
Augmenting LOD-Based Recommender Systems
Using Graph Centrality Measures

Bart van Rossum and Flavius Frasincar[0000−0002−8031−758X]

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

{vanrossum, frasincar}@ese.eur.nl

Abstract. In this paper we investigate the incorporation of graph-based
features into LOD path-based recommender systems, an approach that
so far has received little attention. More specifically, we propose two nor-
malisation procedures that adjust user-item path counts by the degree
centrality of the nodes connecting them. Evaluation on the MovieLens
1M dataset shows that the linear normalisation approach yields a signif-
icant increase in recommendation accuracy as compared to the default
case, especially in settings where the most popular movies are omitted.
These results serve as a fruitful base for further incorporation of graph
measures into recommender systems, and might help in establishing the
recommendation diversity that has recently gained much attention.

Keywords: Top-N recommendations · Linked Open Data · information
network schema · random forest

1 Introduction

Recommender systems (RS) are algorithms aimed at presenting the user with
items of which it is most likely that (s)he will enjoy them [11]. Over the past
years, the rise of the Semantic Web has enabled a boost in their performance
[12]. The structured knowledge representations available in the Linked Open
Data (LOD) cloud allows for the construction of hybrid recommendation systems
that leverage both user preferences as well as information on product features
[4]. Combining the best of both worlds, these hybrid systems have been shown
to consistently outperform other state-of-the-art recommendation systems [13].

One of the most promising ways of incorporating data from the LOD is by
constructing a knowledge graph linking all users, items, and relevant semantic
information, and including path-based features in hybrid recommendation sys-
tems. In other words, the number of connections in a knowledge graph between
a user and an item determines the likelihood of this item being recommended
to the user, an idea with strong intuitive appeal. This approach has been suc-
cessfully employed in leveraging semantic information from the popular LOD
dataset DBpedia [3] in the domain of books, films, and music [14, 17].

While these semantic path-based features have greatly increased the accuracy
of recommender systems, they do not nearly capture all relevant information
embedded in a knowledge graph. One can imagine that the structure of this graph
contains information that is potentially relevant to recommendation systems.
The clustering of items and users or the relative importance of items within this
graph, for example, are definitely factors of interest when recommending items to
a user. To this day, however, this dimension of the knowledge graph has remained
largely unexplored. While some authors have proposed including graph-based
features in their RS, unifying graph-based features with the successful path-
based ones remains an open challenge [13, 16].

In this paper we propose a simple, yet effective way of unifying the previously
mentioned two types of features. By normalising path-based features based on
the centrality of the nodes along each path, we aim to improve the performance
of hybrid recommendation systems. The rationale behind this proposal is as
follows: paths between a user and an item along nodes with a high popularity
in the network are unlikely to capture the unique preferences of this user, and
should therefore contribute less to the score of this item. A user liking “The
Matrix”, for example, tells us more about the popularity of this movie then
about the particular user. Since centrality measures offer a diverse set of ways
of measuring the popularity of a node in a network, these are very much suited
in performing this correction.

An additional benefit of this approach is its potential to diversify the set
of items recommended to a user. The goal of diversification has been deemed
more and more important recently, yet is usually in conflict with the goal of
high recommendation accuracy [12, 15]. The proposed use of normalised path-
based features, however, can contribute to higher diversity whilst retaining or
increasing accuracy, since items with a low centrality measure are more likely to
be both recommended and unknown to the user.

This paper is structured as follows. Section 2 discusses related work, while
Sect. 3 elaborates on the proposed methodology. Section 4 introduces the evalu-
ation procedure and the obtained results, while Sect. 5 gives our conclusion and
future work.

2 Related Work

The use of semantic path-based features in recommender systems is not novel,
and has been successfully applied by the authors of [14]. In the book, film,
and music domain, they leveraged data from DBpedia to train an ontology-
based recommender system, enabling them to compare various learning-to-rank
algorithms. This is where their approach differs from ours: since we are only
interested in the added value of graph-based normalisation, we only employ
random forests to train our recommender system. Moreover, since we are merely
interested in the normalisation procedure, we limit the number of possible paths
by defining a network schema in which only certain path types are allowed.

