
Noname manuscript No.
(will be inserted by the editor)

DBHC: Discrete Bayesian HMM Clustering

Received: date / Accepted: date

Abstract Sequence data mining has become an increasingly popular research
topic as the availability of data has grown rapidly over the past decades. Sequence
clustering is a type of method within this field that is in high demand in the
industry, but the sequence clustering problem is non-trivial and, as opposed to
static cluster analysis, interpreting clusters of sequences is often difficult. With
the Discrete Bayesian HMM Clustering (DBHC) algorithm, we propose an ap-
proach to clustering discrete sequences using hidden Markov models (HMMs) by
extending a proven method for continuous sequences. Our algorithm is completely
self-contained as it incorporates both the search for the number of clusters and
the search for the number of hidden states in each cluster model in the parameter
inference. By means of an illustrative example, we show how the hidden states in
a mixture of HMMs can aid the interpretation task of a sequence cluster analy-
sis. We conclude that the algorithm works well as it provides well-interpretable
clusters for our application.

Keywords Sequence Data Mining · Sequence Clustering · Mixture Hidden
Markov Models · Graphical Models · Probability Smoothing

1 Introduction

This paper provides an approach to clustering discrete sequences using hidden
Markov models (HMMs). We propose the Discrete Bayesian HMM Clustering
(DBHC) algorithm, an extension of the Bayesian HMM Clustering algorithm to
discrete sequence data (Li and Biswas, 2000). The algorithm incorporates the
searches for the number of clusters and for the number of hidden states in each
cluster model, two classical problems that one is faced with when working with
mixture models and HMMs. The algorithm features a procedure that initialises
cluster models by evaluating them on a small set (seed) of observations, which is
called the ‘seed selection procedure’. By adding a probability smoothing step in
this seed selection procedure, we extend the framework of Li and Biswas (2000) to

2

fit discrete sequence data. To the best of our knowledge, this framework has never
been extended to this domain. Additionally, we propose an implementation of the
DBHC algorithm in the R statistical software (R Core Team, 2017).

Clustering sequence data is inherently different than clustering static data. One
of the main reasons for this is the intransitivity of the problem. For example, if we
regard two sequences AAAA and BBB to be similar to AAAABBB it does not mean that
AAAA is also similar to BBB (Dong and Pei, 2007). Intransitivity makes the sequence
clustering problem non-trivial. However, by using an adjusted distance function
that incorporates the sequential structure it becomes possible to use traditional
clustering methodology for sequence data. A special type of distance function is
the probabilistic distance function: using a probability distribution to describe
differences between clusters, which is the main idea behind mixture models (in
general). Using a mixture of HMMs, the model is also able to account for differences
in sequence-time variation across clusters.

Because of the dimensionality of the problem and the dynamic nature of se-
quence data, it is often difficult to interpret clusters of sequences. This is a major
drawback for analysis of this data type, because the main goal of cluster analysis
is usually description, not prediction. For the purpose of solving this problem,
visualising cluster patterns in sequence data might aid the interpretation task.
Cadez et al. (2003) consider sequences where the observations are assumed to de-
velop according to a first-order Markov process, i.e., observations are assumed to
be drawn from a distribution that only depends on the previous observation in a
sequence. They developed a tool that visualises discrete sequence observations for
each cluster using colour coding. In this case the sequential ordering in the data
is not a drawback of the problem setting anymore, it helps interpreting the clus-
ters. Clustering sequences using multiple instances of an HMM may also aid the
interpretation task. An HMM allows for modelling dynamic processes with an un-
observed variable that traverses through different states, which are called ‘hidden’
states. In this model, not the observations, but the hidden states are assumed to
follow a first-order Markov process. Visualising the estimated probabilities of such
a model in heatmaps can also help understanding differences between clusters.

We employ a mixture of HMMs for clustering discrete sequence data with the
DBHC algorithm. In a mixture of HMMs, both the number of clusters and the
number of states for each cluster are usually unknown. We follow the approach of
Li and Biswas (2000) and incorporate the searches for these unknown parameters
in the model by casting them as Bayesian model selection problems. In Li and
Biswas (2000), clusters are iteratively added to the total partition, while each new
cluster initially contains a carefully selected set of observations, called a ‘seed’,
before other observations are distributed over the clusters. Since the method of
Li and Biswas (2000) is intended for continuous observations only, we extend the
seed selection procedure to be applicable for discrete observations and propose the
Discrete Bayesian HMM Clustering (DBHC) algorithm.

The rest of this paper is structured as follows. First, in Section 2 we describe
the related work in this field. Second, in Section 3 we describe the model un-
derlying the mixture used for sequence clustering in the DBHC algorithm: the
discrete-output HMM. Then follows a detailed description of the methodology of
the DBHC algorithm in Section 4. In Section 5, we discuss an example of se-
quence clustering with the DBHC algorithm. Lastly, we summarise our findings
and provide concluding remarks in Section 6.

Discrete Bayesian HMM Clustering 3

2 Related Work

In current literature, most applications of sequence clustering can be found in the
fields of biology and Web mining. Dong and Pei (2007) provide a complete overview
of the approaches to sequence clustering in the current literature. They argue
that it is important to select a distance function that incorporates the sequential
structure of the data, and next, to select an algorithm that is suitable for this
distance function. They conclude that the choice for the distance function should
be based on domain knowledge of the subject of interest. A popular algorithm
that naturally fits a wide range of distance functions is the hierarchical clustering
algorithm. For example, the authors of Burke et al. (1999) adapt the single-linkage
hierarchical clustering algorithm to cluster DNA sequences by using a distance
function that is suitable for DNA sequences. They conclude that their algorithm
works well for their application in the field of DNA research.

It is also possible to cluster sequences using a model-based approach, which
is making use of a probabilistic distance function. Cadez et al. (2003) present a
mixture of first-order Markov models for clustering visitors of a Web page, where
the sequence data is assumed to be generated by a Markov model. They also
present a visualisation tool for the clusters, which aids interpretation tasks. They
state that a mixture of first-order models is not a first-order model, because it can
model much more flexible relations. However, their method is static and assumes
constant transition probabilities over time.

