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Abstract. Aspect-Based Sentiment Analysis (ABSA) aims to extract
all aspects mentioned in a Web review and classify the aspect category
and sentiment for each aspect. Most existing methods rely on single-task
supervised approaches. However, ABSA tasks are not independent. Fur-
thermore, obtaining labeled data might be difficult or expensive. The
Context-aware Aspect category and Sentiment Classification (CASC)
model addresses this issue by classifying categories and sentiments si-
multaneously using a weakly-supervised approach. However, CASC uses
a simple neural network on the input text that does not exploit any
other information. This paper proposes an extension named Left-Center-
Right+CASC (LCR+CASC), where we implement a sophisticated neural
model that exploits the location of explicit aspect expressions. Besides
aspect categorization and sentiment classification, LCR+CASC also ex-
tracts target expressions from a sentence, which goes beyond CASC’s
abilities. This paper conducts two experiments on restaurant reviews:
extracting target expressions and using annotated data that provide tar-
gets to evaluate the proposed model. Results show that LCR+CASC
outperforms CASC when targets are given, and is able to extract target
expressions to some extent.

Keywords: Aspect-based sentiment analysis · Weakly-supervised learn-
ing · Neural network

1 Introduction

With virtually everyone having access to the social Web, it is not unthinkable
that vast amounts of text could be written every second of every day. It is not
feasible to manually analyze everything. Therefore, many methods in the field of
Natural Language Processing (NLP) have been proposed to extract information
from textual data. One popular subfield, sentiment analysis, is about discover-
ing and understanding opinions from user-generated data [11]. Companies can
improve their products or services after analyzing customer sentiments from re-
views. Furthermore, reviews are also valuable for consumers, as reviews can help
customers with decision-making.



This paper focuses on ABSA, which aims to extract all aspects of a product
or service mentioned in a review and classify the sentiment for each aspect [11].
However, in practice, the task is not strictly defined. Some datasets provide
aspect categories, whereas others provide targets, in which targets are the explicit
aspect expressions found in a sentence. Sentiment classification can also differ
per dataset. For example, the SemEval 2015 [13] and SemEval 2016 [12] datasets
define sentiment as positive, neutral, or negative, while the Yelp 2014 dataset
[14] ranks sentiment from 1 to 5.

In more detail, targets could be described with one or multiple aspect cat-
egories, and optionally with the aspect term(s). Sentiments could be described
with the sentiment polarity and with the opinion term(s). Therefore, ABSA could
be divided into four subtasks: Aspect Term Extraction (ATE), Aspect Category
Detection (ACD), Opinion Term Extraction (OTE), and Aspect Sentiment Clas-
sification (ASC) [19]. ATE extracts explicit aspect expressions in a text, whereas
ACD categorizes the aspects. OTE extracts explicit opinion terms and ASC pre-
dicts the sentiment polarity. The main focus of this paper is ACD/ASC.

Even though ABSA is not confined to a single task, most methods address
only one task. The LCR-Rot-hop++ model [15] exploits the position of a tar-
get for ASC but does not perform ATE or ACD. Some efforts have been made
to create a multi-task model by considering a set of interrelated dependencies.
An example is the Context-aware Aspect category and Sentiment Classification
(CASC) model [9] which is a weakly-supervised approach to ACD and ASC.
CASC follows a three-step process. First, class vocabularies for aspect and sen-
timent categories are constructed using only seed words. Second, unlabeled data
is turned into labeled data using weak supervision. Third, a multi-task neural
model performs ACD and ASC using a simple layer on top of BERT [2].

In this paper, inspired by the work in [9], we propose a weakly-supervised
method for ABSA. The model, called Left-Center-Right+CASC (LCR+CASC),
uses a more sophisticated neural model, LCR-Rot-hop++ [15], in the third step.
Furthermore, LCR-Rot-hop++ was originally constructed to only perform ASC,
whereas we also explore the performance of LCR-Rot-hop++ for ACD. Last, we
modify the second step of CASC to also perform ATE. We evaluate the model us-
ing the SemEval datasets [12,13]. The implementation is based on code provided
in [9] in Python and made freely available at https://github.com/Gogonemnem/
LCR-PLUS-CASC (including aspect/sentiment seed words).

