
A Workflow-driven Design of Web Information Systems

Peter Barna1

Technische Universiteit
Eindhoven1

Department of Mathematics
and Computer Science

5600 MB, Eindhoven, the
Netherlands

p.barna;g.j.houben@tue.nl

Flavius Frasincar2

Erasmus University of
Rotterdam2

Faculty of Economics
PO Box 1738

3000 DR, Rotterdam, the
Netherlands

frasincar@few.eur.nl

Geert-Jan Houben1,3

Vrije Universiteit Brussel3
Computer Science - WISE

Pleinlaan 2
1050 Brussels, Belgium

Geert-
Jan.Houben@vub.ac.be

ABSTRACT
The World Wide Web is a rapidly growing business envi-
ronment hosting a large number of business transactions.
Methods for designing Web Information Systems (WIS) have
adopted process models, typically as extensions of the navi-
gation models they are based on. We observe that the struc-
ture of business processes in WIS goes beyond the scope of
the navigation structure and deserves to be a more promi-
nent aspect of the design, abstracted from the navigation
specification. This paper explains the design of WIS driven
by the specification of business processes of WIS that is
used for the automatic generation of models describing the
application logic including the navigation structure. The
specification of processes is explained on a conference re-
view and submission system and the generation process is
demonstrated on the Hera application model.

Categories and Subject Descriptors
H.1.m [Models and Principles]: Miscellaneous; D.2.10
[Software Engineering]: Design; H.5.3 [Information In-
terfaces and Presentation]: Group and Organization In-
terfaces—Web-based interaction

General Terms
Design

Keywords
Process-driven design, Web-based Information Systems, Nav-
igation

1. INTRODUCTION
The World Wide Web has become not only the most im-

portant source of information and the largest communica-
tion platform, but also a rapidly growing business environ-
ment hosting a large number of business transactions. One
of consequences is that the web interface is becoming the
key gateway for participants involved in complex business
processes. The traditional data and navigation-driven mod-
els are not suitable for capturing these processes, because
they often go beyond the scope of (only) navigation struc-
ture. Web interfaces used by a WIS specified in a naviga-

Copyright is held by the author/owner(s).
ICWE’06,July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

tion model reflect the participation of users in the business
process from their point of view, but do not explicitly cap-
ture the whole business process itself. For example, in a
submission system tasks of reviewers and authors are differ-
ent but both can be specified in an appropriate navigation
model. Nevertheless, this model does not explicitly define
the overall submission processing, but only sequences of ac-
tions taken by author, reviewer, etc. Missing explicit speci-
fication of the business process makes the navigation-based
design and maintenance of a WIS with a complex applica-
tion logic difficult. Consider, for example, a requirement
changing the submission process in the existing submission
system based on a navigation model. The redesign of this
system would be cumbersome because the aspect that needs
to be changed can be only indirectly implied from the navi-
gation structure.

Existing methods for designing Web Information Systems
(WIS) are typically data and navigation-driven, but they
adopt process models in some way. Let us briefly discuss
how the process models are adopted in few representative
methods for WIS design. The approach described in [1]
uses Business Process Modelling Notation (BPMN) graphi-
cal language for expressing process models and it is adapted
to be used in WebML [2]. The process modeling phase is
one of the first design phases and the navigation model is
built afterwards based on the process model. The process
and navigation design should be integrated according to
[5] by authors of UWE and OO-H object-oriented meth-
ods. A skeleton of the navigation structure can be semi-
automatically generated from the process model. Another
object-oriented process modeling technique described in [6]
introduces new modeling primitives (activity nodes associ-
ated with navigation classes) in the context and navigation
models of OOHDM method [7]. WSDM [8] is an audience-
driven method, where in the first design phase the task hier-
archy is built using concurrent task trees and in the second
phase the skeleton of navigation structure is generated.

As it follows from the previous text, some authors con-
sider computer-aided generation of navigation models from
process models. In this paper we propose a specification
method and a procedure for automatic generation of a tar-
get model from a workflow model. The workflow model
describes the business process in the system and the collab-
oration with users and external systems. A concrete target
model defines the application logic of WIS including its basic
navigation structure derivable from the workflow model. For
the purpose of workflow modelling we have adopted UML

use case and activity diagrams and extended them with a
language for detailed specification of activity states. Our
approach is explained using a conference submission system
example and it is demonstrated on the Hera [4] application
model as the target model. The details about the workflow
modeling are explained in Section 2, and the principles of
its transformation to Hera application model are described
in Section 3. Section 4 concludes the paper and suggests
future work.