The usage of graphical models for the purpose of sequence clustering was first
employed by Rabiner et al. (1989). They propose an algorithm for speech recog-
nition that makes use of clustering using an HMM with continuous output. The
problem of clustering speech data is inherently dynamic when audio is logged over
time. They are the first to use an HMM in a clustering problem, which they do
by estimating an HMM for each cluster, known as a finite mixture of HMMs.
An advantage of formulating the problem in this way is that the clustering can
now be incorporated in the HMM parameter estimation procedure. The authors
propose two methods for obtaining clusters in an HMM. The first is incorporat-
ing the clustering in the likelihood function, which can then easily be maximised.
However, they conclude that this method appears to not work well in practice,
as it only improves the fit for observations who were already represented well by
an initial model in the procedure. The second method, which works much better,
as concluded by the authors, is a cluster splitting procedure. In this procedure,
clusters are iteratively split into smaller clusters, until a threshold is reached in the
likelihood objective. In such a split they fit an extra HMM to previously poorly
represented observations. A major disadvantage of their work is that the threshold
can usually only be based on a simple guess, and another disadvantage is that the
model performance is very sensitive for the chosen threshold.

Later on, the maximum likelihood approach to HMM clustering was improved
by others, for example in Smyth (1997). The author extends the method in two
ways, by incorporating hierarchical clustering for initialisation of the algorithm
and by adding a cross-validation approach for determining the number of clusters.
He also proposes to estimate the HMMs by using the Baum-Welch algorithm,
which is a special case of the Expectation-Maximisation (EM) algorithm, and
a common way to estimate ordinary HMMs (Rabiner, 1989). His approach does
assume the number of clusters known, and the solution is to estimate the model for

4

different numbers of clusters and determine the optimal value with cross-validation
afterwards. The author concluded in a simulation experiment that this search for
the number of clusters works well. As a recommendation for further research he
suggests to incorporate the search for the number of clusters in the estimation
procedure using Bayesian statistics. We follow the advice of Smyth (1997) and
cast the search for the number of clusters as a Bayesian model selection problem.

Bayesian statistics have also been introduced to estimating probabilities in an
HMM, for example in Stolcke and Omohundro (1994). The authors use a Bayesian
model-merging strategy for finding the number of states in an HMM. Nevertheless,
they do not use the HMM for clustering and, therefore, assume a homogeneous
population. They do consider an HMM with discrete output, for which they use
a Dirichlet prior distribution, a multinomial extension of the Beta distribution.
The authors do not extensively compare their prior distribution proposal to other
alternatives, but they conclude that the prior type and parameters do not influence
the search for the number of HMM states very much. They do admit, however, that
including informative priors rather than flat (uninformative) priors will probably
have an impact on the course of this search.

Li and Biswas (2000) are the first to employ a Bayesian approach for sequence
clustering using HMMs. They consider HMMs with continuous output and do not
require the number of states and number of clusters known. Furthermore, they do
not assume that each HMM has the same model size, i.e., the HMMs do not need
to have the same number of states. They propose an algorithm that alternately
searches for the optimal number of clusters, cluster assignment of objects, optimal
number of states, and the parameters of each HMM. Furthermore, they propose
a careful seed selection procedure for initialising cluster models. They do not use
a full Bayesian approach, however, as they infer parameters using the frequentist
Baum-Welch algorithm and do not use a Bayesian mixture for the clustering part
of the algorithm, but rather cast the clustering problem as a Bayesian model
selection problem. Besides a formal search, they also propose heuristics for finding
the number of clusters and the sizes of the HMM models, which can overcome
the computational complexity of an intensive search. In a simulation experiment
the authors conclude that their heuristic methodology works well for clustering
sequences with continuous output.

3 Discrete-Output HMM

In this section we briefly describe the methodology of the model underlying the
mixture used for sequence clustering in the DBHC algorithm: the HMM with
discrete outputs. The HMM is a model for a time series with a finite number of
latent states, sometimes also called regimes, which can capture hidden dynamic
relations. In the model, emission probabilities can differ between distinct states,
states which are assumed to develop according to a first-order Markov process. We
describe HMMs where each hidden state defines a categorical distribution over a
set of discrete output labels.

Discrete Bayesian HMM Clustering 5

1π1,1 2

π1,2

π2,1

π2,2

A

φ1,A φ2,A

B

φ1,B φ2,B

Fig. 1 Visual Representation of an HMM With Two States Φ = {1, 2} and Two Output
Labels Σ = {A,B}

3.1 HMM Definitions

Let X = (X1, . . . , XT)′ be a sequence of variables that we observe over a set of
discrete time periods t ∈ {1, . . . , T}. In the standard HMM, we consider an unob-
served state variable Zt ∈ Ω, with Ω = {1, . . . , H} being the set of states. We use
these unobserved states to model the observed output variable Xt. Output variable
Xt depends via an emission probability matrix Φ directly on the corresponding
unobserved state Zt, which is assumed to follow a first-order Markov process with
some transition matrix Π. Matrix Π is a stochastic matrix that is defined for all
pairs of states in Ω × Ω. We call Π a right stochastic matrix, i.e., the rows of Π
sum to 1. We consider HMMs with a discrete output variable Xt, defined over the
labels in Σ. Emission probabilities in stochastic matrix Φ describe the relations
between Xt and Zt, defined for every pair of states and labels in Ω×Σ. Matrix Φ
is also a right stochastic matrix, i.e., the rows of Φ sum to 1. The transition proba-
bilities in Π describe the one-period state transitions πz,y = Pr [Zt = y|Zt−1 = z],
where πz,y is the element in the z-th row and the y-th column of Π. A vector π
describes the probability distribution for the initial state Z1. For every time period
t we define an emission probability φz,Al

of observing label Al given the current
state Zt, say z: φz,Al

= Pr[Xt = Al|Zt = z]. Here φz,Al
is the element in the

z-th row and the l-th column of Φ. Figure 1 shows the dependencies of a two-state
HMM with a set of two output labels. The total number of free parameters in an
HMM is (H − 1) +H(H − 1) +H(L− 1). One should consider the number of free
parameters for an HMM, as the probability vector and the rows of the probability
matrices sum to 1 and therefore restrict some of the probabilities. For example,
the two-state HMM with two labels in Figure 1 has (2−1)+2(2−1)+2(2−1) = 5
free parameters.

