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Abstract

E-commerce companies collaborate with retailers to sell products via their platforms, making it increasingly

important to preserve platform quality. In this paper, we contribute by introducing a novel method to predict

the quality of product orders shortly after they are placed. By doing so, platforms can act fast to resolve bad

quality orders and potentially prevent them from happening. This introduces a trade-off between accuracy

and timeliness, as the sooner we predict, the less we know about the status of a product order and, hence,

the lower the reliability. To deal with this, we introduce the Hierarchical Classification Over Time (HCOT)

algorithm, which dynamically classifies product orders using top-down, non-mandatory leaf-node prediction.

We enforce a blocking approach by proposing the Certainty-based Automated Thresholds (CAT) algorithm,

which automatically computes optimal thresholds at each node. The resulting CAT-HCOT algorithm has

the ability to provide both accurate and timely predictions by classifying a product order’s quality on a daily

basis if the classification reaches a predefined certainty. CAT-HCOT obtains a predictive accuracy of 94%.

Furthermore, CAT-HCOT classifies 40% of product orders on the order date itself, 80% within five days

after the order date, and 100% of product orders after 10 days.

Keywords: Dynamic hierarchical classification, Blocking approach, Threshold automation, E-commerce

1. Introduction

Since the late 1990s and especially during the COVID-19 pandemic, online shopping is gaining popularity

as more and more consumers buy increasingly diversified products online [9, 31]. As a result, e-commerce

companies often collaborate with retailers to sell products via their platforms, making it increasingly impor-

tant to preserve platform quality. That is, a platform and its retailers must be reliable and deliver products

and service of high quality in order to maintain the platform’s reputation [13]. Therefore, e-commerce plat-

forms are currently concerned with product order quality to perfect the products and services that they

provide. We define the product order quality as the extent to which platforms are satisfied with an order. A

product order is defined as a Perfect Product Order if the order is not cancelled, the product is delivered on
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time, the customer does not file a case, and the product is not returned. However, if any of these aspects goes

wrong (e.g., the product is not delivered on time), we define this as a Deficient Product Order. Depending

on the type and number of aspects that go wrong, a Deficient Product Order can be classified as Mildly,

Medium, or Heavily Deficient. Finally, if not all information on product delivery is known and no other

aspects go wrong, the order is labelled as an Inconclusive Product Order. The split of an order’s quality

into the Perfect, Inconclusive, and Deficient classes is defined as the general classification, while the split of

product order quality into the Perfect, Inconclusive, and three gradations of Deficient classes is defined as the

detailed classification. Whereas assessing the quality of product orders usually takes multiple weeks, ideally,

e-commerce platforms should be able to detect the quality of an order directly on or shortly after the order

date - the date the order was placed. For example, if a retailer in the platform consistently delivers products

that are being returned, the platform wants to flag this retailer as quickly as possible and, if necessary,

take measures to preserve platform quality. Therefore, in this paper, we investigate the following research

question:

How can we accurately predict the quality of product orders shortly after the orders have been placed?

To answer this question, we predict the quality of product orders for a large e-commerce platform in the

Netherlands at different points in time after an order is placed and evaluate the quality and timeliness of

our predictions. We refer to the labels that are assigned to product orders based on their quality as class

labels. We specifically focus on assigning such class labels to product orders in a fast and accurate way,

such that the company, synonymous to ‘e-commerce platform’ and ‘platform’, is able to detect any problems

quickly and confidently. However, we do not focus on the drivers of those class labels, that is, the reasons

why a product order has a particular class label. These drivers, which we refer to as determinants, include

cancellations, late deliveries, customer cases, and returns.

Clearly, the longer the period between the order date and the time of prediction, the more information

will be available about the status of the product order, such as any of the four product order determinants

or transporter information, and the more accurate we expect our prediction to be. On the other hand,

the longer the period between the order date and the time of prediction, the less actionable our prediction

will be for the platform. For example, if a retailer consistently delivers products for which customer cases

are started, the company should know about this issue as soon as possible. We refer to this aspect as the

timeliness of our predictions. Hence, overall, we face a trade-off between accuracy and timeliness.

In this paper, we deal with the previously identified trade-off by developing a novel hierarchical classifi-

cation algorithm to predict the quality of product orders. In hierarchical classification (HC), the hierarchical

structure of the classes to be predicted is explicitly taken into account, which may improve classification

performance as opposed to a ‘flat’ classification approach, which does not consider this hierarchical structure

[22]. Given that the problem at hand has a clear and logical hierarchy, it makes sense to use HC in this

research as opposed to a ‘flat’ classification approach. HC organises classes into a tree-based hierarchy, which
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in our case combines the general and detailed classifications into one tree that captures the full hierarchical

structure of the class labels. The leaf nodes in our tree, which form the main focus of our predictions, are

represented by the detailed classification labels.

To be able to predict leaf nodes while taking into account the trade-off between accuracy and timeliness,

we introduce the Hierarchical Classification Over Time (HCOT) algorithm, which dynamically predicts

instances by means of non-mandatory leaf-node prediction in an iterative fashion. That is, when we are not

‘certain’ enough about classifying a certain instance on a specific day, we block this instance in the hierarchy

and try to assign a more detailed label to this instance the next day when, possibly, new information becomes

available. In order to incorporate the concept of certainty, we develop the Certainty-based Automated

Thresholds (CAT) algorithm, which automatically computes optimal probability thresholds per node in the

hierarchy that an instance must exceed to continue to a deeper level in the tree. If an instance passes the

thresholds on a specific day, we are certain enough about the classification of this instance and thus classify it

according to the label corresponding with the leaf node that is reached. By combining the HCOT algorithm

with thresholds computed by the CAT algorithm, we develop a classification procedure (CAT-HCOT) that

is able to classify product orders with certainty over time, thus capturing the trade-off between accuracy

and timeliness.

The relevance of this paper is threefold. First, we are, to the best of our knowledge, the first to apply

hierarchical classification over time. Second, we contribute to the existing literature by introducing the use

of the CAT algorithm to deal with uncertainty in classification problems. Third, in contrast to most of the

existing literature, we apply hierarchical classification to a shallow (3-level) tree with strongly imbalanced

data that is tailored to the domain of product order satisfaction in e-commerce.

We find that CAT-HCOT provides predictions with a global accuracy of 94%. Moreover, global and

class-specific hierarchical precision, recall, and F1-score almost always achieve values above 90%. Thus,

CAT-HCOT exhibits strong predictive performance. With respect to timeliness, CAT-HCOT is able to

classify around 40% of orders on the order date itself, approximately 80% of orders within 5 days after the

order date, and, by design, 100% of orders after 10 days. All in all, we find that CAT-HCOT adequately

captures the accuracy versus timeliness trade-off by using a certainty-based classification approach, while a

static method does not allow for such a balanced trade-off. We further find that CAT-HCOT achieves major

improvements over a flat baseline method in terms of hierarchical precision and recall scores on the most

specific and least occurring Deficient classes, which illustrates that taking into account the hierarchical class

structure improves predictive performance and allows for dealing with imbalanced data.

This paper is structured as follows. In Section 2, we review the literature on hierarchical classification,

where we focus on the most prominent techniques, the non-mandatory leaf-node prediction blocking ap-

proach, hierarchical performance measures, and application domains. In Section 3, we present our data set

along with overall descriptive statistics. Then, in Section 4, we outline the directions of our research and the

methods used. In Section 5, we present our results. Last, in Section 6, we draw our conclusions and discuss

3



interesting directions for future work.

2. Related Work

In this paper, we apply hierarchical classification in the area of company satisfaction in e-commerce,

which is, to the best of our knowledge, a rather novel area. One work in a similar domain is performed

by Vandic et al. [26], who propose a framework for hierarchical product classification in e-commerce. More

frequent is the classification of product order satisfaction from the customer’s perspective as by Zheng et al.

[30] or Jiang et al. [15], for example, who consider the classification of customer reviews. Due to their text-

based nature, customer reviews are also suitable for hierarchical classification [21]. In fact, most research

on hierarchical classification focuses on the area of text categorisation [12]. However, the application of

hierarchical classification to the quality and satisfaction of product orders from a company perspective has

not been previously explored.

In the remainder of this section, we outline our theoretical framework for hierarchical classifications.

We elaborate on the general concept, after which we highlight the techniques of non-mandatory leaf-node

predictions. Subsequently, we discuss hierarchical classification performance measures and, after we have

introduced the general concepts, we set up the context of the relevance of our work.

2.1. Hierarchical Classification Techniques

Hierarchical classification (HC) is defined as a classification approach where the classes to be predicted

are organised into a class hierarchy [22]. According to Freitas and Carvalho [12] and Sun and Lim [24], HC

classification methods differ on a number of criteria. The first criterion is the type of hierarchical structure

that is used, which can be either a tree or Directed Acyclic Graph. In the latter, a node can have more

than one parent node, which is not possible in the former. The second criterion makes a distinction between

whether or not classifications are required to reach a leaf node. More specifically, mandatory leaf-node

prediction (MLNP) forces the HC algorithm to always assign an instance to a leaf node, whereas non-

mandatory leaf-node prediction (NMLNP) allows the algorithm to stop the classification in any node at any

level of the hierarchy. Finally, the third criterion is related to how the hierarchical structure is explored.