The contributions of this work can be summarized as follows. First, we adapt
the classification layer of the CASC model. The linear layer is replaced by the
sophisticated LCR-Rot-hop++ model. Therefore, positional information is ex-
ploited unlike in the simple linear layer. Second, we explore the performance
of LCR-Rot-hop++ for the ACD task. The original model is only able to per-
form ASC. Therefore, inter-dependent information between ACD and ASC is
exploited by employing multi-task learning. Third, we extend CASC by extract-
ing aspect terms in the second step. Therefore, the model is able to perform
ATE indirectly besides ACD and ASC. Fourth, we analyze the performance of
our model on restaurant reviews. While the results are subpar with the state-of-
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the-art when using the targets detected by the ATE task, when using the gold
targets the proposed method beats the state-of-the-art for both ACD and ASC
(the main focus of this paper).

The rest of the paper is structured as follows. Section 2 provides an overview
of related work. Next, Sect. 3 describes the datasets used for the analysis. Then,
Sect. 4 explains the proposed model. In Sect. 5, the performance of the proposed
model is compared with a state-of-the-art approach. Last, we present concluding
remarks in Sect. 6 together with suggestions for future research.

2 Related Work

This section presents an overview of previous work. First, Subsect. 2.1 gives
an overview of methods that solve single tasks in ABSA. The OTE task is not
discussed as we do not extract opinion expressions in this paper. Then, Subsect.
2.2 shows recent progress in solving multiple subtasks using multi-task learning.

2.1 Single-task ABSA

Aspect Term Extraction. While supervised approaches yield impressive re-
sults, they often require large labeled datasets. The neural models are often
not bottlenecked by their simplicity but rather by the available data [6], which
motivates the latest trend of un- and semi-supervised models. [3] proposes the
Attention-based Aspect Extraction (ABAE) model which de-emphasizes irrel-
evant words through an attention mechanism to improve the coherence of ex-
tracted aspects.

Aspect Category Detection. A big difference between ACD and ATE is that
no explicit aspect expressions have to be in a sentence for ACD. For example,
“It’s expensive and gross” could be categorized in the categories “price” and
“food”, whereas ATE cannot identify what is being reviewed. Semi-supervised
machine learning approaches often consist of first applying ATE and, subse-
quently, ACD on those aspect terms. In other words, sentences without targets
cannot be categorized. First, candidate aspect terms are extracted. Then, those
candidate terms are mapped or clustered to pre-defined aspect categories. An ex-
ample of a semi-supervised ACD method is ABAE. One drawback of this model
is that the learned aspects need to be mapped manually. Therefore, [7] proposes
a teacher-student framework that extends the ABAE model by leveraging seed
words, which eliminates the need to manually assign the learned aspects.

Aspect Sentiment Classification. Although many methods have been pro-
posed for supervised ASC [19], unsupervised ASC has not seen much progress.
Data can be provided in two different ways (aspect term data or category data).
Differences are subtle, but one interesting difference is that positional informa-
tion can be exploited with aspect term data. For example, LCR-Rot [21] exploits
this information by splitting sentences into a left context, a target, and a right
context. Many extensions of the LCR-Rot model have been proposed [15,16].



2.2 Multi-task ABSA

Early studies in unsupervised learning that jointly extract aspects and senti-
ments are mostly based on Latent Dirichlet Allocation (LDA) [1]. [18] proposes
the Joint Aspect/Sentiment (JAS) model which adapts LDA by introducing
sentiment-related variables and integrating sentiment prior knowledge. [20] fur-
ther extracts aspect-specific opinions in a generative process.

Recent studies propose weakly-supervised methods for the compound task.
[22] introduces the Joint Aspect-Sentiment Analysis (JASA) which extends the
ABAE model to learn aspect/sentiment representations. Furthermore, the au-
thors make use of multi-task learning by letting the aspect and sentiment rep-
resentations interact. Therefore, aspect-specific opinions (such as delicious for
the food category) are learned. [6] proposes the Joint Aspect Sentiment (JASen)
model. First, the model learns joint topic embeddings. Then, neural layers pre-
and self-train through embedding-based predictions, which generalize the word-
level discriminative information on unlabeled data.

More recently, [9] proposes the CASC model. The CASC model turns unla-
beled data into noisy labeled data. Then, neural models are trained on the noisy
labeled data. The process of turning unlabeled data into labeled data is only
weakly supervised and requires a small number of seed words per aspect/senti-
ment category, which turns into a full-fledged vocabulary list.