2. MODELS FOR WORKFLOW-DRIVEN
DESIGN

UML offers a variety of diagrams aimed to capture dy-
namic properties of the designed system. Use case diagrams
contain high-level description of tasks and their relationships
with stakeholders (actors) of the system. Actors represent
different toes of users or external systems. Activity diagrams
(AD) describe the business process of a system collaborating
with actors, where activity states can be distributed to tasks
of actors. AD use a small set of modeling constructs and
allow the description of distributed and parallel processes.
Their inherit some good properties from theoretically well-
founded models (Petri Nets) and combine them with easy
understanding and popularity. Besides this, with small re-
strictions the semantics of AD is formalized in [3]. For AD
aimed for WIS design we require that every task of all ac-
tors defined in use cases (task model) must be specified in
workflow(s) - it must have a swim-lane in the AD describing
the WIS.

Workflows can be described by ECA rules. We propose a
representation of ECA rules describing workflows that allow
the detailed specification of activity activities itself. The
main advantage of the method described here is that this
wrokflow specification allows to define fully functional (web)
applications at the level of the workflow model. Hence, such
specifications can be used for automatic generation of work-
ing web applications. Some object-oriented methods include
workflow-driven design support with subsequent automated
generation of application skeletons that needs to be manu-
ally refined to be functional (e.g. due to limitations of ex-
pressiveness of object-oriented models). On the other side,
the workflow specification described in this paper can be for
instance automatically transformed to a set of Hera models
that can be immediately deployed and used (but also can be
fine-tuned before the deployment).

AD are a good means of graphical representation express-
ing the synchronization of activities. Therefore AD can be
used for generation of the bodies of the ECA rules in the
proposed abstract syntax. The generated rules are then en-
riched with detail descriptions of activities. This detailed
description distinguishes few elementary types of activities
providing the presenting information to users, gathering in-
formation from users, and updating information. A fully
defined set of rules is still describing a workflow rather then
a web application using a concrete design method and thus
it can be used for generation of target models (or source
codes). The phases of the process-driven WIS design are:

• Identification of actors/roles representing user groups
or external systems and their tasks by means of task
model (TM) depicted as a use case diagram.

• Specification of the application domain data structure
in the form of domain model (DM).

Conference System

Make

Submission

Assign

Reviewer

Evaluate

Paper

Make

Review

PC member

Author

Reviewer

Figure 1: Task model

• Specification of overall workflow of the system (or set
of workflows) partitioned to tasks in the workflow model
(WM).

• Specification of the activity states.

• Automatic transformation of WM and TM into a tar-
get model describing the internal data processing and
(basic) navigation structure of the designed WIS.

• Eventual fine-tuning of the target models or sources.

2.1 Conference Submission System Example
The workflow model and design concepts are demonstrated

on a conference submission system example. The system
should register authors, receive a submission from authors,
and provide submission evaluation consisting of assigning
reviewers by PC members, receiving reviews, and receiving
final evaluations from PC members. We assume that review-
ers and PC members are already registered in the system.
The goal of the system we model is to provide every sub-
mission with proper evaluation process.

2.2 Task Model
The functional specification of the system is determined

by (business) goals that must be met. These goals can be
decomposed to tasks that are performed by actor’s in co-
operation with the system. The system has also reserved
task(s). We consider the system-centric business process
model, where tasks of actors contain only activities provid-
ing interaction with the system process. In the initial work-
flow model actors can communicate directly, but this model
is automatically transformed into the system-centric model.
The mapping of tasks and actors is stored in the task model
(TM) graphically represented as a use case diagram. shown
for the submission system example in Figure 1.

Definition 2.1 (Task Model). A task model of the
system S is the tuple TM (S) =< A, T, α, tS >, where:

• A is a set of roles (actors) interacting with the system,

• T is a set of task belonging to the roles from A,

• α ⊆ A × T is a relation determining the mapping of
actors to task specifications, and

• tS is a the system task,

The use case diagram with aforementioned restrictions
can be easily mapped into TM from Definition 2.1.