Silla and Freitas [22] identify two relevant approaches: flat classification and local classification.

The flat classification (FC) approach is the simplest hierarchical classification technique and ignores

the class hierarchy—it typically only predicts the classes at the leaf nodes. Therefore, a flat classifier is

equivalent to a traditional classifier during training and testing, and does not explore parent-child class

relations. However, assignment of an instance to a particular leaf class still implies that this instance also

belongs to all ancestor classes based on the original hierarchical structure [22].

The local classification (LC) approach takes into account the class hierarchy by using a local information

perspective. The three standard approaches to classifying locally are local classification per node (LCN),

local classification per parent node (LCPN), and local classification per level (LCL) [22]. We prefer LCPN

4



and LCL over LCN, since these methods require fewer classifiers and do not need a specific strategy for

selecting training examples [22]. Furthermore, all LC algorithms use a top-down approach in their testing

phase. This means that for each test instance, they first predict its first-level, and then use this predicted

class to determine which classes are considered at the second level, and so on, until they make the most

specific prediction possible. A disadvantage of this top-down prediction approach is the occurrence of error

propagation, where prediction errors at any class level are propagated downwards through the hierarchy. One

way to reduce or stop this error propagation is to use a blocking approach, which blocks the process of passing

down instances in the hierarchy if the prediction at the current level is not accurate enough according to

some criterion, such as a 90% predicted probability requirement. A downside of this blocking approach is

that the user might end up with less specific, and therefore less useful, class predictions.

In hierarchical classification, similar classification methods can be used to those applied to non-hierarchical

(multi-class) classification, albeit that different classifiers can be used at different levels. For example, in

LCPN, the choice of classification algorithm can be made per parent node. In the existing literature, ex-

amples include Näıve Bayes [26], Logistic Regression [14], Support Vector Machine [10], Decision Tree [6],

Random Forest [8], and Neural Network [28].

2.2. Blocking Techniques

Among the various blocking techniques, we opt to implement thresholds at each node. Instances allocated

to a node are only accepted if their predicted probability exceeds a threshold. To determine the thresholds, we

distinguish two possible strategies. Firstly, a threshold can be set manually, for instance, to block instances

for which the predicted probability is less than 80%. The second option is to select an optimal threshold

automatically. This means that the threshold is determined during the training phase to optimise a specific

quantity, such as the accuracy [5] or the F1-score [1, 4]. In this case, the thresholds can be considered

hyperparameters to the classification algorithm. A threshold selection procedure that plays into an accuracy

versus timeliness trade-off such as ours has not been explored before.

2.3. Hierarchical Performance Measures

Sokolova and Lapalme [23] define hierarchical performance measures that explicitly incorporate the

class hierarchy to evaluate predictive performance. Costa et al. [7] discuss several distance-based, depth-

dependent, and semantics-based hierarchical performance measures. These often depend on choices specified

by the user, which makes them rather subjective. Therefore, Sokolova and Lapalme [23] and Silla and Freitas

[22] recommend using hierarchy-based measures instead, which use the concepts of ancestral and descendent

classes. Kiritchenko et al. [17] suggest hierarchical extensions of ‘flat’ performance measures. More specifi-

cally, they define hierarchical precision (hP ), hierarchical recall (hR), and hierarchical F1-score (hF1). The

big advantage of these measures is that they can be effectively applied to any HC scenario—whether the

problem is tree-structured or DAG-structured, and MLNP or NMLNP.
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A complexity arises in NMLNPs due to blocking. Instances with a specific true class may not reach this

class if they have been blocked after a higher-level classifier. Consider, for example, a text categorisation

exercise where a document truly belongs to the class ‘physics’ but is blocked at the class ‘science’. While the

classification ‘science’ is correct, it is not all-encompassing. Sun et al. [25] propose a measure to keep track

of the proportion of test instances that is blocked by a certain classifier, despite belonging to a more specific

class in the hierarchy. The authors define this measure as the blocking factor. We adapt the blocking factor

in our research and propose a novel threshold-based approach to decide which instances to block.

2.4. Relevant Context

In most applications of hierarchical classification, the class hierarchy is quite large in terms of the number

of nodes. Silla and Freitas [22] report that most hierarchical classification approaches clearly outperform

flat classification approaches, because the former explicitly accounts for the structure in the class hierarchy.

However, one can imagine that this predictive advantage becomes less pronounced as the class hierarchy

becomes smaller, thereby approaching the most simple flat hierarchy. In this research, we use a rather

small class hierarchy, consisting of only seven nodes (internal and leaf), whereas the vast majority of class

hierarchies in existing applications consist of ten or (much) more nodes [22].

As for the applications of NMLNP, the choice of blocking instances from reaching leaf nodes in the

hierarchy often rests on instances not belonging to a leaf node, but rather to an internal class, e.g., in

document text classification [4]. However, in our approach, NMLNP plays a different role: that of ensuring

‘certainty’ of predictions over time. Namely, if an instance gets blocked at a certain point in time, we try

to predict it the next day, making use of the newly available information, e.g., product was delivered late.

Although making predictions over time has been subject to previous research [19], applying this concept to

hierarchical classification has, to the best of our knowledge, not yet been investigated.

Lastly, our data is skewed across classes, which means that we face an imbalanced data problem in our

hierarchical classification task. A common approach to deal with imbalanced data in classification is that

of cost-sensitive learning, where larger costs are assigned to misclassifications of less represented classes

[11]. As Zheng and Zhao [29] show, such cost-sensitive approaches can drastically improve the performance

of hierarchical classification algorithms. The simplest approach herein is to assign class weights inversely

proportional to the rate of occurrence in the data set, which is the approach we will take in this research.

3. Data

In this section, we discuss our process of data cleaning and validation, in addition to presenting important

descriptive statistics. Our data set contains roughly 4.8 million observations on product orders at a large

e-commerce platform in the Netherlands from January 2019 to December 2020.
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Fig. 1. Class label decision tree provided by the company.

3.1. Data Description

We predict the product order quality at multiple points in time after the order date. To make this possible,

each product order is included in the dataset several times. The difference between these observations is

the amount of information on the current status of the product order. This mainly includes information on

the product order determinants, but you can also think of information about the transporter, the product

itself or the seller. Typically, all this information is unknown or limited on the order date itself and only

becomes available in the period afterwards. For example, on the day of ordering we probably do not observe

any information on delivery or the transporter company, while a few days later, this information probably

is known. Furthermore, during a process of an order we gain more knowledge about the quality of similar

(completed) product orders, such as the fraction of deficient orders. Clearly, the more information we have,

the more certain we can be about the predictions. Once all information on the determinants corresponding

to a product order is known, one can determine the corresponding class label with respect to the tree in

Figure 1, representing the platform’s business logic.

As determined by the company, cancellations are only allowed between 10 days after the order date and

the other determinants can take up to 30 days. As such, the platform currently finalises the classifications

of product order quality only after the 30 days have passed. Anywhere before this period, there still might

exists uncertainty about some determinants, such that prediction is necessary. This is showed clearly in

Figure 2. From this figure we can derive the percentage of product orders that has information available

on a specific determinant per day after the order date. For example, we see that after 10 days we know for

76% of the orders whether a return was requested or a case created. Information on on-time delivery does

not further increase after 10 days since for a large fraction of orders the delivery status is not traced and

remains unknown forever. For all determinants, relatively little extra information becomes available in the

last 20 days. Since companies have the urge to classify orders as soon as possible, we set a maximum on the

classification period. Therefore, in this research, we use a time window of 11 days to predict the product
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Fig. 2. Availability of determinant information 0 to 30 days after the order date.

order quality, that is, on the order date itself (day 0) and in the 10 days afterwards (day 1 to 10)1. As target

variable we use the finalised classifications by the company.

3.2. Data Procedures

As the data set contains some noisy observations, we first clean the data set. Noisy observations include

product orders with conflicting characteristics, such as a return registered before the order has been placed.

In nearly all types of noise, we decide to remove the respective instances from the data set, which leads

to 2,624 product orders being removed. In the case of product orders for which more items are returned

than originally ordered, we decide to manually modify those observations; we adjust the quantity returned

to match the quantity ordered, which affects 14,722 product orders. Our motivation for this approach is

twofold. First, we remark that the ordered quantities are directly related to the money flow into the company.

If an error had been produced here, we expect that it would have been detected at an earlier stage. Second,

the modifications are minimal. In nearly 90% of the modifications, the adjustment is by 1 unit.

Last, in order to make our data set well-suited for prediction models, we select, transform, and create

(new) variables. Most importantly, we create dummy variables corresponding to the determinants, which

indicate whether or not the information on the determinant is known to the company at a specific moment.

For example, we create a dummy variable for product delivery. If the information on late product delivery

becomes available 2 days after the order date, the dummy variable takes value 0 in these first 2 days, and

then takes value 1 as soon as the information is known. If the product is delivered on time, there is no late

delivery at all and the dummy variable keeps value 0 for all observations of this order. Furthermore, we

create variables related to the transporter, retailer, and product ordered. For example, we have a variable

containing the fraction of deficient product orders over the last few days for the retailer related to the order.

