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Abstract. This research contributes to the field of Aspect-Based Senti-
ment Classification (ABSC) of Web data by proposing new cross-, multi-
and unilingual ASBC models. We do this by improving the state-of-the-
art mLCR-Rot-hop++ attention neural model and its variations. We
introduce different multilingual XLM-R embedders to replace the multi-
lingual BERT (mBERT) embedder found within the mLCR-Rot-hop++
model. Furthermore, we add two distinct contrastive learning methods
to the existing mLCR-Rot-hop++ model. The first approach integrates
sentiment-level contrastive learning, adapted to instances rather than
individual token embeddings, into the mLCR-Rot-hop++ model. Our
second approach considers the high-level opinion representations of the
mLCR-Rot-hop++ model within the contrastive loss function. Our find-
ings indicate that replacing the mBERT embedder with an XLM-Rpase
embedder generally improves performance. Furthermore, sentiment-level
contrastive learning usually improves the performance of various models,
especially compared to representation-level contrastive learning.

Keywords: ABSC - ML-ABSC - XL-ABSC - UL-ABSC - LCR-Rot-
hop++

1 Introduction

With the ever-expanding presence of online marketplaces, review platforms, and
social media on the Web, opinionated text has become ubiquitous. As a result,
there is an escalating interest in being able to aggregate large swaths of opinion-
ated text into useful data, leading to a surge of research in sentiment analysis.

Sentiment analysis concerns itself with the automated classification of opin-
ionated text. In particular, there has been an expanded exploration of Aspect-
Based sentiment analysis (ABSA), which focuses on detecting the sentiment
of a certain entity, or aspect of an entity, within a given text [17]. ABSA can
be subdivided into multiple tasks. Our investigation deals with the subtask of
Aspect-Based Sentiment Classification (ABSC), which consists of assigning la-
bels and sentiment scores to previously extracted aspects [2].

A significant challenge when classifying online opinionated texts is the diverse
range of languages used. Consequently, there is a vested interest in creating
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models which can be trained in resource-rich source languages and then applied
to resource-poor target languages. This approach is often referred to as Cross-
Lingual ABSA (XL-ABSA). As specified by [16], XL-ABSA trains models on a
labelled source language and then applies these models to an unlabelled target
language. Another possible approach is to train models on a range of different
source languages, thereby creating a model which is relatively language-agnostic.
This approach is usually referred to as Multilingual ABSA (ML-ABSA). Models
trained in the same language later used to evaluate them are referred to as
Unilingual ABSA (UL-ABSA) models.

In this paper, we contribute to the ABSC field by proposing new XL-ABSA
and ML-ABSA models inspired by those introduced in [5], which use the state-of-
the-art ABSC LCR-Rot-hop++ method [13] as a backbone. The improvements
that we propose are two-fold. First, we replace the mBERT embedder that the
model currently uses with two versions (base and large) of the XLM-RoBERTa
(XLM-R) embedder, which have been shown to outperform mBERT on numer-
ous cross-lingual benchmarks [3]. This gives us the XLMRy,,50-LCR-Rot-hop++
and XLMR-LCR-Rot-hop++ models.

Moreover, we integrate contrastive learning, proposed for XL-ABSA usage
by [6], into the framework of the multilingual LCR-~Rot-hop++ models. As men-
tioned in [6], contrastive learning works by shortening the distance between so-
called anchor points and positive samples and increasing the distance between
anchor points and negative samples. We utilise contrastive learning for the senti-
ment labels of entire instances, leading to the CLS-XLMRy,,s.-LCR-Rot-hop++
model. This contrasts [6], which uses contrastive learning for the sentiment labels
of tokens. Inspired by the method in [7], we also introduce a novel contrastive
learning approach which uses the concatenated high-level representations from
LCR-Rot-hop++ model for contrastive learning, giving us the CLR-XLMRy,ge-
LCR-Rot-hop++ model. The paper’s source code is found on Github at https:
//github.com/P-Gottschalk/CL- XLMR _base-LCR-Rot-hop-plus-plus.git.

The rest of the paper is constructed as follows. In Sect. 2, an overview of the
current state of the research is provided. Section 3 describes the data utilised
throughout this research. Section 4 then details the proposed methodology. The
results of the investigation can be found in Sect. 5. In Sect. 6 we provide our
research conclusion and suggestions for future work.