2.3 Domain Model
The domain contains concepts representing data struc-

tures required by the simple conference submission system.
It contains concepts representing submissions, evaluations,
actors, and conference details. The main concept is Pa-
per, users (actors) are divided to (Author, Reviewer, and
PCMember) concepts, the evaluation part is represented by
Review and Evaluation, and the general conference informa-
tion is expressed by Conference and Track concepts. Fig-
ure 2 shows UML representation of the domain model.

2.4 Workflow Model
A worklfow model (WM) describes processes in the system

and collaboration (and communication) of the system and
actors. In this section we explain the ECA rule representa-
tion of WM with detailed specification of activities. WM is
partitioned into task reserved to actors defined in TM. Con-
sidered workflow models can be at the high level (without
detailed specification of activities) represented by AD and
they have Labelled Transition System (LTS) semantics that
is often used for describing reactive systems (systems that
react to stimuli provided by the environment modelled by
actors). The described workflows contain also the mapping
of activity states to tasks.

Definition 2.2 (Workflow). The workflow F is a LTS
represented by the tuple W =< S, E, G,→, S0, St, Ts, T, τ >,
where:

• S is a set of all activity states in W ,

• E is a set of transition labels (events) in W ,

• G is a set of boolean expressions (guards),

• →⊆ S × S × E × G is a set of transition relations
triggered by events from E if guarding statements from
G (set of boolean expressions) are satisfied,

• S0, St ⊆ S are sets of initial, respectively terminal
states,

• Ts is a (set of) system tasks(s),

• T is a set of non-system (actor’s) tasks, and

• τ ⊆ S × (Ts ∪ T) is a set of relations mapping states
to tasks.

This definition determines the structure of workflow mod-
els composed from states, transitions labelled by events, and
guarding expressions allowing to model decision blocks. It
includes also mapping of states to tasks. Workflows con-
forming Definition 2.2 can be graphically represented using
AD, as the submission system workflow shown in Figure 3.
This workflow represents (a part of) the submission life span
from the moment of it submitting until its evaluation. We
consider only the following constructs in AD: initial and
terminal states depicted as circles, activity states depicted
as ovals, wait blocks depicted as ovals and the label “wait”,
forks and joins depicted as black rectangles, and decisions
and merges depicted as diamonds. Lines with arrows denote
transitions and labelled rectangles represent data passed as
transition parameters. Sequences of states placed between
fork-join blocks represent parallel execution branches, and
state sequences placed between decision-merge blocks repre-
sent optional execution branches selected in runtime based

Person

string:
 firstName

string:
 lastName

string: affiliation

string:
 cid

Author
 Reviewer
 PCMember

Paper

string: title

file: content

Review

string: text

Evaluation

integer:
 mark

Track

string:
 tname

string:
 tdescription

Conference

date:
subDeadline

date:
notifDeadline

string:
 cname

written_ by

wrote

made_by

makes

assigns

assigned_by
 hasPC

prepared_by

prepares

has_tracks

has_reviews

in_
eval

evaluated_in

of_paper

accepted

all

for

1..*

1..*
 1..*

0..*

1..*

1..*

1..*

1..*
 1..*
 1..*

Figure 2: Domain model

on the evaluation of guarding conditions. The workflow de-
scribing the submission processing is modelled by the AD
in Figure 3. It is also possible to have composed activity
states that are represented by separate workflows (not in
the example). In this case the activity can be unfolded by
replacing the activity state with its detailed workflow. WM
can be naturally represented by sets of ECA rules in the
form e[g] → a, where the action a is triggered by the event
e of the guarding condition g is satisfied. For the further ex-
planation the following shortcut notation is used: Transition
from one activity to another will be denoted as a

e[g]−−−−−→ b.
For expressing workflows using ECA rules we need to intro-
duce composed events (expressions containing events and
synchronization operators) of the following types:

• Joined event constructed using the join operator (,)
are of the form e1, e2, ..., en and take place after all
events e1, ..., en take place regardless order.

• Sequenced event constructed using the sequence op-
erator (;) are of the form e1; e2, ...; en and take place
when all events e1, ..., en take place in the order their
are written.

• Merged event constructed using the merge operator (|)
are of the form e1|e2|...|en and take place when at least
one of events e1, ..., en takes place.