3 Data

To train the proposed model, we use the Yelp dataset [6], which consists of 17,027
unlabeled review sentences. This dataset is chosen as it resides in the restaurant
domain just like our evaluation datasets. Furthermore, the Yelp dataset is much
larger compared to the SemEval datasets [12,13].

The datasets used for evaluation are the SemEval 2015 [13] and SemEval
2016 [12] datasets. Specifically, this paper focuses on restaurant reviews. Each
review consists of at least one sentence, and each sentence contains the sentiment
on at least one aspect. The sentiment can either be positive, neutral, or negative.

First, we remove aspect targets that belong to multiple aspect categories due
to limitations in our model. Similar to [6] and [9], neutral sentiment polarities are
ignored. This is because it is inherently ambiguous to classify neutral sentiment,
making it difficult to bootstrap our algorithm with a set of neutral seed words.
Moreover, aspect categories are more general than the original SemEval datasets
and only contain the categories: food, place, and service. [9] merged the food and
drink SemEval categories into the food category, and the ambiance and location
SemEval categories into the place category. Furthermore, the authors removed
sentences containing multiple aspects. For our first experiment, where we extract
aspect target expressions, we also remove sentences with multiple aspects as our
model can only extract one aspect per sentence. However, we keep sentences
with multiple aspects for the second experiment, where we do not perform ATE.
Another difference compared to [9] is that sentences with implicit targets are
not considered in this research due to limitations in our model.



Table 1 shows the full and processed SemEval datasets. After all pre-processing
steps, datasets that consider multi-labeled data keep around 60% of the data,
whereas singly-labeled data keep less than 30% of the original size.

Table 1. Descriptive statistics of the SemEval 2015 and SemEval 2016 datasets

Dataset Positive Negative Food Place Service Total
Freq. % Freq. % Freq. % Freq. % Freq. % Freq.

SemEval 2015 - Full 454 54% 346 41% 365 43% 305 36% 175 21% 845
SemEval 2016 - Full 611 71% 204 24% 429 50% 275 32% 155 18% 859
SemEval 2015 Single label - Gold 127 59% 90 41% 106 49% 66 30% 45 21% 217
SemEval 2015 Multi label - Gold 298 64% 166 36% 250 54% 115 25% 99 21% 464
SemEval 2016 Single label - Gold 194 80% 48 20% 115 48% 82 34% 45 19% 242
SemEval 2016 Multi label - Gold 450 81% 104 19% 310 56% 139 25% 105 19% 554

4 Methodology

This section discusses the proposed model. First, Subsect. 4.1 formulates the
problem and introduces general notation. Then, Subsect. 4.2 explains the mod-
ified CASC model in detail. Last, Subsect. 4.3 explains the training setup.

4.1 Task Formulation

Let the input be a corpus D = [X1, X2, . . . , Xn] consisting of n unlabeled review
sentences from a domain. Given the set of aspect categories A together with
a small list of seed words La for each aspect category a ∈ A, and sentiment
polarities S along with a small list of seed words Ls for each sentiment polarity
s ∈ S, the objective is to predict a pair of (a, s) for an unseen review sentence.

Because words are difficult to work with, word embeddings are often used.
In this study, Domain Knowledge BERT (DK-BERT) [17] is used. DK-BERT is
a post-trained version of BERT [2] that has been trained on domain data, which
in this case is the restaurant review data provided by Yelp [6].

4.2 Modified CASC

This section describes the CASC model with our modifications in detail. In the
first step, class vocabularies for aspect and sentiment categories are constructed
through contextual embeddings using only seed words. Second, unlabeled data
is turned into labeled data in a weakly-supervised manner using overlap scores.
Third, a simple neural model with a linear layer is replaced with a more sophis-
ticated model to perform ACD and ASC.



