
Augmenting LOD-Based Recommender Systems
Using Graph Centrality Measures

Bart van Rossum
vanrossum@ese.eur.nl

Flavius Frasincar
frasincar@ese.eur.nl

Erasmus University Rotterdam
the Netherlands

mailto:donatas.meskele@gmail.com
mailto:frasincar@ese.eur.nl

Contents

Motivation

Methodology

Evaluation

Concluding Remarks

References

Motivation

I Paradox of Choice: users are overloaded with items to choose
from (Schwartz, 2004)

I Recommender systems: present users only with relevant
items
I Content-based: recommend similar items to what users have

previously liked
I Collaborative filtering: recommended items previously liked by

similar users
I Hybrid: mix of content-based and collaborative filtering

(state-of-the-art results) [our focus here]

I LOD-based recommenders: a specific class of hybrid
recommenders that represent item information using Linked
Open Data (LOD)
I Build a knowledge graph linking all users, items, and relevant

semantic information from LOD
I Use path-based features (paths are from users to items)
I The number of paths between a user and an item determine

the likelihood that this item will be recommended to the user

Motivation

I Current LOD-based recommenders do not exploit all relevant
graph information

I In previous work graph-based information has been used as
additional item features

Main Ideas
I Unify graph-based features with the successful path-based ones
I Normalize path-based features based on the centrality of the nodes

along each path
I Paths between a user and an item along nodes with a high

popularity in the network are unlikely to capture the unique
preferences of this user, and should therefore contribute less to the
score of this item

I A user liking “The Matrix”, for example, tells us more about the
popularity of this movie then about the particular user

I We measure the popularity of nodes by graph centrality measures

I Potential benefits:
I Accurate (specific) recommendations
I Diverse recommendations

Related Work

I LOD-based recommender systems have been previously
proposed and various learning-to-rank algorithms have been
compared on different datasets (Noia et al., 2016)
I As we focus on graph-based normalization, we employ only

random forests (due to their previous good performance) and
limit the number of possible paths by using a network
schema (only certain paths are allowed)

I Our approach resembles the most the one from (Wever and
Frasincar, 2017), which pioneered the use of network schemas
in path-based recommender systems
I While we employ the same evaluation strategy, our focus is on

feature normalization instead of feature selection

I Graph centrality measures have been previously used as
additional item features (Musto et al., 2017)
I We aim to include graph centrality measures directly into the

used path measures, thus exploiting the interaction effects
between these

Methodology

I As in related work the evaluation is done on the MovieLens

1M dataset (movie domain)
I The methodology comprises four parts:

1. Information Network: models the knowledge about the
movie domain and user preferences

2. Meta Path: represents the schema of the information network
paths

3. Path Normalization: normalizes the path features using
graph centrality measures

4. Learning Algorithm: trains a model for ranking items

Information Network

I An information network is defined as an undirected graph
G = (V ,A), where V represents the set of vertices, or nodes,
in the network, and A the set of edges between them.

I In our case, V = U ∪ I ∪ E , where
I U is the set of users
I I is the set of items (movies)
I E is the set of entities (all actors, directors, subjects, and

entities otherwise linked to the movies)

I G is undirected as each edge a ∈ A is assumed to be
symmetric (we are mainly interested in the association
between two nodes rather than any causal links between them)

I We define the type function t : A→ T representing that each
edge a is of type t(a) ∈ T

Information Network

The set of edge-types T :

Connected sets Type k

I & U likes 1
I & E starring 2
I & E director 3
I & E cinematography 4
I & E producer 5
I & E editing 6
I & E writer 7
I & E musicComposer 8
I & E narrator 9
I & E basedOn 10
I & E subject 11

Information Network
A small example of an information network:

I Uses only the first three types of edges (likes, starring,
and director)

I Displays the way in which the sets U (users), I (movies), and
E (directors and actors) are linked

Meta Path

I A meta path P of length l is be defined as:

P = V1
t1−→ V2

t2−→ . . .
tl−1−−→ Vl (1)

where Vi ⊆ V , i = 1, . . . , l and ti ∈ T , i = 1, . . . , l − 1

I A meta path instance p of P can be defined as a sequence
of nodes and edges (v1, a1, v2, a2, . . . , al−1, vl) where
vi ∈ Vi , i = 1, . . . , l and t(ai) = ti , i = 1, . . . , l − 1

I We focus on symmetric meta paths of length l = 3 between

items, i.e., all meta paths of the type P = V1
t−→ V2

t−→ V3 for
which V1 = V3 = I

I We refer to P(k), k = 1, . . . , |T |, as the meta path with t
equal to the k-th element of T

I For example P(3) represents the meta path

I
director−−−−→ Director

director−−−−→ I

Meta Path

I For each user-item pair (u, i), u ∈ U, i ∈ I , we construct a
feature vector xu,i ∈ R|T | as follows:

xu,i (k) =
∑
j∈I+u

#pathi ,j(k), k = 1, . . . , |T | (2)

where
I I+u is the set of items liked by user u
I #pathi,j(k) indicates the number of instances of P(k) linking i

and j

Intuition
Large values in the vector xu,i mean many meta path instances
between the user u and the item i , so we expect the user u to be
interested in item i

Meta Path

A small example of the path-finding procedure:

i k Path

Interstellar 1 Interstellar
likedBy−−−−−→ Quentin

likes−−−→ The Prestige

Interstellar 1 Interstellar
likedBy−−−−−→ Quentin

likes−−−→ Inception

Interstellar 2 Interstellar
starring−−−−−→ Michael Caine

starringIn−−−−−−−→ The Prestige

Interstellar 3 Interstellar
directedBy−−−−−−−→ Christopher Nolan

directing−−−−−−→ The Prestige

Spider Man 1 Spider Man
likedBy−−−−−→ Steven

likes−−−→ The Prestige

Spider Man 2 Spider Man
starring−−−−−→ Ron Perkins

starringIn−−−−−−−→ The Prestige

I We evaluate xu,i for u = Martin and i ∈ {Interstellar, Spider
Man}

I I+Martin = {The Prestige, Inception}
I xMartin,Interstellar = 〈2, 1, 1〉 and xMartin,Spider Man = 〈1, 1, 0〉

(Martin seems to prefer Interstellar over Spider Man)

Path Normalization

I The centrality degree of a node v ∈ V with respect to meta
path P is defined as:

CD(v ,P) = deg(v ,P) (3)

where deg(v ,P) is the degree of node v in a network where
only meta paths of type P are allowed

I For example CD(i ,P(1)) with i ∈ I would measure the
number of users that have liked item i and CD(i ,P(2)) would
reflect the number of actors starring in i

Idea
The path between a user and an item should be inversely weighted
by the relative centrality degree of the nodes along that path

I We only consider edges of one specific type, depending on the
meta path of interest

Path Normalization

I We propose two normalizations:
I Compound: based on products
I Mean: based on averages (less sensitive to outliers)

I For the compound normalization the user-item feature xcu,i is
defined as:

xcu,i (k) =
∑
j∈I+u

#path∗i ,j(k), k = 1, . . . , |T | (4)

where

#path∗i,j(k) =
∑

<i,s,j>∈P(k)

CD(i ,P(k))

CD(i ,P(k))
× CD(s,P(k))

CD(s,P(k))
× CD(j ,P(k))

CD(j ,P(k))

in which CD(i ,P(k)) is the average of CD taken over all
nodes in the network of the same type as i with respect to
meta path P(k)

Path Normalization

I For the mean normalization we have:

#path∗i,j(k) =
∑

<i,s,j>∈P(k)

1

3

(
CD(i ,P(k))

CD(i ,P(k))
+

CD(s,P(k))

CD(s,P(k))
+

CD(j ,P(k))

CD(j ,P(k))