In this respect, our approach closely resembles the one used in [17], which
pioneered the use of network schemas in path-based recommender systems. More-
over, the evaluation strategy employed by these authors is identical to the one
we use. Whereas they also explore the benefits of feature selection, this aspect
remains unexplored in this paper, due to our focus on normalisation.

An alternative approach that already captures more information about the
graph structure is proposed by the authors of [16]. They propose entity2rec,
a feature-construction algorithm that learns property-specific vector represen-
tations of users and items by simulating random walks through the knowledge
graph. Subsequently they construct user-item relatedness scores based on these
representations, feeding this into a recommender system. A downside of this ap-
proach is the need to tune several hyperparameters, and the extent to which it
employs information from the graph is still very limited.

A second paper that utilizes graph-based features is [13], the authors of which
construct item features that are directly based on graph centrality measures.
Together with the aforementioned path-based measures, these are loaded into
several types of recommender systems. Their results show that directly using
centrality measures as input variables has little added value, since they mainly
serve as an additional popularity measure and are not incorporated into the
other features yet. Our approach differs from the one used in [13] as we aim
to include graph centrality measures directly into the used path measures, thus
exploiting the interaction effects between them.

In this paper we aim to use centrality measures by discounting popular node
counts on the considered paths, thereby bridging the gap between path-based
and graph-based features. As we exploit the structure of the information net-
work to a further extent than has been done before, we hope this information
will prove relevant to the recommender system and increase recommendation
accuracy. Since it is unknown which type of normalisation is most suited for this
purpose, we evaluate multiple procedures in various settings. In short, the main
contribution of this paper is to build on the current semantic path-based rec-
ommender systems literature by controlling path-based features for graph-based
measures. Similar to the aforementioned papers, we evaluate the effectiveness of
this procedure on the MovieLens 1M dataset.

3 Methodology

In order to construct path-based features, we require a way of modeling the
knowledge of the movie domain and user preferences. This is done in an infor-
mation network, described in the following. Next, the definition of a meta path
and the normalisation procedure are given, as well as the algorithm used to train
the ranking function.

3.1 Information Network

An information network is defined as an undirected graph G = (V,A), where V
represents the set of vertices, or nodes, in the network, and A the set of edges

between them. In our case, V = I ∪ U ∪ E, where I equals the set of items
(movies), U the set of users, and E the set of entities. The latter set consists of
all actors, directors, subjects, and entities otherwise linked to the movies. G is
undirected as each edge a ∈ A is assumed to be symmetric, reflecting the fact
that we are mainly interested in the association between two nodes rather than
any causal links between them. Moreover, we define the type function t : A→ T ,
representing that each edge a is of type t(a) ∈ T . Table 1 displays the elements
of T , indicating that all edges link either items and users, or items and entities.

Table 1. Set of edge-types T

Connected sets Type k

I & U likes 1
I & E starring 2
I & E director 3
I & E cinematography 4
I & E producer 5
I & E editing 6
I & E writer 7
I & E musicComposer 8
I & E narrator 9
I & E basedOn 10
I & E subject 11

In order to get an impression of what such a graph looks like, Fig. 1 shows a
small example information network. Consisting of only 11 nodes and containing
only the first three types of edges (likes, starring, and director), it is a
heavily simplified version of the actual network we will work with. Nonetheless,
it clearly displays the way in which the sets U , I, and E are linked. Moreover,
it provides some intuition on how paths between items offer an indication of
their similarity. We can infer Inception and The Prestige to be similar items, for
example, since they are connected by multiple paths of different types.

