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Abstract

The topic of recommending items based on multimodal content has been addressed to a limited

extent, and yet this could be a potential solution to the data bottleneck problem. Content-based

semantics-driven recommender systems are often applied in the small-scale news recommenda-

tion domain, founded on the TF-IDF measure but also taking into account domain semantics

through semantic lexicons or ontologies. In this work, we explore the application of content-based

semantics-driven recommender systems to large-scale recommendations and focus on using both

textual information and visual information to recommend items that have multimodal content.

We propose methods to extract semantic features from various item descriptions, including digital

images. In particular, we use computer vision to extract visual-semantic features from images and

use these for movie recommendation together with various features extracted from textual informa-

tion. The visual-semantic approach is scaled up with pre-computation of the cosine similarities and

gradient learning of the model. The results of the study on a large-scale MovieLens dataset of user

ratings demonstrate that semantics-driven recommenders can be extended to visual-semantic rec-

ommenders suitable for more complex domains than news recommendation, and which outperform

TF-IDF-based recommenders on ROC, PR, F1, and Kappa metrics.
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1. Introduction

With the emergence of the Web, immense amounts of information have become available with an

accelerating speed in increase [59], scaling up to 44 trillion gigabytes in 2020 [50]. This abundance

of information has on the one hand enabled users to explore an enormous variety of content (e.g.,

articles, movies, and music), and be the producers of such information. By this, virtually every5

niche and taste for content has become just mouse-clicks away. On the other hand, this abundance

of choice has introduced the problem of information overload, which has made the process of finding

the right information difficult and time-consuming.

A solution for the latter problem is seen in recommender systems (RS) [38, 39], which go be-

yond plain information retrieval systems, such as search engines, and provide mechanisms to filter10

and deliver content relevant to the user in the form of recommendations based on the information

available about the user’s preferences and interests, and the considered domain [40]. Using this

information, RS attempt to predict the rating or preference the user would give to each of the

unseen items under consideration and recommend those for which the prediction is the highest.

High-performance recommender systems can be invaluable to online content providers to increase15

user satisfaction as content that better matches individual user preferences can be recommended.

For advertisement-driven or pay-per-view businesses, this can boost revenues substantially by in-

creasing viewing time and clicks, and for subscription-based businesses, the increased satisfaction

can lead to higher popularity and customer loyalty. Being widely used in areas such as movies,

news, articles, and e-commerce, recommender systems have become increasingly relevant.20

Different approaches to recommender systems [38] exist based on the data they use and under-

lying assumptions applied: collaborative filtering, where recommendations are based on similarities

between preferences of one user and preferences of others, content-based filtering, which recom-

mends items according to their content, and a combination of the two latter options known as

hybrid RS [8]. While the main assumption of collaborative filtering is that if two users have similar25

opinions on a particular issue, they will likely have a similar opinion on another issue, content-based

filtering assumes that users like items that have similar contents, independent of the opinions of

others, and thereby recommend to user unseen items that are the most similar to the items in the

user profile, typically represented in the form of a vector of item features.

In this paper, we focus on content-based RS [36] operating on similarities between content items30
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based on various extractable features. The features available depend on the item type and dataset.

For instance, typically news articles are attributed with an author, publication date, subject, and

the full article content, whilst movies have a director, cast, runtime, release date, genre, and plot.

Although text is the common form of information to extract features from to measure the similarity

of items, other types of information (e.g., music songs include the artist, genre, and lyrics, movies35

include the actors, plot, and posters) can also serve as a source of features.

A widely used technique to estimate the similarity between texts is Term Frequency - Inverse

Document Frequency (TF-IDF) [26], where a feature vector based on the frequency counts of terms

in the text is constructed and multiplied by the inverse frequency of these terms occurrence in all

text sources. The resulting vectors can then be directly compared using measures such as co-40

sine similarity [22]. Several recommenders such as Synset Frequency-Inverse Document Frequency

(SF-IDF) [9], and its extension SF-IDF+ [33], Concept Frequency-Inverse Document Frequency

(CF-IDF) [22], and its extension CF-IDF+ [16] have taken the TF-IDF concept further to pro-

vide recommendations of news articles, using synsets (S) from semantic lexicons or concepts (C)

from domain ontologies for features instead of terms. These methods have further been extended45

to Bing-SF-IDF+ [10], Bing-CF-IDF+ [7], and Bing-CSF-IDF+ [51] recommenders by including

semantically related synsets or concepts, and absorbing named-entity similarities using Bing page

counts. In these recommender systems, a vector of weights is used to optimize the relative im-

portance of the different features in the calculation of the similarities. The developments in these

recommender systems have shown substantial improvements in performance.50

Relying on the promising results of the aforementioned semantics-driven recommender systems

for news articles, and encouraged by the successful scaling and porting of these methods to large-

scale recommendations [5], we go a step further and explore the value of semantic information

extracted from items more complex than text, namely digital images, derived by the idea that a

picture may be worth more than a thousand words! In this paper, we continue our previous work55

on semantics-driven recommenders [5] and extend the extraction of semantic features from text to

digital images (i.e., movie posters), and explore whether and to what extent multimodal content

(both text and visual information) contributes to recommendations made. In particular, we seek

to answer the following research questions:

RQ1: Can the semantics-driven recommender systems, proven for news domain, be applied to a60
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large-scale movie recommendation problem, where diverse information of different nature is

available?

RQ2: How to extract visual-semantic features from information such as digital images for recom-

mendations?

RQ3: How do visual-semantic features extracted from digital images contribute to recommenda-65

tions made?

Multimodal learning is a hot topic nowadays being one of the tools to address the data bot-

tleneck problem (lack of training data) [44]. Exploring text and visual features for modelling user

profiles has been successfully exploited in recommender systems, for example, for restaurant rec-

ommendations [12], movie or restaurant recommendations with multimodal knowledge graphs [47],70

or using tweets with images to recommend hashtags [60]. Our research differs from these previous

works as it uses more advanced, semantics-driven, approaches for both textual features and visual

features for modelling the user and item profiles. To our knowledge, the combination of text,

concepts, and images in the absence of an external knowledge graph is also unique in our solution.

The main contributions of this paper are as follows:75

• A method for extracting visual-semantic features from digital images using computer vision

for the task.

• An adjustment of the scaled similarity model [5] for visual-semantic features extracted from

images.

• A proposal of a novel and unique method for large-scale semantics-driven recommendations80

based on concepts and synsets extracted from text, and synsets extracted from digital images,

in the absence of an external knowledge graph.

• Demonstration that semantics-driven recommender systems, previously proven effective for

text-based recommendations (e.g., the news domain), can be effectively utilized for multi-

modal visual-semantic recommendations with the proposed approach for various domains85

with diverse information available.

In this paper, we extend our previous work [6]. We expand the related works section, describe

in more detail feature extraction from textual content and from visual content, provide a short
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overview of the method of establishing a virtual domain ontology [5] based on existing data, and

develop a deeper and broader discussion on recommendation method, experiments, evaluation, and90

results.