2 Related Work

[11], an ABSA survey pre-dating [17], states that research on ABSA falls into
three categories: Aspect Detection (AD), Aspect-Based Sentiment Classification
(ABSC), and joint AD and ABSC. A summary of AD is provided by [12]. Our
investigation focuses on ABSC [2] and its application to a multilingual setting.

As noted by [2], ABSC can generally be categorised into three major cate-
gories: knowledge-based, machine learning, and hybrid models. Knowledge-based
models classify sentiments using pre-determined rules, relations, and lexicalisa-
tions. Machine learning approaches are trained to extract sentiments using a
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training dataset of feature vectors labelled with sentiments. Hybrid approaches
combine knowledge bases and machine learning approaches, aiming to use knowl-
edge bases where a lack of data hinders machine learning approaches.

In our research, we focus on extending a state-of-the-art machine learning
approach. [18] introduces a Left-Center-Right separated neural network with
Rotary attention (LCR-Rot). [14] utilises this model in a two-stage sentiment
analysis algorithm called the Hybrid Approach ABSA (HAABSA) model. A
lexicalised domain ontology is used to predict the sentiment, and LCR-Rot-hop,
which runs multiple iterations of the rotary attention mechanism of LCR-Rot,
is used as a backup model. HAABSA-++ is subsequently introduced by [13].
This new model adds hierarchical attention to LCR-Rot-hop and replaces non-
contextual word embeddings with deep contextual word embeddings, resulting
in LCR-Rot-hop++. [5] then utilises the LCR-Rot-hop++ procedure for cross-
and multilingual ABSC, replacing the previously used BERT embedder [4] by
mBERT, a multilingual version of BERT trained using 104 languages [4].

We address the issue of low-resource languages by considering cross-lingual
sentiment analysis [15] and multilingual sentiment analysis [1]. Both approaches
aim to alleviate the issue of low-resource languages as a target language. Here,
cross-lingual models are strictly trained on one source language and then applied
to different target languages, whilst multilingual models are trained on multiple
languages. It should be noted this distinction is often less pronounced in the
literature, with multilingual sentiment analysis often serving as an umbrella
term for both approaches. We further consider unilingual sentiment analysis for
non-English languages, as in [5]. Since ABSA research is generally unilingual,
this is rarely isolated as a distinct field of research in a multilingual context.

Numerous approaches to XL-ASBA and XL-ABSC are suggested in the lit-
erature. To augment available data, [16] creates an aspect code-switching mech-
anism, which switches aspect terms between instances in the source language
and translated cases in the target language, using a combined dataset to train
the model. [6] uses contrastive learning to achieve a convergence of semantic
spaces across different languages. As described in Sect. 1, this is done by adjust-
ing the distance between anchor points and corresponding positive and negative
samples. Whilst applying contrastive learning to ABSA is increasing in popu-
larity, to the best of our knowledge, [6] is one of the very few investigations
to utilise contrastive learning cross-lingually. Unilingually, [7] presents a token-
based approach to contrastive learning in ABSA. Instead of using probability dis-
tributions of the predicted sentiment within the contrastive loss function [6], [7]
uses aspect-oriented sentiment representations. This gives a more fine-grained
model, as the aspect-oriented sentiment representations contain more informa-
tion than the sentiment probability distribution. [10] proposes a multi-layer net-
work with divided attention to perform XL-ABSC. This method extracts Part-
of-Speech (POS) information—grammatical properties such as nouns, adjectives,
and verbs—and feeds this information to an attention-based convolutional neural
network. [10] further leverages bilingual dictionaries to map converted tokens
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across languages. As previously stated, [5] adapts the LCR-Rot-hop++ method
to both a cross-lingual and a multilingual context.

Multilingual Masking Language Models (MLMs) are also being developed sig-
nificantly. Improving on the widely utilised baseline model mBERT, [3] proposes
XLM-Rpase and XLM-R, two multilingual versions of Facebook’s RoBERTa [8].
Whilst only trained on 100 languages [3], compared to the 104 languages in
mBERT’s training set, XLM-Rpase and XLM-R have a larger vocabulary (250k
tokens), compared to mBERT’s (110k tokens).

3 Data

In this paper we use the SemEval-2016 dataset, developed by [9]. This dataset is
widely employed in ABSA research, and is therefore an appropriate benchmark
for model evaluation.

We use the Task 5, Subtask 1 (SB1) data of the SemEval-2016 dataset. SB1
is focused on sentence-level ABSA and the identification of opinion tuples from
the following three types of information: Aspect Category (AC), Opinion Target
Expression (OTE), and Sentiment Polarity (SP). The dataset covers multiple
topics, including hotels, consumer electronics, and restaurants. For this investi-
gation, we use the restaurant dataset, as this dataset spans the most languages—
English, French, Spanish, Dutch, Turkish, and Russian—out of the available data.
Hence, it is therefore most appropriate for investigations into cross- and multi-
lingual sentiment classification.