3.2 Meta Paths and Path-based Features

In order to assess the degree of similarity between items, we introduce the notion
of a meta path. A meta path specifies the type of edges that connect nodes of a
certain type. Using the notation introduced above, each meta path P of length
l can be defined as:

P = V1
t1−→ V2

t2−→ . . .
tl−1−−−→ Vl (1)

where Vi ∈ V, i = 1, . . . , l and ti ∈ T, i = 1, . . . , l − 1. In other words, a
meta path specifies which type of semantic link exists between two types of
nodes. Note that there may exist multiple instances of each meta path in our
information network G. Every instance p of P can be defined as a sequence of

Fig. 1. Example information network

nodes and edges (v1, a1, v2, a2, . . . , al−1, vl) where vi is of type Vi, i = 1, . . . , l
and t(ai) = ti, i = 1, . . . , l − 1.

In the following, we focus on symmetric meta paths of length l = 3 between

items, i.e., all meta paths of the type P = V1
t−→ V2

t−→ V3 for which V1, V3 ∈ I.
These paths link all movies that have something in common, e.g., movies that
are directed by the same director when we set V2 ∈ E and t = director. Note
that this allows for |T | different meta paths. In the following, we will refer to
P (k), k = 1, . . . , |T |, as the meta path with t equal to the k-th element of T (as
displayed in Table 1).

For each user-item pair (u, i), u ∈ U, i ∈ I, we can now construct a feature
vector xu,i ∈ R|T | as follows:

xu,i(k) =
∑
j∈I+

u

#pathi,j(k), k = 1, . . . , |T | (2)

where I+u is the set of items liked by user u and #pathi,j(k) indicates the number
of instances of P (k) linking i and j. Intuitively, when elements in this vector are
of larger magnitude, we expect the user u to be more interested in item i, as
there exist more meta path instances linking it to items that he has previously
liked.

Table 2. Example of path-finding procedure

i k Path

Interstellar 1 Interstellar
likedBy−−−−→ Quentin

likes−−−→ The Prestige

Interstellar 1 Interstellar
likedBy−−−−→ Quentin

likes−−−→ Inception

Interstellar 2 Interstellar
starring−−−−−→ Michael Caine

starringIn−−−−−−→ The Prestige

Interstellar 3 Interstellar
directedBy−−−−−−→ Christopher Nolan

directing−−−−−→ The Prestige

Spider Man 1 Spider Man
likedBy−−−−→ Steven

likes−−−→ The Prestige

Spider Man 2 Spider Man
starring−−−−−→ Ron Perkins

starringIn−−−−−−→ The Prestige

To further clarify this procedure, we now demonstrate the feature construc-
tion for one of the users of Fig. 1. More specifically, we evaluate xu,i for u = Mar-
tin and i ∈ {Interstellar, Spider Man}. Since I+Martin = {The Prestige, Inception},
this boils down to finding all the paths displayed in Table 2. Note that while
the edge types are in fact symmetric, we have used asymmetric naming here for
the sake of readability. Summing paths over each path type yields the following
user-item features: xMartin,Interstellar = 〈2, 1, 1〉 and xMartin,Spider Man = 〈1, 1, 0〉.
Based on these two features only, one would expect Martin to prefer Interstellar
over Spider Man.

3.3 Centrality Measure and Normalisation Approaches

The features described in the previous section can be considered as the default
case, path-based features which are not yet normalised in any way. In the follow-
ing we describe a procedure that normalises the path count using the centrality
of the nodes along the path. To this extent, we compute the degree centrality
CD of all nodes. As the normalisation is done separately for each meta path,
i.e., for each element of the feature vector, we define this measure with respect
to networks where only instances of a certain meta path are allowed. In other
words, in computing this measure we only consider edges of one specific type,
depending on the meta path of interest.

The degree centrality measures the number of nodes in the network a par-
ticular node is connected to. For any node v ∈ V and meta path P it is defined
as follows:

CD(v, P) = deg(v, P) (3)

where deg(v, P) is the degree of node v in a network where only meta paths
of type P are allowed. CD(i, P (1)) with i ∈ I, for example, would measure the
number of users that have liked item i, whereas CD(i, P (2)) would reflect the
number of actors starring in i.

Having introduced this centrality measure, we can define the actual nor-
malisation procedure. In brief, every path between a user and an item is now
inversely weighted by the relative degree centrality of the nodes along that path.
We propose two slightly different procedures, both of which will be evaluated.