Class Vocabulary Construction. Given a set of seed words La corresponding
to aspect a ∈ A, we find the set of sentences Xa ⊂ D that contain any of the seed
words. Then, sentence Xi ∈ Xa is passed through the post-trained DK-BERT
Masked Language Model (DK-BERT MLM). DK-BERT MLM outputs token
replacement probability scores Pi ∈ R|Xi|×|V |, with V being the vocabulary
set used by DK-BERT. However, only replacement candidates of tokens that
represent seed words are considered. Next, those replacement candidates are
passed through a filter to remove stop words and punctuation. Then, the top K
words are selected as replacement candidates Ri based on the probability scores
computed by DK-BERT MLM. All replacement candidates Ri for all Xi ∈ Xa

are collected and added to a frequency table for all a ∈ A. Subsequently, the top
M most frequent words for aspect category a are selected to construct the aspect
vocabulary Va. Last, words that appear in multiple vocabularies are removed in
all sets. A similar procedure is used to construct the sentiment vocabularies Vs

for all s ∈ S.

The intuition behind these steps is that words within a sentence can be
replaced by words that carry a similar contextual meaning. DK-BERT MLM is
trained to provide such replacement candidates, such that the words outputted
will have a similar meaning as the seed words. Furthermore, the vocabulary sets
are disjoint sets to remove ambiguities across aspect and sentiment classes.

Labeled Data Preparation. Following the work from [5], the CASC model
exploits the notion of aspect terms to be nouns and opinion terms to be adjectives
or adverbs. Therefore, nouns, adjectives, and adverbs are extracted using a Part-
of-Speech tagger as potential-aspects and potential-opinions.

First, we find the set of all sentences Xq ⊂ D which contain at least one
potential-aspect and one potential-opinion. Then, sentence Xj ∈ Xq is passed
through the post-trained DK-BERT MLM to find replacement candidates with
probability scores for each potential-aspect. Then, the list Gaspect is created by
taking the topK replacement words based on the probability scores. For sentence
Xj , we find the overlap score Sa of each aspect a ∈ A by counting the common
words between its corresponding aspect vocabulary Va and the list Gaspect. Over-
lap scores for all sentences Xq with all aspect categories A are stored in the score
matrix M ∈ R|Xq|×|A|.

The vocabularies in the previous step are created with DK-BERT, which
is post-trained using a real-world domain-specific dataset. [9] argues that these
datasets are often imbalanced, which could imply that certain vocabularies con-
tain a relatively large number of semantically coherent words compared to other
vocabularies. This difference could affect the variance of the overlap scores per
category. Therefore, the overlap scores per category are standardized.

For sentence Xj , the aspect category is assigned if the standardized score is
the largest and above a pre-defined threshold λ. A similar procedure is applied
for sentiment categories. Next, a labeled dataset DL ⊂ D is constructed.

In contrast to the original CASC model, we also extract aspect terms in this
step. During the aspect labeling process, each aspect label a is assigned an aspect



term for each sentence Xj . When the aspect label is decided, the corresponding
aspect term is assigned to the sentence. There are many methods for assigning
aspect target expressions. An approach could be to identify noun chunks [4] and
select chunks with the highest scores. Noun chunk scores can be computed in
various ways. One example is to take the average of the overlap score among all
nouns in the noun chunk. CASC uses a so-called average score labeler, whereas
our proposed model uses a maximum score labeler. An average score labeler
computes the average overlap score for all potential-aspects in a sentence, per
aspect category. A maximum score labeler labels sentences based on the aspect
target expression. Therefore, the labeling is done by using the potential-aspect
(which becomes the aspect target expression) that has the highest overlap score
in a sentence.

Joint Neural Network for ACD and ASC. In the original CASC model,
the authors used a simple yet effective neural model to classify aspects and
sentiments. The authors make use of DK-BERT embeddings. We refer to [9] for
additional information about the original joint neural network.

However, aspect term positions are not exploited in this neural model. There-
fore, we suggest using the LCR-Rot-hop++ model [15]. We propose the double
task variant of the model to exploit inter-dependent information between ACD
and ASC. This sophisticated model exploits positional information by using
three Bidirectional Long Short Term Memory (BiLSTM) layers. Furthermore,
two types of attention mechanisms are implemented in an iterative manner to
exploit local and global contexts. The LCR-Rot model [21] was originally built
for ASC. Therefore, a slight modification is made to also perform ACD.

