Curriculum Learning for a Hybrid Approach for Aspect-Based
Sentiment Analysis

Nana Lange?, Flavius Frasincar®, Maria Mihaela TruscaP®

@ Frasmus University Rotterdam, P.O. Box 1738, 3000DR, Rotterdam, the Netherlands
Y KU Leuven, Blijde Inkomststraat 21, 3000 Leuven

Abstract

In the past years, the amount of unstructured online review data has grown exponentially. Many
people express their opinions about different aspects of goods and services on the Web. Aspect-
Based Sentiment Analysis (ABSA) automatically extracts the sentiments with respect to aspects
given in a sentence. We improve the training procedure of the state-of-the-art Hybrid Approach for
Aspect-Based Sentiment Analysis with deep contextual word embeddings and hierarchical attention
(HAABSA++). In this method, a domain sentiment ontology is used as a main classifier, and if
it is not conclusive, a neural network is employed as a back-up. We extend the training of the
neural network by incrementally adding more difficult instances, also known as curriculum learning.
Restaurant reviews obtained from the SemEval-2015 and SemEval-2016 datasets are used to evaluate
the effect of implementing curriculum learning. Using baby steps curriculum learning and a specific

curriculum strategy, the accuracy of HAABSA++ is improved from 86.3% to 87.5%.

Keywords: aspect-based sentiment analysis, baby steps curriculum learning, one-pass curriculum

learning, online reviews

1. Introduction

In the past years, the amount of unstructured online review data has grown exponentially. Many
people express their opinions about different aspects of goods and services on the Web. Since review
data is very unstructured and the number of reviews can be very large, it can be expensive, time-
wise and price-wise, to extract the consumer’s opinions manually from the reviews, especially for
big companies. That is why sentiment analysis is often used. Sentiment analysis is a discipline
that is able to detect sentiments in a full review, a sentence, or with respect to an aspect (Liu,
2015). Given a sentence in a review, it is possible that in the same sentence an opinion about two or

more aspects is given. The sentiments towards these aspects can be unequal, even though they are

Email addresses: nanalange@planet.nl (Nana Lange), frasincar@ese.eur.nl (Flavius Frasincar),
mariamihaela.trusca@kuleuven.be (Maria Mihaela Trusgcd)

Preprint submitted to Expert Systems with Applications June 16, 2025

mentioned in the same sentence. Aspect-Based Sentiment Analysis (ABSA) makes it possible to find
the sentiment of different aspects in the same sentence. In this way, the sentiments of all aspects in a
sentence are determined, instead of only the overall sentiment of the complete sentence (Schouten &
Frasincar, 2016). Focusing on the individual aspects rather than full sentences gives a more profound
insight into the different aspects of products or services. A sentiment can be positive, negative, or
neutral, and can give a company useful information about their products. ABSA is therefore a very
important tool for companies to get an insight into how people evaluate certain aspects of their
products and which product features could be improved.

In order to accurately predict the sentiment of a given aspect, both machine learning methods
and knowledge-based methods can be used. However, Schouten & Frasincar (2018) have shown that
using both methods in a hybrid approach yields the best performance. In this approach, first, the
sentiment of an aspect is predicted by a domain sentiment ontology, and a support vector machine
is used as a back-up. Wallaart and Frasincar have extended this method and have shown that
this approach works best with a neural network with a rotatory attention mechanism and multiple
hops (LCR-Rot-hop) (Wallaart & Frasincar, 2019). This approach will from now on be referred to
as Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA). In addition to this, Trusca
et al. (2020) have shown that the accuracy of HAABSA is improved by using deep contextual word
embeddings and hierarchical attention (LCR-Rot-hop++), resulting in the HAABSA++ model.

The domain sentiment ontology approach is able to predict the sentiment of around 60% of
the samples (Wallaart & Frasincar, 2019), with an accuracy of 86.8%. The neural network is thus
needed to predict the sentiment of the remaining sentences in the dataset. The sentiment of the
remaining sentences is predicted by the neural network with an accuracy of 81.5%. While it is
clear why the backup neural network is of great importance, the domain sentiment ontology is
required due to its capacity to provide better results than the neural network. The training of a
deep learning model, however, can be a very time-consuming job. Bengio et al. (2009) discovered
that presenting the training data to a model in a predetermined order, usually from the easiest to
the most difficult, can improve its learning speed. This so-called curriculum learning can help the
training process by converging faster to better solutions (Bengio et al., 2009). It is shown that the
use of curriculum learning can be effective when applied to deep learning in text (Tsvetkov et al.,
2016; Cirik et al., 2016). Cirik et al. (2016) show that ordering the samples based on their lengths,
leads to improved sentiment analysis results. Recently, Rao et al. (2020) have specialized the sorting
of data by proposing a curriculum strategy that is focused specifically on sentiment analysis, instead
of a more general strategy. They show that ordering the training data while accounting for the
downstream task leads to better results than when the data is ordered utilizing a general approach.
Hence, the application of curriculum learning in sentiment analysis has shown promising results in

recent studies. However, little research has been done into how curriculum learning can improve the

results of the model for ABSA.

In this research, we focus on the sentiment analysis of aspects and we do not conduct any research
into the detection of these aspects. That is why data with already annotated aspects is used in our
research. We aim to extend the state-of-the-art HAABSA++ model given by Trusca et al. (2020)
and improve their results. To be more precise, we focus on improving the training of the neural
network of the HAABSA++ approach in order to obtain faster and possibly more accurate results.

Since curriculum strategies designed specifically for the downstream tasks lead to better results
than general strategies (Nagatsuka et al., 2021; Zhu et al., 2021), we aim to find a specific curricu-
lum strategy for ABSA. Even though studies have shown that applying a curriculum strategy can
be very successful in sentiment analysis (Rao et al., 2020), it is not clear what the possible effects
are when applied to ABSA. To achieve this aim, we use curriculum learning for training the neural
network of the HAABSA++ model (LCR-Rot-hop++). Besides the already demonstrated benefits
of the curriculum learning for the NLP tasks, another reason to apply this learning strategy with the
hybrid approach is the presence of the attention mechanism in the neural network. Starting from the
of the attention layers, we need to confirm this hypothesis with respect to the neural network of the

hybrid approach. All of the above leads us to the following research question:

How can curriculum learning improve an approach for aspect-based sentiment analysis?

To answer this question, we use the curriculum strategy proposed by Rao et al. (2020) for
sentiment analysis and alter this strategy to make it appropriate for ABSA. We compare the re-
sults of the model trained with and without curriculum learning and investigate different ways
of implementing our curriculum strategy. The data we use consists of a collection of restaurant
reviews and all the methods are implemented in Python. The source code can be found via:
https://github.com/Nanalange/CL-HAABSA.

The remainder of this paper is structured as follows. To begin with, in Section 2, a discussion of
the relevant literature into ABSA and curriculum learning is given. Section 3 gives an overview of
the methods we use. Subsequently, the used datasets and the evaluation measures are discussed in
Section 4. The results of our proposed methods are given in Section 5. Finally, we end our paper

by giving a conclusion in Section 6.

2. Related Work

An overview of previous research into ABSA is provided in Section 2.1. After this, in Section
2.2, we discuss the concept of curriculum learning and give an overview of studies on curriculum

learning in sentiment analysis.

 https://github.com/NanaLange/CL-HAABSA

2.1. Aspect-Based Sentiment Analysis

ABSA is broadly covered in previous research (Weichselbraun et al., 2017; Meskele & Frasincar,
2020; Yadav et al., 2021; Cheruku et al., 2024; Han et al., 2025; Xu et al., 2025). The study of
Schouten & Frasincar (2016) provides an overview of research into ABSA, focusing on both the
detection of aspects and the sentiment analysis of these aspects. As the data we use in our research
already provides us with the aspects, we focus solely on the classification of the sentiment belonging
to the aspects, by assigning a positive, negative or neutral sentiment label.

Schouten & Frasincar (2016) state that the ABSA approaches can in general be classified as
knowledge representation-based or as machine learning-based. In addition to this, their study also
proves that these two methods are actually complementary and that a hybrid approach using both
methods outperforms approaches that rely on only one. According to Wallaart & Frasincar (2019),
HAABSA consists of an ontology reasoner and a neural network. The ontology is domain-specific
and sentiment-relevant and in the performed experiment it is designed for restaurant reviews. In
cases where the prediction of the ontology is indecisive (conflicting sentiment or missing sentiment),
a neural network is used.