Firstly, one can consider a so-called ‘compounding’ procedure, which means that
the normalised user-item feature xc

u,i is now defined as follows:

xu,i(k) =
∑
j∈I+

u

#path∗i,j(k), k = 1, . . . , |T | (4)

where

#path∗i,j(k) =
∑

p∈P (k):i,s,j∈p

CD(i, p)

CD(i, p)
× CD(s, p)

CD(s, p)
× CD(j, p)

CD(j, p))
(5)

in which CD(i, P) is the average of CD taken over all nodes of the same type
as i. If i ∈ I, for example, this average is taken w.r.t. all movies in the network
(not only on the considered paths, but only for the considered edges of type k).
Note that i and j are necessarily of the same type, while s can be both from
U or from E. From (6) it becomes clear that paths along nodes with relatively
high centrality measures will now contribute less to the feature vector than in
(2), since they are multiplied with a weighting factor that is below one.

Secondly, one can consider a normalisation procedure that still discounts
popular nodes, yet is less sensitive to outliers. We will refer to it as the ‘mean’
procedure, which discounts using the arithmetic mean of the relative centrality
measures along a path:

#path∗i,j(k) =
∑

p∈P (k):i,s,j∈p

1

3

(
CD(i, p)

CD(i, p)
+

CD(s, p)

CD(s, p)
+

CD(j, p)

CD(j, p)

)
. (6)

As before, we will demonstrate these procedures by considering their effect
on two specific meta paths from Table 2 where k = 2, i.e., the paths Interstellar
starring−−−−−→ Michael Caine

starringIn−−−−−−−→ The Prestige and Spider Man
starring−−−−−→ Ron

Perkins
starringIn−−−−−−−→ The Prestige. Table 3 displays the results of applying the two

normalisation procedures to these specific paths, where the node degrees are
computed based on Fig. 1 and the average node degrees are assumed to be 2 for
all node types (for the considered edges of type k).

Table 3. Example of normalisation procedures

Node CD CD/CD Node CD CD/CD

Interstellar 1 2 Spider Man 1 2
Michael Caine 3 2/3 Ron Perkins 2 1
The Prestige 2 1 The Prestige 2 1

Compound: 2× 2/3× 1 = 4/3 Compound: 2× 1× 1 = 2
Mean: 1/3× (2 + 2/3 + 1) = 11/9 Mean: 1/3× (2 + 1 + 1) = 4/3

Whereas in the example in Sect. 3.2 all paths contributed equally to the
total, we see that the discounting creates variance in the path weights. First of

all, both paths get a score above one due to the fact that (in this example) they
star fewer actors than an average movie. Second, we find that the path via Ron
Perkins receives a higher value than the one via the more popular actor Michael
Caine. This clearly shows the rationale behind our procedure: when a user likes
less-known entities, this gives us a clearer indication of his true preferences then
when he likes more popular entities. Third, this example confirms our statement
that the compounding procedure is more sensitive than the mean one: in both
cases, it yields scores which in magnitude deviate most from one.

3.4 Training the Ranking Function

The aim of the recommender system is to recommend the most relevant items
to a user, based on the knowledge present in G. This is done using a scoring
function f : R|T | → R which converts each user-item feature vector into a score
indicating the expected relevance of the item to the user. More formally, for each
item i rated ru,i by user u, we want that f(xu,i) ≈ ru,i. Note that we define ru,i
to be 1 if u has liked i, and 0 otherwise. The function f will be learnt by training
it on a training set TS =

⋃
u∈U{〈xu,i, ru,i〉 : i ∈ I+u ∪ I−u }, where once again I+u

is the set of items liked by user u and I−u is the set of items disliked by u.
Given such a function f , we can rank items based on their score and recom-

mend the top-N to the user. As random forests have showed to perform well at
such ranking tasks [6], this is what we will use to train f . Random forests are
an ensemble technique that can be used for classification and regression, and
aggregate the output of multiple decision trees to a single output variable [5].
Following [17], the random forest we will employ consists of 100 Classification
and Regression Trees (CART), and each tree is trained on a subset of w ran-
domly selected variables to prevent overfitting. In this setting we fix w to be√
|T |.

