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Abstract

In the past years, the amount of unstructured online review data has grown exponentially. Many

people express their opinions about different aspects of goods and services on the Web. Aspect-

Based Sentiment Analysis (ABSA) automatically extracts the sentiments with respect to aspects

given in a sentence. We improve the training procedure of the state-of-the-art Hybrid Approach for

Aspect-Based Sentiment Analysis with deep contextual word embeddings and hierarchical attention

(HAABSA++). In this method, a domain sentiment ontology is used as a main classifier, and if

it is not conclusive, a neural network is employed as a back-up. We extend the training of the

neural network by incrementally adding more difficult instances, also known as curriculum learning.

Restaurant reviews obtained from the SemEval-2015 and SemEval-2016 datasets are used to evaluate

the effect of implementing curriculum learning. Using baby steps curriculum learning and a specific

curriculum strategy, the accuracy of HAABSA++ is improved from 86.3% to 87.5%.

Keywords: aspect-based sentiment analysis, baby steps curriculum learning, one-pass curriculum

learning, online reviews

1. Introduction

In the past years, the amount of unstructured online review data has grown exponentially. Many

people express their opinions about different aspects of goods and services on the Web. Since review

data is very unstructured and the number of reviews can be very large, it can be expensive, time-

wise and price-wise, to extract the consumer’s opinions manually from the reviews, especially for

big companies. That is why sentiment analysis is often used. Sentiment analysis is a discipline

that is able to detect sentiments in a full review, a sentence, or with respect to an aspect (Liu,

2015). Given a sentence in a review, it is possible that in the same sentence an opinion about two or

more aspects is given. The sentiments towards these aspects can be unequal, even though they are
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mentioned in the same sentence. Aspect-Based Sentiment Analysis (ABSA) makes it possible to find

the sentiment of different aspects in the same sentence. In this way, the sentiments of all aspects in a

sentence are determined, instead of only the overall sentiment of the complete sentence (Schouten &

Frasincar, 2016). Focusing on the individual aspects rather than full sentences gives a more profound

insight into the different aspects of products or services. A sentiment can be positive, negative, or

neutral, and can give a company useful information about their products. ABSA is therefore a very

important tool for companies to get an insight into how people evaluate certain aspects of their

products and which product features could be improved.

In order to accurately predict the sentiment of a given aspect, both machine learning methods

and knowledge-based methods can be used. However, Schouten & Frasincar (2018) have shown that

using both methods in a hybrid approach yields the best performance. In this approach, first, the

sentiment of an aspect is predicted by a domain sentiment ontology, and a support vector machine

is used as a back-up. Wallaart and Frasincar have extended this method and have shown that

this approach works best with a neural network with a rotatory attention mechanism and multiple

hops (LCR-Rot-hop) (Wallaart & Frasincar, 2019). This approach will from now on be referred to

as Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA). In addition to this, Trusca

et al. (2020) have shown that the accuracy of HAABSA is improved by using deep contextual word

embeddings and hierarchical attention (LCR-Rot-hop++), resulting in the HAABSA++ model.

The domain sentiment ontology approach is able to predict the sentiment of around 60% of

the samples (Wallaart & Frasincar, 2019), with an accuracy of 86.8%. The neural network is thus

needed to predict the sentiment of the remaining sentences in the dataset. The sentiment of the

remaining sentences is predicted by the neural network with an accuracy of 81.5%. While it is

clear why the backup neural network is of great importance, the domain sentiment ontology is

required due to its capacity to provide better results than the neural network. The training of a

deep learning model, however, can be a very time-consuming job. Bengio et al. (2009) discovered

that presenting the training data to a model in a predetermined order, usually from the easiest to

the most difficult, can improve its learning speed. This so-called curriculum learning can help the

training process by converging faster to better solutions (Bengio et al., 2009). It is shown that the

use of curriculum learning can be effective when applied to deep learning in text (Tsvetkov et al.,

2016; Cirik et al., 2016). Cirik et al. (2016) show that ordering the samples based on their lengths,

leads to improved sentiment analysis results. Recently, Rao et al. (2020) have specialized the sorting

of data by proposing a curriculum strategy that is focused specifically on sentiment analysis, instead

of a more general strategy. They show that ordering the training data while accounting for the

downstream task leads to better results than when the data is ordered utilizing a general approach.