Parameters Π, Φ, and π should be estimated from the data. This is a relatively
difficult estimation procedure, as the path of hidden states Z1, . . . , ZT is not ob-
served. We first define a few extra probabilities before we describe the estimation
procedure. We call the joint probability that the HMM moves from state z at time
t − 1 to state y at time t and emits xt the weight of the transition, denoted by
wz,y,t−1,xt , z, y ∈ Ω. The weight then simply equals the product of a transition

6

probability and an emission probability:

wz,y,t−1,xt = Pr [Zt = y |Zt−1 = z] · Pr[Xt = xt |Zt = y]

= πz,y · φy,xt . (1)

For the zero-th period we define the initial weight as

w0,z,0,x1 = Pr [Z1 = z] · Pr[X1 = x1 |Z1 = z]

= πz · φz,x1 , (2)

where πz is the z-th element of the vector of initial probabilities π and where we
denote the non-existing preceding state by 0. For the sake of completeness we also
define a weight for the T -th period, called wT , which equals 1 irrespective of the
state at time T because there is no time period T + 1. That is, the HMM ends
with probability 1 at time T . Note that we can now write the joint probability
for observations x = (x1, . . . , xT)′ of a sequence X = (X1, . . . , XT)′ and a path
Z1, . . . , ZT as a product of weights:

Pr[X = x, Z1 = z1, . . . , ZT = zT]

= Pr[X = x |Z1 = z1, . . . , ZT = zT] · Pr[Z1 = z1, . . . , ZT = zT]

=
T∏
t=1

Pr[Xt = xt |Zt = zt] · Pr[Zt = zt |Zt−1 = zt−1]

=
T∏
t=1

φzt,xt · πzt−1,zt

=
T∏
t=1

wzt−1,zt,t−1,xt , (3)

using the definitions of weights from (1) and (2). Furthermore, we define forward
and backward probabilities to simplify notation, known from the forward-backward
algorithm for HMMs (Rabiner, 1989). These are recursive probabilities, which can
be calculated either by going forward in the sequence of states Z1, . . . , ZT or by
going backward in this sequence, after which they are named. Define forwardz,t
as the forward probability of being in state z at time point t and observing the
sequence x1, . . . , xt, given weights wz,y,q,xq+1 , q ∈ {1, . . . , t − 1}. We calculate
forwardz,t recursively as

forwardz,t(x1, . . . , xt)

=
∑
y∈Ω

forwardy,t−1(x1, . . . , xt−1) · wy,z,t−1,xt , ∀z ∈ Ω, t = 2, . . . , T, (4)

using the definitions of weights from (1) and (2). The recursion is initialised by
initial weight w0,z,0,x1 , i.e., forwardz,1(x1, . . . , xt) = w0,z,0,x1 = πz ·φz,x1 ,∀z ∈ Ω.
In the recursion we sum over all possible states for time periods before t. In a
similar fashion, define backwardz,t as the backward probability of being in state z

Discrete Bayesian HMM Clustering 7

at time point t and observing the sequence xt+1, . . . , xT , given weights wz,y,q,xq+1 ,
q ∈ {t, . . . , T}. We then calculate backwardz,t as

backwardz,t(xt+1, . . . , xT)

=
∑
y∈Ω

backwardy,t+1(xt+2, . . . , xT) · wz,y,t,xt+1 , ∀z ∈ Ω, t = 1, . . . , T − 1, (5)

again using the definitions of weights in (1) and (2). This recursion is initialised
by the weight for the T -th period wT , i.e., backwardz,T = wT = 1,∀z ∈ Ω. We
can now break down the probability that the HMM passes through state z at time
t while emitting x as

Pr [Zt = z,X = x] = forwardz,t(x1, . . . , xt) · backwardz,t(xt+1, . . . , xT). (6)

Similarly we can break down the probability of making a transition from state z
to y from time t to t+ 1 and observing x as

Pr [Zt = z, Zt+1 = y,X = x] =forwardz,t(x1, . . . , xt)

· wz,y,t,xt · backwardy,t+1(xt+2, . . . , xT). (7)

Now we can also calculate the probability of observing an entire sequence us-
ing forward probabilities, which we call forward(x). The expression can then be
evaluated as a product of terms as

forward(x) = Pr[X = x] =
T∏
t=1

∑
z ∈Ω

∑
y∈Ω

wy,z,t−1,xt . (8)

We use the forward and backward probabilities to calculate the so-called respon-
sibility profile of the HMM. The responsibility profile consists of the probabilities
of passing through a state z and of the probabilities of making the transition from
a state y to a state z, all given the observed sequence x = (x1, . . . , xT)′. The first
probability of passing through state z at time t equals

Pr[Zt = z |X = x] =
Pr[Zt = z,X = x]

Pr[X = x]

=
forwardz,t(x1, . . . , xt)

forward(x)
· backwardz,t(xt+1, . . . , xT), (9)

where forward(x) is the forward probability of observing the entire sequence x.
The second probability of making the transition from state y to state z between
time points t and t+ 1 equals

Pr[Zt = z, Zt+1 = y |X = x] =
Pr[Zt = z, Zt+1 = y,X = x]

Pr[X = x]

=
forwardz,t(x1, . . . , xt)

forward(x)
· wz,y,t,xt+1 · backwardy,t+1(xt+2, . . . , xT), (10)

which we again define in terms of forward and backward probabilities, combined
with the forward probability of observing the entire sequence x. We use the prob-
abilities in (9) and (10) for estimating HMM parameters with the Baum-Welch
algorithm, which we describe in the next paragraph.