Firstly, note that Russian uses the Cpyrillic alphabet and is consequently
ill-suited for investigations into cross- and multi-lingual investigations, as simi-
larities with the other languages are relatively low, so Russian is removed. We
also drop Turkish from our dataset due to its comparatively small test sample.
As seen in [9], the test set is limited to 39 sentences with 144 sentiments. Com-
paratively, the second smallest dataset, English test data, has 90 sentences and
676 expressed sentiments, an almost fivefold increase in sentiments compared to
Turkish.

Further, we clean the data according to the methodology set out by [5].
Specifically, we remove any sentiment labels that are related to hidden aspects,
as the used LCR-Rot-hop++ method introduced by [13], which serves as the
foundation for this research, is not equipped to deal with implicit aspects.

The data files provided are in XML format. An example of a sentence from
the dataset is provided in Fig. 1. Here, we see a specific sentence, with attached
opinions, is provided. Each includes the target phrase of the opinion, the category
of the target phrase, and an attached sentiment polarity.
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<sentence id="1349391:0">
<text>sometimes i get good food and ok service.</text>
<0Opinions>
<0Opinion target="food" category="FOOD#QUALITY" polarity="positive" from=
"21" to="25"/>
<0Opinion target="service" category="SERVICE#GENERAL" polarity="neutral"
from="33" to="40"/>
</0Opinions>
</sentence>

Fig. 1. SemEval-2016 example sentence.

Summary statistics for the dataset are provided in Table 1, including the
frequency of sentiment polarities and their percentage. The data cleaning results
in a loss of up to 35.7% for individual datasets.

Table 1. Summary statistics for our used data. The parentheses indicate the number
of removed polarity labels.

English French Spanish Dutch
Train Test Train Test Train Test Train Test
# Total 1880 (627) 650 (209) 1770 (706) 718 (236) 1937* (783) 731 (341) 1283 (577) 394 (219)
% Positive 70.2 74.3 50.9 50.7 70.6 71.3 59.1 62.2
% Neutral 3.83 20.8 42.5 39.7 24.7 24.1 31.7 31.7
% Negative 26.0 4.92 6.55 9.61 4.60 4.65 9.20 6.09

*A further opinion was removed during embedding due to an unknown polarity label.

4 Methodology

4.1 XLMRpase-LCR-Rot-hop++

The XLMRpase-LCR-Rot-hop++ model is based on the previously proposed
mLCR-Rot-hop++ model introduced by [5]. This model serves as a basis for the
remainder of the investigation, consistently achieving strong results when tested
against state-of-the-art machine learning ABSC models. The model is trained
on English data, embedded using a multilingual embedder. The test set used for
the model is the test set for each language.

We use the two pre-trained multilingual configurations first introduced in
[3]: XLM-Rpase and XLM-R, which sets us apart from the works of [5] and
of [13], which use mBERT and BERT for the respective embeddings. The XLM-
R embedder is the “larger” of the two models, containing approximately twice the
number of parameters, double the number of layers, and 30% hidden states than
XLM-Rpase!- While XLM-R outperforms the XLM-Rypase in [3], it is worth testing
our model with both embedders, as XLM-Ry,se has similar model parameters

! Model sizes, written as {L, H, A, # param} [3]: mBERT = {12, 768, 12, 172M};
XLM-Rpase = {12, 768, 12, 270M}; XLM-R = {24, 1024, 16, 550M}.
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to mBERT. Thereby, it could be more suited to the already existent LCR-Rot-
hop++ framework, as the larger size of XLM-R embeddings may increase the
quantity of data needed to train our model.