Figure 4 shows how the basic workflow elements are ex-
pressed using ECA rules. Rules are in the abstract syntax
expressed in the following template:

RULE <rule-name> = {
<event-condition-spec>
PARAMETERS { <par-definition> }
ACTION { <action-reference-or-definition> }

}

The <event-condition-spec> block contains the specifica-
tion of triggering (eventually composite) events with guard-
ing conditions. The single event with its guard is denoted as

Author/

MakeSubmission

System/

SubmissionFlow

PCMember
/

AssignReviewer

Reviewer/

MakeReview

Store

Submission

Store

Assignments

PCMember
/

Evaluate

Enter

Assignments

View

Reviews

Enter

Review

Enter Author

Login

View

Missed

View

Evaluation

[
submission.date
 >
Conference.subDeadline
]

View

Ackn

Store

Author

Enter

Submission

Store

Review

View

Assignment

Enter

Evaluation

View

Submission

[count(
reviews
)<2]

Store

Evaluation

loginfo

submission

Submission

Assignments

Assignments

Review

Reviews

Evaluation

Evaluation

[count(
reviews
)>1]

[
submission.date
 <=
Conference.subDeadline
]

mauthor

WAIT
 WAIT

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Figure 3: Workflow model

ON <event> IF <condition> . The optional PARAMETERS
block contains the specification of the resulting parameter
in the case of composed events (different events can carry
different parameters and this block defines what is the re-
sulting parameter to be used in the action part). The action
part contains the reference to the activity state specification
or the specification itself.

2.4.1 Extended Specification of Activity States
The action parts of ECA rules expressing a workflow con-

tain the detailed specification of activity states. For web
application modelling we consider the following types of ac-
tivity states:

• Information observation, wherein a particular informa-
tion is served to actors by the system, so the observa-
tion activity states should be included in the tasks of
actors.

• Information entry, wherein an information required by
the system is entered by actors, so the information
entry activity states should be included in the tasks of
actors.

• Information updates, wherein the information content
defining the domain and the system state is updated.
The information updates activity states should be in-
cluded in the system task. The information updates
are further divided into insert operations, update op-
erations, and remove operations.

a1

a2

e

WAIT

WAIT

e1

e2

e

[
g1
]

[
g2
]

a

e1

e2

WAIT
 WAIT

e1
 e2

a

a

a2

a1

e[true] → a1

e[true] → a2

e1[true], e2[true] → a

e[g1] → a1

e[g2] → a2

e1[true]|e2[true] → a

e1[true]; e2[true] → a

Figure 4: Expressing basic workflow elements with
ECA rules

Activity states can used data provided from outside. This
data is passed to rules encapsulating activity state descrip-
tions (action parts of the rules) by means of parameters
of events triggering the rules. Event parameters represent
a convincing way of data communication between activity
states.

The following examples demonstrate the detailed spec-
ification of selected activity states and a rule. The first
example represents the specification of the information en-
try activity state EnterSubmission with the parameter l
carrying information about the registered (first) author. In-
formation entry states are described as sets of inputs fields
(forms) with possibly pre-fetched values. The RETRIEVE key-
word in general represents a data retrieval query that can
be used in different contexts (guarding conditions, obser-
vation activity states, information entry, etc.). The FORM
keyword denotes an information entry activity state, TEXT,
SELECT1 denote the input types, and RECORD denotes a struc-
tured input field. The syntax of graph patterns (expressions
evaluating data concepts, properties, and attributes) used in
activity state specifications is motivated by the RDFS query
language SeRQL.

ACTIVITY: EnterSubmission(form:loginfo l)= {
FORM submission={

ptitle TEXT{ xsd:string },
track SELECT1 {

RETRIEVE {
PATH{ {dm:Track AS T}<dm:tname>{N} },
WHERE{ true },
DISPLAY{ N },
SELECT{ T }

}
},
author RECORD {

aname = l.aname TEXT{ xsd:string },
asurname = l.asurname TEXT{ xsd:string },

...
}
*coauthors RECORD {

aname TEXT{ xsd:string },
asurname TEXT{ xsd:string },
...

}
}
TRANSFERS { submission }

}

The following activity demonstrates the observation activity

V iewAckn notifying a user about the reception of a submis-
sion. It does not retrieve any data but only renders person-
alized message using the event parameter.