The rest of this paper is organized as follows. In Section 2 we discuss the related work. In the

following Section 3, we address the data used for the research, and in Section 4 describe the recom-

mendation methodology. Section 5 discusses the evaluation of the recommendation methodology

and delivers the results of the experiments. Last, Section 6 draws conclusions and presents some95

ideas for future research.

2. Related Work

Combining text and visual features for a recommendation of items that have multimodal con-

tent to address the data bottleneck problem [44] has been addressed to a limited extent in previous

literature [12, 47, 60]. Chu and Tsai [12] explored the use of text and visual features (images taken100

by customers) for restaurant recommendations. Through experiments, they verified visual infor-

mation to aid favourite restaurant predictions. Zhang et al. [60] investigated the use of images in

tweets, as a source of additional information, to recommend hashtags and exploited convolutional

neural networks (CNNs) to extract features from images and long short-term memory networks

(LSTM) to extract features from the text. Their experiments with Twitter tweets showed the105

inclusion of images to provide better recommendation performance over the use of textual infor-

mation only. Sun et al. [47] use the ResNet50 [25] models to extract visual features from movie

frames and dish images, Smooth Inverse Frequency (SIF) [3] for text embeddings, and learn concept

embeddings from a knowledge graph for movie (interestingly, and similar to our study, they also

use the Toy Story movie example) and restaurant recommendations. In comparison to our work,110

these methods use low-level representations difficult to interpret compared to the synset-based

representations in our method. Also, we use a virtual ontology that can be easily built from any

semi-structured data available and do not assume the existence of an a priori knowledge graph like

required in [47]. None of the existing solutions make use of the high-level visual features based on

synsets and visual-semantic embeddings that fuse text and image information in one embedding.115

The most used technique to represent text features is TF-IDF [26]. Although, alternative

techniques like SIF [3] and BERT [18] to embed text exist, our purpose here is not to use the
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most advanced text representation technique but to check if the visual and conceptual features can

help make better predictions in a context where a knowledge graph is non-existing. Thereby, we

continue by reviewing the semantics-driven recommenders TF-IDF, CF-IDF, SF-IDF, and their120

extensions CF-IDF+ and SF-IDF+ originally designed for news recommendation. For the latter

reason, the performance evaluations in the literature are reported on a dataset of news items. The

dataset used to compare the recommenders consists of user profiles indicating interest/disinterest

towards each seen news item. Unseen news items for which the normalized similarity prediction

is higher than a predetermined threshold value are recommended. The performance is evaluated125

through the widely used F1-measure. Although these recommender systems extract features from

the text of news articles, they can be used to predict similarity between any two texts.

The Term Frequency-Inverse Document Frequency (TF-IDF) is of interest as SF-IDF(+) and

CF-IDF(+) recommenders build on its mathematical concept [26]. The TF-IDF [43] recommender

consists of two parts, where the TF indicates how often a term occurs in a given document (higher130

frequencies link to higher relevancy), and the IDF captures the importance and uniqueness of a

term in a collection of documents (frequent terms are considered to be common and less important),

is constant over all documents and can be seen as a weight that gives relative importance to rare

terms. Before counting terms, a pre-processing step is performed to remove noise and increase

performance. Stop words are removed and all other words are lemmatized so that all words with135

the same root are considered to be the same term [22]. The resulting feature vector represents

terms with scores, which can be compared to user vectors using similarity functions (e.g., the cosine

similarity). The TF-IDF score is large for terms that occur frequently in a single document but

not often in all other documents. A certain specified threshold value decides whether an item and

the user’s interest are considered similar.140

The Concept Frequency-Inverse Document Frequency (CF-IDF) [22] recommender system is a

variant of TF-IDF, where, instead of terms, concepts of domain ontology are used. The text is

processed by a natural language processing (NLP) engine that performs word sense disambiguation

(WSD), part-of-speech (POS) tagging, and tokenization to transform the text into a collection of

concept candidates. A domain ontology containing concepts and their relationships is checked for145

each candidate, and if a match is found, a count is added to that concept. The use of concepts

represents the domain semantics better as only relevant words of the domain are considered, and
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results in performance improvement over TF-IDF [22]. CF-IDF+ extends this method further

by including directly related concepts in the domain ontology [16]. Each type of relationship

(superclass, subclass, or instance) is given a weight to vary the overall importance of the found150

concepts and their related concepts. The weights are optimized by grid search. The inclusion of

related concepts can add more domain semantics to the feature vector.

The Synset Frequency-Inverse Document Frequency (SF-IDF) [9] is another variant of TF-IDF,

which in addition to all terms looks at synonyms and ambiguous terms using a semantic lexicon

(WordNet). This generally results in a longer vector than CF-IDF because more matches are found155

as WordNet is much larger than a typical domain ontology. Terms having the same meaning will be

subsumed in one single concept, and therefore WSD is needed. For terms with multiple meanings,

corresponding word senses are counted separately. Similarly to CF-IDF+, SF-IDF+ [33] extends

SF-IDF and includes synsets that are directly related over the 27 types of semantic relationships

present in WordNet, where each type has a weight optimized by a genetic algorithm, outperforming160

SF-IDF.

Bing-SF-IDF+ [10] is an extension of SF-IDF+, which in addition to words in the semantic lex-

icon also considers the similarity between named entities frequently occurring on the Web through

a separate similarity measure – Bing distance, based on the number of page counts originating from

the Bing search engine. This measure is a function of three search result page counts: two counts165

for each entity separately and one for a combination of the two. An optimized weight is used to

combine the Bing distance and the SF-IDF+ cosine similarity, leading to improved performance

over SF-IDF+ [10]. Similarly, Bing-CF-IDF+ [7] and Bing-CSF-IDF+ [51] advantage from the

inclusion of named entities and their similarity, while Bing-CF-IDF+ outperforms CF-IDF+, and

Bing-CSF-IDF+ outperforms Bing-SF-IDF+ and CF-IDF+. In this research, we do not use Bing170

distance evaluations, as the named entities present in the plots are generally names of fictional

characters and would only rarely provide substantial information. Although Bing distance metrics

could be applied to the persons involved with the movie (i.e., directors, actors, and writers), they

will be in our research represented as concepts in the domain ontology. Considering also the fact

that a large number of named entities makes the pair-wise search queries infeasible, we decide to175

exclude Bing distances from our recommender system in this research.

The previously discussed TF/CF/SF-IDF(+) content-based RS were originally established for
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news recommendation, a rather small-scale recommendation domain, where they proved their ef-

ficiency for the task. The applicability of these methods to large-scale recommendation problem

was proven to be successful in [5] on the example of the movie domain. To enable large-scale180

recommendations, new methods to extract semantic features from various item descriptions were

established together with a method to efficiently devise a domain ontology for the selected com-

plex dataset in case an external ontology is not available, removing the need to manually construct

such ontology. Further, the semantics-driven approach was scaled up with pre-computation of the

cosine similarities, reduction of dimensionality, and gradient learning of the model, allowing to185

avoid computationally expensive operations [5]. While [5] used semantic information available in

the textual form for large-scale recommendations on the example of the movie domain, this work

extends the recommendation problem further by including also rich semantic information available

in graphical form on movie posters (digital images).