In case we suddenly observe a large increase it is more likely that the current order also ends up deficient.

1We opt for 11 days because it balances timeliness and information availability. Extending this classification period goes
against the preference of quick classifications with the goal of acting on bad quality product orders. On the other hand, when
shortening this period we possibly have too little information available to make a valid classification.
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Table 1
Occurrence of determinants as percentage of total number of product orders.

No cancellation On-time delivery No customer case No return

True 99.50% 60.75% 96.56% 94.12%

False 0.50% 3.47% 3.44% 5.88%

Unknown N.A. 35.78% N.A. N.A.

From Figure 1 one can determine the class label once all the determinants corresponding to a product

order are known. Because of this property, the determinant dummy variables can be regarded as ‘near-perfect

predictors’ for the class labels. Overall, as more and more days after the order date pass, more information

on the status of the product order is known. As a result of this construction, on each point in time after the

order date, we can train a prediction model with updated information on the status of the product order.

3.3. Descriptive Statistics

In this section, we discuss the most important descriptive statistics of our (cleaned) data set, consisting of

4.8 million observations. The majority of product orders is a Perfect Product Order (56%), about one-third

is an Inconclusive Product Order (32%), and the minority is an Deficient Product Order (12%). Using the

detailed classification system, we find that the majority of deficient product orders is a Mildly Deficient

Product Order (9%), and that a small fraction of all product orders is a Medium Deficient Product Order

(2%) or a Heavily Deficient Product Order (1%). Thus, the data is obviously skewed with respect to the

different class labels. Hence, in our classification task, we face an imbalanced data problem.

Table 1 gives us more insight in the values of the determinant variables—that is, the occurrences of

cancellations, late deliveries, customer cases, and returns. We find that 0.5% of product orders are cancelled,

3.4% of orders have a customer case related to it, and 5.9% of orders are returned. In addition, 3.5% of

product orders are delivered late, while roughly 36% of product deliveries are unknown.

4. Methodology

In this section, we introduce our hierarchical classification approach that classifies instances over time

using an automated threshold procedure. We first provide some general notation and definitions, after which

we present the structure of the tree-based class hierarchy. Next, we discuss the main components of HCOT

as well as classifier selection and optimisation. Then, we present the CAT algorithm, discuss the testing

procedure using the CAT-HCOT algorithm, and evaluate our model. Last, we outline two baseline methods

to compare our model with and discuss the software used.

4.1. Notation and Definitions

In this research, we use a tree-based structure to organise our classes into a hierarchy. Following the

definitions provided by Silla and Freitas [22], a tree-based class hierarchy is defined as H, containing the

finite set of nodes N . We can classify a node m ∈ N according to different tree-based terminology systems:
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• Root/standard. We define R as the root node of the hierarchy and S ⊂ N as the set of all standard

nodes, where S = N \ {R}.

• Internal/leaf. We define I ⊂ N as the set of internal nodes and L ⊂ N as the set of leaf (or external)

nodes, where I ∪ L = N .

• Parent/child. We define Cm as the set of all child nodes of node m and Sm as the set of all sibling

nodes of node m. Furthermore, we define pm as the parent node of node m.

• Ancestor/descendant. We define A(m) as the set containing node m ∈ N and all its ancestor nodes,

and D(m) as the set containing node m ∈ N and all its descendant nodes.

A training instance is defined as u ∈ U , where U is the set of all training instances and |U| = M . We

assign a test instance r ∈ R to a class with respect to the hierarchy, where R is the set of all test instances

and |R| = N . By definition of the tree-based hierarchical structure, an instance assigned to a particular

class naturally belongs to all its ancestor classes. We define the i-th test instance by ri = (xi, li) ∈ R, where

xi ∈ RD is the vector of values on the D model features and li ∈ L is the true label of instance i.

4.2. Tree-Based Class Hierarchy Structure

In order to use our hierarchical classification algorithm, we define a tree-based class hierarchy structure

based on business logic. We do not use a DAG structure, since, as a consequence of business logic, any

node in the tree cannot have more than one parent node. Figure 3 shows the 3-level tree representing the

class hierarchy: first, product orders are classified either as Inconclusive (<0>) or Conclusive (<1>). If the

order is classified as Inconclusive, it means that we expect all service criteria to be met, but it is unknown

whether or not the product is delivered on time. If the order is classified as Conclusive, it means that we

can predict the quality of the order as either Perfect (<1.1>) or Deficient (<1.2>). The order is classified

as Perfect when we expect all service criteria to be met, that is, no cancellation, on-time delivery, no return

and no case. In contrast, the order is classified as Deficient when at least one service criterion is not met. If

the order is classified as Deficient, we can assign it to a more specific Deficient class. Based on the extent

to which the product order quality is lacking, we classify the order either as Mildly Deficient (<1.2.1>),

Medium Deficient (<1.2.2>), or Heavily Deficient (<1.2.3>). Since the exact business rules for determining

the degree of deficiency are company-specific and rather complex, we do not discuss them in this paper.

4.3. Hierarchical Classification Over Time (HCOT)

In our problem setting, we face a trade-off between accuracy and timeliness. On the one hand, product

orders should be classified as accurately as possible to ensure reliable predictions, but, on the other hand,

orders should be classified as soon as possible to ensure actionable predictions. To handle this trade-off, we

use hierarchical classification of order satisfaction for t = 0, 1, . . . , 10 days after the order date. We refer to

this approach as hierarchical classification over time. After 10 days, each product order should be assigned
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to a label which corresponds to a leaf node l ∈ L. An order can have at most one label per hierarchy level.

For example, an order cannot be classified as both Perfect (<1.1>) and Deficient (<1.2>). Therefore, any

instance can be assigned only one path of predicted labels, which means that HCOT makes use of single

path prediction. The HCOT algorithm consists of three main procedures: training, testing, and blocking.

Training procedure. In HCOT, we train the hierarchy Ht independently per day using the available

information on day t. This implies that each ‘daily’ hierarchy Ht is trained on the same (number of)

instances and the same features, while the information contained in those features may change over time

as more information comes in. For each daily hierarchy, we make use of LCPN, which means that we train

a classifier at each parent node. The parent nodes in our class hierarchy (indicated by the dotted lines in

Figure 3) include the root node <R>, node <1> (Conclusive), and node <1.2> (Deficient). At <R> and

<1>, we need a binary classifier, as both nodes have only two child nodes. At <1.2> we need a multi-class

classifier, as this node has three child classes. Since each level has only one parent node in our hierarchy, we

note that LCPN is equivalent to LCL. We train the classifiers using the true training labels, i.e., we train the

classifier at <R> with all training data, the classifier at <1> with all instances that are truly Conclusive,

and the classifier at <1.2> with all instances that are truly Deficient. In Section 4.4, we elaborate on the

way we select our classifier methods and optimise the corresponding models.

Testing procedure. Next, by applying the trained classifiers, we can assign test instances ri ∈ R using

HCOT. We do so by means of iterative top-down class-prediction over time with NMLNP, which implies that

a test instance is not necessarily assigned to a leaf node m ∈ L (e.g., <1.2.1>) on a certain day, but can also

get blocked at an internal node m ∈ I (e.g., <1.2>). In general, for day t = 0, 1, . . . , 9, an instance first goes

through the hierarchy Ht and, if it is not classified into a leaf node, is sent to Ht+1. Each day, starting from

the root node <R>, we first try to assign an instance to a label at the first level and then use that label to

determine whether we continue to assign the instance to a label at a lower level. Hence, although an instance

can be classified at an internal node on a given day, the next day we start the classification process again

from the top of the tree. This overcomes the issue of error-propagation, which means that prediction error

at any class level is propagated downwards with respect to the hierarchy. This is a clear disadvantage of the

<1.1> 
Perfect

<1.2.1> 
Mildly Deficient

<1.2.3> 
Heavily Deficient

<1.2.2> 
Medium Deficient

<1.2> 
Deficient

<1> 
Conclusive

<R>

<0> 
Inconclusive 

Fig. 3. Pre-defined class hierarchy based on business logic.
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top-down class-prediction procedure. By re-starting the classification process again, we avoid propagation

of possible errors made on the previous day. If an instance is still not classified to a leaf node on day 9, we

make sure this instance is classified into a leaf node on day 10. This way, all instances are assigned to a leaf

node within 10 days after the order date.

Blocking procedure. We use thresholds as the blocking approach to handle NMLNP and determine

whether a test instance continues to the next level in the tree on a certain day. The thresholds are imple-

mented at each node m ∈ S: if the probability for an instance to reach a given child node does not exceed its

threshold, e.g., at least a predicted probability of 80%, then the classification is blocked at the corresponding

parent node. When an instance does not get blocked, it reaches a leaf node and gets classified. We refer

to this process as leaf-classification. Since this instance passes all thresholds on its path, we are confident

enough about our classification and thus expect to end up with accurate predictions. In addition, since our

testing approach implies that all instances go through the hierarchy in an iterative fashion (over time), we

make sure to classify each instance as soon as possible. Thus, the blocking approach in HCOT allows us to

face the trade-off between accuracy and timeliness. In Section 4.5, we propose and discuss the algorithm for

computing certainty-based automated thresholds.