Hence, the application of curriculum learning in sentiment analysis has shown promising results in

recent studies. However, little research has been done into how curriculum learning can improve the
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results of the model for ABSA.

In this research, we focus on the sentiment analysis of aspects and we do not conduct any research

into the detection of these aspects. That is why data with already annotated aspects is used in our

research. We aim to extend the state-of-the-art HAABSA++ model given by Trusca et al. (2020)

and improve their results. To be more precise, we focus on improving the training of the neural

network of the HAABSA++ approach in order to obtain faster and possibly more accurate results.

Since curriculum strategies designed specifically for the downstream tasks lead to better results

than general strategies (Nagatsuka et al., 2021; Zhu et al., 2021), we aim to find a specific curricu-

lum strategy for ABSA. Even though studies have shown that applying a curriculum strategy can

be very successful in sentiment analysis (Rao et al., 2020), it is not clear what the possible effects

are when applied to ABSA. To achieve this aim, we use curriculum learning for training the neural

network of the HAABSA++ model (LCR-Rot-hop++). Besides the already demonstrated benefits

of the curriculum learning for the NLP tasks, another reason to apply this learning strategy with the

hybrid approach is the presence of the attention mechanism in the neural network. Starting from the

statement of Vijjini et al. (2021) according to which curriculum learning enhances the effectiveness

of the attention layers, we need to confirm this hypothesis with respect to the neural network of the

hybrid approach. All of the above leads us to the following research question:

How can curriculum learning improve an approach for aspect-based sentiment analysis?

To answer this question, we use the curriculum strategy proposed by Rao et al. (2020) for

sentiment analysis and alter this strategy to make it appropriate for ABSA. We compare the re-

sults of the model trained with and without curriculum learning and investigate different ways

of implementing our curriculum strategy. The data we use consists of a collection of restaurant

reviews and all the methods are implemented in Python. The source code can be found via:

https://github.com/NanaLange/CL-HAABSA.

The remainder of this paper is structured as follows. To begin with, in Section 2, a discussion of

the relevant literature into ABSA and curriculum learning is given. Section 3 gives an overview of

the methods we use. Subsequently, the used datasets and the evaluation measures are discussed in

Section 4. The results of our proposed methods are given in Section 5. Finally, we end our paper

by giving a conclusion in Section 6.

2. Related Work

An overview of previous research into ABSA is provided in Section 2.1. After this, in Section

2.2, we discuss the concept of curriculum learning and give an overview of studies on curriculum

learning in sentiment analysis.
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2.1. Aspect-Based Sentiment Analysis

ABSA is broadly covered in previous research (Weichselbraun et al., 2017; Meskele & Frasincar,

2020; Yadav et al., 2021; Cheruku et al., 2024; Han et al., 2025; Xu et al., 2025). The study of

Schouten & Frasincar (2016) provides an overview of research into ABSA, focusing on both the

detection of aspects and the sentiment analysis of these aspects. As the data we use in our research

already provides us with the aspects, we focus solely on the classification of the sentiment belonging

to the aspects, by assigning a positive, negative or neutral sentiment label.

Schouten & Frasincar (2016) state that the ABSA approaches can in general be classified as

knowledge representation-based or as machine learning-based. In addition to this, their study also

proves that these two methods are actually complementary and that a hybrid approach using both

methods outperforms approaches that rely on only one. According to Wallaart & Frasincar (2019),

HAABSA consists of an ontology reasoner and a neural network. The ontology is domain-specific

and sentiment-relevant and in the performed experiment it is designed for restaurant reviews. In

cases where the prediction of the ontology is indecisive (conflicting sentiment or missing sentiment),

a neural network is used.