The embeddings are subsequently fed into the LCR-Rot-hop++ framework.
This model is a neural network with a rotary attention mechanism, which op-
erates at the sentence level. Each instance fed into the model is split into a
left context, a target phrase, and a right context. The two-step rotary attention
mechanism is then applied: first, the context representations for the left and
right contexts are computed using a target representation from a pooling layer.
We then introduce hierarchical attention to the model by tuning the context
representations with respect to each other. Secondly, we compute target aspect
representations using the right and left context representations found previously.
Finally, the target representations are tuned using hierarchical attention. This
step can be repeated n (here, n = 3) times, where the pooling layer target rep-
resentations are replaced by the computed target representations after these are
first computed. Once this attention mechanism has been repeated a sufficient
number of times, the four context representations are concatenated to form a
representation vector v; for instance i, and the sentiment polarity is computed
using a softmax function. Prediction p; is evaluated using the cross-entropy loss
function:

K

Lop ==Y i xlog (p) + N 1)

1x1 i—1 1Cx1 |C|x1
where K denotes the size of the batch of training opinions, y; the sentiment
vector of z;, p; the prediction vector for instance x;, |C| the number of differ-
ent sentiment categories, and A the Lo regularisation term for the parameter
set ©. We initialise the weights and bias terms using a uniform distribution
and update using stochastic gradient descent with a momentum term. We tune
hyperparameters using a Tree-structured Parzan Estimators (TPE) algorithm.

4.2 Variations on XLMRy,se-LCR-Rot-hop++

The base mLCR-Rot-hop++ is trained on the English dataset from SemEval-
2016. We will use this configuration as a baseline comparison for the XLMRpa5e-
LCR-Rot-hop++ and XLMR-LCR-Rot-hop+-+ models, as it is also trained on
the English datasets and outperforms most XL-ABSC and ML-ABSC models
when tested on the French and Spanish datasets [5]. Moreover, we present fur-
ther adaptations of the XLMRyase-LCR-Rot-hop++ model, which are used as
comparisons to other well-performing models described in [5]. Table 2 shows
the classifications of the variations to the standard XLMRyase-LCR-Rot-hop+-+
which which we propose in this paper.



Applying CL to an Attention Neural Model in a Multilingual Context 7

Table 2. The classification of the models that are proposed.

Model Type
ML-ABSC XL-ABSC UL-ABSC
XLMRbase'LCR-ROt-hOp++ - < N
XLMRbase‘LCR—ROt—hOp—XX—|——|— _ _ <
XLMRbase‘MLCR—ROt—hOp++ X _ _
XLMRpase-LCR-Rot-hop-ACSxx++ . < i

4.2.1 XLMRps5e-LCR-Rot-hop-XX++4. XLMRyase-LCR-Rot-hop-XX++
is a UL-ABSC model. The model is very similar to that of XLMRpase-LCR-Rot-
hop++, with the key distinction being that rather than English, the model is
trained on language XX, where XX € {FR, ES, NL}. We use this model due to
the strong performance of the comparable mLCR-Rot-hop-XX++ in [5].

4.2.2 XLMRpase-MLCR-Rot-hop++. XLMRpase-MLCR-Rot-hop++ is an
ML-ABSA model. For this model, we create one large dataset containing the in-
stances in the training data from all the available languages—English, French,
Spanish, and Dutch—and concatenate them into a single dataset. We then train
the XLMRypase-LCR-Rot-hop++ model on this large dataset and test the model’s
performance separately for each language.

4.2.3 XLMRpase-LCR-Rot-hop-ACSxx+-+. This model utilises the ACS
methodology introduced in [16]. The methodology inflates the size of a dataset
both by translation and through code-switched bilingual sentences, thereby in-
creasing the size of the dataset by an approximate factor of four.

We start with a single instance in English. We then translate this instance
into a target language. To do so, we utilise Alignment-free Label Projection [16],
which aims to obtain pseudo-labeled data in the target language. This involves
marking the aspect terms with special symbols before translating the instance.
Similar to [5], we utilise Google API, which supports over 130 languages.

After the translation, we extract the aspects from the translated instance,
utilising the previously mentioned markings. Note that multiple aspects are not
an issue, as different special symbols are used for each subsequent marking. We
then assign the sentiment labels to the translated aspect, giving us bilingual
data from a singular instance. When running our models, we remove instances
with an empty target following the embedding process.

We subsequently focus on specific Aspect-term Code Switching [16]. This
involves taking the two instances obtained from the above steps, one in English
and one in the target language, and switching the aspects between the two
instances, leaving us with four different instances. These datasets are combined
to form a single large dataset, on which we then train our model. Fig. 2 shows
the structure of the XLMRypase-LCR-Rot-hop-ACSxx++ model.
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Fig. 2. A diagram of the XLMRpase-LCR-Rot-hop-ACSxx++ model.

