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Abstract—The Region Connection Calculus based on 8 rela-
tions (RCC8) is one of several extensively researched methods
to use for qualitative spatial representation and reasoning.
We discuss several issues arising when representing RCC8 in
OWL DL, a decidable fragment of OWL. There is no direct
encoding of such a calculus in OWL DL, as the language
lacks required features such as role reflexivity, role Boolean
operators, and role inclusion axioms. Some of these features
are to be included in the new version of the OWL standard,
OWL 2, but this language still lacks the expressive power to
support role negations, conjunctions, disjunctions, and complex
role inclusion axioms. Recently, advances in description logics
languages as SROIQBs have made possible expressing some of
the above constructs, while maintaining the decidability of the
language. In this paper, we exploit these new opportunities by
providing qualitative spatial knowledge representation on the
Semantic Web.
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I. INTRODUCTION

In this era of fast growing information needs, it is im-
portant to be able to represent data in a proper, meaningful
way. The Semantic Web opens the possibility to find, share,
and combine information more easily. It is already possible
to represent and reason with many types of information,
but there is no solution to do so with spatial knowledge,
which is knowledge acquired by someone or something in a
spatial environment. Although we can represent some spatial
knowledge on the Web by storing spatial features of subjects
in ontologies (e.g., geo-ontologies), these ontologies cannot
capture the semantics of spatial relations in a computer
“reasonable” manner. This spatial qualitative knowledge can
be generated from geographical information systems by
using translation schemes, implemented using for example
Prolog [1].

The Region Connection Calculus (RCC) [2] is one of
several extensively researched methods to use for quali-
tative spatial or topological representation and reasoning,
and it might be suitable to use on the Semantic Web too.
Unfortunately, this is not yet possible. In this paper, we
discuss several issues arising when trying to enable topo-
logical spatial reasoning on the Semantic Web using RCC,
in particular in conjunction with Web Ontology Language
(OWL). We focus on RCC instead of alternative calculi like

9-Intersection [3], because of its popularity and simplicity.
Also, RCC is based on logical theory, which makes it a more
suitable candidate to be used for the Semantic Web, which
is based on Description Logics (DL), than 9-Intersection,
which is based on elementary geometry.

There are different versions of OWL we can consider
in this paper. A commonly used OWL version is OWL
DL, which is a decidable fragment of OWL and is based
on the description logics language SHOIN . Also, OWL
2 (previously known as as OWL 1.1) is often mentioned
in literature. OWL 2 is an extension of OWL DL and
is based on the SROIQ description logics language and
its specifications have already reached a recommendation
status [4].

Being able to model spatial information on the Web using
RCC relations is important in order to support spatial rea-
soning, as a lot of spatial information is already available on
the Web in an unstructured form. Spatial relations can help
one to make decisions related to a wide variety of topics,
for instance the identification of geographical neighbors. If
one is starting a new business in a country, it is preferred
that the latter country is not in an armed conflict with any
of its neighboring countries. Another example can be found
in cadaster applications, e.g., laying a road in such a way
that it does not overlap with any of the existing buildings.A
space-based representation of weather information and the
spreading of epidemics are other possible applications.

Much work has already been done on the subject of
representing RCC relations in OWL [5]–[7]. However, none
of the suggested representations in OWL investigated so far
provide for a smooth and full integration of RCC into OWL.
In [8] we touched upon several of these issues. In this paper,
we discuss these issues in more detail and provide solutions
to some of the problems encountered, without breaking the
design philosophy of the OWL language.

The paper is organized as follows. First, the main rela-
tions of the Region Connection Calculus are introduced in
Sect. II. Then, we elaborate on state-of-the-art approaches
to express RCC relations in specific versions of OWL and
their underlying description logics languages (i.e., SHOIN
and SROIQ) in Sect. III. Section IV proposes a way to
represent RCC relations by using SROIQBs [9], which is a
description logics language that has some additional features



over SROIQ that are currently not supported by OWL.
Finally, we wrap up in Sect. V by drawing conclusions and
by giving directions for future research.

II. RCC

This section discusses the main relations of the Region
Connection Calculus (RCC). Also, we distinguish between
different versions of RCC, amongst which is RCC8. During
the rest of the paper, we will focus on the relations of RCC8.
This section concludes with a composition table of the RCC8
relations.