We apply DK-BERT to generate embeddings. Then, sentence Xl is split
into a left context, a target, and a right context of lengths L, T , and R, re-
spectively. Moreover, the contexts are represented as X l

l =
(
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1, . . . , w
l
L

)
, Xt

l =

(wt
1, . . . , w

t
T ), and Xr

l = (wr
1, . . . , w

r
R), where wj

i represents the ith word in
context j. To ensure that each context will have the same number of tokens,
padding tokens [PAD] are added if the context lacks tokens. Furthermore, con-
texts are truncated if there are too many tokens. Then, [CLS] token is added at
the beginning and separation tokens [SEP ] are added between the contexts and
target to easily find the token length of each context. Note that the special to-
kens [CLS] and [SEP ] are ignored after embedding. Therefore, the embeddings
of a sentence are expressed as H l ∈ RL×d, Ht ∈ RT×d, and Hr ∈ RR×d. Next,
each embedding part feeds separate BiLSTM layers which produce hidden states
Bl =

(
bl1, . . . , b

l
L

)
, Bt = (bt1, . . . , b

t
T ), and Br = (br1, . . . , b

r
R).

Then, a three-step attention mechanism is iteratively applied over the three
hidden states. The first and second attention mechanisms are rotary attention
mechanisms that exploit local information, whereas the third is a hierarchical
attention mechanism that exploits global information. First, new left and right
context representations are generated by using old target information. Second,
two new target representations are generated by using the context representa-
tions produced in the first step. Third, the representations are updated based on



relative importance separately for context and target. The mathematical details
are presented below.

First, an attention mechanism is applied. The new context representations
are weighted sums of the hidden states of each context:

rc = Bc⊤ × αc, (1)

αc = softmax
(
f
(
Bc, rtc

))
, (2)

f
(
Bc, rtc

)
= tanh

(
Bc⊤ ×W c × rtc + bc × 1

)
, (3)

where c denotes the left or right context {l, r} consisting of C words. Note that
C equals either L or R. Furthermore, Bc ∈ RC×2d corresponds to the hidden
states for context c, and αc ∈ RC denotes the attention weights assigned to each
hidden state. Then, tc denotes the left or right target {tl, tr} consisting of T
words. Furthermore, rtc ∈ R2d corresponds to the target representation of target
side c, and 1 ∈ RC denotes a vector of ones. Then, the trainable parameters are
the weight matrix W c ∈ R2d×2d and the bias scalar bc ∈ R. Unfortunately, the
first iteration has no old target information. Therefore, rtc ∈ R2d is extracted
using the average pooling operator. In other iterations, target representations
rtc , which are computed in step two, are used.

Second, another attention mechanism is applied to generate the left and right
target representations. Two target representations are generated to exploit con-
text representations separately. Thus, the left target representation uses the left
context, and the right target representation the right context. The computations
are similar to Equation 1, 2, and 3. However, the c’s and tc’s are swapped in this
step, thus changing dimensions containing size C to T , and vice versa.

Third, a hierarchical attention mechanism is applied to exploit global in-
formation. Intuitively, the mechanism decides whether the left or right context
provides more relevant information about the target. The left and right contexts
are scaled with respect to each other. Furthermore, the left and right targets
are scaled as well, but separately from the contexts. The computations are as
follows:

r̂p = αp⊤ × I2 × rp, (4)

αp = softmax (f (rp)) , (5)

f (rp) = tanh (rp ×W p + bp × 1), (6)

where rp ∈ R2×2d denotes the vertically concatenated contexts [rl; rr] or targets
[rtl ; rtr ] decided by p. I2 ∈ R2×2 denotes the identity matrix. Then, αp ∈ R2 de-
notes the attention weight vector assigned to each representation. The trainable
parameters are the weight vector W p ∈ R2d and the bias scalar bp ∈ R.

Last, all four representation vectors are horizontally concatenated and feed
a dense layer with a softmax function and bias vector for sentiment prediction.
However, the original model does not classify aspect categories. Therefore, we



extend the LCR-Rot-hop++ model. Modifying this neural model is inspired by
the CASC model. Instead of passing the sequence representation through a single
layer, two dense layers are instantiated for the ACD and ASC tasks, respectively.
The ASC branch is the same as before. The difference for the ACD task is that
its layer has its own weight matrix and bias vector.

4.3 Training Setup

This section discusses the training setup of the neural model. First, we present
the loss function. Then, we discuss the hyperparameters and how we optimize
them.