4.3 CLS-XLMRjpase-LCR-Rot-hop++

Contrastive Learning Sentiment XLMRpase-LCR-Rot-hop++ (CLS-XLMRpage-
LCR-Rot-hop++) fuses the previously defined XLMR-LCR~Rot-hop++ model
and its variations with a contrastive learning approach, adapted from [6]. The
same steps as in the XLMRy,se-LCR-Rot-hop++ model-or for one of its variations—
are carried out to obtain a sentiment prediction vector p;. We combine the cross-
entropy function from Equation 1 with a contrastive loss function and take a
weighted sum of the two loss functions to evaluate the model.

Our approach is distinet from the work [6], which compares the sentiment
labels of tokens, as we instead focus on comparing the sentiment labels of an
entire instance. Let us denote our group of sample instances and the matching
labels found in a given batch by {x;, y; }scr, where set I = {1, ..., K} represents
the indices of a batch of size K. For all CLS models, we set K = 32. We define
the positive set of all indices of the instances with the same label as the instance
with index ¢, such that P, = {j : j € I,y; = y; i # j}. Here, y; € Yien, with Yien
denoting the set of possible sentiments such that Ys., = {POS,NEU,NEG}.

We then define the contrastive loss function for every i € I such that

exp(sim(p;, p;)/T)
L = — 10 : 2
o J;i ngeI/i exp(sim(p;, px)/T) ()

where 7 is the temperature hyperparameter—set to 0.07, as in [6]-and sim(+) is

the cosine similarity function. The contrastive loss function for the entire batch
of size K can then be written as follows:

1
Lers = Z oiloLs, (3)

We combine Equations 1 and 3 to obtain our final model loss function:
L=(1-8)-Lee+pB-Lers (4)

where [ is a hyperparameter used to weight the cross-entropy and sentiment-
level contrastive loss functions.
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4.4 CLR-XLMRpase-LCR-Rot-hop++

As mentioned in Sect. 2, another contrastive learning model is described in
[7], using the aspect oriented sentiment representations. This approach is not
directly applicable to the LCR-Rot-hop++ model structure, which outputs a
concatenated representation vector v to feed into the final MLP layer. To deal
with this incompatibility, we propose a contrastive learning methodology which
directly utilises the high-level sentiment representation vector v in its contrastive
learning function, to decrease the space between representation vectors with the
same label. This model exploits the increased information found in the high-
level opinion vectors, which may lead to more fine-grained contrastive learning.
We call this model Contrastive Learning Representation XLMRy,s.-LCR-Rot-
hop++ (CLR-XLMRpase- LCR-Rot-hop++) model.

As in Sect. 4.1, v; is the concatenated representation vector of the instance
x; in a given batch of size K. Note, however, that due to the significant increase
in the input size of the vectors utilised in contrastive learning, we decrease the
batch size to K = 10 for the sake of computational feasibility, as larger batch
sizes failed to run on the T4 GPU used for this project. We then define the
individual loss function

Lown, = — Z log exp(surn(v.i, Vp)/T) 5)
vyt > ker /i exp(sim(vs, vy /7)

with 7 = 0.07. The batch loss function and the final loss function are the same
as in Equations 3 and 4, with Lcrs, being replaced by Lorg,.

5 Results

For each model described in Sect. 4, we run the model using both the XLM-Rpase
and the XLM-R embedder. We compare these to results we obtain from running
the models first proposed by [5]. We subsequently also show and explain the re-
sults of each model using our two proposed contrastive learning approaches. The
models are evaluated using two performance measures: the accuracy score and
the (macro-)F; score. Whilst the accuracy score is the more interpretable evalu-
ation measure, the macro-F} helps account for potentially unbalanced datasets,
for example by punishing majority classification.

5.1 XLMRpase-LCR-Rot-hop++

Table 3. Results for XLMRpase-LCR-Rot-hop++ and comparable models.

English French Spanish Dutch
Acc. (%) Fi Acc. (%) F1 Acc. (%) Fi Acc. (%) Fi
mLCR-Rot-hop++ 80.6 0.593 625 0.445 73.6 0425 68.8 0.445

XLMRpase-LCR-Rot-hop++ 82.0 0.504 63.4 0.469 76.6 0.462 71.1 0.476
XLMR-LCR-Rot-hop++ 743 0284 50.7 0.224 71.3 0277 622 0.256




10 P. Gottschalk et al.

From Table 3, we notice that, across all languages, the XLMRpa5e-LCR-Rot-
hop++ tends to outperform the other models, both when evaluated on the ac-
curacy and the Fj scores. The improvement in accuracy is consistent but small
in magnitude. It is striking that the accuracy scores found for the XLMR-LCR-
Rot-hop++ model are the same as the percentage of positive instances found in
the test data, as shown in Table 1. Coupled with Fj scores that are significantly
lower than in models with similar accuracy, this strongly indicates that XLMR-
LCR-Rot-hop++ cannot distinguish between different sentiments and reverts to
classifying all instances as positive opinions. This reduced performance may be
due to the model struggling to classify the larger XLM-R embedding vectors. The
higher performance of the mLCR-Rot-hop++ and XLMR},ase-LCR-Rot-hop++
on English language data likely stems from the fact that these models are trained
on English data, whilst all other models are XL-ASBC.