A. Introduction

The Region Connection Calculus serves for qualitative
spatial or topological representation and reasoning and was
introduced in 1992 by Randell et al [2]. RCC abstractly
describes regions (in Euclidean or topological space) by their
possible relations to each other.
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Figure 1. Region basics

Figure 1 illustrates the basics of regions. Regions are
defined as regular non-empty subsets of a topological set.
The closure of region (or subset) R in the topological space
S can be defined as the smallest closed subset of S which
contains R. A region also has a boundary B, which is
the closure of the region minus its interior I . A region
always contains more than one element (interior point), and
is possibly composed of multiple disconnected pieces that
may also contain holes. Figure 1(a) shows that the closure of
the region R in the topological space S is equal to boundary
B plus interior I . The RCC spatial relations operate on
regions, i.e., subsets that contain the closure of their interior.

B. RCC Relations

We now continue to elaborate on the basic relations of the
Region Connection Calculus. Table I shows all RCC rela-
tions. Note that inverse relations are omitted in this section,
because these relations are trivially defined based on the
corresponding direct relations. The relation between regions
R1 and R2 is equal to the inverse relation between regions
R2 and R1, e.g., TPP(R1, R2) is equal to TPPi(R2, R1).

1) Connected: RCC is based on a single primitive re-
lation between spatial regions: the connected relation. We
will refer to this connected relation as C. Two regions are
connected if and only if their topological closures share
a common point [10]. The relation C has to be reflexive
and symmetric. A reflexive relation implies that the relation
should not only be applicable to two different spatial regions,
but that it should also be possible for a region to be

Table I
RCC RELATIONS

Description Relation
Connected C
Part of P
Overlaps O
Externally connected to EC
Disconnected from DC
Discrete from DR
Proper part PP
Tangential proper part of TPP
Non-tangential proper part of NTPP
Equal to EQ
Partially overlaps PO
Overlaps not equal ONE
Spatially related SR

connected to itself. When region R1 is connected with region
R2 and region R2 is also connected with region R1, the
relation between both regions is symmetric.

2) Part of: The part of relation indicates that every region
R3 which connects to R1, also connects to R2, thus making
R1 part of R2. The relation P translated into First Order
Logic (FOL) is:

P(R1, R2) ≡def ∀R3[C(R3, R1)→ C(R3, R2)]

Figures 4, 5, and 6 illustrate the part of relation. Region
R1 is inside region R2 and thus is part of region R2. Please
note that the relation P can also be a PP(i), TPP(i), NTPP(i),
or EQ relation, where “i” stands for inverse of the relation.

3) Overlaps: If two regions have more than one point in
common (i.e., another region), the regions are overlapping
(O). Regions are considered to be overlapping when the
relation between the regions can be defined as a TPP(i)
(Fig. 4), NTPP(i) (Fig. 5), EQ (Fig. 6), or PO (Fig. 7)
relation. In FOL:

O(R1, R2) ≡def ∃R3[P(R3, R1) ∧ P(R3, R2)]

R1 R2

Figure 2. EC

4) Externally connected to: Two re-
gions are said to be externally connected
(EC) if they only share borders and thus
both regions are connected but are not
overlapping. Figure 2 displays a typical EC relation, as the
borders of regions R1 and R2 touch each other. The relation
EC can be described in FOL as:

EC(R1, R2) ≡def C(R1, R2) ∧ ¬O(R1, R2)

R1 R2

Figure 3. DC

5) Disconnected from: If regions R1

and R2 are disconnected (DC), no points
exist that are in regions R1 and R2 at
the same time and thus the intersection
of R1 and R2 is empty. Figure 3 represents this relation in a
graphical way. Both regions are, according to the definition
of the relation DC, not connected to each other. The relation
DC is in FOL:

DC(R1, R2) ≡def ¬C(R1, R2)



6) Discrete from: Region R1 can be discrete from (DR)
R2 if both regions are not overlapping. Both in the relation
EC and DC (Figs. 2 and 3, respectively) regions are not
overlapping, since they are only touching with bordering
points or not touching at all. The relation DR is in FOL:

DR(R1, R2) ≡def ¬O(R1, R2)

7) Proper part: Region R1 is said to be a proper part of
region R2 if R1 is fully inside R2, but is not equal to R2.
The regions shown in Figs. 4 and 5 illustrate the proper part
of (PP) relation: R1 is inside of R2 and is smaller than R2.
In FOL, the PP relation can be defined as:

PP(R1, R2) ≡def P(R1, R2) ∧ ¬P(R2, R1)

     R2R1

Figure 4. TPP

8) Tangential proper part: The tan-
gential proper part relation indicates that
one region is a subset of another region
and that they share some points on the
borders, so the tangential proper part relation is basically a
proper part relation where bordering points are shared. For
the regions from our previous examples, this relation can be
denoted as:

TPP(R1, R2) ≡def PP(R1, R2) ∧ ∃R3[EC(R3, R1)∧
EC(R3, R2)]

The relation is illustrated in Fig. 4, region R1 is inside
region R2 and R1 touches the border of R2.

     

R2

R1

Figure 5. NTPP

9) Non-tangential proper part: The
NTPP (non-tangential proper part) rela-
tion is almost similar to the TPP relation,
differing in the fact that no bordering
points are shared. Figure 5 shows an example of an NTPP
relation, where region R1 is inside region R2, without
sharing any bordering points. In FOL notation NTPP can
be defined as:

NTPP(R1, R2) ≡def PP(R1, R2) ∧ ¬∃R3[EC(R3, R1)∧
EC(R3, R2)]

R1

R2

Figure 6. EQ

10) Equal to: Two regions, say R1

and R2, are equal if and only if they
are exactly the same or, in other words,
identical. Region R1 is part of R2 and
vice versa (Fig. 6). In FOL, we can define this relation as:

EQ(R1, R2) ≡def P(R1, R2) ∧ P(R2, R1)

R1 R2

Figure 7. PO

11) Partially overlaps: It is possible
for regions to share interior points. When
more points than just border points, but
not all points of the regions are shared,
one can say the regions are partially overlapping. Figure 7
illustrates two partially overlapping regions R1 and R2. We
can denote this relation as:

PO(R1, R2) ≡def O(R1, R2) ∧ ¬P(R1, R2) ∧ ¬P(R2, R1)

12) Overlaps not equal: Furthermore, it is possible for
two regions to overlap, but not to be equal, i.e., the relation
ONE holds. Region R1 can have the relation ONE with
region R2 when either R1 is partially overlapping R2 or R1

is a proper part of R2 (or R2 is a proper part of R1). These
relations are illustrated in Figs. 4, 5, and 7. ONE can be
denoted as:

ONE(R1, R2) ≡def O(R1, R2) ∧ ¬EQ(R1, R2)

13) Spatially related: In RCC, two regions always have
the SR (spatially related) relation, since SR contains every
relation of RCC: it is the universal relation. Each of the
previously introduced illustrations of relations applies to this
universal relation. In FOL, SR can be denoted as:

SR(R1, R2) ≡def >(R1, R2)

C. RCC Versions

A few versions of the region connection calculus are
circulating, for instance RCC1, RCC2, RCC3, RCC5, RCC8,
RCC15, and RCC23. The numbers indicate the amount of
relations defined in the connection calculi. In this paper,
we focus on RCC8, which is widely used and researched.
RCC8 has several nice properties, e.g., reasoning over its
relations is decidable [11], [12]. Also, RCC8 is one of
the smallest sets of topological base relations which makes
topological distinctions rather than just mereological ones
and RCC8 can be regarded as the spatial counterpart of
the temporal (one-dimensional) interval algebra [12]. In
addition, reasoning over the general RCC calculus is known
to be undecidable [13].

Using the relation C, eight Jointly Exhaustive and Pair-
wise Disjoint (JEPD) relations (i.e., there is no relation
between the domain objects that can not be described by
a predicate of the JEPD set, and only one relation can
hold at a time) can be defined for RCC8: EC, DC, TPP,
TPPi, NTPP, NTPPi, EQ, and PO. The RCC5 relation set
contains five relations: PP, PPi, PO, EQ and DR. The RCC3
relations are: ONE, EQ and DR. RCC2 contains the O
and DR relations and the RCC1 relation set only contains
one relation, i.e., SR. RCC15 and RCC23 can be partially
described using the previously introduced relations [14]. All
these relations (except for the inverses) have been discussed
in Subsect. II-B.

D. Composition Table of RCC8

In order to check the consistency of a knowledge base
holding spatial relations, so-called composition tables are
used [7], [15]. The compositions of all RCC8 relations can
be found in Table II.