In the HAABSA method, the neural network introduced by Wallaart & Frasincar (2019) is based
on an extension of the Left-Center-Right separated neural network with Rotatory attention (LCR-
Rot) proposed in (Zheng & Xia, 2018). LCR-Rot has shown to be very successful in predicting the
sentiment of an aspect. The LCR-Rot model divides the sentence into three parts: the left context,
the target phrase, and the right context. The target phrase contains the words that form the aspect.
The model consists of three separate Long Short-Term Memory (LSTM) models, each LSTM for one
of the parts of the sentence. Next to this, a rotatory attention mechanism is used to better model
the interaction between the target and the left and right context. In this way, the LCR-Rot model
uses the different parts of the sentence to capture the most important sentiment words.

The LCR-Rot-hop model presented by Wallaart & Frasincar (2019) extends the LCR-Rot model
by performing multiple hops in the rotatory attention. Therefore, information about the different
parts of the sentences is hereby used and updated multiple times in the model in order to obtain
better results. Finally, Trusca et al. (2020) introduced HAABSA++ by extending LCR-Rot-hop++
as a model that combines hierarchical attention with the LCR-Rot-hop model. The authors have
added an extra layer to the LCR-Rot-hop model so that not only local information is used when
the vectors are updated, but also information at the sentence level is considered. In addition to
hierarchical attention, Trusca et al. (2020) use deep contextual word embeddings, replacing the
non-contextual word embeddings of HAABSA.

In parallel, recent work has focused on integrating neurosymbolic Al into sentiment analysis,
with the goal of enabling personalization (Zhu et al., 2024) or improving interpretability and the

reasoning capabilities. Neurosymbolic approaches such as SenticNet 8 (Cambria et al., 2024) and

4

SenticVec (Zhang et al., 2024) define hybrid models that combine symbolic logic, such as rules or
affective commonsense knowledge, with neural networks. These models offer new opportunities to
explain and understand sentiment analysis systems where the decision is sometimes opaque (Diwali
et al., 2024). By leveraging symbolic representations for knowledge-based emotional reasoning,
these approaches improve explainability without affecting performance, making them suitable for
real-world applications.

Considering that HAABSA++ (Trusca et al., 2020) aligns with these recent trends, as it is a hy-
brid model that combines symbolic reasoning with deep learning, and given its superior performance

compared to other approaches, we adopt HAABSA++ as the starting point of our research.

2.2. Curriculum Learning

It is known that humans and animals learn much better when instances are presented to them
from most easy to most difficult, instead of in a random order (Skinner, 1958; Krueger & Dayan,
2009). Therefore, the basic idea of curriculum learning is to first train the model on the easier parts
of a task, increasing the difficulty step-by-step (Elman, 1993).

Bengio et al. (2009) have researched some basic approaches to check whether machine learning
models could benefit from curriculum learning. Their results suggest that applying appropriate
curriculum strategies can lead to better training results due to the faster convergence to better
solutions. In addition, they show that curriculum learning regularizes, leading to lower generalization
error for the equal training error.

Given the topic of our paper, we are interested in how curriculum learning can be applied to
deep learning in text. This specific field of research has not been investigated to a great extent yet.
Cirik et al. (2016) have investigated the effect of curriculum learning on LSTM networks. LSTMs
are used in many different neural networks in the Natural Language Processing (NLP) field. In their
research, the authors study the effect of two different curriculum learning regimens: the one-pass
curriculum and the baby steps curriculum.

The one-pass curriculum is an algorithm suggested by Bengio et al. (2009), where the training
instances are ordered by a curriculum. The ordered training data is then divided into k£ number of
buckets. First, the model is trained on the simpler instances, contained in the first bucket. When the
model’s loss or task accuracy criteria on a held-out set do not get better after p number of epochs,
the bucket is discarded and the next bucket is selected. The model is then trained with this new
bucket in the same way. The training of the model stops when all buckets are used. This algorithm
is called one-pass curriculum because of the fact that the model uses each bucket only one time for
the training, making one-pass through the data.

The baby steps curriculum of Spitkovsky et al. (2010) extends the former curriculum by incre-

mentally adding more complex sets of training instances to the training set, instead of using every

set separately. Again, the data is divided into k buckets based on the complexity of the instances.
The model is first trained on the bucket with the easiest data and when the model does not get any
better after p epochs, the next bucket is added to the training data. In this algorithm, the amount
of training instances presented to the model is thus incrementally increased based on the difficulty of
the instances, hence the name. The training stops when all the data is used. The difference between
the one-pass curriculum and the baby steps curriculum is that the later curriculum strategy cumu-
lates the buckets once the difficulty is increased in the training process, while the former strategy
discards them.

Xu et al. (2020) split the training data into k buckets and train a BERT model for each of them.
Next, each BERT model is tested for the remaining k& — 1 buckets meaning that there are k — 1
results for each training instance. In the end, the difficulty arrangement of the training instances is
done based on their average performance obtained over the k& — 1 buckets. The approach is tested
using one-pass curricula with a BERT model for different tasks included in the General Language
Understanding Evaluation (GLUE) benchmark (Wang et al., 2019). Since the topic of our paper
is related to sentiment analysis, we observed that the curriculum usage of Xu et al. (2020) for this
topic does not outperform the baseline without the curriculum strategy.

Cirik et al. (2016) order their data from shorter to longer sentences, based on the assumption
that shorter sequences are easier to learn than longer ones (Spitkovsky et al., 2010). The authors use
the one-pass and baby steps curricula to study the effect of curriculum learning on LSTM networks,
where they pay extra attention to sentiment analysis. They found out that the baby steps curriculum
performs significantly better than the other approaches. They show that the baby steps curriculum
works particularly well in case of contrasting conjunctions, where two contrary signals come from
two different directions, i.e., the left and right phrases.

Similar to the work of Cirik et al. (2016), Nagatsuka et al. (2021) create multiple buckets based
on the length of the input instances. The new data buckets are used for pre-training RoBERTa,
introduced as a variant of BERT by Liu et al. (2019). Considering again the GLUE downstream
tasks, the curriculum strategy improves the performance of the fine-tuned RoBERTa model in most
cases. Additionally, Nagatsuka et al. (2021) examine the anti-curriculum learning as a strategy
where the buckets are organised from the most difficult to the easiest (i.e., from longer instances to
the shortest instances). Even if, the anti-curriculum strategy is less effective than the conventional
learning, it outperforms the baseline without any curriculum strategy.

Given the past research, it is clear that curriculum learning can be very effective in sentiment
analysis. Rao et al. (2020) claim that the curriculum strategies that have been proposed so far
are all based on the difficulty of the dataset, irrespective of the task that the data will be used for
(in our case sentiment analysis). That is why the authors propose a curriculum strategy that uses

information about the sentiment level of the samples in order to sort them based on the baby steps

srategy. Their task relied on the lexical resource SentiWordNet that assigns positivity, negativity,
and objectivity scores to every synset (Esuli & Sebastiani, 2006; Baccianella et al., 2010) found in
the WordNet lexical database (Miller, 1995).

In order to determine the effect of the SentiWordNet strategy, Rao et al. (2020) also perform a
different curriculum strategy, where the ordering is based on sentence length (as is done by Cirik
et al. (2016)). Based on this setup, they show that the SentiWordNet strategy performs better than
the strategy based on sentence length. They state that this result can be explained by the fact that
the sentence length strategy defines the complexity of sentences more generally, instead of focusing
specifically on sentiment analysis. The SentiWordNet strategy, on the other hand, ranks the training
data based on how difficult it is to assign a sentiment and is thus much more specific. However,
the study of Rao et al. (2020) focuses on sentiment analysis, whereas our study focuses on ABSA.
Given the fact that ABSA gives deeper insight into the characteristics of a product than general
sentiment analysis, it is therefore very interesting to find out whether this curriculum strategy leads
to improved results as well when we focus on aspects rather than sentences.

The aforementioned curriculum learning algorithms all have in common that they begin with
the simpler examples and gradually extend to the more difficult ones. In order to decide the best
curriculum learning approach, Cirik et al. (2016) and Rao et al. (2020) have analyzed and compared
different algorithms. Tsvetkov et al. (2016) deviate from this approach of testing and comparing a
handful of curricula, by searching for an optimal curriculum utilizing Bayesian optimization. In their
research, the authors order the paragraphs in the dataset based on their paragraph score, which is
given by the linear function w'#(X). In this function, X represents the training corpus consisting
of n paragraphs and ¢(X) is a vector that contains a value for each of the following features for
every paragraph: diversity, simplicity, and prototypicality. Finally, w represents the weights learned
for these features. The feature weights are optimized using Bayesian optimization. In this way,
curriculum learning proposed by Tsvetkov et al. (2016) is thus treated as an optimization problem,
instead of shuffling the data according to human intuitions.