8

3.2 Baum-Welch Learning

The Baum-Welch algorithm is a special case of the expectation-maximisation (EM)
algorithm of Dempster et al. (1977), specifically designed for obtaining parame-
ters in an HMM (Rabiner, 1989). The algorithm alternates between estimating
a responsibility profile given the current HMM parameters in the E-step, and
maximising the likelihood by updating the HMM parameters given the current
responsibility profile in the M-step. The steps are alternated until the likelihood
of the HMM converges. In the E-step we calculate the responsibility profile using
equations (9) and (10). The probabilities in the responsibility profile can be seen as
expectations of the path of hidden states that has generated the observed data. For
the M-step we define expressions Ttz,y, Etz(Al), and Iz based on the probabilities
in the responsibility profile:

Ttz,y = Pr [Zt = z, Zt+1 = y |X = x] , t = 1, . . . , T − 1

Etz(Al) =

{
Pr [Zt = z |X = x] if xt = Al
0 otherwise

, t = 1, . . . , T

Iz = Pr [Z1 = z |X = x] , (11)

where Ttz,y is a transition probability at time t, Etz(Al) an emission probability
at time t, and Iz an initial probability. We summarise these probabilities in (11)
into estimates of probabilities for an entire sequence by summing them over the
relevant time periods and scaling this sum with respect to all other possibilities for
either transition or emission. We update the parameter estimates of emission and
transition probabilities in the current iteration, say m, based on the responsibility
profile as follows:

π̂(m)
z,y =

∑T−1
t=1 Ttz,y∑T−1

t=1

∑
q∈Ω Ttz,q

φ̂
(m)
z,Al

=

∑T
t=1 Etz(Al)∑T

t=1

∑
h∈Σ Etz(Ah)

, (12)

where the responsibility profile in iteration m is calculated using the parameter
estimates from iteration m − 1. Estimates for the initial state probabilities in π
are simply:

π̂(m)
z =

Iz∑
q∈Ω Iq

. (13)

These parameter estimates maximise the likelihood of an HMM in (14), given the
current expectations of the path of hidden states—i.e., the responsibility profile
(Rabiner, 1989). The likelihood is simply the probability that the HMM emitted
the sequence x given the estimated parameters. Let ϕ denote the collection of the
HMM parameters π, Π, and Φ for the sake of brevity, ϕ = (π,Π,Φ). We evaluate
the likelihood of the m-th iteration in the algorithm as follows:

L(m)(ϕ |X) = Pr
[
X = x

∣∣∣ ϕ̂(m)
]

=
T∏
t=1

∑
z ∈Ω

∑
y∈Ω

wy,z,t−1,xt

= forward(x), (14)

Discrete Bayesian HMM Clustering 9

Initialise HMM parameter estimates ϕ̂(0) ← ϕ0

Initialise m← 1
repeat

E-step: Update responsibility profile in (9) and (10) given estimates in ϕ̂(m−1)

M-step: Maximise L(m)(ϕ |X) in (14) by updating ϕ̂(m) in (12) and (13) given current
responsibility profile
Calculate likelihood L(m)(ϕ |X) using current parameter estimates ϕ̂(m)

Update m← m+ 1
until

∣∣L(m)(ϕ |X)− L(m−1)(ϕ |X)
∣∣ < ε1

Accept estimates in ϕ̂(m) as parameters of the HMM

Fig. 2 Baum-Welch Algorithm

where we calculate forward(x) using the estimated parameters of the m-th it-
eration ϕ̂(m). The algorithm converges when the likelihoods in two consecutive
iterations differ less than some small number ε1. The algorithm should be ini-
tialised with some initial guesses for the parameters in ϕ, ϕ0 = (π0, Π0, Φ0).
Usually, these guesses are obtained by random draws from Dirichlet distributions:
π0 ∼ Dir(1,1H), Π0 ∼ Dir(H,1H), and Φ0 ∼ Dir(H,1L), where 1q is a q × 1
vector of ones and Dir(n,α) is a Dirichlet distribution with dimensionality n and
hyper parameter vector α. Figure 2 denotes the pseudocode for the Baum-Welch
algorithm.

4 Sequence Clustering with the DBHC Algorithm

In this section we describe clustering using HMMs with the DBHC algorithm.
The DBHC algorithm is based on the Bayesian HMM Clustering algorithm of
Li and Biswas (2000), which is intended for sequences with continuous observa-
tions in discrete time, while the DBHC algorithm is intended for sequences with
discrete observations in discrete time. The clustering of sequences using HMM rep-
resentations was first mentioned in Rabiner et al. (1989). The idea behind HMM
Clustering is to model a different HMM per cluster, that is, modelling a mixture
of K HMMs. Let the observed output variable be Xi,t, gathered in a sequence Xi

for individual i. Let the mixture distribution be described by a discrete variable S,
where a value k of S represents a cluster. The probability that sequence i belongs
to cluster k is denoted by pi,k. The probability of observing sequence xi is then
modelled as follows:

Pr [Xi = xi |ϕ] =
K∑
k=1

pi,k Pr [Xi = xi |Si = k;ϕk] , (15)

where we model Pr [Xi = xi |Si = k;ϕk] with an HMM. Parameter ϕk denotes the
HMM parameters of cluster k, and ϕ the collection of all ϕk, ϕ = (ϕ1, . . . , ϕK).