We explain the principle of composition and the correct-
ness of the composition table by using an example: the
composition of EC (second row) and NTPP (sixth column).
For convenience, the corresponding cell is highlighted in



Table II
COMPOSITION TABLE FOR RCC8 RELATIONS

◦ EC DC TPP TPPi NTPP NTPPi EQ PO
EC EC, DC, TPP,

TPPi, EQ, PO
EC, DC, TPPi,

NTPPi, PO
EC, TPP,
NTPP, PO

EC, DC TPP, NTPP, PO DC EC EC, DC, TPP,
NTPP, PO

DC EC, DC, TPP,
NTPP, PO

EC, DC, TPP,
TPPi, NTPP,

NTPPi, EQ, PO

EC, DC, TPP,
NTPP, PO

DC EC, DC, TPP,
NTPP, PO

DC DC EC, DC, TPP,
NTPP, PO

TPP EC, DC DC TPP, NTPP EC, DC, TPP,
TPPi, EQ, PO

NTPP EC, DC, TPPi,
NTPPi, PO

TPP EC, DC, TPP,
NTPP, PO

TPPi EC, TPPi,
NTPPi, PO

EC, DC, TPPi,
NTPPi, PO

TPP, TPPi, EQ,
PO

TPPi, NTPPi TPP, NTPP, PO NTPPi TPPi TPPi, NTPPi,
PO

NTPP DC DC NTPP EC, DC, TPP,
NTPP, PO

NTPP EC, DC, TPP,
TPPi, NTPP,

NTPPi, EQ, PO

NTPP EC, DC, TPP,
NTPP, PO

NTPPi TPPi, NTPPi,
PO

EC, DC, TPPi,
NTPPi, PO

TPPi, NTPPi,
PO

NTPPi TPP, TPPi,
NTPP, NTPPi,

EQ, PO

NTPPi NTPPi TPPi, NTPPi,
PO

EQ EC DC TPP TPPi NTPP NTPPi EQ PO
PO EC, DC, TPPi,

NTPPi, PO
EC, DC, TPPi,

NTPPi, PO
TPP, NTPP, PO EC, DC, TPP,

TPPi, EQ, PO
TPP, NTPP, PO EC, DC, TPPi,

NTPPi, PO
PO EC, DC, TPP,

TPPi, NTPP,
NTPPi, EQ, PO

the table. Each table entry is a theorem on relations ρ and
regions R of the form:

∀R1∀R2∀R3[(ρ1(R1, R2) ∧ ρ2(R2, R3))→ ρ3(R1, R3)]

As stated in [16], the proofs which underly the entries
in the composition table are both tedious to do and in
some cases difficult to secure. Often a difficult proof is
only obtained via lemmas. Therefore, we do not give formal
proofs for (every entry of) the composition table, but we
explain our example graphically.

R2
R1

R3

(a) PO

R3

R2
R1

(b) TPP

R3

R2R1

(c) NTPP

Figure 8. The composition of EC and NTPP

When we compose EC and NTPP graphically, we obtain
the relations shown in Fig. 8. In any case, the theorem of the
composition holds. It is possible for R1 to partially overlap
R3, while R1 is externally connected to R2 and R2 is a non-
tangential proper part of R3 (Fig. 8(a)). Also, R1 can have a
(N)TPP relation with R3, while R1 is externally connected to
R2 and R2 is a non-tangential proper part of R3 (Figs. 8(b)
and 8(c)). The situation can be denoted in First Order Logic
as follows:

∀R1∀R2∀R3[(EC(R1, R2) ∧ NTPP(R2, R3))→

PO(R1, R3) ∨ TPP(R1, R3) ∨ NTPP(R1, R3)]

In this section, we have shown that one entry of the
composition table of the RCC8 relations (Table II) is correct
by evaluating it graphically. The same approach can be used
for every table entry.

III. TRANSLATING RCC8 RELATIONS INTO OWL

We now continue with elaborating on ways to translate
RCC8 into OWL. In this section, different versions of OWL
are discussed in relation to RCC8 representation, i.e., OWL
DL (which is based on the logic SHOIN ) in Sect. III-A
and OWL 2 (based on SROIQ) in Sect. III-B. Section III-C
discusses a concrete domains extension to ALC, a subset of
OWL DL.

