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Abstract

The concept mapping algorithm proposed in an earlier
paper is one of the dimensionality reduction techniques that
can be used for knowledge domain visualization. Using this
algorithm to visualize large knowledge domains may not
always provide a good overview of the domain due to vi-
sual cluttering of concepts. In this paper, we propose to ap-
ply kernel density estimation to the visualization of concept
maps in order to be able to better explore large knowledge
domains. Kernel density estimation proves to be useful for
the identification of concept clusters at different levels of de-
tail. In addition to the visual exploration of large knowledge
domains, we are also able to visually verify the hypothesis
that the concept mapping algorithm places related concepts
close to each other. The flexibility and effectiveness of our
approach is validated by applying the proposed technique
to different visualization scenarios for the field of computa-
tional intelligence.

1 Introduction

Knowledge domain visualization (KDViz) (e.g., [2]) is
concerned with the creation of maps that help to present,
analyze, and discover important aspects of the information
specific to a certain scientific field. Following [2], we di-
vide the process of KDViz into the following six steps: (1)
collection of raw data, (2) selection of the type of item to
analyze, (3) extraction of relevant information from the raw
data, (4) calculation of similarities between items based on
the extracted information, (5) positioning of items in a low-
dimensional space based on the similarities, and (6) visual-
ization of the low-dimensional space. The first step of the
KDViz process is the collection of appropriate data. Since
domain maps are typically constructed on the basis of a cor-
pus of scientific texts, one has to collect these texts first.
The second step of the KDViz process is the selection of
the type of item to analyze. The type of item to analyze
depends on the question one wants to answer. The most

common types of items are journals, articles, authors, and
descriptive words or terms. Each type of item can be used
to visualize a different aspect of a scientific field. The third
step of the KDViz process is the extraction of relevant infor-
mation from the raw data collected in the first step. In many
cases, the relevant information consists of co-occurrence
frequencies of items. The fourth step of the KDViz pro-
cess is the calculation of similarities between items based
on the information extracted in the third step. A possible
approach that can be taken to calculate similarities between
items based on co-occurrence frequencies is to normalize
the co-occurrence frequencies. The fifth step of the KDViz
process is the positioning of items in a low-dimensional
space based on the similarities calculated in the fourth step.
This step is usually performed using dimensionality reduc-
tion techniques. The sixth step is the visualization of the
low-dimensional space that results from the fifth step. The
low-dimensional space has to be visualized in such a way
that it can be effectively and accurately explored by human
users.

In a previous paper [6], we have focused on the fifth step
of the KDViz process, i.e., the positioning of items in a low-
dimensional space. In that paper, we have presented an al-
gorithm for constructing concept maps. In the remainder of
this paper, we refer to this algorithm as the concept mapping
algorithm. A concept map is a domain map that visualizes
the associations between concepts in a scientific field. In a
concept map, concepts are located in such a way that the
distance between two concepts reflects the strength of their
association. The stronger the association between two con-
cepts, the smaller the distance between them. A concept
map can be used to obtain an overview of a scientific field
and, more specifically, of a field’s important concepts and
their mutual associations.

A deficiency of a concept map is that concept labels have
the tendency to overlap when more concepts are displayed.
This results in a decrease in insight into the structure of
the concept map. Consequently, it may be difficult to get
a quick overview of a scientific field.

In this paper, we want to focus more on the visualiza-



tion of the low-dimensional space, i.e., the sixth step of the
KDViz process. Our goal is to visualize a concept map that
is generated by the concept mapping algorithm in such a
way that its structure is clear at a first glance. This is ac-
complished by visualizing the density of the concepts rather
than all individual concepts. We refer to maps that visual-
ize the density of concepts as concept density maps. To
calculate the density of concepts, we use kernel density es-
timation (KDE) (e.g., [8]). In a case study that we describe
in this paper, KDE in combination with the concept map-
ping algorithm is used to visualize the associations between
concepts in the field of computational intelligence. It turns
out that the resulting concept density maps give, at different
levels of detail, a quick overview of this field.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 presents the methods that
are used in this paper for the positioning and visualization
steps of the KDViz process. The application of these meth-
ods to the computational intelligence field is described in
Section 4. Finally, Section 5 concludes the paper and pro-
poses future research directions.