We only apply contrastive learning to mLCR~Rot-hop++ and XLMRy,ase-
LCR-Rot-hop++, as these outperform XLMR-LCR-Rot-hop++.

Table 4. Results for the models with contrastive learning.

English French Spanish Dutch
Acc. (%) Fi Acc. (%) Fi Acc. (%) Fi Acc. (%) I
CLS-mLCR-Rot-hop++ 819 0.660 67.4 0.471 758 0445 71.6 0.476
CLS-XLMRpase-LCR-Rot-hop++  84.5 0.534 62.8 0453 76.6 0.473 73.1 0.497
CLR-mLCR-Rot-hop++ 78.0 0454 625 0445 76.9 0464 70.1 0.454

CLR-XLMRpase-LCR-Rot-hop++4+ 832  0.521 61.0 0453 75.7 0.461 67.5 0.449

From Table 4, we observe that sentiment-level contrastive learning outper-
forms representation-level contrastive learning in terms of accuracy and F} score.
Adding sentiment-level contrastive learning to a model almost always increases
the performance across both measures. In contrast, for the CLR-mLCR-Rot-
hop++ model, the performance improves over the mLCR-Rot-hop++ model
when classifying Dutch and Spanish data, stays constant for French data, and
decreases for English data. Furthermore, CLR-XLMR},,5.-LCR-~Rot-hop++ only
improves relative to XLMRpase-LCR-Rot-hop++4 when tested on the English
data, but underperforms for all other languages. This lacklustre performance
may be explained by the representation-level vectors containing too much infor-
mation to effectively decrease the semantic space, instead increasing the noise
in the model.

5.2 XLMRpase-LCR-Rot-hop-XX++4

Table 5 presents the results of the unilingual models. Note that Table 5 also
includes the results of the XLMR},a5e-LCR-Rot-hop++ model for English, as the
XLMRpase-LCR-Rot-hop++ and XLMRp,se-LCR-Rot-hop-XX++ are identical
when trained and tested on an English dataset.
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Table 5. Results for XLMRpase-LCR-Rot-hop-XX++ and comparable models.

English French Spanish Dutch
Acc. (%) Fi Acc. (%) Fi Acc. (%) Fi Acc. (%) R
mLCR-Rot-hop-XX++ 80.6 0.593 69.8 0.562 80.6 0.519 71.1 0.467
XLMRpase-LCR-Rot-hop-XX++ 82.0 0.504 66.2 048 71.8 0427 83.3 0.566
XLMR-LCR-Rot-hop-XX++ 743 0284 69.5 0.509 713 0.277 622 0.256

In contrast to the results found in Table 3, Table 5 gives no obvious indi-
cation of a best-performing model. We notice that mLCR-~Rot-hop+-+ performs
strongly when applied to French and Spanish data, with this boosted perfor-
mance being particularly noticeable in the Spanish model’s accuracy measures.
However, this performance does not carry over to the Dutch dataset, where
XLMRpase-LCR-Rot-hop-XX++ is the best model by a substantial margin. The
XLMR-LCR-Rot-hop-XX++ model again seems to classify by majority vote,
with an exception for the French model. A possible explanation for this is that
the sentiment polarities are more evenly distributed in the French data, with
50.9% of observations being positive. This indicates the model may perform bet-
ter for the other languages if their training data were more evenly distributed.

Table 6. Results for the models with contrastive learning.