A. Translating RCC8 into OWL DL

Katz and Grau [5] present a way of representing RCC8 in
OWL DL. It is shown that while OWL DL already has much
of the features needed to represent RCC8 relations, it lacks
a necessary ability to represent reflexive roles, i.e., roles that
hold always when the subject and object are equal. This is
because it is known from previous research that RCC8 can
be translated into S4, a modal logic [17]. S4 is basically an
extension of the description logic S, which is supported by
OWL. The difference between S and S4 is the possibility to
represent reflexive relations. It is claimed that the reflexive
property could be added to OWL in a future version without
much trouble. Indeed, OWL 2 supports reflexivity, as it is
based on the logic SROIQ [18] which includes reflexivity.

Katz et al. then proceed to give a translation of the RCC8
relations into OWL DL. Table III shows the DL-variants with
R1 and R2 as regular regions between which the relation
should hold, and R3, . . ., R8 as unique concepts, which do
not appear anywhere else in this knowledge base. Note that
R3, . . ., R8 may not be empty, so ABox assertions requiring
them to contain at least one individual are needed.

B. A Hybrid Knowledge Representation System Architecture

Grütter and Bauer-Messmer [6], [7] present an approach
for combining RCC8 with OWL 2. They identify some
problems with the previously presented approach when
translating RCC8 into OWL 2. First of all, the regions are



Table III
TRANSLATIONS OF RCC8 RELATIONS INTO OWL DL

Relation OWL DL
EC(R1, R2) ∀C.R1 v ∃C.¬R2; R3 ≡ R1 uR2

DC(R1, R2) R1 v ¬R2

TPP(R1, R2) R1 v R2; R4 ≡ R1 u ∃C.¬R2

TPPi(R1, R2) R2 v R1; R5 ≡ R2 u ∃C.¬R1

NTPP(R1, R2) R1 v ∀C.R2

NTPPi(R1, R2) R2 v ∀C.R1

EQ(R1, R2) R1 ≡ R2

PO(R1, R2) R6 ≡ ∀C.R1 u ∀C.R2; R7 ≡ R1 u ¬R2;
R8 ≡ ¬R1 uR2

sets in the abstract object domain (OWL TBox, or schema
level) and not in a concrete domain (OWL ABox, or data
level). Current versions of OWL do not allow classes to
also be individuals (or properties) at the same time. The
punning mechanism of OWL 2 is not useful here as this
allows the same name to be used for two different entities:
class and individual [19]. This prevents RCC8 from being
used with domain ontologies, as these require the regions to
be represented as individuals [5], [6]. Another problem with
OWL 2 is that it does not support the kind of role inclusion
axioms required for the RCC composition tables of the form
S ◦ T v R1 t . . . tRn as given in Table II.

In addition to this, we find the approach of Katz et
al. is difficult to interpret. Also, there is an explosion of
TBox axioms, as you have to introduce for each RCC8
role association one TBox axiom, instead of defining the
relations of an RCC8 role only once and apply it for different
instances. Also, for some of the RCC8 axioms additional
TBox axioms specifying the non-emptiness of some regions
need to be introduced. Therefore, the translation of RCC8
into OWL lacks practicability, which is also emphasized by
Stocker and Sirin [20].

For these reasons, instead of translating RCC into
SROIQ or OWL, the authors propose to combine RCC
with OWL at the level of the knowledge representation
system architecture and not at the level of the formalisms.
Therefore, the architecture of OWL is extended with RCC-
specific components. These are implemented in what the
authors call an RCCBox, which is similar to the RBox (role
box) in SROIQ [18], in which the RCC relations and
composition tables (for RCC1, 2, 3, 5, and 8) are specified.
The combination of this RCCBox with OWL is the hybrid
aspect of this approach. Figure 9 shows the relations between
the RCCBox and the ABox and TBox.

Also, it was found that this approach also does not work
well with OWL DL. One major problem is the inability
of OWL DL to check whether two regions are connected
or not – unless all connected relations have been explicitly
defined – because role negation is not natively supported at
ABox level. However, to explicitly define all the combina-
tions of two disconnected regions would be impossible with
a large number of regions. OWL 2 does support role negation

TBox

ABox

DL Reasoning

RCCBoxRCC Reasoning

Schema Level

Data Level

RCC Level

Figure 9. The hybrid system architecture of Grütter and Bauer-Messmer

at ABox level, so it is then possible to check whether any
of the other 7 RCC8 relations hold, and if not, to then
automatically state that the disconnected relation takes place
between the two regions. This is just an approximation,
which might turn out to be wrong when new facts are
added to the knowledge base, but it is a consequence of the
difficulties of working with the open world assumption [21].