2 Related Work

In this section, we discuss some of the existing meth-
ods that can be used for the positioning of items in a low-
dimensional space and for the visualization of the low-
dimensional space.

The positioning step of the KDViz process is gener-
ally performed using dimensionality reduction techniques.
These techniques are able to represent multivariate data in a
small number of dimensions. In the case of KDViz, this
means that high dimensional item similarities are repre-
sented in a two- or three-dimensional space that can be vi-
sually interpreted by humans. Some of the dimensionality
reduction techniques that can be used for KDViz are mul-
tidimensional scaling, principle component analysis, fac-
tor analysis, pathfinder network scaling, and self-organizing
maps [2]. Due to space limitations, we will only discuss
multidimensional scaling in more detail.

Multidimensional scaling (MDS) (e.g., [1]) is the most
commonly used positioning method in the literature on
KDViz. Given a set of items and the dissimilarities between
these items, MDS positions the items in a low dimensional
space in such a way that the distances between the items
correspond as close as possible to the dissimilarities. The
degree of correspondence is measured by a so-called stress
function that penalizes the overall disparity between dis-
tances and dissimilarities. The optimal positioning is ob-
tained by minimizing the stress function.

The concept mapping algorithm proposed in [6] can be
seen as an alternative to MDS. In [6], we made a compari-
son between this algorithm and MDS by using both methods

for constructing a concept map of the computational intelli-
gence field. We compared the positioning generated by the
concept mapping algorithm with the positioning generated
by MDS. It turned out that the concept mapping algorithm
generated a more satisfactory concept map than MDS.

We now consider the visualization step of the KDViz
process. The simplest method to visualize the result of the
positioning step is the so-called scatter visualization. In the
scatter visualization, the spatial positions of items are visu-
alized using points. When a lot of items have to be visu-
alized, the scatter visualization tends to suffer from clutter-
ing. The landscape visualization aims to improve on this.
In the landscape visualization, a smooth terrain-like surface
is constructed in such a way that the height of the surface
indicates the concentration of items in an area. The con-
centration of items in an area can be calculated using den-
sity estimation methods. Most density estimation methods
are based on a nearest-neighbor model, a histogram model,
a kernel-based model, or a (Gaussian) mixture model [5].
KDViz tools that offer a landscape visualization are, e.g.,
VxInsight [3] and IN-SPIRE ThemeView (formerly known
as ThemeScape [9]).

Methods adopted from the field of graph visualization
are sometimes also used for the positioning and visualiza-
tion steps of the KDViz process. In the field of graph visu-
alization, spring embedding methods (also known as force
directed methods) are typically used to position the nodes of
a graph into a layout that satisfies similarity requirements as
well as presentation requirements (e.g., as few as possible
crossing edges). In spring embedding methods, nodes are
seen as physical bodies that cause repelling forces on one
another and edges between nodes are seen as springs that
cause attraction forces between nodes. The final layout of
the graph is a solution in which the forces on each node in
the graph are in equilibrium.

GraphSplatting [7] is a method for visualizing large
graphs as two-dimensional continuous fields. From the lay-
out of the graph, a continuous field is obtained by plac-
ing two-dimensional Gaussian shaped basis functions on
each node and then summing all basis functions. Although
the authors of [7] do not mention it, this is (almost) the
same as two-dimensional KDE with Gaussian kernel func-
tions. In [4], GraphSplatting has been successfully applied
to the visualization of domain model representations using
resource description framework graphs.

3 Methods

In this section, we present the methods that we use for
the positioning and visualization steps of the KDViz pro-
cess. The methods are described in Subsection 3.1 and 3.2,
respectively.