4.1 Learning an HMM from Multiple Sequences

A cluster can contain multiple individuals, therefore we need to be able to train
a single HMM on multiple observed sequences. Training an HMM on multiple
sequences is very similar to training an HMM on a single sequence if we assume that

10

the sequences are generated independently from each other by the HMM (Rabiner,
1989). In the E-step of the Baum-Welch algorithm, we update the responsibility
profile of each sequence in a cluster using the current parameters of the HMM for
that cluster. We perform this E-step for all sequences in all clusters. In the M-
step we then adjust the HMM parameters of each cluster using the responsibility
profiles of all sequences in each cluster separately. That is, we train the HMM
of a cluster on all sequences in the cluster, i.e., we train the HMM on multiple
sequences. For this purpose we define the responsibility profile of sequence i in
cluster k as follows:

Pr [Zi,t = z |Xi = xi; ϕ̂k]

Pr [Zi,t = z, Zi,t+1 = y |Xi = xi; ϕ̂k] , (16)

which we calculate in the same way as (9) and (10) using the estimated HMM
parameters in ϕ̂k. We also define the probabilities in (11) for each individual i in
cluster k:

Tti,z,y = Pr [Zi,t = z, Zi,t+1 = y |Xi = xi; ϕ̂k] , t = 1, . . . , T − 1

Eti,z(Al) =

{
Pr [Zi,t = z |Xi = xi; ϕ̂k] if xi,t = Al
0 otherwise

, t = 1, . . . , T

Ii,z = Pr [Zi,1 = z |Xi = xi; ϕ̂k] , (17)

where Tti,z,y is a transition probability at time t, Eti,z(Al) an emission probabil-
ity at time t, and Ii,z an initial probability, all for the sequence of individual i.
Instead of maximising the likelihood of a single sequence, we now update the pa-
rameter estimates in iteration m by maximising the joint likelihood of observing
the sequences in cluster k given the responsibility profile in iteration m, i.e., the
parameters from the previous iteration m− 1:

Pr
[
X1 = x1, . . . ,XNk

= xNk

∣∣∣ ϕ̂(m−1)
k

]
=

Nk∏
i=1

Pr
[
Xi = xi

∣∣∣ ϕ̂(m−1)
k

]

=
Nk∏
i=1

forward(xi), (18)

where we use the assumption that the sequences are independently generated to
split up the likelihood and where Nk is the number of individuals in cluster k.
This means that we can maximise the likelihoods of the sequences independently.
Rabiner (1989) then shows that we can update the parameter estimates for cluster
k in iteration m in a similar way as in (12) and (13), since the probabilities in
the responsibility profile are scaled by the forward probabilities of observing the

Discrete Bayesian HMM Clustering 11

respective sequence:

π̂
(m)
k,z,y =

∑Nk
i=1

∑T−1
t=1 Tti,z,y∑Nk

i=1

∑T−1
t=1

∑
q∈Ωk

Tti,z,q

φ̂
(m)
k,z,Al

=

∑Nk
i=1

∑T
t=1 Eti,z(Al)∑Nk

i=1

∑T
t=1

∑
m∈Σ Eti,z(Am)

π̂
(m)
k,z =

∑Nk
i=1 Ii,z∑Nk

i=1

∑
q∈Ωk

Ii,q
. (19)

We use the Baum-Welch algorithm for multiple sequences in our clustering algo-
rithm. Clustering with HMMs adds an extra dimension to the clustering problem,
namely that for each cluster not only the number of clusters K for the tradi-
tional clustering problem needs to be determined, but also the number of states
for each HMM. Following a Bayesian approach, Li and Biswas (2000) incorporate
this search in the parameter inference.

4.2 DBHC Algorithm

Li and Biswas (2000) propose a Bayesian estimation method that incorporates
both the search for the optimal cluster partition and the search for the number of
states per cluster. They call the latter search the model size selection problem. We
adapt their strategy to a setting with discrete output. In the Bayesian framework,
both the clustering problem and the model size selection problem can be seen
as Bayesian model selection problems. That is, selecting the model M with the
highest posterior probability: Pr [M |X]. If we were to compare two models M1

and M2, we would consider the ratio of their posterior probabilities:

Pr [M2 |X]

Pr [M1 |X]
=

Pr [M2] Pr [X |M2]

Pr [X]

Pr [M1] Pr [X |M1]

Pr [X]

=
Pr [M2] Pr [X |M2]

Pr [M1] Pr [X |M1]
, (20)

where we use Bayes’ rule to develop the posteriors. If we do not favor any model
in advance, that is, if we do not favor any number of clusters or any model size
for the HMMs, we have Pr [M1] = Pr [M2]. The ratio of model posteriors in (20)
would then simplify to the ratio of likelihoods:

Pr [M2 |X]

Pr [M1 |X]
=

Pr [X |M2]

Pr [X |M1]
. (21)

In conclusion, when choosing between different models we can simply select the
model with the largest likelihood. In case of unobserved variables, this should
be the complete data likelihood. We use this strategy for both the search for the
number of clusters and for the HMM model size. The complete data likelihoods can
be obtained using Markov Chain Monte Carlo methods in case of latent variables,
for example with Gibbs sampling (Geman and Geman, 1984).

12

When using Markov Chain Monte Carlo methods for Bayesian inference, the
two search dimensions can turn out to be very costly in terms of computational
complexity, namely exponential complexity (Li and Biswas, 2000). The authors
therefore propose to use approximations of the log complete data likelihood using
the Bayesian Information Criterion (BIC). We use these approximations for both
search dimensions. The Bayesian HMM Clustering algorithm uses hard assignment
of clusters, that is, pi,k = 1 for one value of k, and pi,l = 0 for all l 6= k. In general
the BIC of a model is defined as BIC = −2 logL+d logN , where L is the likelihood
of the model without unobserved variables, d is the number of parameters, and N
is the number of observations.

We choose the number of clusters K such that the BIC for the entire mixture
is minimised. Following the approach in Li and Biswas (2000), the number of
clusters K is added as a penalty to the BIC, similar to the penalty of the number
of parameters. The BIC for a model MK with K clusters can be calculated as
follows:

BICK = −2
N∑
i=1

log

[
K∑
k=1

pi,k Pr [Xi |Si = k; ϕ̂k]

]
+

(
K +

K∑
k=1

dk

)
logN, (22)

where dk is equal to the number of free parameters in ϕ̂k larger than some threshold
ε2, again following the original algorithm. In this way, the BIC only penalises the
likelihood for probabilities that are set to a non-zero value larger than ε2. Note
that pi,k = 1 if Si = k and 0 otherwise. Recall that the number of free parameters
in an HMM for cluster k is (Hk−1)+Hk(Hk−1)+Hk(L−1). We obtain dk from
the previous number by subtracting the number of parameters that are smaller
than ε2 from the total number of free parameters. Now dk is a penalty for the
number of non-zero parameters. Minimising BICK is approximately equivalent to
maximising the log complete data likelihood (Li and Biswas, 2000). Note that
this is the complete data likelihood as it assumes the cluster memberships known.
We choose the number of clusters K such that its corresponding model minimises
BICK . We start the search with K = 1, and iteratively keep increasing K with
steps of 1, until BICK does not decrease anymore, as suggested by Li and Biswas
(2000).