In short, HCOT works as follows. Each day, starting on the day of ordering t = 0, an instance can either

be assigned to a leaf class or be blocked at one of the parent (internal) nodes. If an instance gets classified

into a leaf class, we consider its classification as final and we do not try to classify the instance again the next

day, as we assume that a platform wants to immediately act on a predicted product order quality. Hence,

from a business perspective, there is no need to classify a leaf-classified instance again on the next day [16].

On the other hand, if an instance gets blocked at an internal node, there is insufficient information available

for the instance to be assigned to a leaf class and, as a result, we try to classify the same instance again the

next day, starting over again from the root node of the hierarchy. Still, by assigning internal labels, HCOT

provides actionable insights even if there is not enough certainty of providing leaf-node predictions. Because

we want all instances to be classified within 10 days, we drop our blocking approach from HCOT on day 10,

such that all not-yet-classified instances get assigned a leaf class on day 10 (using MLNP).

Figure 4 graphically illustrates the process of HCOT with an example. On day 0, an instance gets

(Day 1) (Day 10)

0

1.2.1 1.2.31.2.2

1.1

R

1

1.2

0

1.2.1 1.2.31.2.2

1.1

R

1

1.2

0

1.2.1 1.2.31.2.2

1.1

R

1

1.2

...

(Day 0)

Fig. 4. Graphical representation of HCOT with H0, . . . ,H10. Red colour (light-grey in B&W printing) indicates
blocking at the corresponding parent node. Blue colour (dark-grey in B&W printing) indicates leaf-node classification.
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assigned to node <1>, but is blocked at this node due to a lack of certainty. On day 1, we try to leaf-classify

the instance again. This time, the instance gets assigned to node <1.2>, but is again blocked from further

hierarchical classification. In this specific example, the instance gets blocked up until day 9, such that we

use MLNP on day 10 to ensure that the instance is eventually assigned to a leaf class, in this case <1.2.1>.

4.4. Classifier Selection and Optimisation

In HCOT, we construct our ‘optimal’ hierarchical classifier by optimising each daily hierarchical classifier

(Ht) independently. To do so, there are three components we take into account: classifier selection, imbal-

anced data, and model tuning. All three components are applied to daily hierarchies, which are eventually

put together over time to form our HCOT classifier. First, we consider the process of selecting classifiers.

As noted, we train each Ht using LCPN, implying that we train classifiers per parent node. Therefore,

different classifiers can be used at different parent nodes in the hierarchy. In addition to providing flexibility

in classifier selection, this could also lead to improved predictions. Namely, different algorithms may prove

to be better able to differentiate between observations in different ‘regions’ (parent-child splits) of our data.

Therefore, each day, we optimise the combination between classifiers at the different parent nodes. To opti-

mise such combinations, we perform an exhaustive search across all possibilities. Since our tree consists of

three parent nodes (see Figure 3), considering K classifiers leads to evaluating C = K3 combinations. To

select our classification methods, it must be noted that our blocking approach requires probabilistic class

predictions. The first classifier we choose is the Random Forest (RF) classifier, which, through averaging

classifications over various decision trees, is known to possess strong predictive performance and provide

specific class probabilities for instances. The second classifier we select is Logistic Regression (LR), which

is a probabilistic classification method by nature. Taking these K = 2 classifiers, we evaluate C = 23 = 8

combinations on a daily basis. Clearly, C explodes with K, such that we decide to keep K small. However,

in case more classifiers would be selected, we could use (greedy) heuristics to overcome the computational

difficulty of an exhaustive search and still arrive at a near-optimal solution.

Second, in training the combinations of the above two classification methods for each t = 0, 1, . . . , 10,

we face an imbalanced data problem. That is, the distribution of data across the child nodes of all parent

nodes in our hierarchy is skewed. If we define the class distribution as the relative occurrence of instances

per child node in the data set, we find that the class distributions are roughly 2:1, 5:1, and 7:2:1, for the

root parent node <R>, parent node <1>, and parent node <1.2>, respectively. Class imbalance may be

a problem, as it biases classifiers towards predicting the most occurring classes [29]. In our application, we

value instances from each class equally important and, therefore, apply a cost-sensitive imbalance approach

at each parent node. This approach assigns larger weights to classifying instances from less prevalent classes.

That is, assigned weights to classes are inversely proportional to the rate of occurrence of these classes. In

this way, classifiers at each parent node are less biased towards assigning the most prevalent labels.

Third, having selected the combinations of classifiers to consider and accounting for imbalanced data,

we turn to tuning each Ht. This implies that, for each t, we need to find the best combination of classifiers
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Random sample (1.1M)
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For every classi�er
combination on each day 

1

BURN-IN
(10%)

FINAL TRAIN

2

3

4

5

Order date

Fig. 5. Procedure for training, validation, and testing. Between brackets, we indicate the number of observations or
the percentage of a certain set of observations. M means ‘million’.

and the corresponding optimal hyperparameters. To do so, we divide our training data into a training

set and a validation set. For each combination of classifiers, we then turn to Bayesian hyperparameter

optimisation (Tree-structured Parzen Estimation) [2, 18], the implementation of which is elaborated on in

Section A. Training our hierarchy using LCPN, we evaluate the validation performance by means of top-

down mandatory leaf-node prediction, where we aim to maximise the validation hF1, which is defined in

(6). Having obtained a set of optimal hyperparameters for all eight classifier combinations, we compare the

hF1-scores for all these combinations and select the one with the best performance. Applying this procedure,

we obtain daily optimal hierarchies.

To illustrate the classifier selection and optimisation procedure, we visualise our train-validation splits

in Figure 5. First, we split the data into train (80%) and test (20%) using a time series split, so that all

test data comes after train data in terms of order date (Step 1 and 2), which is most representative of the

real-life situation. Next, we take a subsample of the train data containing 1.1 million instances. As some of

our engineered features. i.e., our historic variables, require some time to stabilise, we decide to burn in the

first 10% of observations, leaving us with a sample of 1 million observations to train and validate on (Step

3). After that, we split this sample into train (80%) and validation (20%), again using a time series split

(Step 4). On this split, we apply the previously described procedure of finding the best daily combination

of classifiers with optimal hyperparameters to this train-validation split to find optimal daily hierarchies.

4.5. Certainty-Based Automated Thresholds (CAT)

In this section, we present the CAT algorithm, which is a blocking approach for handling NMLNP. In a

given hierarchy, CAT independently computes thresholds for all child nodes m ∈ S. When dealing with a

time component (in HCOT), we have daily hierarchical classifiers, such that thresholds will be computed for
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each child node and each day t independently. The threshold decides whether an instance coming from the

parent node of m, pm, gets accepted at node m. We denote this threshold by Tht(m). Since our hierarchy

consists of seven child nodes and HCOT has 10 days of non-mandatory leaf-node prediction, applying CAT

to HCOT implies computing 10 (days) × 7 (nodes per day) = 70 thresholds. For a single threshold in Ht,

we first obtain the class probabilities of the trained instances based on true data, i.e., only the instances

truly belonging to pm are considered for the threshold of node m, and then use the corresponding set of

probabilities to compute the optimal threshold.

First, we introduce the crux of the CAT algorithm. This is the constant hyperparameter α, which we

dub the ‘certainty’ parameter. The hyperparameter is used to locate a lower bound for the optimisation of

the thresholds. The certainty α decides the trade-off between accuracy and timeliness. Since there is no

mathematical optimum in this trade-off, the certainty represents user preferences where accuracy might be

more or less important than timeliness. Hence, the hyperparameter α is user-specified.

Second, we introduce some terminology to formally define the CAT algorithm and context. We denote

the set of instances that, during the training phase, is known to belong to parent node pm as Training(pm).

The posterior probability that train instance uj ∈ Training(pm) belongs to node m, as assigned by the

classifier at parent node pm on day t, is denoted as γpm→m,t(uj). Next, we define the set with majority vote

probabilities, which are the probabilities for node m that exceed the probabilities to go to any one of the

sibling nodes of m, m′ ∈ Sm. Formally, this is given by

Z =
{
γpm→m,t(uj)

∣∣ γpm→m,t(uj) > γpm→m′,t(uj), ∀m′ ̸= m, m′ ∈ Sm, ∀uj ∈ Training(pm)
}
. (1)

Since instances can only belong to one class in this problem setting, they are assigned to exactly one node.

Logically, nodem is only presented with majority vote probabilities, where the threshold subsequently decides

whether an instance is accepted. Therefore, we train Tht(m) solely on instances that have a majority vote

probability for node m on day t.