C. Concrete Domains and GCIs in DL

Kutz et al. introduce an approach for combining several
abstract description systems (domains), such that the com-
bination is decidable if its components are decidable [22].
This means the combination method can be considered to
show robust computational behavior. The authors show that
their approach, the ε-connection method, has a wide range
of applications, amongst which are spatial logics.

However, according to Lutz and Milic̆ić [23], combining
concrete domains (constraint systems) with General Concept
Inclusions (GCI) usually leads to undecidability. A particular
class of systems is based on predicates that are interpreted as
jointly exhaustive and pairwise disjoint. This so-called JEPD
property is also applicable to RCC8, as stated in Sect. II-C,
and leads to ω-admissibility. It is stated that ω-admissibility
is sufficient for proving decidability of description logics
equipped with concrete domains and GCIs. Examples of ω-
admissible constraint systems are Allen relations (temporal),
which were implemented in SHIN , a subset of OWL,
in [24], and RCC8 relations (spatial).

The authors describe ALC(C), an extension of ALC
which is able to handle ω-admissible constraint systems and
GCIs. Two concepts are added to the ALC DL: ∃U1, U2.r
and ∀U1, U2.r, where r is a binary concrete domain predi-
cate and U1 and U2 represent feature paths. In ALC(C), a
general concept inclusion axiom is an expression of the form
C v D, where C and D are concepts without limitations
(e.g., cycles are allowed). Lutz and Milic̆ić present a tableau
algorithm for ALC(C) that proves the decidability of the
language. This has been generalized to SHIN [25].

IV. TRANSLATING RCC8 INTO DL

In the previous section, we have encountered a few
major issues when representing RCC8 relations in currently



Table IV
TRANSLATIONS OF RCC ELEMENTS INTO DL (INVERSE RELATIONS ARE OMITTED)

Relation FOL DL
C(R1, R2) C(R1, R2) C
P(R1, R2) ∀R3[C(R3, R1)→ C(R3, R2)] ¬(C ◦ ¬C)
O(R1, R2) ∃R3[P(R3, R1) ∧ P(R3, R2)] P−◦ P
EC(R1, R2) C(R1, R2) ∧ ¬O(R1, R2) C u ¬O
DC(R1, R2) ¬C(R1, R2) ¬C
DR(R1, R2) ¬O(R1, R2) ¬O
PP(R1, R2) P(R1, R2) ∧ ¬P(R2, R1) P u ¬(P−)
TPP(R1, R2) PP(R1, R2) ∧ ∃R3[EC(R3, R1) ∧ EC(R3, R2)] PP u (EC ◦ EC)
NTPP(R1, R2) PP(R1, R2) ∧ ¬∃R3[EC(R3, R1) ∧ EC(R3, R2)] PP u ¬(EC ◦ EC)
EQ(R1, R2) P(R1, R2) ∧ P(R2, R1) P u P−

PO(R1, R2) O(R1, R2) ∧ ¬P(R1, R2) ∧ ¬P(R2, R1) O u ¬P u ¬(P−)
ONE(R1, R2) O(R1, R2) ∧ ¬EQ(R1, R2) O u ¬EQ
SR(R1, R2) >(R1, R2) >

available OWL variants, i.e., OWL DL and OWL 2. First
of all, RCC requires reflexivity (for the C relation), but in
SHOIN , the description logic on which OWL DL is based,
this property is not included. Also, the required role negation
at ABox level for the definition of the various RCC8 rela-
tions and complex role inclusion axioms for the composition
of RCC8 relations are not natively supported by OWL DL.
However, SROIQ – and thus OWL 2 – does support role
negation at ABox level, reflexivity, and role inclusion axioms
while maintaining decidability. However, SROIQ does not
fully meet our needs, as RCC8 also requires role negation,
conjunction, and disjunction at an abstract level, and we also
need complex role inclusion axioms. The recently proposed
extension for SROIQ, SROIQBs [9], as explained below,
fulfills some of our needs.