)
I Each path will contribute to the count with a value possibly

bigger or smaller than 1
I For example, let us normalize two paths using the starring

edge (< i , s, p >∈ P(2)):

I Interstellar
starring−−−−−→ Michael Caine

starringIn−−−−−−−→ The Prestige

I Spider Man
starring−−−−−→ Ron Perkins

starringIn−−−−−−−→ The Prestige

I Let us also assume, in this example, that the average node
degrees are 2 for all node types (for the considered edges of
type 2)

Path Normalization

The results of the two normalizations are:

Node CD CD/CD Node CD CD/CD

Interstellar 1 2 Spider Man 1 2
Michael Caine 3 2/3 Ron Perkins 2 1
The Prestige 2 1 The Prestige 2 1

Compound: 2× 2/3× 1 = 4/3 Compound: 2× 1× 1 = 2
Mean: 1/3× (2 + 2/3 + 1) = 11/9 Mean: 1/3× (2 + 1 + 1) = 4/3

I Both paths get a score above 1 due to the fact that (in this
example) they star fewer actors than an average movie

I The path via Ron Perkins receives a higher value than the one
via the more popular actor Michael Caine

I The compounding procedure is more sensitive (to popularity)
than the mean one: in both cases, it yields scores which in
magnitude deviate the most from 1

Learning Algorithm
I We need to learn a scoring function f : R|T | → [0, 1] which

converts each user-item feature vector into a score indicating
the expected relevance of the item to the user

I For each item i rated ru,i by user u, we want that
f (xu,i) ≈ ru,i , where ru,i is 1 if u likes i , and 0 otherwise

I We learn the function f on the training set
TS =

⋃
u∈U{〈xu,i , ru,i 〉 : i ∈ I+u ∪ I−u }, where

I I+u is the set of items liked by user u
I I−u is the set of items disliked by u

I After we learn the function f we rank items from the test set
based on their score and recommend the top-N to the user

I We use Random Forest as the algorithm due to its good
performance on the learning-to-rank task (Chapelle and
Chang, 2011)
I 100 Classification and Regression Trees (CART) an in (Wever

and Frasincar, 2017)
I w =

√
|T | randomly selected variables per tree node an

in (Wever and Frasincar, 2017)

Evaluation Data

I We use MovieLens 1M dataset, containing 1,000,209 1-5-star
ratings of 3,883 movies by 6,040 users

I We map each movie in the 1M dataset to a unique DBpedia

URI and obtain 3,196 movies (set I)

I The set of users U is constructed by retaining only those users
that have positively rated at least 15 items in I (to ensure
there is sufficient information on each remaining user)

I We define a positive rating to be a 5-star one in order to
remove any possible ambiguity w.r.t. liked movies

I We obtain a total of 3,854 users (set U) and 193,255 ratings

I A total of 13,649 unique entities (set E) and corresponding
edges (set A) are obtained from DBpedia that are linked to
our movies using the procedure from (Wever and Frasincar,
2017)

Evaluation Protocol

Test Set
I For each user, we select 10 liked items that are used to

construct the test set for this user
I For each positively rated item in this test set, we add 100

randomly selected items which the user did not like
I Note that these can also be items that the user has not rated

at all, for which we assume he does not like them

I We have 10 batches of 101 items for each individual user

Training Set

I The training set contains the remaining positively rated
movies of each user, up to a maximum of m item

I The training set per user is augmented with 2m randomly
selected irrelevant items

I We evaluate two sizes of training profiles m = 5 and m = 50

Evaluation Protocol
I We learn the model using the Random Forest on the training

set
I We evaluate the model using the test set

I The items within each batch are ranked based on their
predictions from the ranking function

I The top-N items are then recommended to the user, after
which the recall@N measure is computed as

recall@N =
#relevant items recommended

#relevant items in batch
. (5)

I Since we assume there is only one relevant item per batch, this
simplifies to:

recall@N = 1relevant item in top−N (6)