Recommender systems for the media and multimedia domain are of interest to many researchers190

due to the enormous amount of diverse information available. Various approaches have been

exercised to provide recommendations: a graphical model and signature-tree-based scheme over

social media streams [62], knowledge graphs [24], context-aware social media recommendations [61],

and ontologies [2, 45], Bidirectional Encoder Representations from Transformers (BERT) [18] for

conversational RS [37] with experiments on movies, books, and music recommendation, Word2Vec195

algorithm to recommend movies [57] based on metadata (e.g., directors, and actors), and textual

image metadata for recommending socially relevant images [27]. A comprehensive overview of RS

for multimedia content is given in [17].

Computer vision uses algorithms to gain a high-level understanding of visual information, e.g.,

digital images. Convolutional neural networks (CNNs) dominate the field of computer vision in200

terms of performance on a variety of tasks, such as optical character recognition (OCR) [13, 14],

facial recognition [29, 32], face detection [21], or to learn image shapes for recommending apparel

goods [42]. On some object classification tasks [48] it can even rival human performance [41].

CNNs are types of feed-forward artificial neural networks (ANNs) [54], which are models inspired

by the connectivity patterns of neurons (called nodes in ANNs) in the animal and human brains.205

Guo et al. [23] used CNNs to extract features of semantic image objects, splitting the image into

a number of image objects, extracting the features, and then summarising the results for an image.
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Tuinhof et al. [49] used CNNs for image classification on fashion product images to recommend

products by texture and category type features. They showed that RS purely relying on visual

features are reasonable and could also be helpful in case of lacking user historical data. Yu et210

al. [58] on the other hand focused on recommending goods based on image content represented

by a weighted feature model using only computationally inexpensive low-level image features such

as colour, texture, and shape to cut down on computation time. The 19-layers deep trained

convolutional neural network VGG19 has proven itself for large-scale image classification task [46],

being successfully applied for a wide range of various tasks from medical image processing [1, 19],215

detection of computer-generated realistic-looking images [11], post-disaster damage assessment [34],

to detection of facial expression behind masks [56]. VGG19 has also been used to establish visual-

semantic embeddings (VSE) [28] used for the challenge of image captioning [53] to generate a

natural language caption that best describes the content of an input image. In this research, we

use computer vision to extract visual-semantic information from movie posters.220

Considering the aforementioned recommender systems, previously used for small-scale news

article recommendations, where the recommenders operated on text only, in this research we want

to explore other types of items, for which text might only describe some aspect of the item. For

example, music songs might include a description of the artist, the album, or the lyrics. Movies

can have their plots, storylines, posters, or other descriptions available. Thereby, the extraction of225

semantic features from information of a different nature, and their contribution to semantics-driven

recommender systems is worth exploring. We specifically explore a domain that is substantially

different from news articles – movie recommendations – for which information on thousands of

movies and millions of user ratings is available, and focus on recommending items of multimodal

content by combining textual and visual information.230

3. Recommendation Data

The problem that we focus on in this research is the large-scale recommendation of movies. As

in our previous work [5], where we addressed the scalability of the semantics-driven recommenders

on content represented by text, we continue to use the MovieLens 20M1 dataset from the GroupLens

Research Project2 at the University of Minnesota. The MovieLens dataset provides 20,000,000 user235

1https://grouplens.org/datasets/movielens/20m/
2https://grouplens.org/
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ratings on a scale of 1–5 for 27,278 movies over a ten-year period (9 January 1995 until 31 March

2015) created by 138,493 users who had rated at least 20 movies. We acquire from the MovieLens3

the title, year of release, genre labels, and IMDB4 identification numbers (ids) for each movie as

the item-level information for feature extraction.

We use two other sources to collect movie information over IMDB ids: (i) OMDb5, which freely240

provides an API in the form of a RESTful Web service, to query movie plots, and (ii) TMDb6 to

collect movie posters over its provided API. We use TMDb as it provides posters freely to anyone

with free user account, whereas OMDb makes them available only to patrons, and for this reason

we need to use TMDb next to OMDb. TMBd provides a movie poster with sufficient resolution

for 98.35% of the movies in the dataset, while OMDb provides plots for 96.51% of the movies in245

MovieLens. We discard movies for which no plot or poster is available.

The combined data contains many movie-level variables out of which for this research we choose

to retain only those containing substantial semantic information, as those could be valuable for

semantics-driven recommendations. We believe the bulk of this semantic information is repre-

sented by the names of persons involved in the movie, the genre(s), the plot, and the poster. The250

involved persons are the actor(s), director(s), and writer(s). We notice that the plots are substan-

tially shorter (in average 63 words) than typical news articles, which might reduce the amount

of available semantic information. For each movie we obtain genres from MovieLens and OMDb,

retaining genres from both sources, as we want to ensure no valuable information is lost due to

their variability. We discard any movie that has one or more missing values in any of the variables255

(e.g, director, actor, poster, etc.), leaving us with the final dataset of 25,138 movies for this re-

search. This affects only 0.83% of user ratings available. Table 1 describes the different movie-level

variables we use in this research together with their descriptive statistics.

4. Recommendation Methodology

This section covers the extraction of semantic features from the plots and digital images (movie260

posters). We shortly describe how we find related concepts without the need for an external

3https://movielens.org/
4The Internet Movie Database, https://www.imdb.com/
5The Open Movie Database, https://www.omdbapi.com/
6The Movie Database, https://www.themoviedb.org/
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Table 1: Movie-level variables and their sources used in the research together with descriptive statistics (N - number

of data items in source).

Data type and source N Missing % Mean Min Max

Title (MovieLens) 27,278

Genres (MovieLens)* 27,278 1.99 1 10

Genres (OMDb)* 27,207 0.26 2.21 1 5

Directors (OMDb)* 27,003 1.01 1.11 1 41

Plot (OMDb)** 26,327 3.49 63.49 3 1471

Writers (OMDb)* 25,831 5.30 2.41 1 35

Actors (OMDb)* 26,925 1.29 3.93 1 4

Poster (TMDb) 26,827 1.65

* Multi-class variable, statistics reported for number of classes.

** Full text, statistics reported for number of words.

ontology, and then proceed with the recommendation method building on the existing TF/CF/SF-

IDF(+) recommenders.

4.1. Feature Extraction from Textual Information

In line with TF-IDF [22], CF-IDF(+) [16, 22], and SF-IDF(+) [10] recommender systems, we265

extract semantic information from terms, concepts, and synsets. Variables such as genres and

persons are readily available and need not to be extracted from text [5]. To extract terms and

synsets from the plots, we use NLP techniques that can filter out noise from the plots and exploit

known regularities in natural language. Using the NLTK7 package in Python 2.7, each plot is split

into a set of sentences and processed separately. Sentences are split into a list of words (tokens) with270

tokenization using known properties of words (such as they usually occur in the English dictionary)

and separated by spaces or commas. Using POS tagger, each word is tagged with its POS (i.e.,

noun, verb, adjective, and adverb). Stop words that contain negligible semantic information (e.g.,

the, is, and at) are then removed. Next, we apply the Porter [52] stemming algorithm to each

word to reduce the words to their roots and extract the terms. For instance, fisher, fishing,275

7http://www.nltk.org/
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and fished are reduced to the same root fish. This way words with a similar basic meaning are

considered to be the same term.