4 Evaluation

The following describes the results evaluation protocol, starting with introduc-
ing the data used and the training of the random forest. Subsequently, the per-
formance of the recommender system is analysed using an accuracy measure.
Finally, the results are linked to the existing literature on accuracy versus diver-
sity.

4.1 Data

The recommender system will be trained and evaluated using the MovieLens

1M dataset, containing 1,000,209 1-5-star ratings of 3,883 movies by 6,040 users
[10]. The authors of [14] have attempted a mapping of each movie in the 1M
dataset to a unique DBpedia URI, which we use here as well. This leaves us with
3,196 movies that together will form the set I. The set of users U is constructed
by retaining only those users that have positively rated at least 15 items in

I, to ensure there is sufficient information on each remaining user. We define a
positive rating to be a 5-star one in order to remove any possible ambiguity w.r.t.
liked movies. This way, a total of 3,854 users and 193,255 ratings remains. Using
the aforementioned mapping, we query DBpedia for all RDF triples linking the
movies to other entities. These can be triples from the Film domain, in which
all information regarding a specific movie is stored, as well dcterms:subject
triples, linking the movies to the Wikipedia categories they are part of. This
way, the set of entities E and all the edges between I and E are retrieved. We
refer the reader to [17] for more information on this querying procedure. A total
of 13,649 unique entities is obtained.

Given these sets and the relations between them, we are able to construct the
information network G. The implementation thereof is done in Neo4j1, a graph
database platform that allows for fast retrieval of meta paths between two items.

4.2 Evaluation Protocol

The procedure described above leaves us with a set of users that all have at least
15 positive ratings. For each user, we select 10 liked items that construct the
test set for this user. For each positively rated item in this test set, we add 100
randomly selected items which the user did not like. Note that these can also be
items that the user has not rated at all, for which we assume he does not like
them. This leaves us with 10 batches of 101 items for each individual user.

The training set will contain the remaining positively rated movies of each
user, up to a maximum of m items. We will evaluate two sizes of training profiles,
m = 5 and m = 50. The training set per user is augmented with 2m randomly
selected irrelevant items. The aggregate training set over all users is then used
to train the random forest, as described in Sect. 3.4.

After the random forest has been trained, its accuracy is evaluated on the
test set. The items within each batch are ranked based on their predictions from
the ranking function. The top-N items are then recommended to the user, after
which the recall@N measure is computed. This is defined as follows:

recall@N =
#relevant items recommended

#relevant items in batch
. (7)

Since we assume there is only one relevant item per batch, this simplifies to:

recall@N = 1relevant item in top−N (8)

which can be seen as the probability of recommending a relevant item to a user
when displaying the top-N results only. Note that this merely provides us with
a lower bound on the actual accuracy of the system, as not all unliked items are
indeed irrelevant to the user. This measure will be evaluated for multiple values
of N , and subsequently averaged over the batches of all users.

1 www.neo4j.com

4.3 Results

Table 4 shows the recall@N measures for various levels of N and two profile sizes,
i.e., two sizes of m. As expected, the accuracy is increasing in N , which follows
directly from (8): as the set of top items is larger, the chances of finding a relevant
item increase. The marginal effect is decreasing in N , however, indicating that
the relevant item is unlikely to be positioned in the tail of the ranking. Comparing
results for m = 5 with those of m = 50, we find that a bigger training set
increases the accuracy of the recommender system. This is expected, since the
random forest is better able to extract relevant patterns when trained on a
bigger sample. Finally, we are able to compare the standard path count procedure
with the normalised versions. The results indicate that the compounded measure
never outperforms the standard one, while the mean-normalised approach scores
similarly or higher than the standard procedure. This higher score is especially
present in the smaller profile size.

