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Introduction

I Features are actually aspects

I Aspects denote specific characteristics of the product or
service being reviewed

I Aspect-level sentiment analysis allows for a fine-grained
overview of a product or service, which is more useful
than one overall score

I This research is limited to finding aspects (no actual
sentiment analysis) in consumer reviews
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Introduction - What are implicit aspects?

Implicit aspects can be defined as aspects that are implied by
the text, rather than literally mentioned

Examples

I “I can’t see a thing when it’s sunny.”

I “The phone lasts all day.”
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Introduction - Human processing of implict aspects

I The implicit aspect is inferred based on the words in the
sentence

I Mapping from the words in the sentence to the invisible
implicit aspect(s)

I This mapping is shared across all users of the language

I Hence, usually only well-known aspects or broad
categories are implied

Examples

I Price, size, weight, service, etc.
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Proposed Method

I Find the mapping between words in the sentence and
implicit features

I Count the number of co-occurrences between the implicit
aspects and the words in the sentence

I For an unlabeled sentence, the implicit feature that
co-occurs most often with the words in the sentence is
chosen...

I ...if it exceeds a certain threshold
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Training Algorithm - Counting

Initialize set of word lemmas with frequencies O
Initialize set of implicit features F
Initialize co-occurrence matrix C
for sentence s ∈ training data do

for word w ∈ s do
O(w) = O(w) + 1

end for
for implicit feature f ∈ s do

add f to F
for word w ∈ s do

C (w , f ) = C (w , f ) + 1
end for

end for
end for
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Training Algorithm - Threshold optimization

threshold=0
bestF1 = 0
for t = 0 to 1 step 0.001 do

Process training data
Compute F1

if F1 > bestF1 then threshold = t
end if

end for
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Processing Algorithm

for sentence s ∈ test data do
currentBestImplicitFeature = empty
scoreOfCurrentBestImplicitFeature = 0
for implicit feature f ∈ F do

score = 0
for word w ∈ s do

if O(w) > 0 then
score = score + C(w , f )/O(w)

end if
end for
score = score/ length(s)
if score > scoreOfCurrentBestImplicitFeature then

currentBestImplicitFeature = f
scoreOfCurrentBestImplicitFeature = score

end if
end for
if scoreOfCurrentBestImplicitFeature > threshold then

Assign currentBestImplicitFeature to s
end if

end for
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Formula Notation

scorei =
1

v

v∑
j=1

ci ,j
oj

, (1)

where

I i is the ith aspect in the list of possible aspects for which
the score is computed

I v is the number of words in the sentence

I j represents the jth word in the sentence

I ci ,j is the co-occurrence frequency of aspect i and lemma
j in the data set

I oj is the frequency of lemma j in the data set

9 / 22



Known Limitations

I Only one implicit aspect is chosen per sentence

I Sufficient amount of labelled training data is required
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Data Analysis

I Two data sets: product reviews and restaurant reviews

I Both contain about 3000 sentences
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Data Analysis - Product Data
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Data Analysis - Restaurant Data
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Evalution

Method

I All evaluations have been performed using 10-fold
cross-validation

I Both the counting and the threshold optimization are
done using training data only

I Because of previous work, we used different combinations
of part-of-speech filters to control what kind of words
would be contained in the co-occurrence matrix
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Evalution

Error types

I Incorrectly state that a sentence contains some implicit
aspect: lower precision

I Incorrectly state that a sentence does not contain an
implicit aspect: lower recall

I Correctly state that a sentence contains an implicit
aspect, but pick the wrong one: both precision and recall
will be lower
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Results - Product Data
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Results - Restaurant Data
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Results - Precision-Recall curves
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Results - Comparison

product review data set

method no threshold trained threshold difference

Zhang & Zhu 1.2% (all) 1.4% (NN+VB+JJ+RB) +0.2 pp.

proposed method 4.2% (JJ) 12.9% (NN+VB+JJ+RB) +8.7 pp.

difference +3 pp. +11.5 pp.

restaurant review data set

method no threshold trained threshold difference

Zhang & Zhu 31.5% (all) 32.4% (all) +0.9 pp.

proposed method 59.7% (NN+JJ) 63.3% (NN+JJ) +3.6 pp.

difference +28.2 pp. +31.1 pp.
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Conclusions

I Significantly improved on existing method, although at
the cost of being a supervised method

I The algorithm needs a sufficient amount of data to work
properly

I The use of a threshold is beneficial, especially for the
small data set
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Future Work

I Allow for more than one implicit aspect per sentence

I Learn a threshold for each implicit aspect

I Move towards a more concept-level approach
I “This phone doesn’t fit in my pocket”
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Implicit Feature Extraction

for Sentiment Analysis in Consumer Reviews

Questions?
Contact
schouten@ese.eur.nl
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