Synsets are extracted using the Adapted Lesk [4] WSD-algorithm, an improved [35] version of

the classic Lesk [30] algorithm, on each word. WSD addresses the problem of identifying the sense

of a word – the meaning in its context. For example, the noun bank has multiple meanings that280

are very different and the meaning in a text has to be judged in the context in which it is used.

Adjusted Lesk does this by calculating a similarity between the context (sentence) of the word in

the text and the definition of each sense of the word from the dictionary (in our case WordNet).

The sense with the highest similarity is then identified. Only senses that have the same POS tag as

the word from the text are considered. If no sense is found, all senses with any POS are considered.285

The synset containing the identified sense of the word is extracted.

4.2. Domain Ontology

Domain ontologies are considered resources that are external to the dataset from which the

concepts are derived, and subsequently have to either be obtained through external sources or

manually constructed specifically for the purpose of the recommender system. In [5] we proposed a290

general method as an alternative to external domain ontologies, solely based on the dataset itself,

which allows to find concepts related through a common item by a series of matrix multiplications

of binary matrices.

We apply the proposed method [5] on our dataset of 25,138 movies, which contains 12,231

directors, 45,393 actors, 27,415 writers, 19 genres from the MovieLens and 27 genres from the295

OMDb, and consider actors, directors, writers, and genres as concept classes. Based on the average

number of these concepts per movie (Table 1), we estimate that there are 292,587 bidirectional

movie-concept relations that implicitly form a virtual domain ontology, which can be used to find

related concepts based on item-concept occurrences. Through several matrix multiplications of

these feature matrices, we obtain a matrix of related concepts, which allows us to find related300

concepts through their relations. In a simplified form this can be represented as:

itemu
contains−−−−−→ concepta(i)

occurs in−−−−−−→ itemv
contains−−−−−→ conceptb(j), (1)

where items refer to movies, and a, b are concept classes.
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For example, the method allows to find the related directors of the movies through the movies’

actors. This saves us from manually constructing domain ontology for movies.

4.3. Feature Extraction from Images305

Let us now consider semantic feature extraction from digital images, for which we apply com-

puter vision algorithms to gain high-level understanding of visual information on digital images. In

particular, we use Convolutional Neural Networks (CNNs) [20] which are state-of-the-art models

in computer vision to extract a vector of synset probabilities and a Visual-Semantic Embedding

(VSE) vector from each movie poster.310

In a digital image, each pixel is represented by 3 colour values for red, green, and blue (RGB).

Thereby, an input image of size w wide and h pixels high can be represented as a matrix of 3×h×w

values. The most common lossless digital image compression format Portable Network Graphics

(PNG) encodes pixels of an image in a 24-bit RGB palette (8 bits per colour). Computer vision

libraries (e.g., OpenCV8) convert this to a 3×h×w matrix of unsigned 8-bit integer values ranging315

from 0 to 28 − 1 = 255. As most neural network libraries such as Theano9 take floating-point

numbers as inputs, usually single precision floats (32 bits), the matrix is normalized by multiplying

with 1
255 to obtain a matrix of values in the range [0, 1].

In this research, we use movie posters in the form of digital images to extract semantic features.

Movie posters are generally made to advertise the movies and tend to show the characters and320

setting of the movie. For example, the poster for the movie Toy Story (Fig. 1) shows toys, a

cowboy, and an astronaut, delivering the impression of a family movie targeted to young boys.

During the study, we notice that compared to the movie plots, the posters contain fewer irrelevant

elements. We now continue by describing the extraction of synset vectors and visual-semantic

embeddings.325

4.3.1. Synset Vectors

In order to extract synset vectors from poster images, we exploit the VGG19 – a 19-layer deep

CNN from the Visual Geometry Group of the University of Oxford [46]. VGG19 was the highest-

performing submission for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)10

8http://opencv.org/
9http://deeplearning.net/software/theano/

10http://www.image-net.org/challenges/LSVRC/
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in 2014. ILSVRC is a competition where algorithms compete for object detection and image330

classification, where the challenge for the algorithms is to classify an image in 1, 000 categories

that are each represented by a synset. In the tests, for 81.1% of the images, the top-5 predictions

included the correct class, while human performance on this metric is estimated to be around

88-95% [41]. The trained parameters for this model are publicly available11.

VGG19’s convolutional layers each have a filter size of 3×3 and the input to each of those layers335

is zero-padded with a border of one pixel such that the outputs are of equal spatial dimensions.

Down-sampling occurs only through max-pooling layers. Two fully connected layers are added and

connected to a 1,000-dimensional softmax output layer. As substantial semantic content of the

posters can be described by the objects that can be recognized from them, we can use VGG19 to

extract meaningful synset vectors.340

The model takes a 224 × 224 colour image as input, represented as a 224 × 224 × 3 matrix of

RGB pixel values, therefore poster images are down-scaled to the width of 224 pixels keeping the

aspect ratio. The height is then still larger than 224 but never larger than 3×224, so we can take 3

vertically overlapping 224×224 windows of the poster as inputs to ensure every part of the image is

covered. Figure 1 exemplifies these windows on the poster for the movie Toy Story with identified345

synsets and their probabilities shown on the left of the poster image. VGG19 outputs a vector of

1,000 probabilities, one for each synset. We evaluate the model on each window, after which we

take the maximum of the 3 output values for each class (synset). We apply this procedure to the

posters to obtain semantic feature vectors of 1,000 synset values (class predictions mapping to a

vocabulary). Synsets, even with the smallest probability (e.g., “Tobacco shop” on Fig. 1), are part350

of the profile (one of the 1000 entries in the VGG19 features in the user profile given by Fig. 2)

and are treated the same as any other feature in the user profile.

4.3.2. Visual-Semantic Embeddings

The 1,000 synset values as class predictions returned by VGG19 are intended to classify an

image and do not necessarily describe a poster fully. We therefore also consider another approach355

called Visual-Semantic Embedding (VSE) [28] that has been used for the challenge of image cap-

tioning [53], where the aim is to generate a natural language caption that best describes the content

of an input image (i.e., translating images to text). This is done by mapping the image and the

11http://www.robots.ox.ac.uk/~vgg/research/
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Window 1

Window 2

Window 3

Comic book 0.8770

Book jacket 0.0336

Toyshop 0.0294

Shoe shop 0.0147

Jigsaw puzzle 0.0098

Bookshop 0.0042

Puck 0.0031

Tray 0.0030

Confectionery 0.0016

Tobacco shop 0.0013

Figure 1: Crop of three windows of 224 × 224 px over the movie poster (right), and the predicted class (synset)

probabilities for the given movie poster (left). Feature values are the maximum probabilities of each synset.

sequence of words of a caption to a common feature space – visual-semantic space – in which se-

mantic distances between an image and a caption can be calculated. From this distance metric, the360

semantic similarity between an image and a caption can be estimated and the nearest-neighbour

caption can be returned. Our goal to represent the posters in a semantic space can be considered

equivalent to mapping them to a visual-semantic embedding.