Similarly to Training(pm), we define Training(m) and Training(Sm). The threshold should block instances

that do not belong to Training(m) and should accept instances that do. To distinguish between instances

that should and should not be accepted, we first define the list of majority vote probabilities that should be

accepted by the threshold as

ζt(m) =
{
γpm→m,t(uj) ∈ Z

∣∣ uj ∈ Training(m)
}
. (2)

The list of majority vote probabilities that should be accepted to one of the sibling nodes of m, ergo, not to

node m, is given by

ζt(¬m) =
{
γpm→m,t(uj) ∈ Z

∣∣ uj ∈ Training(Sm)
}
. (3)

Now, the certainty parameter α comes in and its role is quite straightforward. The certainty is a number

between 0 and 1 and it is used to compute the (100α)-th percentile of ζt(¬m), denoted by ζt(¬m)α. The
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percentile serves as a lower bound on the search space for the optimal threshold. This search space is dubbed

the ‘allowed search space’ V, which is formally defined as

V =
{
γpm→m,t(uj) ∈ Z

∣∣ γpm→m,t(uj) ≥ ζt(¬m)α
}
. (4)

Essentially, CAT allows us to be certain that at least (100α)% of ζt(¬m) will be blocked by Tht(m). When

α = 0, no restrictions are placed on the allowed search space. This is likely to yield relatively low thresholds

and result in timely, but relatively less accurate classifications. On the other hand, when α = 1, we restrict

V to contain probabilities that are only found in ζt(m), which is likely to result in thresholds approaching

1. Consequently, this will yield highly accurate but less timely classifications. Also, note that the relation

between α and the relative importance of timeliness and accuracy is not necessarily linear but dependent on

the data set.

Subsequently, within V, we optimise threshold Tht(m) by looking for the separation point between

ζt(m) and ζt(¬m) that maximises F1. To do so, CAT requires a classifier that outputs near-continuous

probabilities. Otherwise, the instances will be concentrated in the few available probabilities, such that

making a distinctive split is impossible. Given a near-continuous classifier, it is not necessary to consider

each probability as potential threshold, as the number of distinct probabilities is often extremely high. Hence,

we do a grid search using ξ evenly spaced steps within V. The hyperparameter ξ is given as input to CAT.

We denote the set containing the ξ grid points as Θ, where each θ ∈ Θ is considered as potential threshold.

For each potential threshold, we determine the number of true positives (TP) and false positives (FP) by

calculating the number of posterior probabilities in ζt(m) and ζt(¬m) that exceed the threshold, respectively.

Next, we calculate precision and recall, where the latter uses that the sum of true positives (TP) and false

negatives (FN) equals the cardinality of ζt(m). Combining precision and recall, we compute the F1-measure

and select the threshold Tht(m) with the highest F1. Algorithm 1 presents the complete procedure of CAT.

When applying CAT to HCOT, we deal with a time component. Over time, our classifier is based on

more information, making it easier to separate probabilities. This means that the posterior probabilities

gravitate towards 0 and 1. If a probability moves towards 1, it is more likely to stay or become a majority

vote probability. The other way around, if it moves towards 0, it becomes less likely that the probability will

remain a majority vote probability. Consequently, the distributions of ζt(m) and ζt(¬m) are more likely to

shift towards 1 over time because they only contain majority vote probabilities. In general, this will increase

the lower bound of V and hence, may push Tht(m) upward. Whether the threshold increases over time

depends on the distributions of ζt(m) and ζt(¬m), as well as on α.

Figure 6 visualises the working of the CAT algorithm, showing example distributions of the majority

vote probability sets ζt(m) and ζt(¬m). A probability in ζt(m) should be accepted, because the instance

belongs to class m. In contrast, a probability in ζt(¬m) should not be accepted, because the instance does

not belong to m. The allowed search space V is represented by the shaded region. A small circle shows the

F1-measure evaluated in a point in the grid. The optimal threshold is presented by the bigger circle.
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Algorithm 1: CAT

Data:
{
γpm→m,t(uj)

∣∣ uj ∈ Training(pm)
}
; α; ξ

Result: Tht(m)

1 Initialise the following sets

Z =
{
γpm→m,t(uj)

∣∣ γpm→m,t(uj) > γpm→m′,t(uj), ∀m′ ̸= m, m′ ∈ Sm, ∀uj

}
ζt(m) =

{
γpm→m,t(uj) ∈ Z

∣∣ uj ∈ Training(m)
}

ζt(¬m) =
{
γpm→m,t(uj) ∈ Z

∣∣ uj ∈ Training(Sm)
}

2 Define the allowed search space, V =
{
γpm→m,t(uj) ∈ Z

∣∣ γpm→m,t(uj) ≥ ζt(¬m)α
}

3 Define the set with potential thresholds Θ as ξ evenly spaced points within [min{V},max{V}]
4 Initialise F ∗

1 = 0 and Tht(m) = 0

5 for θ ∈ Θ do

6 TP =
∣∣{γpm→m,t(uj) ∈ ζt(m) | γpm→m,t(uj) ≥ θ

}∣∣
7 FP =

∣∣{γpm→m,t(uj) ∈ ζt(¬m) | γpm→m,t(uj) ≥ θ
}∣∣

8 recall =
TP∣∣ζt(m)

∣∣ ; precision =
TP

TP + FP
; F1 =

2× precision× recall

precision+ recall

9 if F1 > F ∗
1 then

10 F ∗
1 := F1

11 Tht(m) := θ

In this example, the effect of α is straightforward. Namely, if α increases, the lower bound of the allowed

search space moves to the right. If it moves far enough, the optimal threshold Tht(m) will be pushed

upwards. This will lead to less instances from ζt(¬m) being accepted at node m, which increases accuracy.

However, since less instances are classified, we obtain less timely predictions. The other way around, if α

decreases, the allowed search space widens, which may result in a lower optimal threshold. If this is the

case, more instances are accepted, which leads to more timely yet less accurate predictions. Note that in

this example, Tht(m) would not decrease with a lower α.

With respect to HCOT, predicting a false negative is not as troublesome as predicting a false positive.

Namely, if an instance is blocked, we can try again the next day, but if an instance is accepted and thereby

classified to the wrong leaf node, there is no chance to rectify this mistake. While the predictions should be

accurate, they should also be timely. Therefore, we solve this issue with CAT, where we use α to reach a

certain standard for precision, but at the same time try to recall as many instances as possible within the

allowed search space. Hence, we optimise F1 to give equal weight to precision and recall within V.

4.6. CAT-HCOT

Having obtained the daily best classifier combination and respective optimal hyperparameters as well as a

procedure to compute daily optimal thresholds, we can now predict the quality of orders by combining CAT

and HCOT, in short denoted by CAT-HCOT. First, we train the complete HCOT algorithm by indepen-

dently training each Ht, for t = 0, 1, . . . , 10, with the obtained optimal hyperparameters and best classifier
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Fig. 6. Visualisation of example distributions of ζt(m) and ζt(¬m) alongside the optimisation of F1 within V.

combinations. We do this using the previously explained LCPN approach. Note that for each hierarchical

classification we thus train on the same (number of) instances and the same features, while the information

contained in those features may change over time.

Second, we apply CAT with certainty parameter α independently to each Ht to obtain day- and node-

specific thresholds Tht(m). Similar to the trained classifiers, the thresholds are computed based on the true

training labels and their respective class probabilities. That is, only instances truly belonging to a specific

parent node are considered when computing the thresholds belonging to its child nodes.

Third, combining the trained hierarchical classifiers and their optimal thresholds, we can start predicting

instances in a top-down, non-mandatory leaf-node procedure over time. Algorithm 2 presents this procedure.

In short, we only classify instances when we are confident enough about their classification and otherwise

try again the next day when (possibly) new determinants or other information is available. This leads to

some instances being classified sooner than other instances, with the overarching goal of balancing accuracy

and timeliness.

In applying these three steps, we consider the full training set containing 80% of data points and burn

in its first 10% of instances (sorted by order date) to stabilise our historic variables (Figure 5, Step 5). The

withheld test set containing the most recent 20% of data is then run through Algorithm 2 in order to evaluate

the overall performance of CAT-HCOT.

4.7. Performance Measures

To evaluate the performance of CAT-HCOT, we use the measure of predictive accuracy alongside hierar-

chical performance measures as proposed by Kiritchenko et al. [17]. These latter measures are the hierarchical

extensions of precision, recall, and F1-score. Hierarchical performance measures explicitly incorporate the
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Algorithm 2: CAT-HCOT

Data: Set R of all test instances ri = (xi, li) to be classified; Tree-based class hierarchy H; Trained

hierarchy Ht at t ∈ {0, 1, . . . , 10}; Thresholds Tht(m) for node m at day t from CAT

Result: Set P of classified test instances (xi, l̂i), where l̂i ∈ L
1 Initialise P = ∅ and t = 0

2 while R ≠ ∅ do

3 for ri ∈ R do

4 if t < 10 then

5 Top-down, non-mandatory leaf-node prediction with respect to Ht assigns xi a label

l̂i ∈ I ∪ L if posterior probabilities exceed thresholds Tht(m) for the entire path to l̂i

6 if l̂i ∈ L then

7 R := R \ ri
8 P := P ∪ (xi, l̂i)

9 else

10 Top-down, mandatory leaf-node prediction with respect to H10 assigns xi a label l̂i ∈ L
11 R := R \ ri
12 P := P ∪ (xi, l̂i)

13 t := t+ 1

hierarchical path-distance between true and predicted labels, which means that the farther classifications are

from the true label with respect to the hierarchy, the heavier the penalty. This property makes hierarchical

performance measures preferable over flat performance measures in case of hierarchical classification.