Training Procedure. The model minimizes a General Cross Entropy (GCE)
function, which exploits both the Categorical Cross Entropy (CCE) and Mean
Absolute Error (MAE). CCE converges quickly but overfits to noise, while MAE
is robust to noise but converges slowly. It has been shown that GCE performs
better than CCE [9], as the dataset is semi-automatically labeled which intro-
duces noise while annotating. In short, GCE de-emphasizes difficult samples
compared to CCE but accentuates them more than MAE during training. The
unregularized overall loss L is the sum of the aspect category classification loss
La and sentiment polarity classification loss Ls, which are defined as follows:

La = (1− âqya
)/q, (7)

Ls = (1− ŝqys
)/q, (8)

where âya
and ŝys

denote the predicted probabilities against the true aspect
and sentiment labels, respectively, and q ∈ (0, 1) is a hyperparameter. The loss
function becomes the MAE function when q = 1, and the CCE function when
q = 0. Differently than CASC, L1 and L2 regularizations are applied to avoid
overfitting. The regularization is deemed necessary, as the neural model is more
sophisticated.

For loss minimization, weight matrices described in Subsect. 4.2 are randomly
initialized using a uniform distribution U(−0.1, 0.1). Furthermore, biases are
initialized to zero. The rest of the parameters are set using the default settings
provided by TensorFlow. The algorithm used to minimize the loss is Adam [8].

Hyperparameter Optimization. The hyperparameters are optimized by the
Hyperband algorithm [10]. Furthermore, hyperparameters that are not involved
in the neural model and not discussed in this section are taken from CASC [9].

We optimize eight hyperparameters. Table 2 shows the hyperparameters for
LCR+CASC, LCR+CASC-CON, and LCR+CASC+ASYNC (the last two mod-
els are discussed in the next section). Most hyperparameters vary across different
models and do not display interesting results. However, we notice that the num-
ber of hops is always higher than the three hops given in [15]. Furthermore, the



values for q are relatively low, meaning that the loss function is closer to CCE
than MAE.

Table 2. Optimized hyperparameters of various models

Hyperparameter LCR+CASC LCR+CASC-CON LCR+CASC+ASYNC

L1 10−7 0.0001 10−5
L2 10−7 0.001 10−7
Learning Rate 0.001 0.001 0.01
Hops 6 8 8
q 0.1 0.3 0.3
BiLSTM units 550 650 700
Dropout rate 1 0.6 0.3 0.5
Dropout rate 2 0.3 0.2 0.3

5 Results

We discuss the results of the proposed model in this section. First, Subsect. 5.1
discusses the evaluation measures and gives the baseline models that are used
for comparison. Then, we present the datasets in Subsect. 5.2. Last, Subsect. 5.3
compares the results of the proposed model and baseline models.

5.1 Performance Measures & Baseline Models

We evaluate the predictive performance of the models using the out-of-sample
accuracy and macro-F1 scores. This paper compares the novel model against
versions of the CASC model. The considered baseline models are:
CASC [9]: The model framework presented in [9] using the post-trained DK-
BERT MLM and a small set of seed words to prepare labeled data.
CASC+MAX : We use the score that corresponds to the word that has the max-
imum score amongst all potential-aspects and potential-opinions in a sentence.
Sentences are labeled according to the maximum score, whereas the CASC model
uses the average.
CASC+MAX+ATE : An extension of CASC+MAX, where we also extract the
aspect target expressions. Similar to the LCR+CASC model, this model intro-
duces [SEP] tokens before and after target expressions.
LCR+CASC : Our model framework builds on the CASC+MAX+ATE model.
We replace the simple linear neural model with the sophisticated LCR-Rot-
hop++ [15] neural model.
LCR+CASC-DL: We omit the neural model altogether and use the labeler de-
scribed in labeled data preparation. We name this method LCR+CASC-DL but
it is equivalent to CASC+MAX+ATE-DL.



LCR+CASC-CON : We remove the left- and right-context-aware BiLSTM out-
put in the last prediction layer. We only use the concatenated target represen-
tations {rtl , rtr}.
LCR+CASC+ASYNC : We create separate neural layers for each subtask. There-
fore, each task is asynchronously solved, whereas the LCR+CASC model shares
all neural layers (besides the classification head) for the aspect and sentiment
classification tasks.
[MODEL]+ATE (GOLD): These types of models use the gold aspect target an-
notations provided by the SemEval datasets, instead of extracting the aspect
target expressions. Note that the noisy training data is still generated using a
labeler.