English French Spanish Dutch
Acc. (%) Fi Acc. (%) Fi Acc. (%) Fi Acc. (%) Fu
CLS-mLCR-Rot-hop-XX++ 81.9 0.660 664 0.569 739 0.437 685 0.540
CLS-XLMRpase-LCR-Rot-hop-XX++ 84.5 0.534 68.9 0.506 85.1 0.554 81.2 0.708
CLR-mLCR-Rot-hop-XX++ 78.0 0.454 67.3 0.569 80.9 0.508 74.6 0.543

CLR-XLMRypase-LCR-Rot-hop-XX+4++ 83.2 0.521 50.7 0.224 71.3 0.277 62.2 0.256

Table 6 shows that the CLS-XLMRjpase-LCR-Rot-hop-XX++ model per-
forms best across the board, delivering better results than its counterpart with-
out contrastive learning. The performances of the two contrastive models util-
ising mBERT embedders are more mixed. Whilst the CLS-mLCR-Rot-hop+-+
model mostly has better F; scores than mLCR-~Rot-hop++, its accuracy is rela-
tively worse. From our results, it is unclear whether the CLR-mLCR-Rot-hop++
model improves over mLCR-Rot-hop++. The results in Dutch, French and Span-
ish indicate that the CLR-XLMRpa50-LCR-Rot-hop-XX++ model scores poorly,
again seeming to revert to majority classification. However, unbalanced data may
not cause this phenomenon, as CLR-XLMRy,50-LCR-Rot-hop-XX-++ outper-
forms XLMRpase-LCR-Rot-hop-XX++ in English, despite 70.2% of the English
training data being positive instances.
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5.3 XLMRyase-MLCR-Rot-hop+-+

Table 7. Results for XLMRpase-MLCR-Rot-hop++ and comparable models.

English French Spanish Dutch
Acc. (%) F1 Acc. (%) Fi Acc. (%) Fi Acc. (%) Fi
MLCR-Rot-hop++ 69.4 0.523 614 0513 765 0.556 65.5 0.524
XLMRpase-MLCR-Rot-hop++ 80.5 0497 71.5 0.519 78.8 0.501 76.9 0.523
XLMR-MLCR-Rot-hop++ 79.1 0472 69.6 0.505 758 0.456 70.1 0471

Table 7 shows that the models using XLM-Rja50 and XLM-R embedders are con-
sistently more accurate than MLCR-Rot-hop++. This is especially clear in the
performance of the XLMRypase-MLCR-Rot-hop++. However, evaluating by the
Fy measure tells a starkly different story. Here, the MLCR-Rot-hop++ largely
outperforms the models using XLM-R type embedders. The accuracy differences
between models seem to be more substantive than the F} differences. This is most
clearly seen in the Dutch results, where XLMR}a50-MLCR-Rot-hop++ increases
accuracy over MLCR-Rot-hop++ by 11.4 percentage points, whilst the F; score
of MLCR-Rot-hop++ is only 0.001 higher. The comparitively higher accuracy
when testing on English and Spanish data may be due to the higher fraction of
English and Spanish data in the multilingual training set.

Table 8. Results for the models with contrastive learning.

English French Spanish Dutch
Ace. (%) Fi Acc. (%) Fi Acc. (%) Fi Acc. (%) Fi
CLS-MLCR-Rot-hop++ 80.0 0.583 73.8 0.621 82.1 0.618 78.2 0.604
CLS-XLMRpase-MLCR-Rot-hop++  74.9 0.507 77.6 0.692 84.5 0.718 83.5 0.575
CLR-MLCR-Rot-hop++ 75.1 0.534 71.0 0592 787 0544 744  0.596

CLR-XLMRpase-MLCR-Rot-hop++ 745  0.426 51.3 0404 71.3 0.277 62.2 0.256

In Table 8, we notice that sentiment-level contrastive learning is extremely
effective, regardless of the utilised embedder. The CLS-MLCR-Rot-hop++ out-
performs the corresponding MLCR-Rot-hop++ across all languages in both
measures. Similarly, the CLS-XLMRy.se.-MLCR-Rot-hop++ consistently scores
higher than the original XLMRpase-MLCR-Rot-hop++ model. Representation-
level contrastive learning fails to perform to the same degree. The CLR-MLCR-
Rot-hop++ outperforms the MLCR-Rot-hop-++ model for most measures, albeit
to a lesser degree than the CLS-MLCR-Rot-hop++ model. In contrast, CLR-
XLMRpase-MLCR-Rot-hop++ delivers a subpar performance, with the accuracy
and F; measures suggest that the model reverts to majority classification when
classifying Spanish and Dutch data.
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5.4 XLMRpase-LCR-Rot-hop-ACSxx++

For ACS cross-lingual models, we do not include the English test data for our
ACS methodology, as English is used to generate our translations.

Table 9. Results for XLMRpase-LCR-Rot-hop-ACSxx++ and comparable models.