ACTIVITY: ViewAckn(String aname)= {
OBSERVE {

CONST("Dear " + aname + ",
your submission has been registered.")

}
}

Another example shows the specification of the information
update activity StoreSubmission:. This insert operation
adds a new instance of the paper and coauthors of the pa-
per. Note that the first author data is stored earlier in the
workflow by the StoreAuthor activity states.

ACTIVITY: StoreSubmission(form:submission s)= {
INSERT {

{#new(dm:Paper AS P)}
<dm:written_by>{#new(dm:Author AS CO)},

{CO}<dm:wrote>{P},
{A}<dm:wrote>{P},
{P}<dm:written_by>{A}
{P}<dm:for>{dm:Track AS T},
{T}<dm:all>{P},
{P}<dm:title>{title};

<dm:content>{file},
{CO}<dm:firstName>{cofname},

<dm:lastName>{colname},
<dm:affiliation>{coaffil},

{A}<dm:firstName>{afname},
<dm:lastName>{alname},
<dm:affiliation>{aaffil}

WHERE {
title = s.ptitle AND
file = s.file AND
FOR{ coauthor IN s.coauthors AS }
{

cofname = coauthor.aname,
colname = coauthor.asurname,
coaffil = coauthor.affil

} AND
afname = s.author.aname AND
alname = s.author.asurname AND
aaffil = s.author.affil AND
T = s.track

}
}

}

The complete rule expressing the V iewSubmission activ-
ity state is triggered by a composed event. The composed
event is merged event and the resulting rule parameter is
specified in the PARAMETERS block as the union of the pa-
rameters (for the merged event composition all parameters
must share the same structure, due to the space limitations
parameter projections can not be described in details). Note
the RETRIEVE block that is used in the context of guarding
condition for retrieving the number of already existing re-
views for the submission. The guarding condition for the
finished(StoreReview) event comes from the correspond-
ing condition block in WM.

RULE Rule_ViewSubmission = {
ON { finished(StoreSubmission) AS s} IF { true } |
ON { finished(StoreReview) AS r}
IF { c > 1
RETRIEVE {

PATH { {REV}<dm:in_eval>{dm:Evaluation}
<dm:has_reviews>{dm:Review AS REVS}}

WHERE{ REV = r.review }
SELECT{ count(REVS) AS c }

}
}

PARAMETERS { p = s.submission | r.submission }
ACTION { ViewSubmission(p) }

}

3. GENERATING A TARGET MODEL
In this section we explain the automatic generation of

target models from WM. As the example target model we
choose the Hera application model (further only AM). Note
that a single instance of AM (running web application) can
implement multiple instances of the specified workflow run-
ning at the same time. For example, in the submission sys-
tem, a PC member within the activity state V iewSubmission
implemented as an instance of a navigation node defined in
AM would like to see all new submissions representing mul-
tiple workflow instances rather then just one at the same
time. Another issue to consider is implementation of cor-
rect activity synchronization (expressed by the composed
events). It would be too optimistic to assume that the tar-
get modelling method would take care about these issues
automatically. For this reason the target model implements
both issues. The generation of target models consists from
the following steps:

• Generating data manipulation facilities from the sys-
tem task(s) rules.

• Adding auxiliary data structures and appropriate data
manipulation facilities that allow the mapping of mul-
tiple workflow instances to a single AM instance and
that resolve composite events.

• Partitioning the actors’ tasks to clusters of activity
states that can be performed without waiting for ac-
tions of different actors. This allows the generation of
proper (offering tasks that can be accomplished during
a single session) navigation structure.

• Generating the proper (default) navigation structure
from the clustered actors’ tasks.

3.1 Generating Data Processing Facilities
The data processing includes all data manipulation oper-

ations, decisions, and activity synchronization. In WM it is
represented by a set of information update ECA rules that
communicate with user activities through events.