For each cluster we determine the number of HMM states in a likewise fashion.
In a similar way as shown in (20) and (21), we can show that we can determine
the optimal size Hk for the model of cluster k by maximising the likelihood over a
set of possible values for Hk. Again, we approximate the likelihood with the BIC:

BICHk
= −2

Nk∑
i=1

log Pr [Xi |Hk, ϕ̂k] + dk logNk, (23)

where dk is equal to the number of free parameters in ϕ̂k larger than some threshold
ε2. We initialise each HMM with Hk = 1, and iteratively keep increasing Hk with
steps of 1, until BICHk

does not decrease anymore. This set-up is similar to the
search for the optimal number of clusters. Figure 3 denotes the pseudocode for the
HMM model size search algorithm for cluster k.

For a given model size, we obtain model parameters for each cluster k with the
Baum-Welch algorithm for multiple sequences. For assigning sequences to clusters
we use the sequence-to-HMM likelihood measure (Rabiner, 1989). An observed

Discrete Bayesian HMM Clustering 13

// Initialisation
Initialise m← 1
Initialise Hk ← 1
Obtain HMM parameters for an HMM with size Hk using Baum-Welch algorithm
Set BIC(1) ← BIC1

// Model size expansion
repeat

Update m← m+ 1
Update Hk ← Hk + 1
Obtain HMM parameters for an HMM with size Hk using Baum-Welch algorithm
Set BIC(m) ← BICHk

until BIC(m) ≥ BIC(m−1)

// Accept final model
Accept model size of iteration m− 1

Fig. 3 HMM Model Size Search Algorithm for a Given Cluster k

sequence xi is assigned to the cluster k that has the highest likelihood: Pr [xi | ϕ̂k].
The sequence-to-HMM likelihood is simply the forward probability of observing
that sequence in the HMM of cluster k, i.e., Pr [xi | ϕ̂k] = forward(xi). If after
all assignments at least one of the sequences switched clusters, we re-estimate
the HMM of each cluster without changing the model size, and we redistribute
the observations over the new clusters. The process is repeated until no sequence
changes clusters after redistribution. Finally, the size search algorithm is invoked
for all clusters to make the models best reflect the data in the clusters.

At the start of every iteration in the search for the optimal clustering we have
to initialise all models in the partition with a set of observations, a seed. The seed
is used to determine the number of HMM states for a cluster before other obser-
vations are added. When the size search algorithm is invoked for heterogeneous
data—i.e., it contains observations from different true clusters—additional states
might be added to reflect the heterogeneity, while we actually want to incorporate
this heterogeneity in the cluster memberships. The seed selection procedure aims
at preventing this. In each iteration, we rebuild the model for each cluster to reflect
the data best according to the number of clusters at that point in the algorithm. A
seed consists of r observations, with r usually an arbitrarily chosen small number.
For the first seed in every iteration we randomly select a sequence from the set
of all sequences. We then estimate an HMM for this observation—with 2 states,
as this is just a temporary HMM—and we add the remaining r − 1 observations
that are best represented by this HMM in terms of sequence-to-HMM likelihood
to the seed. For all the other K − 1 cluster seeds we select the first sequence as
the one that is worst represented by the current set of seed models. We find the
remaining r − 1 sequences in the same way as for the first seed. In total we now
have included r observations in each of the K seeds. Li and Biswas (2000) use
r = 3 for initialising the models throughout their paper. After the observations
for the seed have been selected, we determine the seed model using the size search
algorithm in Figure 3.

In the seed selection procedure the likelihood of an HMM is many times devel-
oped for sequences the HMM has not been trained on. It is therefore possible that
these sequences contain labels the training set for the HMM did not contain—these
emissions were assigned probability zero in the Baum-Welch algorithm. The new
sequences potentially also require emission-state combinations with zero probabil-

14

ity in the HMM. All these cases will result in a likelihood value of 0, corresponding
to a log likelihood value of −∞. The step that selects the worst represented se-
quence will then be inconclusive among all sequences with log likelihood −∞, and
proceed with a random draw from these sequences. We overcome this inconclusive-
ness by adding a probability smoothing step to the emission probability matrix
after parameter estimation.

Probability smoothing is replacing zero probabilities with very small values to
prevent the likelihood of unseen data to be zero, while preserving the condition
that all probabilities sum to 1. After parameter estimation with the Baum-Welch
algorithm we use the probability smoothing technique of absolute discounting,
which has been shown to work well for HMMs in word recognition (Taghva et al.,
2005). Absolute discounting is subtracting a small amount of probability from all
non-zero probabilities, and dividing this portion equally over the zero probabili-
ties. We apply the smoothing row-wise for the emission probability matrix after
parameter estimation.

For a certain state z in the HMM of a cluster k, let the number of non-zero
emission probabilities be v. Recall that L is the total number of labels in the
alphabet, thus L − v is the number of zero emission probabilities. We subtract
a small amount q from each non-zero emission probability, which we then divide
equally over the L−v non-zero probabilities. The smoothed probability of φk,z,Al

,

say φ̃k,z,Al
, then equals:

φ̃k,z,Al
=

{
φk,z,Al

− q if φk,z,Al
> 0

vq
L−v otherwise

, l = 1, . . . , L. (24)

There is no standard way for determining the smoothing parameter q, but for
our algorithm it is important to pick it such that vq

L−v is smaller than ε2. In this
way the smoothed zero probabilities do not count towards the total of number of
non-zero parameters dk.