Global predictive accuracy (Acc), global hierarchical precision (hP ) and global hierarchical recall (hR) are

defined as follows:

Acc =
1

N

N∑
i=1

∣∣∣A(li) ∩ A(l̂i)
∣∣∣ , hP =

N∑
i=1

∣∣∣A(li) ∩ A(l̂i)
∣∣∣

N∑
i=1

∣∣∣A(l̂i)
∣∣∣ , hR =

N∑
i=1

∣∣∣A(li) ∩ A(l̂i)
∣∣∣

N∑
i=1

∣∣∣A(li)
∣∣∣ , (5)

where li and l̂i denote the true and the predicted label of instance i, respectively, and A(l) denotes the set

containing leaf node l ∈ L and all its ancestor nodes except the root node R. We use the term ‘global’ here,

because these performance measures are calculated over all N test instances after the total period of 10 days.

The global hierarchical F1-measure (hF1) aggregates the hP and hR measures by taking their harmonic

mean, and is defined as follows:

hF1 =
2 · hP · hR
hP + hR

. (6)

In the case of flat precision and recall, we can compute class-specific precision and recall. We extend

this idea to our hierarchical measures by defining class-specific hierarchical precision (hPc) and class-specific
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hierarchical recall (hRc), except that we now sum over all predicted instances of class c ∈ L in hPc, and all

true instances of class c ∈ L in hRc. We calculate the class-specific hierarchical F1,c-measure (hF1,c), where

we replace hP and hR by their class-specific counterparts hPc and hRc.

As our HCOT algorithm classifies instances over time, we also want to evaluate its performance per

day. This means that we need daily hierarchical performance measures. Therefore, we define daily accuracy

(Acct), daily hierarchical precision (hPt), and daily hierarchical recall (hRt), where we now sum over (and

divide by) all Nt instances that are assigned a (leaf) class c ∈ L on day t ∈ {0, 1, . . . , 10}. We calculate the

daily hierarchical F1,t-measure (hF1,t), replacing hP and hR by their daily counterparts hPt and hRt.

Last, we combine the class-specific and daily hierarchical performance measures to calculate class-specific

daily hierarchical precision (hPc,t) and class-specific daily hierarchical recall (hRc,t). As before, these mea-

sures can be combined to calculate the class-specific daily hierarchical F1,c,t-measure (hF1,c,t).

To evaluate the extent to which instances are blocked at a certain classifier on a parent node, we use the

blocking factor, which is defined as the fraction of instances that is blocked at a parent node relative to the

total number of instances entering the corresponding classifier in the top-down class-prediction approach.

The blocking factor gives us insight into the evolution of the blocking process at each parent node over time.

4.8. Baseline Methods

We compare the performance of CAT-HCOT against two baselines: static HCOT and flat CAT-HCOT.

4.8.1. Static HCOT

We first compare the performance of CAT-HCOT against static HCOT, which is a hierarchical classifi-

cation method with MLNP. More specifically, this baseline method does not use a blocking approach with

thresholds, such that, each day, it classifies all instances. When using static HCOT in practice, one would

choose a specific day and use the predictions obtained for that day. Considering the accuracy-timeliness

trade-off, we expect CAT-HCOT to achieve higher daily accuracy than static HCOT for the first few days,

since it only assigns instances to leaf nodes if there is enough confidence to do so. For the last few days,

we expect static HCOT to obtain higher daily accuracies, since, at this point, CAT-HCOT would only need

to predict previously blocked and thus more uncertain instances. In terms of timeliness, static HCOT will

become relatively less timely across days, as CAT-HCOT classifies more and more instances over time.

4.8.2. Flat CAT-HCOT

We also compare the performance of CAT-HCOT against flat CAT-HCOT, which is a specific case

of CAT-HCOT with the simplest hierarchy possible: one root node that has all leaf classes as its child

nodes. This flat baseline method uses the same classifier (with C = 21 = 2 combinations) and model

optimisation approach, and applies the same (CAT) blocking approach as standard CAT-HCOT. As for the

accuracy-timeliness trade-off, we expect the accuracy for flat CAT-HCOT to be slightly lower than that of

CAT-HCOT, because the smaller hierarchy is likely to capture the hierarchical structure in the classes less
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accurately. Presumably, this would most affect the least represented classes in the data (i.e., Medium and

Heavily Deficient). Note that, even though the flat baseline uses a one-level hierarchy, we use the same set

of ancestor nodes as in CAT-HCOT when evaluating hierarchical performance measures (such that, e.g.,

a Medium Deficient Product Order is also Conclusive and Deficient). In terms of timeliness, we expect

flat CAT-HCOT to provide slightly more timely predictions than regular CAT-HCOT, since its one-level

hierarchy causes instances to be classified already when a single threshold is passed.

4.9. Software

We use Python 3.8 for implementation. To program the LR and RF classifiers, we use the scikit-learn

package [20]. We perform hyperparameter optimisation using the hyperopt package [3]. To program the

hierarchical structure, we use the framework as presented by Warshaw [27]. Our code is available on GitHub

at https://github.com/thomas-brink/CAT-HCOT.

5. Results

In this section, we present and evaluate our results. First, we discuss the found best classifier combinations

and optimal model hyperparameters. Second, we consider the optimal thresholds as determined by our CAT

algorithm. Third, we evaluate the predictive performance of CAT-HCOT and, fourth, compare it against

two baseline methods. Last, we perform a sensitivity analysis on the certainty parameter α.

5.1. Classifier Selection and Optimisation

As previously described, we select and optimise our classifiers by performing an exhaustive search across

all classifier combinations at the parent nodes in our hierarchy. For CAT-HCOT, we find that a hierarchy

with LR on node <R> and RF on nodes <1> and <1.2> is the dominant choice. Namely, across all 8

combinations, LR-RF-RF yields the highest validation F1-score for 10 out of 11 daily hierarchical classifiers.

Therefore, to make implementation and interpretation simple, we decide to work with this classifier combina-

tion for each of the eleven daily hierarchical classifiers. This combination confirms our notion that different

classifiers may be better at distinguishing between different ‘regions’ of the data, which is an important factor

why hierarchical classification may be preferred over flat classification. For flat CAT-HCOT, we find that

LR is the optimal choice for H0, ...,H4, while RF yields the highest validation F1-score from H5 onwards.

Table A.1 presents the optimised hyperparameters for CAT-HCOT (LR-RF-RF) and flat CAT-HCOT (LR

and RF) for all hierarchical classifiers H0, ...,H10.

5.2. Certainty-Based Automated Thresholds (CAT)

Next, we discuss the optimal thresholds as determined by the CAT algorithm. We set the certainty

parameter α = 0.7 and use ξ = 100 number of steps in the allowed search space. We point out that these

choices are user-specific and thus remain somewhat arbitrary. Although no ‘optimal’ value of α exists,
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Table 2
Optimal thresholds per node and hierarchy computed with the CAT algorithm where α = 0.7 and ξ = 100.

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

Inconclusive 95.8% 96.4% 96.5% 96.8% 96.6% 97.5% 98.1% 98.7% 99.0% 99.2%

Conclusive 89.8% 89.3% 80.2% 73.2% 66.5% 64.2% 66.9% 88.2% 83.2% 77.5%

Perfect 64.1% 66.1% 74.9% 78.0% 80.8% 84.0% 82.8% 82.9% 84.8% 85.8%

Deficient 63.4% 59.2% 63.5% 63.5% 69.7% 68.0% 71.9% 71.8% 71.3% 71.7%

Mildly Deficient 57.0% 58.3% 59.8% 62.0% 64.3% 66.3% 69.1% 70.4% 70.9% 71.0%

Medium Deficient 51.9% 52.2% 52.4% 52.9% 53.5% 53.9% 55.6% 57.4% 59.6% 61.1%

Heavily Deficient 50.3% 48.8% 48.2% 47.5% 47.9% 47.1% 47.6% 47.6% 48.1% 49.7%

α = 0.7 is an appropriate choice, putting a relatively strong weight on accuracy yet still ensuring timely

predictions. Section 5.5 provides further insight into the dynamics behind different values of α.

Table 2 shows the optimal thresholds for each daily hierarchy per node as determined by CAT. In general,

we would expect the thresholds to slightly increase over time. This is the case for almost all nodes, apart

from some minor fluctuations. Notable is the dip around H5 for node <1> (Conclusive), which means there

is some variability in the distributions of ζt(<1>) and ζt(¬ <1>). Additionally, we note that the thresholds

tend to be higher for nodes at the top of the hierarchy (e.g., Inconclusive and Conclusive) compared to nodes

deeper in the hierarchy (e.g., Mildly, Medium, and Heavily Deficient). A high threshold likely results from a

high lower bound, which means the classifier had difficulty separating the distributions of ζt(m) and ζt(¬m).