The embeddings can be learned with knowledge of pairs of images and their captions. In visual-

semantic space, an image and its caption should be close. Let us define this closeness as the cosine365

similarity between the image’s embedding m⃗ ∈ Rn and the embedding of the caption c⃗ ∈ Rn. In

a properly constructed visual-semantic space, for the image and its caption, cos(m⃗, c⃗) should be

relatively high. Reversely, a non-descriptive caption cr should lead to a relatively low cos(m⃗, c⃗r).

As the image and the caption are mapped to the same visual-semantic space, we can also expect

that the more semantically similar poster1 and poster2 are, the higher their cos(m⃗1, m⃗2) – which370

is exactly the aim of our semantics-driven recommender.

Mapping an image to a visual-semantic space is done in [28] by a form of transfer learning [55],

where the 4,096 visual features from the second-to-last layer of the pre-trained VGG19 model are

transferred to a new model in which they are multiplied by a matrix of trainable weights θm,

resulting in an embedding vector m⃗ ∈ Rn. Transfer learning simplifies the problem from learning375
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the visual-semantic embedding from raw pixels to learning it from high-level visual features trained

on the ImageNet Challenge.

Another trainable neural network with weights θc transforms the text of the caption in an

embedding vector c⃗ ∈ Rn. We denote a non-matching caption for image embedding m⃗ as c⃗r

and a non-matching image for caption embedding c⃗ as m⃗r. All weights θ = {θm, θc} are trained380

simultaneously to minimize the following pairwise ranking loss:

∑
m

∑
r

max{0, α− s(m⃗, c⃗) + s(m⃗, c⃗r)}

+
∑
c

∑
r

max{0, α− s(c⃗, m⃗) + s(c⃗, m⃗r)}
(2)

where s(m⃗, c⃗) = m⃗·⃗c is the scoring function. As [28], we first scale the embedding vectors m⃗ and

c⃗ to unit norm, making s equivalent to cosine similarity s(m⃗, c⃗) = cos(m⃗, c⃗). For the purpose

of extracting semantic features from the movie posters, we are interested in the VSE m⃗ of the

images. The authors of [28] have made an embedding matrix to generate 1,024-dimensional visual-385

semantic embeddings publicly available12. This matrix was trained to optimize Eq. 2 on public

image captioning datasets. Our procedure consists of using this pre-trained embedding matrix on

the 4,096-dimensional VGG19 visual feature vectors of the movie posters to obtain their visual-

semantic embeddings.

The VSE vectors have a more solid theoretical foundation compared to the synset vectors, being390

derived from a state-of-the-art method whose purpose is to translate images to text. This is a more

direct way of achieving our goal of extracting semantic features, and we expect this to improve

recommender performance compared to VGG19 synset vectors. The VSE method, however, has a

disadvantage – the features are hidden and have no natural interpretation, making it complicated

to link them to an ontology or semantic lexicon.395

4.4. Scaling Visual Features

When all features are extracted, we have to consider how to scale them. The traditional

method of scaling of TF-IDF is the Inverse Document Frequency (IDF), which we apply to terms

and synsets from the plots, in line with SF-IDF(+). For concepts, the scaling is different from

12https://github.com/ryankiros/visual-semantic-embedding
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CF-IDF+. As we only extract occurrences of concepts, which are always in {0, 1}, we do not apply400

IDF scaling, as it would deviate from its original meaning (relative frequency).

The 1,000 synset values (VGG19) and the 1,024 VSE values extracted from the movie posters

could also benefit from scaling as we expect that some features are more relevant to the content

of the movies and thus should play a larger role in the cosine distance, therefore scaled higher.

We have little information about the relevance of each of the 1,000 synsets, and even less about405

the 1,024 visual-semantic features, which are hidden and do not have a natural interpretation. We

learn 1,000 scales for the synsets and 1,024 scales for the visual-semantic features simultaneously

with optimizing the model through stochastic gradient descent (SGD). These learned scales are

the weights related to the 1000 VGG19 features and 1024 VSE features. We apply the established

similarity model scaling [5] also to synsets and visual-semantic features extracted from the posters.410

Denoting the scale as c⃗i, if it applies to the i-th feature type ti, leads c⃗i ∈ R1,000 ⇔ ti = V GG19 and

c⃗i ∈ R1,024 ⇔ ti = V SE. The user-profile vector ui and the unseen item vector v⃗i are then scaled

through c⃗i ◦ u⃗i and c⃗i ◦ v⃗i respectively, with ◦ the element-wise product. These resulting scaled

vectors are used in the cosine. We restrict c⃗i ⩾ 0 and
∑

c⃗i = 1 to avoid the over-parametrization

caused by cos(λu⃗, λv⃗) = cos(u⃗, v⃗) ∀λ ̸= 0. Further, we use both the scaled vectors and unscaled415

original vectors in the model for comparison. Table 2 lists all used feature types. For finding

related concepts, we limit ourselves to single-step paths of directors, actors, and writers, i.e.,

m1 = m2 = m3 = 1 + 3 = 4, for the genres m4 = m5 = 1, and as there are no relations among

terms or visual-semantic features m6 = m8 = m9 = 1. Since we retrieve 18 relations from WordNet

and only for the plot synsets, m7 = 1 + 18 = 19 and m8 = 1. Figure 2 visualizes the item/user420

model vector of a user profile. One can see that it contains all feature types listed in Table 2, and

is based on 205, 169 features.

To learn scaling for visual feature types, we use the similarity model (Eq. 3) established in [5],

where si is part similarity (here cosine similarity) and wi the weight of part similarity si (from

loss function), u⃗i user-profile feature vector, v⃗i unseen item feature vector (sum of the vectors425

associated to previously clicked items), q⃗i vector of relation weights, U⃗i user feature matrix, and

V⃗i feature matrix for unseen items:

sim =

k∑
i=1

wisi =

k∑
i=1

wi · cos(u⃗i, v⃗i) =
k∑

i=1

wi
q⃗i(UiV

⊤
i )q⃗i

⊤√
q⃗i(UiU⊤

i )q⃗i
⊤
√

q⃗i(ViV ⊤
i )q⃗i

⊤
(3)
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Table 2: Item/user model feature types and their characterization by type, source dataset, the number of features

ni, and the number of relations mi between features of type i.

i Feature type ti Extracted from Dataset ni* mi**

1 Directors Variable OMDb 12,231 4

2 Actors Variable OMDb 45,393 4

3 Writers Variable OMDb 27,415 4

4 MovieLens genres Variable MovieLens 19 1

5 OMDb genres Variable OMDb 27 1

6 Terms Plot OMDb 48,083 1

7 Synsets Plot OMDb 69,977 19

8 VGG19 Poster TMDb 1,000 1

9 VSE Poster TMDb 1,024 1

* #Features i.e., length of feature vectors. ** #Relations.