Now we present the entire DBHC algorithm with the order in which we ex-
ecute the search and estimation steps, including the probability smoothing step
for discrete sequence data. Figure 4 denotes the pseudocode for the algorithm.
As described in Section 3.2, the Baum-Welch algorithm requires starting values
for the HMM parameters. In the HMM size search algorithm we build the HMMs
with random starting values for the parameters as we do not have any information
on the sequences in a cluster yet. For building temporary HMMs—used for find-
ing either the most similar or the most dissimilar sequences in the seed selection
procedure—we use random starting values for the same reason. However, during
the updating of HMM parameters in the object redistribution phase at the end
of each iteration, we initialise the HMM for a cluster with the parameters that
were estimated for the cluster before the most recent redistribution. We do this
in order to facilitate convergence during the alternation between object redistri-
bution and parameter updating. Whenever we do initialise an HMM with random
starting values for the parameters, we use 10 of these random starts and select
the model that achieves the highest likelihood among these, following Helske and
Helske (2017). We use only 10 random starts as this estimation procedure is often
repeated in the algorithm and higher numbers of random starts would lay an extra
burden of computational complexity on the algorithm.

Finally, the DBHC algorithm is implemented in the DBHC package of the R
statistical software (XXX (blinded for review), 2019). Default hyperparameter val-

Discrete Bayesian HMM Clustering 15

// Initialisation
Initialise m← 1 // iteration
Initialise K ← 1 // number of clusters
Set seed size r // seed size
// First iteration
Select random first observation from 1, . . . , N
Build temporary HMM with 2 states based on first observation
Smooth emission probabilities of temporary HMM
Evaluate sequence-to-HMM likelihood based on temporary HMM for all sequences not yet
selected
Add r − 1 observations to seed with highest sequence-to-HMM likelihood
Apply HMM model size search in Figure 3 to first cluster
Smooth emission probabilities of HMM
Add all sequences to first cluster
Set BIC(1) ← BIC1 first clustering
// Partition expansion
repeat

Update m← m+ 1
Update K ← K + 1
// Seed selection
for i← 1, K do

if i = 1 then
Select random first observation from 1, . . . , N

else
Evaluate sequence-to-HMM likelihood for every seed model in iteration i for all
sequences not yet selected
Consider for each sequence the HMM for which it has the highest sequence-to-HMM
likelihood
Select first observation as the one with lowest such sequence-to-HMM likelihood: the
sequence worst represented by the current seed models

end if
Build temporary HMM with 2 states based on first observation
Smooth emission probabilities of temporary HMM
Evaluate sequence-to-HMM likelihood based on temporary HMM for sequences not yet
selected
Add r − 1 observations to seed with highest sequence-to-HMM likelihood
Apply HMM model size search in Figure 3 to the seed
Smooth emission probabilities of HMM

end for
Set seed models as the cluster models
// Object redistribution
Assign each sequence to the cluster model for which it has highest sequence-to-HMM
likelihood
repeat

Update HMM parameters with Baum-Welch algorithm in Figure 2 for all clusters
Smooth emission probabilities of each HMM
Assign each sequence to the cluster model for which it has highest sequence-to-HMM
likelihood

until No sequence switches between clusters
Accept current sequence distribution
Set BIC(m) ← BICK current clustering

until BIC(m) ≥ BIC(m−1)

// Accept final model
Accept clustering in iteration m− 1 as the model

Fig. 4 DBHC algorithm

ues in the software package correspond to the values suggested in this paragraph.
For example, the default number of hidden states in an initial HMM is set equal

16

Table 1 Sequence Labels Appearing in Swiss Household Data

Original Label Family status

0 P Living with parents
1 L Left home
2 M Married
3 LM Left home, married
4 C Having children
5 LC Left home, having children
6 LMC Left home, married, having children
7 D Divorced

Table 2 Clustering Results Swiss Household Data

Cluster # Individuals # Hidden States

1 157 2
2 66 3
3 211 3
4 425 6
5 298 4
6 843 5

to 2 and the default number of observations in a seed is set equal to 3. These and
other hyperparameters can be controlled by the user of the software package, see
XXX (blinded for review) (2019). For the analysis in Section 5 we use utilise this
R implementation of the algorithm.

5 Illustrative Example

For illustrating how one can perform sequence clustering using the DBHC algo-
rithm, we perform an analysis on the biofam data set from R package TraMineR.
These data consist of family life sequences built from a biographical survey carried
out by the Swiss Household Panel (SHP) in 2002 (Gabadinho et al., 2011). The
data contains 16-year-long sequences with yearly observations of family status for
2000 individuals who were at least 30 years old at the time of the survey. Table
1 shows the labels appearing in the data set, that is, the statuses recorded in the
survey for the 2000 individuals, along with the original labels attached to these
statuses in biofam. We replace the non-intuitive labels 0 to 7—those that appear
in the original data set—with the more intuitive ones in Table 1.

Table 2 shows descriptives of the results found by the DBHC algorithm for the
Swiss household data. We have run the algorithm with the default hyperparameter
values described in Section 4.2, e.g., we set the seed size equal to 3. The algorithm
finds 6 clusters for the biofam data set, with the number of hidden states ranging
from 2 to 6. The cluster sizes range from 66 individuals in cluster 2 to roughly 800
individuals in cluster 6. Here, an ‘individual’ of course corresponds to a sequence
belonging to an individual.