We point out that one should be careful in comparing thresholds for the Deficient classes with the other

classes, since the range of majority vote probabilities of the Deficient classes differs from that of the other

classes. This is due to the multi-class split that the classifier at node <1.2> (Deficient) makes, as opposed

to the binary splits at the other two parent nodes.

5.3. CAT-HCOT

Employing the best classifier combination with optimal hyperparameters and using the optimal thresholds

from CAT (α = 0.7), we use the CAT-HCOT algorithm to classify our test instances. In this section, we

evaluate the predictive performance of CAT-HCOT. We start by discussing its global and class-specific

performance, after which we evaluate the use of the blocking approach.

5.3.1. General Performance

Overall, we find that CAT-HCOT achieves a global accuracy of 93.7%. Furthermore, Table 3 shows global

and class-specific hierarchical performance measures. All performance measures in Table 3 are computed

based on the entire set of leaf-node predictions that is made in the entire period of 0 to 10 days after the order

date. Here, global measures are computed based on all classified instances, whereas class-specific measures

are computed based on all instances that are assigned to a specific class. Global hierarchical precision, recall,

and F1-scores all reach values over 90%. If we consider class-specific measures, the scores remain high with

values mostly above 90%. One particular class that deviates somewhat is Inconclusive, which achieves a
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Table 3
Global and class-specific performance of CAT-HCOT.

hP hR hF1

Global 96.1% 92.2% 94.1%

Perfect 96.8% 94.3% 95.6%

Inconclusive 93.6% 83.0% 87.9%

Mildly Deficient 97.2% 97.7% 97.4%

Medium Deficient 92.7% 92.9% 92.8%

Heavily Deficient 95.2% 95.4% 95.3%

relatively low hierarchical recall score of 83%. This finding could be explained by the fact that instances

only need to pass a single threshold to be classified as Inconclusive. Hence, for each instance, hierarchical

recall is either 0 or 1, whereas for other classes, it can achieve scores between 0 and 1. As a result, hierarchical

recall (and thus hierarchical F1) could be lower for Inconclusive than for other classes.

Figure 7 presents the performance of the CAT-HCOT algorithm in terms of daily accuracy (Acct),

daily hierarchical precision (hPt), daily hierarchical recall (hRt), daily hierarchical F1-score (hF1,t), and the

cumulative percentage of classified instances per day. The daily hierarchical performance measures evaluate

all leaf-node predictions that are made on a specific day. Considering daily accuracy (Figure 7a) and the

cumulative percentage of leaf-node predictions (Figure 7b), we find that CAT-HCOT is able to classify

roughly 40% of instances on the order date itself with an accuracy of almost 91%. As more determinants

come available over time, the cumulative percentage of leaf classifications increases further (with decreasing

rate). On the 5th day after ordering, CAT-HCOT has leaf-classified almost 80% of instances, where the level

seems to stabilise (Figure 7b). After day 5, the cumulative percentage of leaf classifications almost stops

increasing, which means that roughly 20% of instances cannot be classified with enough certainty. Hence,

on day 10, we make sure all these instances are classified by means of MLNP, as noticeable by the peak on

day 10. We point out that from day 2 onwards (including day 10), CAT-HCOT achieves a daily accuracy of

95% or higher on the daily leaf-classified instances (Figure 7a).

For instances that are blocked at a particular parent node and therefore not assigned a leaf class, CAT-

HCOT may be able to assign them a predicted class by classifying them into one of the internal nodes

Conclusive or Deficient. It is interesting to evaluate the cumulative percentage of internal-node predictions

(excluding the root node), because this gives a better indication of the practical use of the algorithm (upper

line in Figure 7b). That is, e-commerce platforms do not necessarily need detailed labels to act upon

predictions, but can in some cases also rely on more general predictions. For example, if a product order is

predicted to be Deficient, this already may be valuable enough for the company to act upon. From Figure

7b, we find that roughly 64% of instances are assigned an internal- or leaf-node label on the order date itself,

which further increases towards roughly 93% on day 9. Here, we recall that the internal-node predictions

are never finalised. Instead, the associated instances are again classified in a top-down manner on the next

day, until they reach a leaf node.
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Last, we evaluate the performance of CAT-HCOT on a daily, class-specific basis. Figure 8 presents daily

class-specific hierarchical precision (hPc,t) and recall (hRc,t) evaluated for all five leaf classes. We find that

almost all daily class-specific hierarchical scores exceed 90%, which indicates that CAT-HCOT achieves very

strong predictive performance for all classes. There are two exceptions to this result. First, hierarchical

recall for Inconclusive shows a deviating pattern over time: it starts relatively low, just below 80%, and

increases slowly over time, eventually exceeding 90% (Figure 8b). Again, this can be explained by the fact

that Inconclusive is positioned on top of the hierarchy, such that instances only need to pass one threshold

to be classified as Inconclusive. As a result, for each instance, hierarchical recall is either 0 or 1, leading to

lower scores on the first days when clearly not all true Inconclusive instances have been correctly predicted.

The second exception is related to the classes Mildly Deficient on day 0 and Heavily Deficient on day 10:

in both cases, hierarchical precision and recall achieve values below 80%. A possible explanation for this

is the low occurrence of these classes and availability of determinants in the data, which makes accurate

classification more difficult, even if we impose certainty thresholds and allow for classification over time.

5.3.2. Blocking at Parent Nodes

In this section, we give more insight into the CAT blocking approach, which is used to stop classification

of instances if the posterior probability at a given level does not exceed a threshold. Figure 9a shows the

daily blocking factor for the three different parent nodes in our hierarchy. Over time, we find that the

blocking factor decreases for the root node <R>, while it increases for parent nodes <1> and <1.2>. This

can be explained by inspecting Figure 9b, where we plot the percentage of blocked instances relative to

the (fixed) total number of instances that need to be classified. Over time, this percentage stays relatively

constant for nodes <1> and <1.2>, while the daily total fraction of blocked instances, given by the sum

of the percentages at the three parent nodes, decreases over time. Thus, in absolute terms, the number of
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Fig. 7. Daily performance of the CAT-HCOT algorithm.
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Fig. 9. Analysis of the blocking procedure at the parent nodes.

blocked instances at nodes <1> and <1.2> is rather stable, but the number of instances entering these nodes

decreases, such that the blocking factor increases. Note that up until day 9, at least 6.7% of instances are

blocked at the root node <R> (Figure 9b). These instances are not assigned an internal (excluding root)

classification and therefore do not provide us with actionable business insights. Logically, since we apply

MLNP on day 10, the fraction of blocked instances in the end reaches 0 for all parent nodes.

Even if there is not enough certainty of providing leaf-node predictions, CAT-HCOT still provides action-

able insights by assigning internal labels. We do not finalise these internal-node predictions, meaning that

the next day the instances are again classified in a top-down manner and may end up in a different (internal)

node. This procedure helps us overcome the issue of error propagation. Figure 10 shows the performance at

the two internal nodes <1> (Conclusive) and <1.2> (Deficient). First, we observe that hierarchical recall

is relatively low for both nodes. This is not surprising, since, by definition, internal-node predictions have

not yet reached the most specific node possible, making it impossible to achieve perfect recall scores. More
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Fig. 10. Daily internal-node hierarchical performance measures (excluding root). Daily class-specific hierarchical
recall (hRc,t) can reach maximum values of 50% and 66.7% for <1> (Conclusive) and <1.2> (Deficient), respectively.

specifically, daily class-specific hierarchical recall (hRc,t) can reach maxima of 50% and 66.7% for <1> and

<1.2>, respectively, since at most 1 out of 2 and 2 out of 3 nodes in the path can be assigned correctly.

Second, we find that hierarchical precision is close to 100% on all days for <1>, while predictions are almost

always perfectly precise for <1.2> from day 5 onwards. Still, a significant fraction of internal predictions

is incorrect for <1.2> on day 0 until day 4. This shows that, indeed, it may not be a good idea to finalise

internal predictions, as this would propagate the error to the next day by continuing classification from an

incorrect node. However, as the internal-node predictions are nearly always correct after day 4, it could be

beneficial to finalise the internal classifications from this day onwards.

5.4. Baseline Methods

In this section, we evaluate the performance of CAT-HCOT against two baselines: static HCOT, which

does not use a blocking approach, and flat CAT-HCOT, which uses a one-level hierarchy. Figure 11 plots daily

accuracy scores and cumulative percentages of classified instances for CAT-HCOT and the two baselines.

We first compare CAT-HCOT to the static baseline. For static HCOT, we achieve an accuracy of 81.7%

when predicting all instances on day 0 (Figure 11a). This accuracy steadily increases until reaching a value of

98.2% on day 10. This increase makes sense, as with each day more determinants become available, which in

turn leads to more accurate predictions. In contrast to static HCOT, CAT-HCOT does not assign leaf-node

predictions for all instances at each day, but only classifies those instances for which it is certain enough.