3.1 Concept Mapping Algorithm

In this section we briefly describe the concept mapping
algorithm that is proposed in [6]. To position concepts at
appropriate locations in a concept map, the algorithm needs
a concept association matrix as input. Let c1, . . . , cn denote
the concepts of interest, where n indicates the number of
concepts. The concept association matrix A is an n×n ma-
trix that contains for each combination of two concepts the
strength of their association. Element aij of A is referred to
as the association strength between concepts ci and cj . In
the case study that is described in Section 4, the association
strength between two concepts is calculated as the number
of texts in which the concepts co-occur.

The underlying idea of the concept mapping algorithm is
that each concept should be positioned as close as possible
to its ideal location. For a two dimensional concept map,
the location of concept ci is denoted by the vector xi =
(xi1, xi2)T and the ideal location x∗i of concept ci is defined
as

x∗i =

∑n
j=1 aijxj∑n

j=1 aij
. (1)

The only way to position each concept at its ideal location is
to assign all concepts to the same location. This, of course,
does not result in a useful concept map. The algorithm
therefore attempts not only to position concepts as close as
possible to their ideal location but also to prevent concepts
from being located too close to each other. To achieve this,
the algorithm minimizes the following objective function

E =
n∑

i=1

w̄i‖xi − x∗i ‖2 + β

n∑
j=1
j 6=i

e−‖xi−xj‖

 , (2)

where w̄i is a weight indicating the importance of concept
ci, β is a parameter, and ‖ · ‖ denotes the Euclidean norm.
For the exact calculation of w̄i, we refer to [6]. In (2), the
first term within the parentheses is responsible for position-
ing concepts as close as possible to their ideal location. This
term pays more attention to concepts with higher weights.
The second term within the parentheses is responsible for
preventing concepts from being located too close to each
other. In the case study in this paper, a gradient descent al-
gorithm is used to find a (local) minimum of the objective
function.

3.2 Kernel Density Estimation

Kernel density estimation (KDE) (e.g., [8]) is a statistical
method for constructing a smooth estimate of a probability
density function from observed data points. In this paper,
KDE is used as a method for displaying the density of con-
cepts in a concept map. The general idea of this approach

is that an estimate of the density of concepts is obtained
by first placing a symmetric probability density function,
called a kernel function, at each concept location and then
taking the average of the kernel functions. To speed up cal-
culations, the density of concepts in a concept map is only
estimated for a finite grid of points that is specified by the
user. The kernel density estimate of a grid point at location
x = (x1, x2) is given by

D̂ (x1, x2) =
1

nh1h2

n∑
i=1

K

(
x1 − xi1

h1
,
x2 − xi2

h2

)
, (3)

where K(·) is a two-dimensional kernel function centered at
each concept location xi = (xi1, xi2), and h = (h1, h2) is
a bandwidth parameter that controls the degree of smooth-
ness.

In the case study that is described in Section 4, the two-
dimensional kernel function is taken to be the product of
two Laplace density functions, leading to

K (t1, t2) =
1
4
e−(|t1|+|t2|). (4)

In our experience, the use of other density functions, such
as the Gaussian, the Epanechnikov, or the triangular one,
leads to worse results with respect to the identification of
concept clusters.

Choosing good bandwidths is important. Too small
bandwidths do not remove insignificant bumps and result
in too rough density estimates, while too large bandwidths
smear out real peaks and result in too smooth density esti-
mates. In the case study in this paper, we use the so-called
normal scale bandwidth selector [8] to produce estimates of
the bandwidths. In the case of the Laplace product kernel,
the normal scale bandwidth selector is equal to

ĥj =
(√

π

6n

)1/5

σ̂j j = 1, 2, (5)

where σ̂j is the standard deviation of the concept locations
in the jth dimension.