The expressive description logic SROIQBs can be ob-
tained from SROIQ by allowing arbitrary Boolean con-
structors on simple roles, of which the addition is denoted
by Bs. Up until now, Boolean constructors (i.e., negation,
conjunction, and disjunction) on roles have been used spo-
radically in description logics. Recently, in [9] the authors
proposed to incorporate these Boolean constructors into
DL languages, enabling one to enhance the expressivity of
these languages without significantly increasing the reason-
ing complexity. It is stated in [9] that satisfiability check-
ing, instance retrieval, and computing class subsumptions
for SROIQBs knowledge bases is N2ExpTime-complete,
while for OWL DL it is NExpTime-complete.

One problem still remains in SROIQBs, i.e., composi-
tion is only allowed to exist in the left hand side of a role
inclusion axiom. However, when translating RCC8 relations
into a description logics language, we need composition
in the right hand side as well (e.g., the equivalents given
by the composition tables or RCC8 relation definitions
are in fact double inclusions between the left hand side
and the right hand side). Furthermore, SROIQBs allows
only conjunction of simple role expressions. However, for
expressing RCC8 relations, we also need role conjunctions
that contain role composition.

Wessel shows extensions to various ALC variants in order
to implement the composition-based role inclusion axioms
of the form we need for representing RCC8 [26]. It is
concluded that implementing such axioms often leads to
undecidability. However, Horrocks and Sattler show that
SHIQ can be extended with complex role inclusion axioms,
without endangering the decidability [27]. This is true when
restricting the set of role inclusion axioms to be acyclic.

In the rest of this section we will prove based on the
FOL definitions of RCC8 relations given in Sect. II-B that
their DL counterparts presented in Table IV are sound.

Proposition 1: C ≡ C
Proof: In FOL we define the relation C as C(R1, R2).

This relation is a primitive relation and thus it cannot be
rewritten. In DL the relation C is defined as C.

Proposition 2: P ≡ ¬(C ◦ ¬C)
Proof: The relation P is defined in FOL as

P(R1, R2) ≡ ∀R3[C(R3, R1) → C(R3, R2)]. Rewrit-
ing yields P(R1, R2) ≡ ¬C(R3, R1) ∨ C(R3, R2) ≡
¬(C(R3, R1) ∧ ¬C(R3, R2)) (De Morgan’s law). Note that
the universal quantifier has been removed by skolemization.
Continuing, we arrange the arguments of C for composition
and obtain P(R1, R2) ≡ ¬(C−(R1, R3) ∧ ¬C(R3, R2)).
Then, we can translate the relation into DL, and thus we
obtain P ≡ ¬(C− ◦¬C). Omitting the inverse (because C is
symmetric) yields P ≡ ¬(C ◦ ¬C).

Proposition 3: O ≡ P− ◦ P
Proof: The FOL definition of the relation O is

O(R1, R2) ≡ ∃R3[P(R3, R1)∧ P(R3, R2)]. When rewriting
this FOL expression to a DL expression, we can apply
composition. Therefore, the quantifier disappears and after
arranging the arguments of P for composition, we obtain
O(R1, R2) ≡ P−(R1, R3) ∧ P(R3, R2) and thus translating
the definition into DL, O ≡ P− ◦ P.



Proposition 4: EC ≡ C u ¬O
Proof: In FOL the relation EC between externally

connected regions R1 and R2 is defined as EC(R1, R2) ≡
C(R1, R2) ∧ ¬O(R1, R2). Rewriting into DL gives EC ≡
C u ¬O.

Proposition 5: DC ≡ ¬C
Proof: The DC relation is defined as DC(R1, R2) ≡

¬C(R1, R2) in FOL. This relation is a primitive relation and
thus it cannot be rewritten. Therefore, in DL the relation DC
is defined as DC ≡ ¬C.

Proposition 6: DR ≡ ¬O
Proof: We define the DR relation between discrete

regions R1 and R2 in FOL as DR(R1, R2) ≡ ¬O(R1, R2).
Rewriting into DL gives DR ≡ ¬O.

Proposition 7: PP ≡ P u ¬P−

Proof: In FOL, PP is defined as PP(R1, R2) ≡
P(R1, R2) ∧ ¬P(R2, R1). Here, P(R2, R1) indicates an in-
verse relation between the two regions, and thus in DL this
translates to P−. Rewriting PP to a DL expression yields
PP ≡ P u ¬P−.