In the work of Tsvetkov et al. (2016), the curriculum using Bayesian optimization is compared
with other curricula created using certain heuristics. The authors evaluate these approaches using
four different well-known NLP tasks, including sentiment analysis. They show that using a cur-
riculum leads to significantly better results than when no curriculum is used, which is in line with
previous research. Next to this, the optimized curricula for the different NLP models are investi-
gated to see which features are most important. They found out that for sentiment analysis, the
best curriculum is sorting by prototypicality features. This is a set of semantic features that uses
information from child language acquisition and cognitive linguistics. The authors first compute
these features for every word after tokenization, and then average them over the sentences.

Considering the previous research, curriculum learning thus seems promising for our research.

We are interested in starting with the samples that are easy to classify and then gradually add the
more difficult samples to the training data. Interestingly, a method exists that focuses more on the
difficult instead of the easy instances. This method is called boosting and it assigns weights to the
samples such that the classifiers focus on the samples that are hard to classify (Tan et al., 2005).
After every boosting round, the weights of the training instances are updated and used during the
next round. Multiple implementations of the boosting algorithm exist, differing on how the weights
of the training samples are updated and how the predictions of the classifiers are combined. One

well-known implementation is AdaBoost (Freund & Schapire, 1997).

3. Methodology

Our work is dedicated to improving the backup neural network of the HAABSA++ approach
based on curriculum learning. According to the initial setup of the HAABSA++ method, an ontology
is used first to predict the sentiments of the aspects, and the neural network backs up only if the
ontology is indecisive. By doing so, the ontology typically classifies straightforward instances with
clear positive or negative polarity. Instances with more complex, ambiguous sentiment polarities,
as well as those labeled as neutral, remain unresolved by the ontology and are therefore handled by
the neural network. Alternative approaches for addressing ambiguity and neutrality in sentiment
analysis have been proposed by Wang et al. (2020) and Sonawane & Kolhe (2022). Wang et al. (2020)
introduce a multi-level attention mechanism to capture neutrality when both positive and negative
scores are either low or similar in magnitude. Similarly, Sonawane & Kolhe (2022) treat neutrality
as part of the ambiguity spectrum, determining it via an ensemble of classifiers that assign the
neutral class when predictions are uncertain or conflicting. While these methods represent promising
research directions, our work focuses on applying curriculum learning to sentiment analysis, and thus
we continue with the standard multi-label classification task that is able to detect all three sentiment

labels: positive, negative, and neutral.

3.1. Ontology Reasoner

The ontology reasoner used in HAABSA++ is based on the study of Schouten & Frasincar (2018).
This ontology reasoner uses predefined classes and relations between classes in order to predict the
sentiment of the aspects. The tree main classes of the ontology are SentimentValue, AspectMention,
and SentimentMention. The SentimentValue class contains the subclasses Positive and Negative,
which are assigned to, respectively, positive and negative expressions. The neutral sentiment was not
modeled in the ontology due to the inherent ambiguity of this sentiment class. The AspectMention
class identifies the aspects in the data that are related to the discovered sentiments. Last, the

SentimentMention class models the sentiment expressions.

Using these classes, the ontology reasoner identifies positive or negative sentiments in case that
all sentiment expressions related to an aspect point to positive or negative sentiments, respectively.
In the event that both sentiments are predicted for the same aspect or when no sentiment is given,

the neural network is used as a backup. This model is discussed in the next section.

3.2. Multi-Hop LCR-Rot with Hierarchical Attention

For our neural network backup model, we use the LCR-Rot-hop++ proposed by Trusca et al.
(2020). To define this model, we use the definitions given by Zheng & Xia (2018). To begin with,
we display every sentence s with N words as s = [wy, wa, .., wx]. Each sentence is then divided into
the following three parts: the left context [w},w), .., w!], the target phrase [w!,w}, .., w},], and the
right context [w],w}],..,wy]. L, M, and R are the lengths of the tree parts, respectively, and sum
up to N. We use BERT Base word embeddings with dimension 768. From now on, the dimension
of the word vectors is denoted by d.

The LCR-Rot-hop model consists of three Bi-directional Long-Short-Term-Memory (Bi-LSTM)
modules, one left-, one center-, and one right-Bi-LSTM. These three Bi-LSTMs model, respectively,
the left context, the target phrase, and the right context. The input of each Bi-LSTM is represented
by the words of that specific part, represented as word embeddings of dimension 768 x 1. After
feeding these word embeddings to the Bi-LSTM, three hidden states are returned: [h}, hb, .., ht] for
the left context, [k, hb.., hY,] for the target phrase, and [k, S, .., %] for the right context. Since
we use Bi-LSTMs, the module propagates both backwards and forwards, resulting in a hidden state
vector that is twice the initial size (300). Because of this fact, the dimension of the hidden state
vector is 600 x 1.

After obtaining the three hidden states, a two-step rotatory attention mechanism is applied to
these hidden states outputs to capture the most indicative words in the target phrase and the left
and right contexts. In the first step, the most indicative sentiment words in the left/right context
are captured, using target information. These results are then used in the second step, where the

most indicative words of the target phrase with respect to the contexts are captured.

Step 1: Target2Context Attention
In this step, an average representation of the target phrase is used to obtain better representations
of the two contexts. To obtain this average representation of the target phrase, an average pooling

operation is utilized, as proposed by Zheng & Xia (2018):

r'* = pooling([b} , hL ..., i]). (1)
2dx1 2dx1 2dx1 2dx1
Then, an attention function f is created that takes the average target phrase r*» and the hidden
states of each word in one of the contexts. Looking at the left context for example, we define the

9

attention function f as:

FCRL) =tanh (BY - W -t 4Bl (2)
1x1 1x2d 2dx2d 2dx1 1x1

where hé is the i** hidden state for s = 1,.., L, W} a weight matrix, b’ a bias term, and tanh a

nonlinear function. The attention scores f are then put into a softmax function to obtain normalized
1

i

attention scores. Again looking at the left context for example, the normalized attention scores «

are computed as follows:

ol = __cap(f(hi,r's)) 3
i Z]Ilee;[;p(f(hé,’rtp)). 3)

Finally, the normalized attention scores are used to compute a weighted combination of the hidden

states in order to represent the left context:

L
7t :Zalxhﬁ. (4)

g

2dx1 i—1 I1x1 2dx1

The representation r" for the right context can be retrieved in a similar way by following Equa-

tions (2)-(4).

Step 2: Context2Target Attention

In this step, the representation of the target phrase is improved by using the left and right context
representations, respectively, ! and 7", obtained in the previous step. The target representations
are computed similar to Equations (2)-(4), with the only difference that r! and 7" are used instead of
the representation vector rt». Following the equations, we get a left-aware target representation, r%,
and a right-aware target representation r'». Again taking the left context as example, the left-aware
target representation is then given by:

T

ty ty t
o= ot X hy . (5)
2dx1 j=1 1x1 2dx1

Since the LCR-Rot model contains a multi-hop rotatory attention mechanism, the given two
steps are repeated sequentially for n times. According to Wallaart & Frasincar (2019), the optimal
iteration number is three. It is important to realize that the average target vector r» is only utilized
during the first iteration and is replaced in the next iterations by r* or rt», depending on the context.

After performing the iterations over the rotatory mechanism, a final presentation for the sentence
is obtained by concatenating the left- and right-context representations, respectively, ! and ", and
the left- and right-aware target representations, respectively, r' and rt:

— L A A o
sdx1 [2§x1’2§x1’27;x1’25x1]' (6)

10

Since LCR-Rot-hop has the disadvantage that the four representation vectors are computed
utilizing only local information, Trusca et al. (2020) propose including hierarchical attention by
adding an extra layer to the model. The authors present a high-level representation of the input
sentence that updates every representation vector with a relevance score computed at the sentence
level.

In order to use this hierarchical attention, v is updated after every iteration Trusca et al. (2020).
To do this, we begin with computing an attention function f as follows:

i\ i’
f<1,li< 1) o tanh(11>}<2d % 2}1/I>/<Yl * 121)’ (7)

where v is the it" representation of the input sentence (v! €{r!, r¥, rtr "} i=1,..4), W a weight
matrix, and b a bias. The attention function is then used to apply the attention weighting separately
on the intermediate context and target vector pairs. The left and right context attention scores are

given by o' and a?, respectively, and can be computed as follows:

i _eanf()
a Zj:1,4 exp(f(v7))’ ®)

with o' + a* = 1. The two target vector attention scores, o2 and a?, can be computed in the same
way. For these scores we see as well that o + o3 = 1.