In the similarity model (Eq. 3), we insert u⃗i ← (c⃗i ◦ u⃗i) and v⃗i ← (c⃗i ◦ v⃗i), where c⃗i ∈ Rni is

the learnable scaling. The part-similarity model si changes to Eq. 4, where u⃗i = Ui, and v⃗i = Vi,

because the number of relations mi = 1 for these feature types:

si =
q⃗i((c⃗i ◦ u⃗i)(c⃗i ◦ v⃗i)⊤)q⃗i⊤√

q⃗i((c⃗i ◦ u⃗i)(c⃗i ◦ u⃗i)⊤)q⃗i⊤
√

q⃗i((c⃗i ◦ v⃗i)(c⃗i ◦ v⃗i)⊤)q⃗i⊤
(4)

We restrict
∑mi

l=1 q⃗il = 1 and here mi = 1, making q⃗i = 1 and redundant (Eq. 5):

Item i ti

∑ ni =  205,169

ti ti ti ti ti ti ti ti

ni ni ni ni ni ni ni ni ni

Figure 2: Visualization of the item/user model vector of a user profile.

18



sim =
k∑

i=1

wisi =
k∑

i=1

wi
(c⃗i ◦ u⃗i)(c⃗i ◦ v⃗i)⊤√

(c⃗i ◦ u⃗i)(c⃗i ◦ u⃗i)⊤
√

(c⃗i ◦ v⃗i)(c⃗i ◦ v⃗i)⊤
(5)

The scaling ci has ni optimizable parameters and therefore by definition the model is at least

ni-dimensional – this is irreducible. However, when we want to re-use the learned scaling, we can430

pre-compute c⃗i ◦ u⃗i and c⃗i ◦ v⃗i because the scaling is known and fixed in that case. Then we can

redefine u⃗i = c⃗i ◦ u⃗i and v⃗i = c⃗i ◦ v⃗i and use our efficient model [5] with pre-computed UiU
⊤
i , UiV

⊤
i ,

and ViV
⊤
i .

5. Experiments and Results

We train the similarity model directly on pairs of user profiles and corresponding unseen items to435

recommend items for which the predicted similarity is above a certain threshold value, following the

procedure established in [5]. To optimize (train) the part-similarity weights w⃗ and the relationship

weights q⃗i, we apply stochastic gradient descent (SGD) on the gradient of the similarity model.

The target similarity y ∈ {0, 1} is defined as y = I[user likes item]. The evaluation consists

of calculating various classification metrics between the test users’ actual likes/dislikes versus the440

recommendations.

An item is considered to be liked by a user if it is rated with a score ≥ 4.5, otherwise disliked,

resulting in an average proportion of 19.12% liked items and 20.9 liked items per user. Further,

we shuffle the order of users in our dataset and take the first 1,000 as the test set for evaluation,

the following 1,000 as the validation set for the similarity model (including early stopping while445

training), and the rest 136,493 as the training set to optimize the similarity model.

An observation is a pair of user-profile and unseen item. User profiles are constructed by

sampling p = 5 liked items from a user. For each observation feature matrices UiV
⊤
i , UiU

⊤
i ,

and ViV
⊤
i (where Ui denotes user feature matrix and Vi feature matrix for unseen items) are

constructed from the pre-computed data matrices Xi, the result of matrix multiplications. The450

ViV
⊤
i are retrieved as blocks of Xi, while UiV

⊤
i and UiU

⊤
i are constructed from sums of p blocks.

For the train and validation sets, the unseen items are defined as all items not present in the

user profile. For each user profile, we sample a liked or disliked item with an equal probability such

that we obtain balanced train and validation sets with E(y) = 0.5. Each observation is therefore

a random user-profile and item, sampled from a random user. We sample 100 batches of 1,024455
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validation observations and 1,374 training batches of 1,024 observations, for totals of 102,400 and

1,406,976, respectively.

To allow the test set to reflect a realistic recommendation setting, we sample the p = 5 user-

profile items by shuffling all rated items and then iteratively discarding the first item, adding it to

the user profile if it is liked. We stop as soon as we have obtained p = 5 liked items. All discarded460

liked and disliked items are then considered to be seen. Thus, we simulate the situation when a

recommender system detects that a user has liked p = 5 items. We require the unseen items to

contain at least one liked and one disliked item to be able to measure performance, leaving us

with 809 eligible user profiles from the 1,000 test users. We then construct observations for the

user profile with each unseen item and save these in a separate batch for each user. The test data465

is therefore composed of 809 batches of varying sizes, namely the number of unseen items. The

similarity model is trained with SGD and follows the method (Algorithm 1) described in [5].

We evaluate our method on the sampled 809 test user profiles using the trained model to

predict the similarity score for each unseen item in a batch. The comparison between the predicted

scores and the actual likes forms the basis of performance measurement. For each threshold value470

τ ∈ { i
500 ∀i ∈ (0, 500)} the unseen items for which sim > τ are recommended. We can define

ŷ = I[sim > τ ] ∈ {0, 1} to indicate this. From these recommendations, we can obtain the number

of true positives TP =
∑

ŷ·y, false positives FP =
∑

ŷ(1−y), true negatives TN =
∑

(1−ŷ)(1−y),

and false negatives FN =
∑

y(1− ŷ) for each user. This allows us to calculate precision (Eq. 6)

as a measure of what fraction of recommended items were actually liked by users, and recall (Eq.475

7) as a measure of how many liked items were recommended.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

We further calculate specificity (Eq. 8) to measure how many disliked items were not recom-

mended, and another widely used measure for classification performance – accuracy (Eq. 9), which

measures the fraction of correct judgements.

Specificity =
TN

TN + FP
(8)

20



Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Note that precision can be increased by recommending as few items as possible, in this case480

by using a high threshold (until it is undefined for TP + FP = 0). On the other hand, recall can

be increased by lowering the threshold. In fact, a perfect score of Recall = 1 can be obtained by

simply recommending all items. Therefore, given some similarity predictions, there is a trade-off

between precision and recall. This trade-off can be explored by varying the threshold, and plotted

in a precision-recall (PR) curve. The area under this curve, AUC(PR) ∈ [0, 1], is a measure of485

recommender quality that takes this trade-off into account. There also exists a trade-off between

recall and specificity, which is illustrated by the receiver operating characteristic (ROC) curve –

a plot of Recall versus (1 − Specificity). Similar to AUC(PR), we calculate AUC(ROC) as a

measure of recommender quality (Table 4).

Another metric that uses both precision and recall is the F1-measure (Eq. 10), also considered490

with a trade-off for maximizing the measure. If the goal is to maximize F1 ∈ [0, 1], a recommender

system has to estimate through some model τ = r(...) the optimal threshold τ to determine how

many items to recommend. These estimations are beyond the scope of our research so we report

(Table 4) F1 under two assumed models for r. If r can only find an optimal threshold that is static

across users, we consider this the worst case, denoted by minr(F1). As an upper limit of F1, we495

additionally measure maxr(F1), which assumes r can estimate the optimal threshold for each user

perfectly.

F1 = 2× Precision×Recall

Precision+Recall
(10)

The accuracy measure Accuracy ∈ [0, 1] does not take into account that even uninformative

recommenders can achieve high accuracy, depending on the distribution of y, so we correct for this

by calculating Cohen’s kappa [15] coefficient κ (Eq. 11), where the expected accuracy is found as500

given by Eq. 12. This takes the expected accuracy into account and provides a more meaningful

measure of classification power.