Proposition 8: TPP ≡ PP u (EC ◦ EC)
Proof: The FOL definition of the relation TPP

is TPP(R1, R2) ≡ PP(R1, R2) ∧ ∃R3[EC(R3, R1) ∧
EC(R3, R2)]. When rewriting this FOL expression to a
DL expression, we can apply composition. Therefore, the
existential quantifier disappears and after rearranging the
arguments of EC for composition, we obtain TPP(R1, R2) ≡
PP(R1, R2)∧ (EC−(R1, R3)∧EC(R3, R2)). By translating
the previous formula into DL, we get TPP(R1, R2) ≡ PP u
(EC− ◦ EC). Because EC is a symmetric relation, we can
omit the inverse, and thus TPP(R1, R2) ≡ PP u (EC ◦ EC).

Proposition 9: NTPP ≡ PP u ¬(EC ◦ EC)
Proof: The NTPP relation is defined in FOL as

NTPP(R1, R2) ≡ PP(R1, R2) ∧ ¬∃R3[EC(R3, R1) ∧
EC(R3, R2)]. By skolemization, the quantifier disappears
and after arranging the arguments of EC for composition,
we obtain NTPP(R1, R2) ≡ PP(R1, R2)∧¬(EC−(R1, R3)∧
EC(R3, R2)) and thus translating the definition into DL,
NTPP ≡ PP u ¬(EC− ◦ EC). Because EC is symmetric,
NTPP ≡ PP u ¬(EC ◦ EC).

Proposition 10: EQ ≡ P u P−

Proof: In FOL, EQ is defined as EQ(R1, R2) ≡
P(R1, R2) ∧ P(R2, R1). Here, P(R2, R1) indicates an in-
verse relation between the two regions, and thus in DL this
translates to P−. Rewriting EQ to a DL expression yields
EQ ≡ P u P−.

Proposition 11: PO ≡ O u ¬P u ¬(P−)
Proof: The FOL definition of the relation PO is

PO(R1, R2) ≡ O(R1, R2) ∧ ¬P(R1, R2) ∧ ¬P(R2, R1).
When rewriting this FOL expression to a DL expression,
we obtain PO ≡ O u ¬P u ¬(P−).

Proposition 12: ONE ≡ O u ¬EQ
Proof: In FOL the relation ONE is defined as

ONE(R1, R2) ≡ O(R1, R2)∧¬EQ(R1, R2). Rewriting into
DL gives ONE ≡ O u ¬EQ.

Proposition 13: SR ≡ >
Proof: In DL, SR is expressed as the top relation,

denoted as >, and therefore SR ≡ >.

V. CONCLUSIONS

In this paper, we have identified several issues encoun-
tered when representing RCC8 in OWL. We have reviewed
different approaches to implement RCC8 relations in OWL.
OWL DL, which is based on the description logics language
SHOIN is not suitable for implementing RCC8 relations,
as the language lacks required features such as role reflex-
ivity, role Boolean operators, and role inclusion axioms.
Some of these features are to be included in the forthcoming
OWL 2 (based on SROIQ), but this language still lacks
the expressive power to support role negations, conjunctions,
and disjunctions at an abstract level, as well as complex role
inclusion axioms. However, a recently developed extension
for SROIQ, SROIQBs, seems to support some of our
needs, as the language adds role Boolean operators to
SROIQ while maintaining the decidability of the language.
Therefore, we propose to extend OWL 2 with role Boolean
operators. However, if we want to express RCC8 relations in
a description logics language, complex role inclusion axioms
need to be supported on the right hand side, a feature that
is not included in SROIQBs. Also, Boolean role operators
on complex roles are needed to be added as well (e.g., for
defining P, PP, TPP, etc.).

Therefore, as future work we would like to investigate
how to extend SROIQ with more complex role inclusion
axioms and Boolean operators on complex roles, while
maintaining decidability. Also, it is worth investigating how
one can represent more powerful spatial knowledge rep-
resentation formalisms like RCC15 and 9-Intersection on
the Semantic Web. One of the advantages of 9-Intersection
is that it allows to capture the spatial relations between
not only regions, but also between regions and points or
between regions and lines. Furthermore, we would like to
implement the tableau algorithm given in [9] and experiment
with RCC8-based reasoning in different domains (business,
cadaster, weather, health, etc.). Finally, the decidability of
the proposed OWL 2 extensions is the subject of future work.
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