These attention scores are then used to compute the new scaled left- and right-context represen-
tations and the two target representations:

vto=a' x vt (9)
2dx1 1x1 2dx1

Trusca et al. (2020) have shown that applying the weighting in each iteration of the rotatory
mechanism separately on the target vectors leads to the best results. That is why, in our study,
we use hierarchical attention in the same way. In total, we iterate three times over the rotatory
mechanism.

After completing the iterations, one uses the final sentence representation vector v to predict
the corresponding sentiment. This vector is then fed to a softmax function in order to compute the
sentiment of the target:

p =softmax(W, x v + b), (10)
|Clx1 |CIx8d 8dx1 |C|x1

where p is a conditional probability distribution, C' the set of sentiment categories, W, a weight
matrix, and b, a bias. The vector p gives a probability for every sentiment category in C. The final

predicted sentiment is given by the highest probability of p.

11

3.3. Curriculum Learning

As mentioned in Section 2.2, using a curriculum strategy when training the model instead of
presenting the samples in a random order, can significantly improve the accuracy and efficiency of a
model. During the training of our model, we use both the baby steps and the one-pass curriculum,

which are now discussed.

3.3.1. Baby Steps Curriculum

We use the formal definition given by Rao et al. (2020) to explain the baby steps algorithm in
ABSA. For every sentence s; in our dataset D, the sentiment is described as y; € {1,..,C}, where ¢
€ {1,..,n} for n sentences in D, and C is the number of sentiment categories. The order in which
the sentences are fed to the model is determined by the curriculum strategy S(s;), where S defines
how difficult a sample s; is. The easiest sample gets the lowest .S score and the most difficult sample
the highest S score. We then use these S scores to order all the sentences in our dataset D from
easy to difficult, which results in the ordered dataset D’.

With the baby steps algorithm, we then divide the ordered dataset D’ into k buckets. We start
by taking the bucket with the easiest instances, D!, and train the model with these instances until
convergence or until p epochs have passed. After this, the next bucket of data, containing more
difficult samples, is added to the training data and we repeat the training process until convergence
or until p epochs have passed. We keep adding more difficult batches to the training data until
all the sentences of D are included and the model is trained on the complete training dataset. A
visualization of the baby steps algorithm is given by the pseudocode in Algorithm 1.

Data: M, the model; D, the training data; S the curriculum score

begin
D’ = sort(D,S)
{D*, D%, .., D*} = D', where S(d,) < S(dy), dy € D¥, dy, € DI, Vi < j
Dtrain — ()
for s = 1,..,k do

Dtrain _ ptrain | ps

while not converged for p epochs do

| train(M, Direin)
end

end

end
Algorithm 1: The baby steps algorithm

3.3.2. One-Pass Curriculum
Next to the baby steps algorithm, Cirik et al. (2016) also use the one-pass algorithm in their study.
As mentioned in Section 2.2, the authors show that a model trained with the baby steps algorithm

outperforms the one-pass algorithm. However, their conclusions are for sentiment analysis, while we

12

focus on ABSA. That is why, in this research, we use both the baby steps algorithm and the one-pass
algorithm to implement our curriculum strategy.

The one-pass curriculum is similar to the baby steps curriculum, with the difference that we
discard every bucket of data after training until convergence or until p epochs have passed. The
final model is obtained after the training on the final bucket is completed. A visualization of the

one-pass algorithm is given in Algorithm 2.

Data: M, the model; D, the training data; S the curriculum score
begin
D’ = sort(D,S)
{D',D?% ..,D*} = D', where S(d,) < S(dy), d, € D*, dy € D*, Vi < j
for s = 1,..,k do

while not converged for p epochs do

| train(M, D?)

end
end
end

Algorithm 2: The one-pass algorithm

3.4. Curriculum Strategy

In our research, the curriculum strategy relies on the SentiWordNet sentiment lexicon proposed
by Rao et al. (2020). The authors have shown that this strategy has good results for sentiment
analysis of sentences. Given this fact, in our research, we investigate whether these improved results
are also visible in case of ABSA. We follow the research of Rao et al. (2020), by using SentiWordNet
features to order the instances and subsequently use the baby steps and one-pass curriculum strategy
to train our model.

For every word in a sentence, SentiWordNet gives a positivity, a negativity, and an objectivity
score (Baccianella et al., 2010). The objectivity score is computed as 1 — positivity score - negativity
score. Important to note here, is that the SentiWordNet scores are for a synset and not for a word,
which means that one word possibly has multiple scores. That is why in our research we make use
of word sense disambiguation to determine which particular synset of the word is meant, given its
context. We perform word sense disambiguation by implementing the Simplified Lesk algorithm
(Lesk, 1986). This algorithm considers all the different definitions from every possible synset of a
word and determines the number of overlapping words between the word’s context sentence and the
definitions. The synset with the most overlapping words is then returned as the most appropriate
meaning of the word in the given sentence. We improve the performance of Simplified Lesk by
including the part-of-speech tag of the word we disambiguate. The part-of-speech tag can be for
example noun, verb, or adjective. We determine the part-of-speech tag using the NLTK platform

(Bird et al., 2009).

13

After applying the Simplified Lesk algorithm, we end up with all the appropriate synsets for
the given sentences. We then proceed with these disambiguated words and compute the associated
SentiWordNet scores for all the words in our dataset. Then, for each sentence, we sum up all the
positivity scores of the words in the sentence, leading to the feature Net Positivity Score, denoted
by P. In a similar way we compute the features Net Negativity Score, denoted by N, and Net
Objectivity Score, denoted by O. In addition to these scores, we also compute the Absolute Difference
Score, denoted by AD. This feature is the absolute difference between the Net Positivity and the
Net Negativity Score. Next to these features, we also include the total amount of words in the
sentence, denoted by [. This feature is included since it is shown that shorter sequences are easier
to train than longer ones (Spitkovsky et al., 2010).

Rao et al. (2020) use the above features to determine the difficulty of the sentences. However,
their research is focused on sentiment analysis of sentences, while our study focuses on aspects
rather than sentences. This means that there can be sentences that contain multiple aspects. When
a sentence contains more than one aspect, we include multiple samples of the same sentence in
our dataset, every sample having a different aspect marked as target. It is, however, imaginable
that it is more difficult for the model to predict the sentiment of an aspect when there are multiple
aspects in the same sentence, since the model then has to decide which words are connected to which
aspect. That is why, next to the features used by Rao et al. (2020), we also include the feature A,
representing the total number of different aspects in the sentence. Furthermore, we include the
context words in the sentence, denoted by W.

Also, we include the aspect category of the marked aspect in the sentence as a feature as well.
We do this by creating a one-hot encoding for every sample, denoted by C. This one-hot encoding
is a vector of length twelve, representing the twelve different aspect categories in the dataset. All
the indices of this vector contain a zero, except for the index of the marked aspect category, which
contains a one. In this way, for every sentence, the aspect category of the marked aspect is included
as a feature.

An overview of the eight discussed features is given in Table 1. The first five features are proposed
by Rao et al. (2020) for sentiment analysis. The remaining three features are added by us to make
the set of features more appropriate for ABSA. Looking at all these features, it is likely that a longer
sentence has higher scores than a shorter sentence because of the larger total number of words. That
is why, we include the scaled features as well. A feature is scaled by dividing the features with the
length of their associated sentence. For example, the Scaled Positivity Score is then %. We do not
include a scaled feature for the aspect category, since this is just a one-hot encoding and does not
correlate with the sentence length. In this way, next to the eight features mentioned in Table 1, six
more (scaled) features are added. In total, we use fourteen features for our curriculum strategy. As

proposed by Rao et al. (2020), we normalize all the features between 0 and 1, to allow them to lie

14

Table 1: The features used for the curriculum strategy.