κ =
Accuracy − ExpectedAccuracy

1− ExpectedAccuracy
(11)
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ExceptedAccuracy =
(TN + FP )(TN + FN) + (FN + TP )(FP + TP )

(TP + FP + TN + FN)2
(12)

Like the F1-measure, κ also varies by threshold, so we again calculate minr(κ) and maxr(κ) under

assumptions about the ability of the model τ = r(...) to predict the optimal threshold τ that

maximizes κ.505

For each of the performance metrics, we calculate the average over the 809 test users. We use

these 809 user profiles (a user profile is just the sum of the vectors that represent the liked item

(movies) features) in the test set to measure the performance of the models. The experiments

are repeated with various feature types included or excluded to measure their contribution to the

model’s performance.510

We demonstrate the value of inclusion of visual features to semantics-driven recommendations

by comparison to the traditional TF-IDF recommender (further denoted as T) as a baseline with

terms from plots. Our version of SF-IDF+ based on synsets from plots is called S, modified CF-

IDF+ holding 5 concept feature types (directors, actors, writers, and the genres from MovieLens

and OMDb) and operating on the ontology as C, VGG19 synsets (unscaled) as VG, and VSE515

(unscaled) as VS. When the visual feature scaling of VG or VS is learned (optimized) together

with the rest of the parameters, the component is denoted VGL or VSL, respectively. When the

VG scaling is pre-trained in another model and transferred to this model, we denote the component

VGR (each of the 10 restarts uses a pre-trained scaling from a different restart of VGL) or VGA

(each of the 10 restarts uses the same pre-trained scaling – the average scaling over all 10 restarts of520

VGL). Our proposed semantics-driven model is called C+S+VGA, combining the concepts (C) with

synsets from plots (S) and posters (VG), where the scaling for the VGG19 synsets is transferred

from the average of the 10 optimized VGL models. Table 3 lists all twelve models used. We test the

proposed C+S+VGA model against the TF-IDF benchmark, and against all alternative models.

Let us start by describing the results for the computational load of the optimization procedure525

implemented in Python 2.7 13 using Keras14, which uses a back-end supported by Theano15. The

calculations are performed on a regular desktop PC with NVIDIA GTX1060 CPU enabling efficient

parallel computations of the gradient updates in batches of 1,024 observations. The gradients are

13https://www.python.org/download/releases/2.7/
14(https://keras.io)
15https://pypi.org/project/Theano/
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Table 3: Models and their optimization results, averages over 10 random restarts; n=102,400 validation and

n=1,406,976 train observations. Scaling transferred from VGL for C+S+VGR and C+S+VGA.

Model k* θ** Logloss*** Training time****

Validation Train Epochs Secs/Epoch Minutes

T (benchmark) 1 2 0.6896 0.6900 10.0 6.4 1.1

C 5 18 0.6815 0.6826 11.9 10.3 2.0

S 1 21 0.6912 0.6914 11.0 14.7 2.7

C+S 6 38 0.6812 0.6822 11.0 22.7 4.2

VG 1 2 0.6924 0.6925 9.4 6.4 1.0

VS 1 2 0.6930 0.6931 8.1 6.3 0.9

VGL 1 1,002 0.6797 0.6797 26.4 87.3 38.4

VSL 1 1,026 0.6779 0.6777 39.3 64.4 42.2

C+S+VG 7 39 0.6810 0.6820 11.7 23.3 4.5

C+S+VGL 7 1,039 0.6681 0.6694 35.7 117.0 69.7

C+S+VGR 7 39 0.6708 0.6716 9.4 23.8 3.8

C+S+VGA 7 39 0.6671 0.6680 10.4 23.0 4.0

* Number of feature types (part-similarities). ** Number of parameters.

*** Minimum over all epochs. **** Until early stopping.

calculated automatically by Theano using backpropagation. We minimize the overhead of online

loading by using a solid-state drive (SSD) and simultaneously loading the next batch while SGD530

is applied to the current batch. To optimize C+S+VGA and C+S+VGR, we first optimize the

VGL model, extract the visual scaling from the 10 restarts, and pre-compute the VGG19 dot-

products with this scaling. Table 3 presents the optimization results. We find the training time

within reasonable limits, taking fewer than 70 minutes for even the heaviest model C+S+VGL.

The impact of our scalability method is reflected in a 15-times reduction in seconds per epoch of535

the VG model, which uses pre-computed dot-products, compared to its VGL counterpart using the

traditional approach. Although the VSL model with visual-semantic embeddings has 1,024 features

compared to 1,000 synset features for the VGL model, it takes about 1.5-times as many epochs

to converge and results in a slightly better logloss. The sparsity of the VGG19 vectors compared
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Table 4: Performance metrics on test set, n = 809 user profiles, averages over 10 random restarts (minr – worst case

with static threshold across users, maxr – upper limit with optimal threshold for each user).

Models AUC F1 κ

ROC PR minr maxr minr maxr

T (TF-IDF, benchmark) 0.535 0.324 0.413 0.479 0.041 0.200

C 0.567 0.358 0.419 0.507 0.081 0.249

S (SF-IDF+) 0.531 0.319 0.411 0.477 0.038 0.198

C+S 0.570 0.361 0.419 0.509 0.083 0.251

VG 0.525 0.308 0.415 0.476 0.036 0.189

VS 0.508 0.299 0.415 0.472 0.018 0.176

VGL 0.605 0.347 0.429 0.519 0.110 0.262

VSL 0.605 0.370 0.422 0.517 0.115 0.268

C+S+VG 0.574 0.362 0.419 0.510 0.087 0.253

C+S+VGL 0.624 0.385 0.431 0.531 0.131 0.289

C+S+VGR 0.624 0.386 0.432 0.532 0.128 0.286

C+S+VGA 0.634 0.391 0.435 0.537 0.137 0.298

to the VSE vectors could have been a factor in this. For the unscaled visual vectors, we see the540

opposite, as VG needs slightly more epochs and results in a lower loss.

We continue with the comparison between the predicted scores and the actual likes, which

forms the basis of performance measurement expressed through AUC for the PR and ROC curve,

F1-measure, and Cohen’s kappa [15] coefficient κ. Even though we do not directly optimize for

these metrics, a lower logloss results in higher test performance (Table 4).545

The analysis of performance metrics over all models (Table 4) shows that concepts alone (C)

are more informative than both synsets (S) and terms (T), as C substantially improves over the

baseline T on all metrics, and the combination of C+S [5] outperforms T on all metrics, regardless

the unexpectedly poor performance of S, likely caused by the low-quality WSD. A look at the

relation weights of concepts (Table 5) confirms that for all models the directly found concepts have550

the highest average optimal weight. We can also infer from the maximum weights that there are a

few optimal solutions in which one of the other relations holds most of the weight. For the indirect
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concepts of the actors class, the most dominant relation is writers, suggesting that users tend to

value movies with actors who have played a role in movies that involve writers from their user

profile. Related writers on the other hand receive little weight overall, regardless of the relation555

through which they are found.