3.1.1 Auxiliary Data Processing Facilities
Let us call messages the events that are sent by the sys-

tem to the actors tasks (labelling the transitions from system
activity states to actors activity states) and back. It is an
appropriate name, because these messages are exchanged
between the system and its environment, and they often
carry information. This information is presented to users or
it is entered by users. Most of user tasks (or their parts) rep-
resent the transformation of incoming messages to outgoing
ones, where some additional information (a value in busi-
ness terms) is added. For example, a PC member receives a
submission information, adds assignments of reviewers to it,
and sends it back to the system. Note that these messages
are asynchronous, because (human or external system) re-
cipients might not be using the system at the time messages
are sent. Furthermore, since there are possibly multiple in-
stances of the workflow running at the same time (e.g. multi-
ple submissions are processed), also multiple instances of the

Submission
Submission
Submission

Assignments

System /
 SubmissionFlow
 PCMember
 /
AssignReview

SubmissionCl3

message queue

View Submission

/

Assign Reviews

Cluster 3

Assignments
 Cl3

message queue

Figure 5: Message queues for multiple workflow in-
stances

Event

Message
 User

Parameter

DMConcept

MQueue

Role

wf
_
inst

queue
 messages

parameters

user

0..*

0..*

Figure 6: Context Data Model

same type of messages can be sent. This classical problem
of asynchronous communication is obviously solved by using
message queues automatically maintained by the workflow
system (Hera web server according to specifications in gen-
erated AM).

We assume that the target modelling method (includ-
ing Hera) does not automatically support the asynchronous
communication and message queues. Therefore all needed
facilities (context data structures and appropriate data ma-
nipulations) are generated. An example of the message
queues from our example WM is shown in Figure 5. The
context data model (CDM) determines the structure of in-
formation needed for user identification, workflow instance
identification, and message queueing. The context data is a
persistent and updatable. The simplified structure of CDM
is in Figure 6. There are multiple Message and MQueue
classes generated according to the workflow structure - for
every message one. The detailed structure of Parameter is
also based on the structure of event parameters from the
workflow specification. Queue classes are singletons and
Message instances are determined by AM instances main-
tained at runtime. The instances of a workflow are deter-
mined by instances of a concept from DM, in the case of the
submission system it is the Paper concept.

For explaining the facilities added to the target model
(AM) the following abstract operations working with users,
messages, and message queues are used:

• boolean : find(user : U) finds out if the user U is
registered. The user can be identified based on is name
password, etc.

• register(user : U, role : R) registers a new user

• msg : get(queue : Q, user : U) returns a first appro-
priate (matching a concrete user U) message from a
queue and at the same time removes the event from
the queue

• put(queue : Q, msg : In) inserts a message In to the
queue

• boolean : empty(queue : Q, user : U) check if the
queue Q contains some messages for the user U

The operations are transformed into CDM data retrieval
and manipulation facilities (in Hera AM to SeRQL queries).
For handling the following events the described queries are
added to Hera AM:

• The system sends a message M to a user (his AM
instance). A query providing the operation put(Q, M)
for every generated queue is added to AM.

• A user logs in. Two user identification queries are
added, one for detecting if the user is registered us-
ing find(U), and another for registering the user via
register(U, R). In addition, queries checking the con-
tent of message queues (for waiting unprocessed mes-
sages) are added. This checking is done for every user
when he logs in. The queries implement the function-
ality of the empty(Q, U) and get(Q, U) operations.

• A user logs out. In this case two sets of queries are
added to AM. The first set is generated for all incom-
ing (from the point of view of users) message queue
that puts messages associated with unfinished activity
clusters by put(QIn, MIn) back to the queues. The sec-
ond set of queries is generated for all outgoing queues
representing finished activity clusters that are put into
an appropriate outgoing queue put(QOut, MOut).

As it follows from the previous explanation the state of every
workflow instance (implemented as an AM instance in Hera)
is given by the content of message queues where the system
puts its messages. If all queues where the system puts mes-
sages are empty, the system is not waiting for any message
from users and then there is no running workflow instance
(or it is only under system control). The exceptions are user
messages that initiate a new workflow instance, in the case
of the submission system it is the loginfo messages from the
Author role.

3.2 Generating Navigation Structure
The navigation structure mimics the structure of tasks of

all possible actors (and thus is adapted in the runtime based
on the role of the logged user). However often the tasks of
different actors are mutually dependent. For instance when
a PC member wants to evaluate a submission, he/she needs
to wait for reviewers to finish the reviews. To prevent pos-
sible unlimited waiting for another users during navigation
sessions, tasks presented by the web interface are partitioned
to activity clusters (AC) that can be accomplished indepen-
dently of another users. Moreover, the web interface (based
on the state of message queues) allows to access only task
clusters that are available.