I Note that this is a lower bound on the actual accuracy of the
system, as not all unliked items are irrelevant to the user

I We average recall@N over the 10 batches per user and then for
all users

Evaluation Results
Recall@N for all movies:

m = 5 m = 50

N Standard Compound Mean Standard Compound Mean

5 0.483 0.223 0.488 0.534 0.258 0.532
10 0.692 0.336 0.701 0.718 0.391 0.707
15 0.807 0.422 0.813 0.799 0.511 0.809
20 0.872 0.480 0.882 0.876 0.612 0.872
25 0.917 0.546 0.922 0.918 0.697 0.915

I The accuracy is increasing in N, as the set of top items is larger, the
chances of finding a relevant item increase

I The marginal effect is decreasing in N, indicating that the relevant item is
unlikely to be positioned in the tail of the ranking

I A bigger training set (m = 50) increases the accuracy of the
recommender system, as the random forest is better able to extract
relevant patterns when trained on a bigger sample

I The compounded normalization never outperforms the standard one,
while the mean normalization scores similarly to the standard procedure

Evaluation Results
Recall@N for long tail movies [We remove the most popular items
(jointly accounting for 33% of the ratings) from the test set as in
(Cremonesi et al., 2010)]:

m = 5 m = 50

N Standard Compound Mean Standard Compound Mean

5 0.387 0.257 0.436 0.449 0.329 0.510
10 0.619 0.390 0.647 0.667 0.505 0.728
15 0.766 0.499 0.787 0.795 0.638 0.848
20 0.857 0.595 0.876 0.860 0.741 0.915
25 0.911 0.675 0.921 0.915 0.819 0.953

I Generally lower accuracy, which can be attributed to the omission of
popular items

I As before the mean normalization is better than the compound one

I The compound normalization benefits the most from this setup

I The mean normalization clearly outperforms the standard one, as we
propose more specific desirable items (contributing to diversity)

Concluding Remarks

Conclusion
I We have augmented LOD-based recommenders with graph

centrality measures (to reduce the influence of popular items)

I We have proposed two path normalizations: compound and
average (compound is more sensitive to popular items)

I Using the MovieLens 1M dataset the average normalization
provides better accuracy for long tail items

Future Work
I Apply the proposed method to other domains than movies

(e.g., book and music)

I Experiment with other centrality measures (e.g., betweenness
centrality) and normalization procedures (e.g., harmonic
mean)

I Incorporate diversity measures into the recommendations
(e.g., as in (Noia et al., 2017))

References
Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In

Proceedings of the learning to rank challenge, pages 1–24, 2011.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of
recommender algorithms on top-N recommendation tasks. In Proceedings of
the fourth ACM conference on Recommender systems, pages 39–46. ACM,
2010.

Cataldo Musto, Pasquale Lops, Marco de Gemmis, and Giovanni Semeraro.
Semantics-aware recommender systems exploiting linked open data and
graph-based features. Knowledge-Based Systems, 136:1–14, 2017.

Tommaso Di Noia, Vito Claudio Ostuni, Paolo Tomeo, and Eugenio Di
Sciascio. SPrank: Semantic path-based ranking for top-N recommendations
using linked open data. ACM Transactions on Intelligent Systems and
Technology, 8(1):9:1–9:34, 2016.

Tommaso Di Noia, Jessica Rosati, Paolo Tomeo, and Eugenio Di Sciascio.
Adaptive multi-attribute diversity for recommender systems. Information
Sciences, 382:234–253, 2017.

Barry Schwartz. The Paradox of Choice. Harper Perennial, 2004.

Thomas Wever and Flavius Frasincar. A linked open data schema-driven
approach for top-N recommendations. In Proceedings of the 32nd ACM
SIGAPP Symposium on Applied Computing (SAC 2017), pages 656–663.
ACM, 2017.

	Motivation
	Methodology
	Evaluation
	Concluding Remarks
	References
	References