French Spanish Dutch
Acc. (%) Fi1 Acc. (%) Fi Acc. (%) F
mLCR-Rot-hop-ACSxx++ 66.4 0526 71.0 0.506 614 0.581
XLMRpase-LCR-Rot-hop-ACSxx++ 78.7 0.550 83.5 0.535 68.8 0.467
XLMR-LCR-Rot-hop-ACSxx++ 75.2 0525 81.0 0.522 73.9 0.492

From Table 9 we find that, generally, the XLMRya50-LCR-Rot-hop-ACSxx++
has the highest accuracy and Fj scores. The only exception is in the Dutch lan-
guage test data, where the mLCR-Rot-hop++ model has a substantially higher
F; and the XLMR-LCR-Rot-hop-ACSxx-++ model has the highest accuracy.
Note that the difference in evaluation measures is relatively lower between the
two XLM-R embedding models compared to the other models. This could be
attributable to the “artificial” size increase induced by the ACS methodology,
which approximately quadruples the size of our dataset. Given that the XLM-R
embedder provides larger embeddings than XLM-Ry,,se and mBERT, we hypoth-
esize that the subsequent LCR-Rot-hop++ model requires more training data
to provide a similar—or potentially superior-level of accuracy.

Table 10. Results for the models with contrastive learning.

French Spanish Dutch
Acc. (%) F1 Acc. (%) Fi Acc. (%) F1
CLS-mLCR-Rot-hop-ACSxx++ 65.7 0522 76.5 0.513 69.8 0.585
CLS-XLMRpase-LCR-Rot-hop-ACSxx++ 74.9 0.664 74.8 0.538 86.3 0.586
CLR-mLCR-Rot-hop-ACSxx++ 65.9 0550 75.7 0.518 66.8 0.425

CLR-XLMRpase-LCR-Rot-hop-ACSxx++ 70.2 0.562 80.4 0.516 68.8 0.464

The results in Table 10 indicate that sentiment-level contrastive learning
tends to improve a model’s performance. The CLS-mLCR-Rot-hop-ACSxx++
improves over the mLCR-~-Rot-hop-ACSxx++ across all languages except for
French, whilst the CLS-XLMR}ase-LCR-Rot-hop-ACSxx++ has a consistently
better F; score than the XLMRyase-LCR-Rot-hop-ACSxx++. Representation-
level contrastive learning performs less well, although some improvements over
the mLCR-Rot-hop-ACSxx++ model are noticeable, for example in Spanish.
The CLR-XLMRpase-LCR-Rot-hop-ACSxx++ model is not a substantial im-
provement over the XLMR}, 50-LCR-Rot-hop-ACSxx++ model.
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6 Conclusion

We contribute to the literature by proposing several extensions to the existing
mLCR-~Rot-hop++ model. The original mBERT embedder is exchanged for an
XLM-Rpase or an XLM-R embedder. Furthermore, we integrate sentiment-level
and representation-level contrastive learning into our proposed models.

Replacing the mBERT embedder with an XLM-Ry,,s improves the results
for the majority of the proposed models. The XLM-R embedder achieves rela-
tively poor results, only outperforming the other embedders in a single measure
across all four proposed model variations. This lacklustre performance by the
XLM-R embedder may be caused by the size of the training dataset. As previ-
ously mentioned, XLM-R embeddings are larger than mBERT and XLM-Rpage
embeddings. Hence, it can be reasoned that the LCR-Rot-hop++ method could
require a larger training dataset when fitted on XLM-R embeddings. Indeed, the
performance difference between the XLM-R and XLM-Rya5. embedder decreases
for models trained on comparatively larger datasets.

Across all languages, we notice that models which combine sentiment-level
contrastive learning with mBERT embedders and XLM-Ry,s. embedders tend
to outperform the respective base models. In contrast, representation-level con-
trastive learning only occasionally improves model performance and usually per-
forms worse than sentiment-level contrastive learning. Note here that high-level
opinion representations contain significantly more information than the senti-
ment probability vectors, presumably making it considerably harder to decrease
the sentiment space between these vectors, as the likelihood of these vectors
displaying any similarity is significantly lower. Additionally, the computational
limits to the batch size may also present a hurdle, as larger batches allow more
comparisons to occur. Hence, sentiment-level contrastive learning is currently the
most compatible with the LCR-Rot-hop++ method in a multilingual context.

A prospective research direction is the introduction of POS tagging into the
LCR-Rot-hop++ structure. As explained in [10], POS denotes the grammatical
properties of words in an instance, which likely have a strong connection with
aspect-based sentiments and could augment model performance.
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