The default structure of generated AM shown in Figure 7
contains the login unit (slice), a menu allowing personal-
ized access to AC for concrete users, and a set of navigation
structures (navigation clusters) representing AC itself. AC
are in Figure 3 shown as gray ovals in swim-lanes, and they
are formally explained in Section 3.2.1. AC are mapped
into navigation clusters (groups of navigation units (slices)
explained in details in Section 3.2.2. Figure 7 shows the
default navigation structure generated from workflow spec-
ifications. Access to navigation clusters representing AC
is determined by conditions attached to menu items corre-
sponding to particular clusters. The conditions check the

...

fname

sname

role

Login

login

Menu

Menu

NavCluster1
NOT empty(
 QNCluster1
 , U)

NavClusterN
NOT empty(
 QNClusterN
 , U)

...

Actor

Role1

Menu

RoleN

Navigation

ClusterN

Navigation

Cluster1

Figure 7: The default navigation structure gener-
ated from a workflow

message queues if they contain any new messages represent-
ing new particular tasks as it has been explained previously.

3.2.1 Partitioning Tasks
Tasks are partitioned to maximal possible clusters of ac-

tivities that are not dependent on activities of another ac-
tors. For formal definition of AC we need to introduce the
event ordering based on the sequence in which events can
occur.

Definition 3.1 (Event Order). Let F be a workflow
as it is specified in Definition 2.2 with the set of events E.
The relation £ : E×E determines the order of events in the
course of execution. For two subsequent events epre, esucc ∈
E holds: epre £ esucc ↔ ∃1 ≤ i < n, ai ∈ S, ei ∈ E :

ai
ei−−−−−→ ai+1 where e1 = epre, en−1 = esucc

It can be shown that the relation £ is a partial order of
the set E (it is reflexive, antisymmetric, and transitive). If
for a particular workflow model two events are in the order
e1£e2 then in any workflow instance of this model e1 occurs
before e2. Note that not all pairs of events in a workflow
must be in this relation (partial order). Partitioning actor’s
tasks to AC uses the notion of event ordering.

Definition 3.2 (Activity Cluster). Let TA(a) =
{s|∃t : (s, t) ∈ τ ∧ (a, t) ∈ α} be a set of activity states
in tasks of a single actor a for a task model < A, T, α, tS >
and a task workflow < S, E, G,→, S0, St, Ts, T, τ >. Activity
cluster is a set of activity states C ⊆ S such that ∀a, b, c ∈
C,−→a £

←−
b £−→c −→ a, b, c ∈ {TA(a) ∪ TA(system)}.

Definition 3.2 says that an AC is a set of activity states,
where any three states in the cluster that must be performed
in an order must be performed by the same actor, or the sys-
tem. This property ensures that no activity state in a cluster
of an actor follow after an activity state of another actor.
This means that performing activities in a cluster is indepen-
dent on collaboration with another actors. The clustering
procedure traverses the workflow structure for activities for
all tasks and tries to detect maximal (largest possible sat-
isfying the property from Definition 3.2) AC. The resulting
clusters for the submission system workflow are shown in
Figure 3 as grey ovals.

3.2.2 Generating Navigation Clusters
Navigation clusters (NC) are navigation counterparts of

AC (they implement AC using the Web interface). The
internal structure of NC mimics the sequences of activity
states in corresponding AC. Information observation activ-
ities are realized as slices (in Hera slices represent naviga-
tion nodes or their parts, for more details see [4]) presenting
data, information entry activities are realized as Hera forms,
and information updates as data manipulation queries (Hera
extension of SeRQL queries). There are possibly multiple
(heuristic) strategies to achieve reasonable results for auto-
mated generation of NC. The default strategy is based on
one-to-one mapping of information observation activities to
navigation units (slices), where information entry forms are
integrated with predecessor information observation slices.
Concretely, the strategy is based on the following integration
rules:

• Integration of subsequent information observation and
information entry activities to one unit (slice) based
on the common fact that information entry usually
follows after information observation (user first must
have some information to decide). It can be done for
a1 ∈ AO, a2 ∈ AE ∧ a1 → a2, where AO is a set of
all information observation activity states within the
same task, and AE is a set of all information entry
activity states within the same task, and

• Integration of subsequent information entry states to
one unit (slice) can be done for ∀ai ∈ AE , ai → ai+1

and can be restricted by a maximal number of inputs.