Table 4. Recall@N for all movies

m = 5 m = 50

N Standard Compound Mean Standard Compound Mean

5 0.483 0.223 0.488 0.534 0.258 0.532
10 0.692 0.336 0.701 0.718 0.391 0.707
15 0.807 0.422 0.813 0.799 0.511 0.809
20 0.872 0.480 0.882 0.876 0.612 0.872
25 0.917 0.546 0.922 0.918 0.697 0.915

Whereas Table 4 displays the results based on the full set of items, it is
also interesting to look at a setting in which the most popular items are out of
consideration. These popular items are responsible for a relatively large share
of the positive ratings, and therefore liked by most users. Omitting those from
the sample tells us how well our recommender system performs at extracting
the preferences that are actually unique to users. In order to filter the sample,
we keep removing the most popular item from the set, until the removed items
jointly account for 33% of the ratings, hereby following the approach proposed
by [7]. After removing these items, the evaluation procedure is repeated.

Table 5 displays the results for the long tail only. A striking observation is
the generally lower accuracy, which can be attributed to the omission of popular
items. These items are liked by many users and therefore boost the accuracy
of a recommender system. Only the results for the compounded path counts
seem to benefit from this omission, most likely because the negative effect of the
compounding procedure is diminished in this setting. The general patterns of
Table 4 are observable here as well, except for the fact that the mean-weighting
procedure now clearly outperforms the standard one. The potential explanation
for the compounded results might hold here as well: the possible negative effect

on accuracy due to recommending less popular items is diminished in a setting
with fewer popular items. In contrast, the positive effect due to the normalisation
procedure seems to dominate here, indicating that these normalised path count
measures are indeed more meaningful.

Table 5. Recall@N for long tail only

m = 5 m = 50

N Standard Compound Mean Standard Compound Mean

5 0.387 0.257 0.436 0.449 0.329 0.510
10 0.619 0.390 0.647 0.667 0.505 0.728
15 0.766 0.499 0.787 0.795 0.638 0.848
20 0.857 0.595 0.876 0.860 0.741 0.915
25 0.911 0.675 0.921 0.915 0.819 0.953

4.4 Diversity and Popular Items

It is well-known that recommendation systems maximising accuracy usually rec-
ommend the most popular items, even though this is not always in accordance
with user utility [18]. Rather than simply receiving a set of accurate recom-
mendations, the user also wishes to be surprised by diverse and novel set of
recommendations. Popular items alone rarely achieve this goal, yet shifting to
less-popular items also implies a reduction in accuracy. All in all, this yields a
trade-off between diversity and accuracy [19], the resolution to which has until
now remained unclear.

Given the previously mentioned background, the main result from Sect. 4.3
is especially surprising. Despite the fact that our proposed procedure actively
discounts popular items, we find that accuracy does not suffer, but even increases
in certain settings. Moreover, the authors of [1] have shown that recommending
fewer popular items increases the diversity of the recommendation set. This
implies that graph-based normalisation alleviates the dilemma by maintaining or
even increasing recommendation accuracy, whilst yielding an increase in diversity
of the recommended items.

5 Conclusion

Path-based recommender systems usually rely on information networks, the
structure of which contains a lot of knowledge relevant to the recommendations.
Despite its potential, this graph structure has so far received little attention
in literature. This paper proposes a novel method of unifying the path-based
and graph-based features extracted from an information network. More specif-
ically, we implement and test several normalisation procedures that discount
path counts between users and items by the degree centrality measures of the

nodes along this path. When evaluated on the MovieLens 1M dataset, the linear
weighting procedure has been shown to significantly outperform the default ap-
proach. This effect is especially strong in the long tail of the dataset, where the
normalisation procedure is not punished for recommending less popular movies.
Next to a higher recommendation accuracy, this approach also yields the ben-
efit of presenting more novel items to the user and increased diversity in the
recommendation set.

Despite careful considerations, several limitations to this paper remain. First
of all, since only the movie domain has been investigated, it remains an open
question whether this method performs equally well in, e.g., the book and music
domains. Second, there exist multiple other centrality measures and normali-
sation procedures, the performance of which might surpass that of the current
set-up. Both of these provide relevant suggestions for future research.