Features Description
Sentence Length (1) Number of words in the sentence
Net Positivity Score (P) Sum of all positivity scores

Features proposed by Net Negativity Score (N) Sum of all negativity scores

Rao et al. (2020) Net Objectivity Score (O) Sum of all objectivity scores
Absolute Difference Score (AD) Absolute difference between P and N
Aspects (A) Number of aspects in the sentence

Added features Context Words (W) Number of context words in the sentence
Aspect Category (C) The aspect category of the marked aspect

in the same range.
Rao et al. (2020) feed these features to an auxiliary feed-forward model Auz in order to learn
which samples are the most difficult. The authors use the results of this model to determine the

curriculum score of the samples of the dataset as follows:

c

Z (Auz(s;)? — yf)z, (11)

j=1
where Auw(s;)? is the prediction of the auxiliary model for the marked aspect in sample s; for
class j, with C' the total amount of classes, and yf € {0, 1} represents whether or not the target
shows polarity j. If S(s;) is low, this means that it is easy to classify the target’s sentiment. The
computed scores S(s;) for every sample s; in the training data are then used to determine the
ordering of the samples before training our neural network of HAABSA++. We now discuss the

auxiliary feed-forward model we use to calculate the curriculum scores.

3.4.1. Auziliary Feed-Forward Model

The auxiliary feed-forward model is trained by minimizing a cross-entropy loss function, defined

as:

Z y; X log(p;), (12)

|Clx1 |ClIx1

where y; is a vector containing the true sentiment of training instance j, p; the predicted senti-
ment for that instance, and C the set of sentiment categories.

The weight matrices are initialized by the Glorot uniform initializer (Glorot & Bengio, 2010)
and all biases are set to zero. Adam optimization is used to update the weights and biases (Kingma
& Ba, 2015). Furthermore, during training, units are randomly dropped from the neural network
(Srivastava et al., 2014). This is called the dropout technique and we apply this to all hidden layers
to prevent units from co-adapting too much on the training instances.

Before training, the hyperparameters of the feed-forward model are tuned using the Hyperopt

package (Bergstra et al., 2015). Hyperoptimization is used to determine the number of hidden layers

15

in the neural network and the number of neurons per hidden layer. Furthermore, the dropout rate
and the learning rate are optimized as well. We use 80% of the training data for the hyperopti-
mization of the hyperparameters. The remaining 20% is used as a validation set. When the optimal
values of the given hyperparameters are found, we use these parameters and train the model on the
entire training set.

After applying hyperoptimization, we end up using a feed-forward neural network with two
hidden layers and the following numbers of layer units: 183 and 140, respectively. The Rectified
Linear Unit activation function (ReLU) is used as an activation function in our model. Inspired by
the work of Rao et al. (2020), the final layer uses a softmax activation function. The accuracy of
our feed-forward model is 74.0%.

Furthermore, Hyperopt is used not only for tuning of the hyperparameters of the auxiliary
model, but it is also used when applying our curriculum strategies to the HAABSA++ model. In
the neural network of HAABSA++ (LCR-Rot-hop++), multiple hyperparameters are optimized for
the training data. However, when applying the baby steps or one-pass curriculum, we do not use the
complete training data during every step. That is why we optimize the hyperparameters for every
subset of the data. In this way, when during the training process a new bucket of data is selected,
we simultaneously update the hyperparameters by using the optimal parameters for the currently
used training data. The hyperparameter optimization is thus done for every possible combination
of training data separately and we thus do not ‘borrow’ the optimal hyperparameters found for the
HAABSA++ model, where no curriculum strategy is applied.

Last, it is important to note that in the baby steps and one-pass algorithms, we train the model
with a subset of the data until convergence, before adding new data. Since we want to compare
our strategy with the performance of the LCR-Rot-hop++ model of our baseline HAABSA+-+
method, we slightly alter the LCR-Rot-hop++ model to also take convergence into consideration.
For this, before training the model, the training data is split into a training and a validation set,
with, respectively, 80% and 20% of the original training data. We then train the model using this
new training set and look at the performance of the model on the validation data to determine when
the model has converged and, thus, when the training can be stopped. In case the model has not
converged after p epochs, we also stop the training, as is done in our employed curriculum strategies

as well.

4. Performance Evaluation

We now discuss the dataset that is used in our research and the different evaluation measures

that we consider.

16

4.1. Datasets

For this research, restaurant reviews collected from the widely used datasets SemEval-2015 Task
12 Subtask 1 Slot 3 (Pontiki et al., 2015) and SemEval-2016 Task 5 Subtask 1 Slot 3 (Pontiki et al.,
2016) are used. The SemEval-2015 dataset is a subset of the SemEval-2016 dataset, and therefore
has the same properties as the SemEval-2016 data.

The SemEval-2015 and SemEval-2016 datasets includes restaurant reviews with one or multiple
sentences, containing one or more opinions. An opinion represents the sentiment given to an aspect.
The aspect has a target expression associated and an aspect category. In our research, we use the
word aspect to denote the aspect category, unless otherwise specified.

The data is divided into a train and test set. We use our training data to train our neural
network model. Before feeding the training data to our model, we use a curriculum strategy to
order the train data. An overview of the sentiment classes in the SemEval-2015 and SemEval-2016
train and test datasets is given in Table 2, ordered on the frequency of the sentiment classes. As can
be seen, the majority of the opinions is positive. Furthermore, it can be observed that the training

and testing datasets are similar.

Table 2: The frequencies of the sentiments in the SemEval-2015 SemEval-2016 datasets.

Positive Negative Neutral Total
Freq. % Freq. % Freq. % Freq. %
SemEval-2015 Train data 925 724 41 3.2 312 24.4 1278 100
Test data 320 53.7 32 5.3 245 41.0 597 100
SemEval-2016 Train data 1318 70.2 489 26.0 72 3.8 1879 100
Test data 483 74.3 135 20.8 32 4.9 650 100

The data is in XML format and is preprocessed in a similar way as done by Wallaart & Frasincar
(2019). To begin with, all the opinions that are stated implicitly are removed from the dataset. This
is done because the employed neural network assumes that the target is present. Implicitly stated
opinions have a non-existent aspect and therefore the target in the sentence is defined as NULL. In
total, we delete 24.8% of the SemEval-2016 dataset and 25.0% of the SemEval-2015 dataset for this
reason. After deleting these samples, the remaining samples are processed using the NLTK platform
(Bird et al., 2009). All the instances are tokenized utilizing the WordNet lexical database (Miller,
1995).

In our research, we use BERT deep contextual word embeddings, computed in the same way as
in the HAABSA++ model (Trusca et al., 2020). The BERT word embeddings are obtained using
the pre-trained BERT Base model (Devlin et al., 2019). The dimension of the word embedding

vectors is 768.

17

4.2. Evaluations Measures

In this paper, the HAABSA++ model without curriculum learning is used as a baseline method.
Since the first part of this model is the ontology reasoner and this is not altered by curriculum
learning, we only look at the performance of the neural network of HAABSA++, which is the LCR-
Rot-hop++ model. As explained in Section 3.4.1, we train this model with 80% of the training data
until convergence on the validation dataset, or until p (p = 100) epochs have passed. The validation
dataset consists of the remaining 20% of the training data and is held out during training. The
results of this final model are then used as our baseline results.

In order to test the performance of implementing the one-pass and baby steps curriculum strate-
gies, we divide our training data in k buckets, with £ = 1,..,10. For the one-pass algorithm, we use
the results of the final model that is trained with the last bucket of the training data and compare
these with the results of the baseline model. For the baby steps algorithm, we look at the results of
the final model that is trained with the complete training dataset.

Different evaluation metrics are used to compare our different strategies. First, we compute
the accuracy of the model. The accuracy is computed by taking the sum of all correctly predicted
sentiments, divided by the total number of samples. We look at both the in-sample accuracy and
the out-of-sample accuracy. The first one is the accuracy for the complete training data and the
latter one for the test data.

Furthermore, since Bengio et al. (2009) state that applying curriculum learning leads to faster
convergence, we also compare the training times. This is the number of minutes the model is trained
until the final model converges.

Finally, we look deeper into the progress of the out-of-sample and in-sample accuracy during the
training of the model when a curriculum strategy is applied. For every k, we create a graph of the
two accuracies and their course during the epochs. In this way, we can see how the accuracy changes

when new buckets of data are added to the training data.

5. Results

In Table 3, the results for the SemEval-2016 and SemEval-2015 datasets are presented. The
out-of-sample and in-sample accuracies are mentioned for every curriculum strategy together with
the number of minutes required for the model convergence. The best results are marked in bold.

When comparing the results of the two curriculum strategies, we see that both strategies give
very different results. In general, training the model with the baby steps curriculum leads to a better
out-of-sample accuracy than when no curriculum or the one-pass curriculum is applied, as already
suggested by Vijjini et al. (2021). For both the SemEval-2016 and the SemEval-2015 datasets, the
optimal number of buckets that the training data should be divided into, is seven. Using the baby
steps algorithm with seven buckets leads to an increase in the out-of-sample accuracy of 1.2-3.0

18

percentage points. For the other possible numbers of buckets, we see that the accuracy is at least as
good as the accuracy of the baseline model. These results thus indicate that applying the baby steps
curriculum strategy leads, in general, to a higher out-of-sample accuracy than when no curriculum
is applied.

