,0.882] [0.872,0.887] [0.869,0.885] [0.866,0.882] [0.868,0.884] [0.862,0.877]
jannis [0.807,0.815] [0.805,0.814] [0.804,0.813] [0.806,0.814] [0.805,0.814] [0.796,0.805]
musk [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [1.000,1.000] [0.999,1.000]
mv [0.999,1.000] [0.998,0.999] [0.998,0.999] [0.999,1.000] [0.999,1.000] [0.999,1.000]
nomao [0.958,0.966] [0.957,0.965] [0.959,0.967] [0.960,0.968] [0.960,0.967] [0.955,0.963]
Internal Mil [0.933,0.944] [0.934,0.944] [0.933,0.944] [0.931,0.942] [0.931,0.942] [0.933,0.944]
Internal Tor [0.856,0.867] [0.857,0.868] [0.855,0.866] [0.853,0.864] [0.854,0.866] [0.855,0.867]

Table 3: The average BACC test scores of the benchmark strategy and all AutoFE strategies, including the average of the best
AutoFE strategy for each data set.

Strategy A B C D E F Best AutoFE strategy

Average test score 0.8721 0.8755 0.8727 0.8726 0.8742 0.8565 0.8768

significant performance increases were found by applying feature engineering. Besides the equal accuracy

found for the data set musk, doing no feature engineering was slightly better than all feature engineering

strategies, which is partially due to the more generations which can be processed for the smaller data sets. In

Table 3, the average results for all strategies can be found.

On average, the TPOT BACC test score was 0.872 for strategy A whereas this value was higher for all

strategies B to E. The best AutoFE strategy for each data set scored 0.877 on average. This means that

AutoFE can be used on these twelve data sets to find a 0.54% increase. Only smaller differences were found

between the strategies B to E. The best two strategies on average are B and E. The higher average for strategy

B does not mean that binary operators should not be explored, only that this data set contains fewer features

and thus more pipelines could be evaluated. The average score of strategy E indicates that it is beneficial to

use the selection method to decide which of the many features should be added to the feature space.

We proceed with showing the overall results for all twelve evaluation data sets regarding the best and

top strategy after three hours of feature engineering and pipeline optimization, where a strategy that is not

significantly outperformed by the best strategy is called a top strategy. In Table 4, the best strategy is given,
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along with the information which other strategies are belonging to the top strategies. All other strategies for

a certain data set are thus the ones which are significantly outperformed by the best strategy for a certain data

set.

Table 4: An overview which strategies are the best and the top strategies for all evaluation data sets.

Name XA
FE XB

FE XC
FE XD

FE XE
FE XF

FE
adult Best Top Top
bank-marketing Top Top Best
electricity Top Top Top Best Top
GesturePhase Best Top Top Top Top Top
higgs Top Top Top Best Top Top
house 16H Top Best Top Top Top Top
jannis Best Top Top Top Top
musk Best Best Best Best Best Top
mv Best Top Top Top Top Top
nomao Top Top Top Best Top Top
Internal Mil Top Best Top Top Top Top
Internal Tor Top Best Top Top Top Top

For the musk data set, five strategies are denoted as the best strategy as the test score for all these data sets

was 1.000 after three hours. It can be seen that for eight out of the twelve evaluation data sets, no significant

differences were found. Strategy B and D always belonged to the set of top strategies. On two data sets, adult

and bank-marketing, significant performance increases were found with doing feature engineering.

For all data sets, it is also interesting to analyze the effect of both AutoML and AutoFE on the considered

data sets. Therefore, in Table 5, we present the confidence intervals for the balanced test accuracy when only

training a standard Random Forest classifier (RF), when only AutoML is used for three hours (strategy A),

and the best-found scores when the five feature engineering strategies are applied together with the previous

two methods.

Given this table and the previously discussed results, the following can be concluded about AutoFE and

AutoML in this study. For all data sets, the impact of the AutoML pipeline optimization is larger than the

impact of feature engineering. One important remark is that a standard random forest is not a fair comparison

against the extensive evolution process of AutoML which also makes this difference extra large. Moreover,

the meta-models used for feature engineering are not built specifically for a random forest. For the data set

electricity, among others, the performance of AutoFE + RF was lower than the performance of RF, suggesting
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Table 5: The confidence intervals for four different strategies. RF denotes a standard Random Forest classifier fitted to the train data
and evaluated on the test data set. The AutoML confidence intervals are the ones found after evolving a pipeline for three hours.
AutoFE can be used before both of these ML methods and the best-found confidence interval over the different feature engineering
strategies is stated.