4 Case study: Visualizing Concept Associa-
tions

To illustrate the usefulness of KDE in combination with
the concept mapping algorithm, we used both methods to
construct visualizations of the associations between con-
cepts in the field of computational intelligence (CI). The CI
field, which can be seen as a part of the larger artificial intel-
ligence field, deals with topics like neural networks, fuzzy
systems, and evolutionary computation. Table 1 summa-
rizes the approach taken in our research.
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Figure 1. Concept map of the CI field con-
structed using the concept mapping algo-
rithm.

4.1 Data

The visualizations were constructed on the basis of a cor-
pus of scientific texts. The corpus that we used was taken
from our previous research [6]. This corpus consists of
about 3,800 English-written abstracts that were taken from
five leading scientific journals in the CI field using the Sci-
ence Citation Index Expanded (SCIE). Using a thesaurus of
the CI field, 294 different concepts were identified in the
corpus of abstracts. The association strengths of the iden-
tified concepts were calculated and stored in a concept as-
sociation matrix. The association strength of two concepts
was calculated as the co-occurrence frequency of the con-
cepts in the corpus of abstracts, i.e., the number of abstracts

Table 1. Summary of the way in which the
KDViz process is implemented in this paper.

Step of the KDViz Process Implementation
(1) Collection of data Corpus of CI abstracts
(2) Selection of type of item Concepts
(3) Extraction of information Co-occurrences frequencies
(4) Calculation of similarities Association strengths
(5) Positioning of items Concept mapping algorithm

(Subsection 3.1)
(6) Visualization Kernel density estimation

(Subsection 3.2)

Figure 2. Colored concept density map of the
CI field constructed using KDE.

in the corpus in which the concepts co-occur.

4.2 Map Overview

The concept mapping algorithm was used to map the
concept association matrix to a two-dimensional concept
map. A more detailed description of this mapping, together
with parameter settings, can be found in [6]. Figure 1 shows
the resulting concept map of the CI field. The goal of the
concept map is to obtain an overview of the CI field, but due
to the overlap of concept labels it is hard to get this overview
at a first glance.

We applied KDE to the concept map in Figure 1 to gain
more insight into the structure of the CI field. We used
the Laplace kernel and the normal scale bandwidth selec-
tor. Figure 2 shows the resulting colored concept density
map constructed using a grid size of 500 × 500. The used
color scheme ranges from the colors blue to red, and passes
through the colors green, yellow, and orange. Blue denotes
low densities, while red denotes high densities.

By looking at the colored concept density map, we can
easily detect some clusters (i.e., areas of high densities),
which indicate the presence of a large number of highly as-
sociated concepts. A large and very dense cluster of con-
cepts can be identified in the top center of the map (colored
by red). In addition, three smaller and less dense clusters
can be found in the bottom left and the bottom right of the
map (colored by green). The concept labels that are shown
on top of the map should give an indication of the topic of



each cluster, and consequently may point to the main re-
search topics in the CI field. The concepts in the top center
cluster of the map (indicated by the labels neural network,
unit, weight, and training) are related to the topic of neural
networks. The concepts in the two bottom left clusters (in-
dicated by the labels system, control, controller, fuzzy sys-
tem, and membership function) are related to the topic of
fuzzy systems. The concepts in the bottom right cluster (in-
dicated by the labels evolutionary algorithm, and genetic
algorithm) are related to the topic of evolutionary computa-
tion.

To validate the hypothesis that related concepts are
placed in the same cluster, we constructed a contoured con-
cept density map in which the locations of the concepts are
also displayed. This map is shown in Figure 3. For each of
the concepts, we manually determined whether the concept
is relevant to the topic of neural networks, to the topic of
fuzzy systems, to the topic of evolutionary computation, or
to more than one of these topics. A green dot (•) refers to
a neural network concept, a red cross (×) refers to a fuzzy
systems concept, a blue plus sign (+) refers to an evolution-
ary computation concept, and a grey star (∗) refers to a gen-
eral concept. The colored contour lines indicate points that
have the same density. Since the contour lines roughly indi-
cate the boundaries of the clusters, we can see that the top
center cluster contains mainly neural networks concepts, the
bottom left clusters contain mainly fuzzy systems concepts,
and the bottom right cluster contains mainly evolutionary
computation concepts. From this observation we can con-
clude that the hypothesis that related concepts are placed in
the same cluster has been proven valid.