The inclusion of features captured from poster images further improves (depending on the

method) the recommendation as the proposed C+S+VGA model outperforms C+S and thereby also

the benchmark TF-IDF (T) (Table 4). Comparing the visual feature models we see the unscaled VG

outperforms VS, indicating the 1,000 synset feature values we extracted from the posters are more560

suitable for recommendation than the 1,024-dimensional visual-semantic embeddings. Optimized

scaling results in a large performance increase: from an AUC(ROC) of 0.508 to 0.605 for VSL and

from 0.525 to 0.605 for VGL. Under learned scaling VSL rivals VGL on some metrics, and closes

the gap on AUC(ROC). These results indicate that the visual-semantic embeddings do not improve

recommender performance over the synset vectors.565

In contrast to the visual-semantic features, the synsets are interpretable and we can compare

the 1,000 learned scales. We optimize the same scaling in a full C+S+VGL model as a benchmark

to compare C+S+VGA and C+S+VGR against and estimate the impact of re-using or transferring

learned scales across models. The top 10 synsets with the highest scale, on average over 10 restarts

(Table 6) exhibit some consistency. The average correlation for VGL of the visual scaling over570

the 10 restarts is 0.268 (n = 45), while for the C+S+VGL it is higher at 0.486 (n = 45). Due

to the much higher dimensional space compared to the relation weights, less stability can be

expected. Nevertheless, the correlations indicate that there is some stability across solutions, and

this increases when concepts and synsets are added.

When the mean optimized scales of VGL are transferred to the C+S+VGR model, it strongly575

outperforms its unscaled version C+S+VG and all other recommenders without learned scaling

(Table 4). The performance is indistinguishable from that of C+S+VGL, which can be considered

a good benchmark for the learned scaling because this model optimized the scaling together with

the rest of the models. When we collect the average VG scale over 10 random restarts of VGL and

transfer this to C+S+VGA, we see that it strongly outperforms all other models.580

The proposed C+S+VGA recommender model outperforms the traditional benchmark TF-IDF

by a large margin on all metrics (Table 4). Average AUC(ROC) improves from 0.535 to 0.634, and
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Table 5: Optimized concept relation weights, means and maxima over 10 random restarts.
relation←−−−−− denotes found

through relation.

C+ C+ C+ C+

C+ S+ S+ S+ S+

C S VG VGL VGA VGR

Mean

Actors .268 .774 .772 .271 .932 .360

Actors←−−−− .000 .000 .000 .272 .000 .174

Directors←−−−−−− .000 .000 .000 .272 .000 .174

Writers←−−−−− .700 .011 .152 .417 .003 .398

Directors .697 .643 .666 .741 .602 .620

Actors←−−−− .002 .000 .002 .005 .001 .005

Directors←−−−−−− .272 .318 .287 .239 .338 .330

Writers←−−−−− .030 .039 .046 .016 .059 .045

Writers .880 .886 .764 .888 .898 .888

Actors←−−−− .048 .037 .030 .045 .023 .045

Directors←−−−−−− .065 .054 .060 .054 .045 .056

Writers←−−−−− .008 .023 .147 .013 .034 .012

Max

Actors .911 .909 .907 .923 .942 .936

Actors←−−−− .000 .000 .001 .965 .001 .654

Directors←−−−−−− .096 .969 .094 .079 .095 .225

Writers←−−−−− .985 .019 .971 .977 .005 .980

Directors .710 .685 .721 .762 .704 .834

Actors←−−−− .004 .001 .014 .008 .006 .016

Directors←−−−−−− .298 .394 .390 .335 .578 .712

Writers←−−−−− .107 .101 .164 .102 .384 .276

Writers .912 .897 .920 .923 .908 .903

Actors←−−−− .057 .056 .055 .054 .026 .081

Directors←−−−−−− .079 .060 .077 .067 .073 .081

Writers←−−−−− .031 .038 .907 .029 .044 .043
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Table 6: Learned visual feature scalings (weights), n = 809 users. Top 10 synsets with highest scales, mean over 10

restarts.

VGL C+S+VGL

Fur coat .01198 Book jacket .01587

Stage .00991 Toyshop .01144

Web site .00975 Bow tie .01142

Balloon .00935 Web site .01142

Jigsaw puzzle .00930 Jigsaw puzzle .01000

Volcano .00923 Volcano .00973

Pick .00907 Cinema .00911

Toyshop .00869 Sweatshirt .00887

Cinema .00861 Fountain .00886

Bow tie .00855 Military uniform .00847

AUC(PR) from 0.324 to 0.391. We improve minr(F1) from 0.413 to 0.435, and maxr(F1) from 0.479

to 0.537. Kappa metrics are improved from 0.041 to 0.137 and from 0.200 to 0.298 for minr(κ) and

maxr(κ), respectively. Given the separately pre-trained visual scaling, we can optimize the model585

with the scalable approach using pre-computed dot-products just in 4-5 minutes. It is neither

necessary to train the scaling together with the model as a whole, nor to directly optimize on the

final performance metrics.

6. Conclusion

In this research, we continued our work on semantics-driven recommender systems and demon-590

strated that these systems are broadly applicable beyond news recommendations. In particular,

we continued our work on scaling content-based semantics-driven recommenders to a large-scale

recommendation task and extended the approach to include visual-semantic features delivered by

computer vision. The paper delivers the second phase of our work [5], where we previously showed

that semantic information can be extracted not only from articles but also from information of595

different nature represented as text, established a method for virtual ontology construction, when

a suitable domain ontology is not readily available, and showed that effective scales can be found

27



through direct optimization of the logloss within minutes on consumer-grade hardware. In this

paper, we now demonstrated that rich semantic information can be extracted from digital im-

ages to further improve recommendations. Through a reformulation of how related features are600

combined, we were able to pre-compute the computationally expensive operations of the cosine

similarities and reduced the dimensionality of the similarity model by several orders of magnitude.

Overall, we showed that semantics-driven recommender systems can be extended to more complex

domains than news recommendations with high-quality recommendations on an extremely large

scale multimodal content.605

The proposed visual-semantic recommender C+S+VGA with visual features extracted from

digital images by means of computer vision strongly outperformed the baseline model TF-IDF,

and all other models on ROC, PR, F1, and κ, even though it was not directly optimized on these

metrics but on a cross-entropy loss function that allowed for efficient gradient-based optimization.

We showed that semantics-driven recommenders have many unexplored applications and can be610

utilized effectively with the proposed approach to various domains. The visual synsets extracted

from images do not have to be disambiguated but can perhaps be augmented with related synsets

from WordNet. The convincing success of learned feature scaling introduces the possibility of

models with greater degrees of freedom, especially since the short training time on commodity

hardware means that still larger datasets can be utilized.615

As for the ideas for further research, one potential direction would be to use another kind of

text embedder, e.g., BERT [18] for building textual features instead of TF-IDF approach, and

visual embedder, e.g., Swin Transformer [31] for building additional visual features for the model.

Presently, related synsets and concepts are found through direct connections but multi-hops in-

stead of single hops when navigating through WordNet or domain ontology could add additional620

semantics. The benefits of allowing a concept to be in multiple classes, such as a person who is

a director of one movie and an actor in another, are also left to explore. It would also be worth

investigating the effect of using DBpedia to exploit more relations than MovieLens provided. And

lastly, we would like to apply model regularization by penalizing the learned weights and further

increase model capacity.625
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