This leads to higher daily accuracy than static HCOT for the first 5 days after (and including) the order

date. In contrast, from day 6 to day 10, static HCOT attains higher daily accuracy than CAT-HCOT. This

is mainly because in the later days, CAT-HCOT only needs to classify those instances that were previously

blocked and are thus difficult to classify to a leaf node, whereas static HCOT classifies the full set of instances

each day, as seen by the straight line in Figure 11b. All in all, we find that CAT-HCOT adequately balances

the accuracy vs. timeliness trade-off by using a certainty-based classification approach, while static HCOT
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Table 4
Global and class-specific hierarchical performance of the flat CAT-HCOT baseline (α = 0.7).

hP hR hF1

Global 93.7% 90.9% 92.2%

Perfect 96.3% 93.4% 94.8%

Inconclusive 93.9% 83.9% 88.6%

Mildly Deficient 89.2% 93.7% 91.4%

Medium Deficient 63.8% 77.7% 70.1%

Heavily Deficient 55.5% 77.9% 64.8%

does not allow for such a balanced trade-off.

Second, we compare CAT-HCOT to the flat baseline (α = 0.7). From Figure 11a, we find that CAT-

HCOT achieves higher accuracy scores than flat CAT-HCOT, while it provides less timely predictions.

However, these differences are small. Instead, CAT-HCOT and flat CAT-HCOT mostly differ in terms of

class-specific hierarchical performance. In particular, we find that flat CAT-HCOT is not able to achieve

similarly high hierarchical precision and recall scores as CAT-HCOT on the Deficient classes. While CAT-

HCOT achieves hierarchical precision and recall scores of above 90% for Medium and Heavily Deficient

(Table 3), flat CAT-HCOT only achieves scores between 50% and 80% (Table 4). Hence, taking into account

the full hierarchical class structure, CAT-HCOT achieves major improvements in class-specific predictive

performance over flat CAT-HCOT. This underlines the added value of hierarchical classification in a setting

where classes are hierarchically structured, even if the tree-based hierarchy is shallow (7 nodes over 3 levels).

5.5. Sensitivity Analysis of Certainty Parameter

To analyse the effect of the certainty parameter α, which balances the trade-off between accuracy and

timeliness, we perform a sensitivity analysis. We evaluate the CAT-HCOT algorithm for values of α ranging
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Fig. 11. Comparison of CAT-HCOT against static and flat baseline methods.
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Fig. 12. Sensitivity analysis for certainty parameter α in CAT.

from 0 to 1 with step size 0.1. Figure 12 shows the α−specific accuracy and the cumulative percentage of

leaf-node predictions over time. We mention that for α = 1, the CAT-HCOT algorithm fails, because it only

gives 0.04% of instances a leaf-node prediction in the first nine days after (and including) the order date.

Therefore, the results for α = 1 are omitted from the figure. First, Figure 12a shows that higher values of

α lead to higher leaf-node prediction accuracy. This make sense, because a higher certainty implies that we

put more weight on accuracy than on timeliness. Second, Figure 12b shows that a higher α leads to a lower

cumulative percentage of leaf-classified instances in the first nine days after the order date. This makes sense

too, because, following the accuracy-timeliness trade-off, higher accuracy comes at the expense of timeliness.

Inspecting specific values of α, we find that for α < 0.5, accuracy scores are highly volatile on the first

few days after the order date. On the other hand, high fractions of instances get assigned to a leaf node on

those days. The opposite story goes when α > 0.5, for which fewer instances get leaf-classified in the first

few days, but the accuracy scores of these instances reach much higher levels. Hence, in applications where

timeliness is more important than accuracy, lower values of α are more suitable, while higher values of α are

preferable in case accuracy is considered to be more important than timeliness.

6. Conclusions and Future Work

In this paper, we have designed a method to accurately predict the quality of product orders at a large

e-commerce platform in the Netherlands shortly after the orders have been placed. In this prediction task, we

face a clear trade-off between accuracy and timeliness: on the one hand, product orders should be classified
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as accurately as possible to ensure reliable predictions, and on the other hand, product orders should be

classified as soon as possible to ensure actionable predictions. We use our own hierarchical classification

method that classifies instances over time in a top-down, non-mandatory leaf-node prediction procedure

with certainty-based automated thresholds.

Our results suggest that HCOT combined with the CAT algorithm, in short CAT-HCOT, achieves highly

promising predictive performance. CAT-HCOT obtains a global predictive accuracy of 93.7%, with daily

accuracies consistently exceeding 90%. In addition, both global and class-specific hierarchical performance

measures almost always achieve scores above 90%. With respect to timeliness, CAT-HCOT is able to classify

around 40% of orders on the same date these orders are placed, approximately 80% of orders within 5 days

after the order date, and, by design, 100% of orders after 10 days. All in all, we find that CAT-HCOT

adequately captures the accuracy vs. timeliness trade-off by using a certainty-based classification approach,

while a static method, which does not incorporate certainty, does not allow for such a balanced trade-

off. We further find that CAT-HCOT achieves major improvements over a flat baseline method in terms

of hierarchical precision and recall scores on the most specific and least occurring Deficient classes, which

illustrates that taking into account the hierarchical class structure improves predictive performance. Last,

CAT-HCOT is widely applicable and highly flexible, because the certainty parameter α can be user-specified

to balance the trade-off between accuracy and timeliness.

The main contribution of our research lies in three areas. First, we propose a new method of using

hierarchical classification in a dynamic way. Second, we introduce a new certainty-based automated thresh-

olds algorithm and combine this algorithm with hierarchical classification over time. Last, we add to the

literature on hierarchical classification by applying this technique in a shallow-tree setting with imbalanced

data, specifically tailored to the field of company satisfaction in e-commerce.

In the future, this research may be extended into various interesting directions. First, we point out

that, although this research is tailored to the domain of company satisfaction in e-commerce, the CAT-

HCOT framework can be applied to any other dynamic hierarchical classification problem. Furthermore,

the CAT algorithm does not require the presence of a time component and can thus be applied to any

classification problem that involves blocking. Second, we can implement the CAT-HCOT algorithm by

using different classification methods that are able to produce near-continuous class prediction probabilities,

such as Naive Bayes, Neural Networks, or Support Vector Machines. Third, it can be interesting to use a

different hierarchical structure in the class labels. In this research, the tree-based hierarchy is defined based

on business logic, but it might be that different splits at different tree levels lead to better classification

performance. Last, instead of predicting class labels, it can be interesting to predict the determinants that

determine the quality of a product order, which include cancellations, late delivery, customer cases, and

returns. This would give more insights into the quality of product orders from a business perspective,

providing e-commerce platforms with the reasons why a particular product order is perfect or deficient.
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Appendix A Hyperparameter Optimisation

To implement TPE Bayesian hyperparameter optimisation, we use Python’s hyperopt package. As our

selection function, we apply the expected improvement criterion, while the error that we aim to minimise is

−1 × hF (such that we maximise the hF-score). In terms of hyperparameters and their parameter space,

for LR we optimise over the regularisation type, i.e., either L1- or L2-regularisation. As for RF, we tune

the number of tree estimators (N trees) and the maximum depth (max depth) of those trees. As prior for

both hyperparameters, we apply a uniform integer distribution. The number of estimators is chosen to

range between 10 and 50 (with stepsize 5), while the maximum depth of our trees is set between 5 and 15

(with stepsize 1). For CAT-HCOT, we implement hyperparameter optimisation on all 8 possible classifier

combinations. This means the number of parameters to optimise ranges between 3 (LR-LR-LR) and 6 (RF-

RF-RF). In the flat baseline, we either need to optimise 1 (LR) or 2 (RF) parameters. We set the maximum

number of optimisation iterations to find our best hyperparameters to 20. Note, however, that in case we

only evaluate LR, we do not need 20 iterations to evaluate all possible hyperparameters. Below, we present

the optimal sets of hyperparameters for CAT-HCOT and the flat baseline method.
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Table A.1
Optimal hyperparameters for classifier combination LR-RF-RF in CAT-HCOT (left) and either LR or RF in flat
CAT-HCOT (right).

CAT-HCOT Flat CAT-HCOT

LR RF RF LR RF

Penaltya Max depth N trees Max depth N trees Penalty Max depth N trees

Day 0 0 9 35 14 20 0* 14 45

Day 1 0 10 45 14 45 0* 14 45

Day 2 1 12 30 14 30 0* 14 40

Day 3 1 12 30 14 30 0* 14 45

Day 4 1 12 30 14 30 0* 14 40

Day 5 1 12 30 14 30 0 14* 45*

Day 6 0 10 45 14 45 1 14* 40*

Day 7-10 0 10 45 14 45 0 14* 45*

a 0 indicates L1-regularisation, 1 indicates L2-regularisation.
* indicates that the respective classifier is the optimal choice on the respective day.

Table A.2
Optimal hyperparameters for LR and RF in flat CAT-HCOT.

LR RF

Penaltya Max depth N estimators

Day 0 0* 14 45

Day 1 0* 14 45

Day 2 0* 14 40

Day 3 0* 14 45

Day 4 0* 14 40

Day 5 0 14* 45*

Day 6 1 14* 40*

Day 7 0 14* 45*

Day 8 0 14* 45*

Day 9 0 14* 45*

Day 10 0 14* 45*

a 0 indicates L1-regularisation, 1 indicates L2-regularisation.
* indicates that the respective classifier is the optimal choice on the respective day.
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