Nonetheless, the implementation of graph-based measures in the context of
recommender systems has proven to be fruitful, and constitutes a solid basis for
future work. Potential benefit is to be gained especially in the area of diversity,
which is recently gaining extra interest. Employing the structure of the informa-
tion graph might be a promising way of accentuating less-known items and of
recommending items that are as different from each other as possible, thereby
increasing the diversity among recommendations. Incorporating diversity mea-
sures, as proposed by for example [12] and [15], into the current setting would
give further insight into the feasibility of the proposed approach.

Next to the suggestions mentioned above, it is of much interest to investi-
gate other methods of incorporating structural information on the information
network into a RS. A user clustering approach as proposed by [2] and [9], for
example, might benefit hugely from graph clustering algorithms (see [8] for an
overview). This is especially likely to prove fruitful when information graphs con-
taining both user- as well as content-based information like ours are considered,
as compared to collaborative filtering approaches tried so far.

References

1. Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using
ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering
24(5), 896–911 (2012)

2. Altingovde, I.S., Subakan, Ö.N., Ulusoy, Ö.: Cluster searching strategies for col-
laborative recommendation systems. Information Processing & Management 49(3),
688–697 (2013)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: The Semantic Web, pp. 722–735. Springer,
Berlin, Heidelberg (2007)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems 5(2), 1–22 (2009)

5. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

6. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: Proceed-
ings of the learning to rank challenge. pp. 1–24 (2011)

7. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: Proceedings of the fourth ACM conference on
Recommender systems. pp. 39–46. ACM (2010)

8. Emmons, S., Kobourov, S., Gallant, M., Borner, K.: Analysis of network clustering
algorithms and cluster quality metrics at scale. PloS One 11(7) (2016)

9. Gong, S.: A collaborative filtering recommendation algorithm based on user clus-
tering and item clustering. JSW 5(7), 745–752 (2010)

10. Harper, F.M., Konstan, J.A.: The MovieLens Datasets: History and Context. ACM
Transactions on Interactive Intelligent Systems 5(4) (2015), article 19

11. Jannach, D., Resnick, P., Tuzhilin, A., Zanker, M.: Recommender systems-beyond
matrix completion. Communications of the ACM 59(11), 94–102 (2016)

12. Lops, P., Gemmis, M.D., Semeraro, G.: Content-based recommender systems: State
of the art and trends. In: Recommender Systems Handbook, pp. 73–105. Springer,
Boston, MA (2011)

13. Musto, C., Lops, P., de Gemmis, M., Semeraro, G.: Semantics-aware recommender
systems exploiting linked open data and graph-based features. Knowledge-Based
Systems 136, 1–14 (2017)

14. Noia, T.D., Ostuni, V.C., Tomeo, P., Sciascio, E.D.: SPrank: Semantic path-based
ranking for top-n recommendations using linked open data. ACM Transactions on
Intelligent Systems and Technology 8(1), 9:1–9:34 (2016)

15. Noia, T.D., Rosati, J., Tomeo, P., Sciascio, E.D.: Adaptive multi-attribute diversity
for recommender systems. Information Sciences 382, 234–253 (2017)

16. Palumbo, E., Rizzo, G., Troncy, R.: Learning user-item relatedness from knowl-
edge graphs for top-n item recommendation. In: Proceedings of the Eleventh ACM
Conference on Recommender Systems (RecSys 2017). pp. 32–36. ACM (2017)

17. Wever, T., Frasincar, F.: A linked open data schema-driven approach for Top-N
recommendations. In: Proceedings of the Symposium on Applied Computing (SAC
2017). pp. 656–663. ACM (2017)

18. Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recom-
mendation lists. In: Proceedings of the 2008 ACM Conference on Recommender
Systems (RecSys 2008). pp. 123–130. ACM (2008)

19. Zhou, T., Kuscsik, Z., Liu, J.G., Medo, M., Wakeling, J.R., Zhang, Y.C.: Solving
the apparent diversity-accuracy dilemma of recommender systems. Proceedings of
the National Academy of Sciences 107(10), 4511–4515 (2010)