Since Bengio et al. (2009) state that applying a curriculum strategy does not only lead to better
results, but can also lead to faster convergence, we compare the times needed to train the neural
network with and without the baby steps curriculum strategy. Interestingly, we see that applying the
curriculum approach during training leads to longer training times than the baseline model when
the SemEval-2016 dataset is used. However, for the SemEval-2015 dataset, we see that if the data
is divided into two, four, or five buckets, the training time is shorter than for the baseline model. In
these cases, the model thus converges faster when the curriculum strategy is applied. Our results
thus indicate that applying the baby steps curriculum leads to improved results, and also to faster
convergence, in a few cases.

When we look at the training time of the one-pass curriculum, we see that this leads to faster
convergence of the model than the baseline model and the baby steps curriculum. This is as expected,
since with the one-pass curriculum the model is trained on a small set of samples, while the baseline
model uses all the samples and in the baby steps curriculum the number of training samples gradually
increases.

At the same time, we see a very low out-of-sample and in-sample accuracy for the one-pass

Table 3: Accuracy results and training times for the LCR-Rot-hop++ model with different curriculum strategies.

SemEval-2016 SemEval-2015
Out-of-sample In-sample Time Out-of-sample In-sample Time
acc. acc. (min.) acc. acc. (min.)
No Curriculum Learning
Baseline model 86.3% 96.3% 1.70 77.2% 96.7% 1.34
Baby Steps Curriculum
Two buckets 87.1% 95.4% 3.77 79.9% 96.7% 1.06
Three buckets 87.1% 95.9% 3.00 77.9% 96.7% 2.08
Four buckets 86.9% 96.0% 3.23 77.4% 96.6% 1.08
Five buckets 86.3% 95.8% 4.62 77.2% 96.7% 1.18
Six buckets 86.3% 94.2% 4.44 78.4% 96.7% 1.66
Seven buckets 87.5% 94.6% 3.94 80.2% 93.3% 1.80
Eight buckets 86.3% 95.4% 5.22 80.1% 96.9% 3.52
Nine buckets 86.3% 94.3% 5.43 79.2% 97.5% 2.78
Ten buckets 86.3% 93.9% 5.00 76.9% 95.9% 3.29
One-Pass Curriculum
Two buckets 83.2% 88.2% 1.19 76.4% 92.4% 0.67
Three buckets 71.7% 80.7% 0.81 65.8% 74.3% 0.43
Four buckets 29.8% 35.6% 1.03 35.0% 21.9% 0.28
Five buckets 44.3% 50.7% 0.99 35.5% 22.7% 0.34
Six buckets 38.6% 44.5% 0.82 34.8% 23.1% 0.52
Seven buckets 21.7% 29.4% 0.99 34.2% 23.6% 0.63
Eight buckets 38.4% 44.2% 0.58 39.5% 32.4% 0.51
Nine buckets 22.0% 28.6% 1.02 36.0% 26.1% 0.33
Ten buckets 18.0% 25.8% 0.77 36.5% 26.8% 0.39

19

curriculum, compared to the baseline model and the baby steps curriculum. It is quite surprising
that the one-pass curriculum leads to such a big decrease in terms of accuracy. The lowest out-of-
sample accuracy is obtained when the training data is divided into ten buckets for the SemEval-2016
dataset. For this curriculum strategy, the course of the out-of-sample and in-sample accuracy is given
in Figure 1. The gray lines mark that the model is trained on a new bucket of data and that the
previous bucket is discarded. It can be observed that both the out-of-sample and in-sample accuracy
increase for the first eight buckets, but decrease for the ninth and tenth bucket. So, looking at this
graph, it seems like the accuracy of the model decreases a lot when the model is trained on more
difficult training data. For every k number of buckets that we divide our training data into, a similar
pattern can be observed, where training on the last one or two buckets leads to a big decrease in

the accuracy.

0.9 Bucket 1-3 Bucket 4-5 Bucket 6 Bucket 7 Bucket 8 Bucket 9 Bucket 10
0.8
7 4
0] o= oo o= o= o [}
A M 1
0.6 TR
)
@ 0.5
3
S 04
<<
0.3
0.2
0.1 Out-of-sample
e= = |n-sample
0
1 35 7 91113151719212325272931333537394143454749515355575961

Epochs

Figure 1: The out-of-sample and in-sample accuracy of the model trained with the one-pass curriculum with k=10
for the SemEval-2016 dataset.

The large decrease in the accuracy during the training of the model on the last few buckets of
data thus leads to a final model that performs much worse than the baseline model. This remarkable
result can be partly explained by looking at the composition of the ordered training data. This is
the data ordered from easy to difficult based on their curriculum scores. It turns out that the
majority of the easy samples has a positive sentiment, while the majority of the difficult samples
has a negative sentiment. For example, when we divide the training data into ten buckets and look
at the first bucket, which contains the easiest samples, we see that almost all the instances have
a positive sentiment (99.6%), only one sample has a negative sentiment (0.4%), and there are no
samples with a neutral sentiment. When the model is trained with this bucket of data, it always
predicts a positive sentiment for the instances. Since the frequency of the positive sentiment in the

test data is 74.3%, this results in a moderately high accuracy. However, in the tenth bucket, only

20

Bucket 2
1 Bucket 1| Bucket 3 Bucket 4 Bucket 5 Bucket 6 Bucket 7

Accuracy

o
o

0.75

Out-of-sample
0.7 o= == ==
e= = |n-sample

0.65
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Epochs

Figure 2: The out-of-sample and in-sample accuracy of the model with baby steps curriculum with k=7 for the
SemEval-2016 dataset

1.6% of the samples have a positive sentiment, 36.4% has a neutral sentiment, and the majority
of the samples has a negative sentiment (62.0%). When the model is trained with this data, it is
thus more likely that the model predicts a negative or neutral sentiment, rather than a positive
sentiment, given these frequencies. Therefore, it is not too surprising that the accuracy decreases
when more difficult samples are used. However, the intuition behind the one-pass algorithm is that
the model remembers what it has learned during the passed epochs and uses this knowledge during
the training on the new samples. Unfortunately, for our case, the model does not seem to be good in
remembering what it has learned during the training on the easier samples, which results in the low
accuracies. So, in our study, the one-pass algorithm performs worse than the baby steps algorithm,
which is also in line with the research of Cirik et al. (2016).

As mentioned in Section 4.2, we also take a look at the course of the out-of-sample and in-sample
accuracy during the training of the model. From Table 3, we see that the best out-of-sample accuracy
is obtained when we use the baby steps algorithm and divide the training data into seven buckets.
The course of the corresponding out-of-sample and in-sample accuracy is given in Figure 2. The
gray lines in this figure denote when a new bucket of data is added to the training data. We clearly
see that every time that a new bucket of training data is added, the accuracy increases. The graphs
also show that the model spends little time on training with the complete dataset and more time on
training with intermediate buckets.

Again, a similar pattern can be observed for every k number of buckets that we divide our training
data in. Remarkable is the fact that when the data is divided into a small number of buckets (k=2,
3, or 4), the largest part of the training is done with the complete training dataset, which can be

seen in Figure 3. When we divide the data in a larger number of buckets, less time is spent on

21

training with the complete data, as can be observed from Figure 2. We thus see that incrementally
adding more difficult samples to the training data leads to an increase of accuracy and also to less
needed training time on the complete training dataset, which makes sense as the easy samples can
be learned faster.

Finally, when looking at the course of the out-of-sample and in-sample accuracy of the baby steps
algorithm, we see that during the training of the first buckets of data, the accuracy does not change.
This could, again, be explained by the composition of the training data. The first buckets contain the
easiest samples, which mainly have a positive sentiment, as is explained before. Therefore, during
the first few buckets, the accuracy does not change much, as it is optimal for the model to predict

a positive sentiment for the easy samples.

6. Conclusion

The aim of our research is to improve the results of a hybrid approach for ABSA by using
curriculum learning based on baby steps and one-pass strategies. We use SentiWordNet features
and an auxiliary model to obtain curriculum scores for the training samples. These scores are then
used to order the samples and divide them into buckets for our curriculum strategies. Based on our
results, only the baby steps curriculum strategy can improve the baseline with a margin between
1.2-3.0 percentage points. The poor results of the one-pass curricula might be explained by the
unequal distribution of the classes over the buckets of data. Precisely, the easy samples are mainly
positive and the difficult samples are mainly negative and neutral.