The first integration rule would be used for clusters 3,4, and
5 from Figure 3. Because of the lack of space we show only
AC “Cluster 3” transformed to the navigation unit Cluster3
depicted in Figure 8 using the Hera AM graphical nota-
tion. The V iewSubmission activity is transformed to the
Cluster3 slice with the Paper.AssignRevForm slice pre-
senting all new papers (submissions). They are stored as pa-
rameters of messages in the queue SubmissionCl3 (see Fig-
ure 5). The abstract operator get() for retrieving messages
from queues is implemented as the retrieval query of the slice
Paper.AssignRev and removal query RemoveSubCl3 trig-
gered when the Cluster3 slice is instantiated (it removes re-
trieved messages from the queue). The EnterAssignments
activity is transformed into the Reviewer form. Assignmetns
is a service query that puts all papers in the list that have
not yet assigned reviewers back to the SubmissionCl3 queue
and puts the Assignment message with the filled form in-
stance as a parameter into the AssignmentsCl3 message
queue (see Figure 5). It also triggers another processing
represented by subsequent queries (StoreAssignemnt, etc.).
The NavP anel form contains a button for logging of trigger-
ing the logoff Cluster3 query is a service query described
in Section 3.1.1for logging off. The following SeRQL query
is generated as the retrieval query of the Paper.AssignRev
slice:

SELECT P FROM {SubmissionCl3}<cdm:messages>{M},
{M}<cdm:user>{U},
{M}<cdm:wf_inst>{P},
{U}<cdm:id>{uid}

WHERE uid=$user

The $user is a session parameter representing the current
(logged in) user, and the P variable stores the paper instance
that is the message parameter.

Cluster3

AssignRev

ptitle

Author

firstName

lastName

Paper

SET

written_by

Reviewer

lastName
iSN

Nav
_Panel

Assignments

logoff
_
Cluster3

RemoveSubCl3

Figure 8: The example NU representing an AC
(“Cluster 3”)

4. CONCLUSION
The contribution of this paper is twofold: it describes a

language for detailed specification of workflows modelling
business processes of WIS, and it explains the automated
generation of a target model describing the application logic
of the WIS. Although we briefly show this generation process
for a Hera-compliant AM, we believe that it is possible
to build programs implementing the generation procedure
for arbitrary modeling methods, or directly generate source
code for any (programming) language implementing web ap-
plications. In our current work we particular considered the
extension of other forms of communication with actors than
the web interface, including communicating with external
systems using web services. Moreover, we think it would
be beneficial to build a visual tool facilitating the construc-
tion of WM and steering the generation process, possibly for
different target models.

5. REFERENCES
[1] Brambilla, M. and Ceri, S. and Fraternali, P.: Process

Modeling in Web Applications, ACM Transactions on
Software Engineering and Methodology
(TOSEM),(2006)

[2] Ceri, S. and Fraternali, P. and Bongio, A.”: Web
Modeling Language (WebML): a modeling language
for designing Web sites, 9th International Conference
on the World Wide Web (WWW9), Amsterdam”,
(2000)

[3] Eshuis, H.: Semantics and Verification of UML
Activity Diagrams for Workflow Modelling, PhD
thesis, CTIT PhD Thesis series, (2002)

[4] Houben, G.-J. and Frasincar, F. and Barna, P. and
Vdovjak, R.: Modeling User Input and Hypermedia
Dynamics in Hera, ICWE 2004, International
Conference on Web Engineering, (2004)

[5] Koch, N. and Kraus, A. and Cachero, C. and Melia,
S.: Integration of business processes in Web
application models, Journal of Web Engineering,pages
22-49, volume 3, (2004)

[6] Rossi, G. and Schmid, H. and Lyardet, F.:
Engineering business processes in web applications:
Modeling and navigation issues, Third International
Workshop on Web-Oriented Software Technology,
(2003)

[7] Schwabe, D., Rossi, G., Barbosa, S.D.J.: Systematic
Hypermedia Application Design with OOHDM,
Hypertext ’96, The Seventh ACM Conference on
Hypertext, (1996)

[8] Troyer, O.D. and Casteleyn, S.: Modeling complex
processes for Web applications using WSDM, Third
International Workshop on Web-Oriented Software
Technology, (2003)