4.3 Zooming into the Map

Up to now, we have only looked at a concept density
map (Figure 2) that is constructed on the basis of the com-
plete concept map of the CI field (Figure 1). As we have
seen, this concept density map gives a quick overview of
the global structure of the CI field. To gain more insight
into local details of the CI field, we zoomed into a region
that seems interesting. The region of interest is indicated by
a dashed bounding box in Figure 1 and 2 and corresponds to
the area in which most of the concepts related to fuzzy sys-
tems are located. Figure 4 shows the concept map of this
region of interest. Subsequently, we applied KDE to this
concept map. Again, we used the Laplace kernel and the
normal scale bandwidth selector. Figure 5 shows the result-
ing colored concept density map constructed using a grid
size of 500 × 500. It should be clear from Figure 5 that we
take a look at a more detailed level and that we again obtain
a quick overview of the knowledge structure, this time that
of the selected region. The most important concepts in the
region are now visible while most of them are not visible in

Figure 3. Contoured concept density map of
the CI field including the concept locations.

Figure 2. In addition, the concept density map shows many
more details like the distinct, red colored clustering in three
regions, which is not that well visible in Figure 2.

The concept density map in Figure 5 was inspected more
carefully, both for validation purposes and for knowledge
discovery. We showed the map to two experts in the field
of fuzzy logic and fuzzy systems. They both agreed that
(fuzzy) inference and rule base are indeed semantically
close concepts, relatively different from concepts like con-
trol system and controller. They also observed that the con-
cepts that lie just between the three clusters reveal the most
interesting information. The fact that the concept parame-
ter is situated in the upper right corner could easily be ex-
plained since this concept is also of importance for neural
networks (see also Figure 2). The fact that the concept Lya-
punov function is situated in the upper left came for both ex-
perts as a surprise. One of the experts knew that this concept
is used in the field of neural networks, especially related to
the concept associative memory (see Figure 2). Since the
concept Lyapunov function lies between associative mem-
ory and (fuzzy) control system, he started to think that this
concept is also of importance within fuzzy control, which is
indeed the case. For the other expert, who is familiar with
fuzzy control, it was a new fact that Lyapunov functions are
used in the field of neural networks. So, careful inspection
of the concept density maps by two domain experts revealed
that these maps enable a process of knowledge discovery.
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Figure 4. Concept map of a region of interest.

5 Conclusions

To visualize knowledge domains consisting of a large
number of concepts, one can use the concept mapping al-
gorithm in combination with kernel density estimation. In
this paper, we employed as similarity measure the num-
ber of concept co-occurrences in a collection of texts from
the computational intelligence field. After experimenting
with several kernels, we found that the Laplace kernel gives
the best results with respect to the identification of concept
clusters. Using our visualization approach, we were able to
identify clusters at different levels of detail by zooming into
regions of interest. We were also able to test our assumption
that related concepts are placed in the same cluster.

At the moment, we can extract concept associations from
a large set of scientific texts and visualize these associations
as spatial relationships. In the future, we would like to ex-
tend our method by (1) extracting the semantic relationships
between concepts in a knowledge domain and (2) provid-
ing a suitable visualization metaphor to graphically depict
these semantic relationships. Also, we would like to com-
plement the current visualization techniques with querying
facilities that provide an enhanced exploration of knowl-
edge domains. In our endeavor, we are encouraged by the
recent developments for the Semantic Web that we plan to
investigate for the discovery, representation, and visualiza-
tion of semantic concept maps.

Figure 5. Colored concept density map of a
region of interest.
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