Given the importance of the topic of this research, we think that it would be useful if more

research is done. Knowing that the data we use are restaurant reviews, which makes it likely

1 Bucket 1Bucket 2 Bucket 3

0.95 —_——mm e m =S ==

0.9 4

o
00
a

o
o

Accuracy

0.75

Out-of-sample

e= = |n-sample
0.65 P

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
Epochs

Figure 3: The out-of-sample and in-sample accuracy of the model with baby steps curriculum with k=3 for the
SemEval-2016 dataset

22

that a big part of the data consists of short sentences, it would be interesting to see whether our
inferences work for longer, and thus more difficult, sentences. Also, it would be interesting to see
if the performance of this curriculum strategy could be improved if the sentiment classes are more
equally distributed over the ordered training data. Finally, it might be interesting to investigate
the effect of active learning as a closely related discipline to curriculum learning in the domain of
ABSA. Unlike curriculum learning which imitates human learning, active learning is used to select
new instances for training based on the information amount they bring (Settles, 2012). The most
informative instances are usually picked based on the entropy or margin of prediction probabilities.
Additionally, we can consider for future work the hybrid approach proposed by Jafarpour et al.
(2021) as a linear combination between the active and curriculum learning strategies. Last, we
would like to improve our curriculum learning strategy by making it adaptive to what the model

has learned so far (Tu et al., 2024).

References

Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An enhanced lexical resource for sentiment
analysis and opinion mining. In 7*" International Conference on Language Resources and Evaluation (LREC
2010). ELRA. https://www.lrec-conf.org/proceedings/lrec2010/summaries/769.html.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In 26** Annual International
Conference on Machine Learning (ICML 2009) (pp. 41-48). ACM volume 382 of ACM International Conference
Proceeding Series. https://doi.org/10.1145/1553374.1553380.

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., & Cox, D. D. (2015). Hyperopt: a python library for model
selection and hyperparameter optimization. Computational Science & Discovery, 8, 014008. https://doi.org/
10.1088/1749-4699/8/1/014008.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural
language toolkit. O’Reilly Media. https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/
dp/05965164957SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&1inkCode=xm2&camp=2025&creative=
165953&creativeASIN=0596516495.

Cambria, E., Zhang, X., Mao, R., Chen, M., & Kwok, K. (2024). SenticnNt 8: Fusing emotion Al and commonsense Al
for interpretable, trustworthy, and explainable affective computing. In 26t" International Conference on Human-
Computer Interaction (HCII 2024) (pp. 197-216). Springer volume 15382 of Lecture Notes in Computer Science.
https://doi.org/10.1007/978-3-031-76827-9_11.

Cheruku, R., Hussain, K., Kavati, I., Reddy, A. M., & Reddy, K. S. (2024). Sentiment classification with modified
RoBERTa and recurrent neural networks. Multimedia Tools and Applications., 83, 29399-29417. https://doi.
org/10.1007/s11042-023-16833-5.

Cirik, V., Hovy, E., & Morency, L.-P. (2016). Visualizing and understanding curriculum learning for long short-term
memory networks. arXiv preprint arXiv:1611.06204 .

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of deep bidirectional transformers for
language understanding. In 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT 2019) (pp. 4171-4186). ACL. https://doi.org/10.
18653/v1/n19-1423.

23

https://www.lrec-conf.org/proceedings/lrec2010/summaries/769.html
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1088/1749-4699/8/1/014008
https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596516495
https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596516495
https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596516495
https://doi.org/10.1007/978-3-031-76827-9_11
https://doi.org/10.1007/s11042-023-16833-5
https://doi.org/10.1007/s11042-023-16833-5
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423

Diwali, A., Saeedi, K., Dashtipour, K., Gogate, M., Cambria, E., & Hussain, A. (2024). Sentiment analysis meets
explainable artificial intelligence: A survey on explainable sentiment analysis. IEEE Transactions on Affective
Computing, 15, 837-846. https://doi.org/10.1109/TAFFC.2023.3296373.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48,
71-99. https://doi.org/10.1016/0010-0277(93)90058-4

Esuli, A., & Sebastiani, F. (2006). SentiWordNet: A publicly available lexical resource for opinion mining. In 5t*
International Conference on Language Resources and Evaluation (LREC 2006) (pp. 417-422). ELRA. https:
//www.lrec-conf .org/proceedings/lrec2006/pdf/384_pdf .pdf.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55, 119-139. https://doi.org/10.1006/jcss.1997.1504.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In 13"
International Conference on Artificial Intelligence and Statistics (AISTATS 2010) (pp. 249-256). JMLR volume 9

of JMLR Proceedings. https://proceedings.mlr.press/v9/glorot10a.html.

Han, H., Wang, S., Qiao, B., Dang, L., Zou, X., Xue, H., & Wang, Y. (2025). Aspect-based sentiment analysis
through graph convolutional networks and joint task learning. Information, 16, 201. https://doi.org/10.3390/
info016030201.

Jafarpour, B., Sepehr, D., & Pogrebnyakov, N. (2021). Active curriculum learning. In 1% Workshop on Interactive
Learning for Natural Language Processing (InterNLP 2021) (pp. 40-45).

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Y. Bengio, & Y. LeCun (Eds.), 37¢
International Conference on Learning Representations (ICLR 2015). arXiv preprint arXiv:1412.6980.

Krueger, K. A., & Dayan, P. (2009). Flexible shaping: How learning in small steps helps. Cognition, 110, 380-394.

Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an
ice cream cone. In 5*" Annual International Conference on Systems Documentation (SIGDOC 1986) (pp. 24-26).
ACM. https://doi.org/10.1145/318723.318728.

Liu, B. (2015). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge University Press.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019).
Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.

Meskele, D., & Frasincar, F. (2020). Aldonar: A hybrid solution for sentence-level aspect-based sentiment analysis
using a lexicalized domain ontology and a regularized neural attention model. Information Processing €& Manage-
ment, 57, 102211. https://doi.org/10.1016/j.ipm.2020.102211.

Miller, G. A. (1995). WordNet: A lexical database for english. Communications of the ACM, 38, 39-41. https:
//doi.acm.org/10.1145/219717.219748.

Nagatsuka, K., Broni-Bediako, C., & Atsumi, M. (2021). Pre-training a BERT with curriculum learning by increasing
block-size of input text. In 12t" International Conference on Recent Advances in Natural Language Processing
(RANLP 2021) (pp. 989-996). INCOMA https://aclanthology.org/2021.ranlp-1.112.

Pontiki, M., Galanis, D., Papageorgiou, H., Androutsopoulos, I., Manandhar, S., Al-Smadi, M., Al-Ayyoub, M., Zhao,
Y., Qin, B., Clercq, O. D., Hoste, V., Apidianaki, M., Tannier, X., Loukachevitch, N. V., Kotelnikov, E. V., Bel, N.,
Zafra, S. M. J., & Eryigit, G. (2016). SemEval-2016 task 5: Aspect based sentiment analysis. In 10t* International
Workshop on Semantic Evaluation (SemEwval (2016)) (pp. 19-30). ACL. https://doi.org/10.18653/v1/s16-1002.

Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., & Androutsopoulos, I. (2015). SemEval-2015 task 12:
Aspect based sentiment analysis. In 9" International Workshop on Semantic Fvaluation (SemBEval (2015)) (pp.
486—495). ACL. https://doi.org/10.18653/v1/s15-2082.

Rao, V. A., Anuranjana, K., & Mamidi, R. (2020). A SentiWordNet strategy for curriculum learning in sentiment

analysis. In 25" International Conference on Applications of Natural Language to Information Systems (NLDB

24

https://doi.org/10.1109/TAFFC.2023.3296373
https://doi.org/10.1016/0010-0277(93)90058-4
https://www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf
https://www.lrec-conf.org/proceedings/lrec2006/pdf/384_pdf.pdf
https://doi.org/10.1006/jcss.1997.1504
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.3390/info16030201
https://doi.org/10.3390/info16030201
https://doi.org/10.1145/318723.318728
https://doi.org/10.1016/j.ipm.2020.102211
https://doi.acm.org/10.1145/219717.219748
https://doi.acm.org/10.1145/219717.219748
https://aclanthology.org/2021.ranlp-1.112
https://doi.org/10.18653/v1/s16-1002
https://doi.org/10.18653/v1/s15-2082

2020) (pp. 170-178). Springer volume 12089 of Lecture Notes in Computer Science. https://doi.org/10.1007/
978-3-030-51310-8_16.