To illustrate how we can interpret clusters using the hidden states of the cluster
model, we study the heatmaps of the HMM of one of the clusters, say cluster 5,
which contains roughly 300 individuals and for which the algorithm finds 4 hidden

Discrete Bayesian HMM Clustering 17

P L M LM C LC LM
C

D

State 4

State 3

State 2

State 1

St
at

e
1

St
at

e
2

St
at

e
3

St
at

e
4

State 4

State 3

State 2

State 1

Initial

Fig. 5 Heatmaps of initial and transition probability matrix (left) and emission probability
matrix (right) of cluster 5

states. Figure 5 shows heatmaps of the initial, transition, and emission probability
matrices of this cluster. We can see that people in this cluster initially start in
state 1 and—looking at the emission probability matrix—they are living with
their parents in this state. After being in this state 1, there is a small probability
to move to state 2, where they leave home—although the majority stays in state
1. We observe that after state 2, part of the individuals moves to state 4, where
they remain in the status ‘left home’. Individuals in state 4 tend to stay in state 4.
This leaves us with state 3, for which it is not visible by which state it is preceded
in the heatmap, i.e., apparently the probability of moving to state 3 is marginal.
Note that the corresponding emissions of state 3 therefore also rarely occur for this
cluster. This leaves us to conclude that cluster 5 consists of individuals who start
out living with their parents, after which there is a probability of transitioning into
the state of leaving home, where they will stay until the end once this has occurred,
without getting married or having children. A random sample of 5 sequences drawn
from the ones contained in this cluster confirms this intuition:

1: P-P-P-P-P-P-L-L-L-L-L-L-L-L-L-L

2: P-P-P-P-P-P-P-P-P-P-L-L-L-L-L-L

3: P-P-L-L-L-L-L-L-L-L-L-L-L-L-L-L

4: P-P-P-P-P-P-L-L-L-L-L-L-L-L-L-L

5: P-P-L-L-L-L-L-L-L-L-L-L-L-L-L-L.

Similar analyses can be carried out for the remaining cluster models, which
one would use to obtain a complete view of the partition found by the DBHC
algorithm. Doing this, we obtain descriptions of the other clusters too. Individuals
in cluster 1 live with their parents and stay there for the entire observation period.
In cluster 2, individuals start out already having left home and marry eventually,
combined with either directly having children or having children at some later
point in time. Individuals in cluster 3 start out living with their parents and go
into marriage without leaving their paternal home or having children. In cluster
4, individuals start out living with their parents, after which they leave home and
later get married with a potential for having children, a divorce, or a combination
of those two. Cluster 6 is the biggest cluster with 843 individuals, for which the
algorithm finds 5 hidden states. Individuals in cluster 6 start out living with their
parents and then follow all kinds of different paths before they eventually end

18

up having left home, being married, and having children. With this cluster we
can conclude that it is the most common path to start out living with parents
and eventually end up moving out, being married and having children. Note that
the path identified for cluster 4 is the only one that involves the potential for a
divorce. In total, the algorithm identifies roughly 6 different life paths, each path
corresponding to one of the clusters. In this way, we have illustrated how hidden
states can help interpreting cluster memberships in sequence data sets.

6 Conclusion

We have presented the DBHC algorithm for sequence clustering using HMMs and
we have shown how the hidden states in a mixture of HMMs can aid the interpre-
tation task of a cluster analysis for sequence data. The DBHC algorithm extends
the existing Bayesian HMM Clustering algorithm to be applicable to discrete se-
quence data by adding a probability smoothing step with absolute discounting to
its seed selection procedure. The DBHC algorithm is completely self-contained as
it incorporates both the search for the number of clusters and the search for the
number of hidden states in each cluster model, next to the parameter estimation
procedure with the Baum-Welch algorithm for each cluster model. The algorithm
can be used to obtain a mixture of HMMs for discrete sequence data and is imple-
mented in the DBHC package of the R statistical software. We can conclude that
the algorithm works well as it provides well-interpretable clusters for our applica-
tion. In future work, we would like to explore whether a full Bayesian approach—as
opposed to the current semi-Bayesian approach—improves the fit of the mixture
model. Unfortunately, this will most likely put an extra computational burden on
the algorithm complexity and research into the feasibility is required.

References

Burke J, Davison D, Hide W (1999) d2 cluster: a validated method for clustering
EST and full-length cDNA sequences. Genome Research 9(11):1135–1142

Cadez I, Heckerman D, Meek C, Smyth P, White S (2003) Model-based cluster-
ing and visualisation of navigation patterns on a web site. Data Mining and
Knowledge Discovery 7(4):399–424

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B
pp 1–38

Dong G, Pei J (2007) Sequence Data Mining. Springer Science & Business Media
Gabadinho A, Ritschard G, Müller NS, Studer M (2011) Analysing and visualising

state sequences in R with TraMineR. Journal of Statistical Software 40(4):1–37
Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-6(6):721–741

Helske J, Helske S (2017) Mixture Hidden Markov Models for Sequence Data: The
seqHMM Package in R. URL https://cran.r-project.org/package=seqHMM,
R package version 1.0.8

Discrete Bayesian HMM Clustering 19

Li C, Biswas G (2000) A Bayesian approach to temporal data clustering using
hidden Markov models. In: Proceedings of the 17th International Conference on
Machine Learning, Morgan Kaufmann Publishers Inc., pp 543–550

R Core Team (2017) R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, URL https://www.

R-project.org/

Rabiner LR (1989) A tutorial on hidden Markov models and selected applications
in speech recognition. Proceedings of the IEEE 77(2):257–286

Rabiner LR, Lee CH, Juang BH, Wilpon JG (1989) HMM clustering for connected
word recognition. In: 1989 International Conference on Acoustics, Speech, and
Signal Processing, IEEE, pp 405–408

Smyth P (1997) Clustering sequences with hidden Markov models. In: Advances
in Neural Information Processing Systems, MIT Press, pp 648–654

Stolcke A, Omohundro SM (1994) Best-first model merging for hidden
Markov model induction. CoRR URL http://arxiv.org/abs/cmp-lg/9405017,
cmp-lg/9405017

Taghva K, Coombs JS, Pereda R, Nartker TA (2005) Address extraction using
hidden markov models. Proc SPIE 5676, Document Recognition and Retrieval
XII pp 119–126

XXX (blinded for review) (2019) DBHC: Sequence Clustering with Discrete-
Output HMMs. URL https://CRAN.R-project.org/package=DBHC, R package
version 0.0.2