5.2 Processed Data

The Yelp dataset is not labeled and the resulting datasets may differ per score
calculator. Furthermore, the SemEval datasets are also smaller as the aspect
target cannot always be found by the labeler. Table 3 shows the datasets that
are used for training (Yelp) and evaluation (SemEval). Note that the Yelp dataset
differs between the average and maximum score labeler.

Table 3. Descriptive statistics of the aspect classes and the polarities of the Yelp and
SemEval datasets

Dataset Postive Negative Food Place Service Total
Freq. % Freq. % Freq. % Freq. % Freq. % Freq.

Yelp CASC 1543 69% 706 31% 881 39% 781 35% 587 26% 2249
Yelp Max 1744 74% 601 26% 689 29% 920 39% 736 31% 2345
SemEval 2015 82 46% 96 54% 83 47% 55 31% 40 22% 178
SemEval 2016 159 78% 46 22% 88 43% 73 36% 44 21% 205

5.3 Performance Results

In this section, we compare the different models described in Subsect. 5.1. First,
we use the data with no gold target annotations. Then, we use test data where
sentences have been split into the correct contexts using gold target annotations.

From Table 4 we notice that CASC outperforms all methods when it comes
to ACD. Furthermore, from Table 5 we observe that it performs relatively well
for ASC. CASC beats LCR+CASC by a significant amount at ACD, whereas
the performance comparison for ASC is more ambiguous. CASC performs worse
at ASC for the 2016 dataset, while LCR+CASC performs worse than all neural
models for the 2015 dataset for ASC. To understand the effectiveness of different
novel components, we perform an ablation study. We remove or add components
as is explained in Subsect. 5.1. The results are shown in Table 4 for aspect
classification and in Table 5 for sentiment detection.



Table 4. Performance of various methods on aspect classification

Aspect 2015 2016
Model Acc. Macro-F1 Acc. Macro-F1

CASC 85.71 85.43 86.78 86.93
CASC+MAX 64.52 63.51 65.70 64.46
CASC+MAX+ATE 83.71 83.14 83.90 83.87
LCR+CASC-DL 65.90 65.41 69.42 68.64
LCR+CASC-CON 79.78 79.58 83.41 83.43
LCR+CASC+ASYNC 80.90 80.43 82.93 83.12
LCR+CASC 80.90 80.44 82.44 82.52

Table 5. Performance of various methods on sentiment classification

Sentiment 2015 2016
Model Acc. Macro-F1 Acc. Macro-F1

CASC 90.32 90.20 87.19 82.92
CASC+MAX 92.17 92.01 88.84 84.41
CASC+MAX+ATE 89.89 89.84 89.76 86.56
LCR+CASC-DL 68.66 68.37 57.44 55.29
LCR+CASC-CON 88.76 88.65 93.17 90.61
LCR+CASC+ASYNC 89.89 89.78 91.22 87.93
LCR+CASC 88.20 88.07 94.15 91.84

First, the maximum score labeler drops CASC’s performance for ACD. Fur-
thermore, CASC+MAX loses over 20 percentage points for ACD. Interestingly,
ASC is more robust than ACD as the neural network is able to find sentiments
well. Second, CASC+MAX+ATE produces good results, even though the maxi-
mum score labeler produces poor results. However, it performs worse than CASC
in most situations since it only beats CASC in the 2016 dataset for ASC. Com-
bined with the previous results, it indicates that the neural model is able to pick
up some patterns if the location of the aspect is provided. Even with imper-
fect target location information, the performance is close to the performance of
CASC. Third, LCR+CASC-CON beats LCR+CASC in some cases. One possi-
ble reason could be that the two target representations capture the most relevant
information of the contexts. Fourth, LCR+CASC+ASYNC produces similar re-
sults compared to LCR+CASC for ACD, whereas this is not the case for ASC
for the 2016 dataset.

We now consider data with gold annotations. Table 6 and Table 7 show the
results for ACD and ASC, respectively. We investigate this to understand if
studying more complex models is worth it. The maximum score labeler might
cause poor results for LCR+CASC, indicating that ATE in this model must im-
prove. We investigate the potential of complex models by not performing ATE for
the evaluation data. Note that sentences in the training data are still annotated
using the maximum score labeler and remain unchanged. Because we use gold
annotations, sentences in the test data can contain multiple aspects. Therefore,
we also investigate the performance of sentences with multiple aspects.