Schouten, K., & Frasincar, F. (2016). Survey on aspect-level sentiment analysis. IEEE Tranactions on Knowledge
and Data Engineering, 28, 813-830. https://doi.org/10.1109/TKDE.2015.2485209.

Schouten, K., & Frasincar, F. (2018). Ontology-driven sentiment analysis of product and service aspects. In 15th
International Sematnic Web Conference (ESWC 2018) (pp. 608-623). Springer volume 10843 of Lecture Notes in
Computer Science. https://doi.org/10.1007/978-3-319-93417-4_39.

Settles, B. (2012). Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers. https://doi.org/10.2200/5S00429ED1V01Y201207AIMO18.

Skinner, B. F. (1958). Reinforcement today. American Psychologist, 13, 94. https://doi.org/10.1037/h0049039

Sonawane, S. S., & Kolhe, S. R. (2022). Handling dimensionality of ambiguity using ensemble classification in social
networks to detect multi-label sentiment polarity. Computer Assisted Methods in Engineering and Science, 30,
7-26. https://doi.org/10.24423/cames.471

Spitkovsky, V. L., Alshawi, H., & Jurafsky, D. (2010). From baby steps to leapfrog: How “less is more” in unsupervised
dependency parsing. In 2010 Conference of the North American Chapter of the Association of Computational
Linguistics: Human Language Technologies (NAACL-HLT 2010) (pp. 751-759). ACL. https://wuw.aclweb.org/
anthology/N10-1116/.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014). Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929-1958.

Tan, P., Steinbach, M. S.; & Kumar, V. (2005). Introduction to data mining. Addison-Wesley. https://www-users.
cs.umn.edu/%7Ekumar/dmbook/.

Trusca, M. M., Wassenberg, D., Frasincar, F., & Dekker, R. (2020). A hybrid approach for aspect-based sentiment
analysis using deep contextual Word Embeddings and Hierarchical Attention. In 20*" International Conference
on Web Engineering (ICWE 2020) (pp. 365-380). Springer volume 12128 of Lecture Notes in Computer Science.
https://doi.org/10.1007/978-3-030-50578-3_25.

Tsvetkov, Y., Faruqui, M., Ling, W., MacWhinney, B., & Dyer, C. (2016). Learning the curriculum with bayesian
optimization for task-specific word representation learning. In 54** Annual Meeting of the Association for Com-
putational Linguistics (ACL 2016). ACL. https://doi.org/10.18653/v1/p16-1013.

Tu, G., Niu, T., Xu, R., Liang, B., & Cambria, E. (2024). AdaCLF: An adaptive curriculum learning framework
for emotional support conversation. IEEE Intelligent Systems, 39, 5-11. https://doi.org/10.1109/MIS.2024.
3411369.

Vijjini, A. R., Anuranjana, K., & Mamidi, R. (2021). Analyzing curriculum learning for sentiment analysis along
task difficulty, pacing and visualization axes. In 11t" Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSAQEACL 2021) (pp. 117-128). ACL. https://aclanthology.org/
2021.wassa-1.13/.

Wallaart, O., & Frasincar, F. (2019). A hybrid approach for aspect-based sentiment analysis using a lexical-
ized domain ontology and attentional neural models. In 16" International Semantic Web Conference (ESWC
2019) (pp. 363-378). Springer volume 11503 of Lecture Notes in Computer Science. https://doi.org/10.1007/
978-3-030-21348-0_24.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In 7t" International Conference on Learning Representations
(ICLR 2019). OpenReview.net. https://openreview.net/forum?id=rJ4km2R5t7.

Wang, Z., Ho, S., & Cambria, E. (2020). Multi-level fine-scaled sentiment sensing with ambivalence handling. Int. J.
Uncertain. Fuzziness Knowl. Based Syst., 28, 683-697. https://doi.org/10.1142/50218488520500294.

Weichselbraun, A., Gindl, S., Fischer, F., Vakulenko, S., & Scharl, A. (2017). Aspect-based extraction and analysis of

25

https://doi.org/10.1007/978-3-030-51310-8_16
https://doi.org/10.1007/978-3-030-51310-8_16
https://doi.org/10.1109/TKDE.2015.2485209
https://doi.org/10.1007/978-3-319-93417-4_39
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1037/h0049039
https://doi.org/10.24423/cames.471
https://www.aclweb.org/anthology/N10-1116/
https://www.aclweb.org/anthology/N10-1116/
https://www-users.cs.umn.edu/%7Ekumar/dmbook/
https://www-users.cs.umn.edu/%7Ekumar/dmbook/
https://doi.org/10.1007/978-3-030-50578-3_25
https://doi.org/10.18653/v1/p16-1013
https://doi.org/10.1109/MIS.2024.3411369
https://doi.org/10.1109/MIS.2024.3411369
https://aclanthology.org/2021.wassa-1.13/
https://aclanthology.org/2021.wassa-1.13/
https://doi.org/10.1007/978-3-030-21348-0_24
https://doi.org/10.1007/978-3-030-21348-0_24
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1142/S0218488520500294

affective knowledge from social media streams. IEEFE Intelligent Systems, 32, 80-88. https://doi.org/10.1109/
MIS.2017.57.

Xu, B., Zhang, L., Mao, Z., Wang, Q., Xie, H., & Zhang, Y. (2020). Curriculum learning for natural language
understanding. In 58" Annual Meeting of the Association for Computational Linguistics (ACL 2020) (pp. 6095-
6104). ACL. https://doi.org/10.18653/v1/2020.acl-main.542

Xu, L., Xie, H., Qin, S. J., Wang, F. L., & Tao, X. (2025). Exploring ChatGPT-based augmentation strategies for
contrastive aspect-based sentiment analysis. IEEE Intelligent Systems, 40, 69-76. https://doi.org/10.1109/MIS.
2024 .3508432.

Yadav, R. K., Jiao, L., Granmo, O., & Goodwin, M. (2021). Human-level interpretable learning for aspect-based
sentiment analysis. In 35" AAAI Conference on Artificial Intelligence (AAAI 2021) (pp. 14203-14212). AAAI
Press. https://ojs.aaai.org/index.php/AAAI/article/view/17671.

Zhang, X., Mao, R., & Cambria, E. (2024). SenticVec: Toward robust and human-centric neurosymbolic sentiment
analysis. In L. Ku, A. Martins, & V. Srikumar (Eds.), 62"% Annual Meeting of the Association for Computational
Linguistics (ACL 2024) (pp. 4851-4863). Association for Computational Linguistics. https://doi.org/10.18653/
v1/2024.findings-acl.289.

Zheng, S., & Xia, R. (2018). Left-center-right separated neural network for aspect-based sentiment analysis with
rotatory attention. arXiv preprint arXiv:1802.00892.

Zhu, L., Mao, R., Cambria, E., & Jansen, B. J. (2024). Neurosymbolic Al for personalized sentiment analysis. In 26t"
International Conference on Human-Computer Interaction (HCII 2024) (pp. 269-290). Springer volume 15382 of
Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-031-76827-9_16.

Zhu, Q., Chen, X., Wu, P., Liu, J., & Zhao, D. (2021). Combining curriculum learning and knowledge distillation for
dialogue generation. In Findings of the Association for Computational Linguistics (EMNLP 2021) (pp. 1284-1295).
ACL. https://doi.org/10.18653/v1/2021.findings-emnlp.111.

26

https://doi.org/10.1109/MIS.2017.57
https://doi.org/10.1109/MIS.2017.57
https://doi.org/10.18653/v1/2020.acl-main.542
https://doi.org/10.1109/MIS.2024.3508432
https://doi.org/10.1109/MIS.2024.3508432
https://ojs.aaai.org/index.php/AAAI/article/view/17671
https://doi.org/10.18653/v1/2024.findings-acl.289
https://doi.org/10.18653/v1/2024.findings-acl.289
https://doi.org/10.1007/978-3-031-76827-9_16
https://doi.org/10.18653/v1/2021.findings-emnlp.111

	Introduction
	Related Work
	Aspect-Based Sentiment Analysis
	Curriculum Learning

	Methodology
	Ontology Reasoner
	Multi-Hop LCR-Rot with Hierarchical Attention
	Curriculum Learning
	Baby Steps Curriculum
	One-Pass Curriculum

	Curriculum Strategy
	Auxiliary Feed-Forward Model

	Performance Evaluation
	Datasets
	Evaluations Measures

	Results
	Conclusion