Data Set RF AutoML AutoFE + RF AutoFE + AutoML
adult [0.773, 0.787] [0.797, 0.809] [0.778, 0.792] [0.816, 0.829]
bank-marketing [0.652, 0.673] [0.815, 0.832] [0.655, 0.676] [0.837, 0.853]
electricity [0.878, 0.888] [0.908, 0.916] [0.849, 0.859] [0.914, 0.922]
GesturePhase [0.652, 0.679] [0.747, 0.774] [0.662, 0.691] [0.744, 0.771]
higgs [0.676. 0.685] [0.714, 0.723] [0.676, 0.685] [0.719, 0.728]
house 16H [0.830, 0.848] [0.866, 0.882] [0.823, 0.842] [0.872, 0.887]
jannis [0.776, 0.785] [0.807, 0.815] [0.778, 0.787] [0.806, 0.814]
musk [0.919, 0.951] [1.000, 1.000] [0.986, 0.998] [1.000, 1.000]
mv [0.994, 0.996] [0.999, 1.000] [0.994, 0.996] [0.999, 1.000]
nomao [0.952, 0.960] [0.958, 0.966] [0.954, 0.962] [0.960, 0.968]
Internal Mil [0.916, 0.928] [0.933, 0.944] [0.916, 0.929] [0.934, 0.944]
Internal Tor [0.847, 0.858] [0.856, 0.867] [0.846, 0.858] [0.857, 0.868]

that in this context the AutoFE method should not be applied. However, for this data set, the performance of

AutoFE + AutoML was better than AutoML alone. This insight shows that AutoFE is general as it is not

biased towards one specific algorithm.

5. Conclusion

This paper focuses on the combination of two subfields of machine learning: feature engineering and

model selection. Both parts of the ML life cycle are important and time-consuming such that it can be

conveninent to automate them, especially given the shortage of data scientists. Both AutoFE and AutoML

have been able to show their potential in literature, but have never been combined in order to find their joint

potential.

In this paper, we have explored the use of meta-learning as a relatively fast and general AutoFE approach

called GELFE in combination with the more often applied AutoML method TPOT. A large collection of data

sets was gathered in order to create meta-models for multiple operators. These were then used to predict the

best operators for each feature set. In the different AutoFE strategies, a number of constructed features with

the best recommendation scores were added to the raw data set. Furthermore, a selection method based on

conditional mutual information was implemented in order to select between a large number of recommended

new features.
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The strategies were evaluated using several benchmark data sets and significant increases were found

using AutoFE for some data sets, while significant decreases were never found. On average, AutoFE

improved the test accuracy after three hours by 0.54%. Even though this difference is not extremely large, it

can already be valuable for companies with a large turnover. Moreover, this increase was found even though

more pipelines could be evaluated for the benchmark strategy within the time limit of three hours. Therefore,

a final conclusion can be formed. It can be stated that automated feature engineering can be used to increase

the accuracy of the general automated machine learning process, while not increasing the computation time.

Similar to AutoML, this AutoFE method can be used to make the complete ML process more efficient as it

can quickly find multiple feature recommendations for further exploration.

In further research, more in-depth research should be done on the different strategies and time limits

for each data set. New strategies can also be made using the information presented in this paper. Perhaps,

fewer features should be added to improve the trade-off between more information and more AutoML

generations. Besides more research on new strategies, more directions are possible now that we have shown

the initial usefulness of combining AutoFE and AutoML. Meta-models and strategies can also be created for

multi-class classification and regression problems and in-depth analyses can be performed on the importance

of the different operators and meta-features. Also, we would like to compare our approach with the use of

LLMs for AutoFE in conjunction with AutoML [45, 46]. Last, we would like to compare our approach with

state-of-the-art deep learning and ensemble learning solutions in concrete domains [47, 48].
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