Table 6. Performance of various methods on aspect classification with gold data

Aspect Single Aspect Multiple Aspects
2015 2016 2015 2016

Model Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

CASC+ATE (GOLD) 86.18 86.18 86.36 85.96 75.00 73.93 79.06 77.00
CASC+MAX+ATE (GOLD) 84.33 83.73 89.67 88.90 85.56 85.03 85.56 84.86
LCR+CASC-CON+ATE (GOLD) 90.78 91.27 94.21 94.80 92.03 91.80 93.14 92.97
LCR+CASC+ASYNC+ATE (GOLD) 94.47 94.71 95.87 95.17 94.83 94.52 94.77 94.05
LCR+CASC+ATE (GOLD) 92.63 93.28 94.63 94.96 93.53 93.36 94.22 94.10

Table 7. Performance of various methods on sentiment classification with gold data

Sentiment Single Aspect Multiple Aspects
2015 2016 2015 2016

Model Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1 Acc. Macro-F1

CASC+ATE (GOLD) 92.63 92.53 85.95 81.37 87.28 86.36 88.81 83.61
CASC+MAX+ATE (GOLD) 89.40 88.99 88.43 83.31 87.50 86.13 90.07 84.24
LCR+CASC-CON+ATE (GOLD) 86.64 86.17 91.74 87.58 84.70 83.14 92.06 87.44
LCR+CASC+ASYNC+ATE (GOLD) 89.40 89.07 91.32 87.40 85.99 84.61 91.88 87.20
LCR+CASC+ATE (GOLD) 89.86 89.36 93.80 90.33 87.93 86.35 92.96 88.33

First, CASC drops in performance when including multiple aspects while
LCR+CASC does not. It seems that more sophisticated models perform bet-
ter at ACD. Second, by using the maximum score labeler, performance is on
par with singly-labeled sentences. Furthermore, the performance decrease from
single- to multi-labeled data for ACD is larger compared to ASC. Third, un-
like before, LCR+CASC-CON performs worse than LCR+CASC, indicating
that the left and right contexts are useful only when the target expression is
correct. The performance loss is less for ACD than for ASC as ACD likely de-
pends less on the context. Sentiments, however, depend more on context. Fourth,
LCR+CASC+ASYNC performs the best in all but one situation for ACD, indi-
cating that separate neural layers benefit the model. However, this model per-
forms worse compared to LCR+CASC for ASC.

In short, LCR+CASC outperforms CASC in most situations when the aspect
target expression is given for test data, even with the noisy training labels gen-
erated by the maximum score labeler. Compared to CASC, multi-labeled data
see much improvement as the sophisticated neural model performs better with
multi-labeled data.

6 Conclusion

In this paper, we introduced a novel model by combining the state-of-the-art
weakly-supervised CASC [9] and supervised LCR-Rot-hop++ [15] models to
classify aspect categories and sentiment polarities. The models were modified
to work with each other. First, a new scoring method had to be constructed to
extract the aspect target expression. Second, the sophisticated LCR-Rot-hop++
had to be altered to also solve the ACD task.

We found that the LCR+CASC model performed subpar compared to the
CASC model when ATE was also performed. Results showed that the LCR-Rot-



hop++ model can be extended to a joint neural model to solve the ACD and
ASC tasks as the LCR+CASC model is able to detect which aspect category
belongs to a target. The weakness of the model is ATE. Labeling and extracting a
word with the highest aspect score, rather than labeling the sentence based on the
average score, produced modest results. However, the LCR+CASC outperformed
CASC in most situations when target locations were correctly provided in the
test data. Specifically, LCR+CASC outperformed CASC significantly when it
comes to multi-labeled data. Moreover, the components of the neural model
seemed to have a positive effect on the performance. Thus, our proposed model
is able to exploit target location information as it outperformed CASC when
using high-quality target data.

This research focused on the restaurant domain. Although CASC has seen
great results in different domains, LCR+CASC’s performance in different do-
mains is not yet known. This is left as a suggestion for future research. Further-
more, results showed that the ATE part of the labeled data preparation step
produced weak performance. Rather than extracting words that have the high-
est score in a sentence, future research could examine the extraction of noun
phrases or more advanced scoring methods. Noun phrases seem promising as
it is not as broad as taking the average over the whole sentence, but not too
fine-grained as extracting single words.
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