In the HAABSA method, the neural network introduced by Wallaart & Frasincar (2019) is based

on an extension of the Left-Center-Right separated neural network with Rotatory attention (LCR-

Rot) proposed in (Zheng & Xia, 2018). LCR-Rot has shown to be very successful in predicting the

sentiment of an aspect. The LCR-Rot model divides the sentence into three parts: the left context,

the target phrase, and the right context. The target phrase contains the words that form the aspect.

The model consists of three separate Long Short-Term Memory (LSTM) models, each LSTM for one

of the parts of the sentence. Next to this, a rotatory attention mechanism is used to better model

the interaction between the target and the left and right context. In this way, the LCR-Rot model

uses the different parts of the sentence to capture the most important sentiment words.

The LCR-Rot-hop model presented by Wallaart & Frasincar (2019) extends the LCR-Rot model

by performing multiple hops in the rotatory attention. Therefore, information about the different

parts of the sentences is hereby used and updated multiple times in the model in order to obtain

better results. Finally, Trusca et al. (2020) introduced HAABSA++ by extending LCR-Rot-hop++

as a model that combines hierarchical attention with the LCR-Rot-hop model. The authors have

added an extra layer to the LCR-Rot-hop model so that not only local information is used when

the vectors are updated, but also information at the sentence level is considered. In addition to

hierarchical attention, Trusca et al. (2020) use deep contextual word embeddings, replacing the

non-contextual word embeddings of HAABSA.

In parallel, recent work has focused on integrating neurosymbolic AI into sentiment analysis,

with the goal of enabling personalization (Zhu et al., 2024) or improving interpretability and the

reasoning capabilities. Neurosymbolic approaches such as SenticNet 8 (Cambria et al., 2024) and
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SenticVec (Zhang et al., 2024) define hybrid models that combine symbolic logic, such as rules or

affective commonsense knowledge, with neural networks. These models offer new opportunities to

explain and understand sentiment analysis systems where the decision is sometimes opaque (Diwali

et al., 2024). By leveraging symbolic representations for knowledge-based emotional reasoning,

these approaches improve explainability without affecting performance, making them suitable for

real-world applications.

Considering that HAABSA++ (Trusca et al., 2020) aligns with these recent trends, as it is a hy-

brid model that combines symbolic reasoning with deep learning, and given its superior performance

compared to other approaches, we adopt HAABSA++ as the starting point of our research.

2.2. Curriculum Learning

It is known that humans and animals learn much better when instances are presented to them

from most easy to most difficult, instead of in a random order (Skinner, 1958; Krueger & Dayan,

2009). Therefore, the basic idea of curriculum learning is to first train the model on the easier parts

of a task, increasing the difficulty step-by-step (Elman, 1993).

Bengio et al. (2009) have researched some basic approaches to check whether machine learning

models could benefit from curriculum learning. Their results suggest that applying appropriate

curriculum strategies can lead to better training results due to the faster convergence to better

solutions. In addition, they show that curriculum learning regularizes, leading to lower generalization

error for the equal training error.

Given the topic of our paper, we are interested in how curriculum learning can be applied to

deep learning in text. This specific field of research has not been investigated to a great extent yet.

Cirik et al. (2016) have investigated the effect of curriculum learning on LSTM networks. LSTMs

are used in many different neural networks in the Natural Language Processing (NLP) field. In their

research, the authors study the effect of two different curriculum learning regimens: the one-pass

curriculum and the baby steps curriculum.

The one-pass curriculum is an algorithm suggested by Bengio et al. (2009), where the training

instances are ordered by a curriculum. The ordered training data is then divided into k number of

buckets. First, the model is trained on the simpler instances, contained in the first bucket. When the

model’s loss or task accuracy criteria on a held-out set do not get better after p number of epochs,

the bucket is discarded and the next bucket is selected. The model is then trained with this new

bucket in the same way. The training of the model stops when all buckets are used. This algorithm

is called one-pass curriculum because of the fact that the model uses each bucket only one time for

the training, making one-pass through the data.

The baby steps curriculum of Spitkovsky et al. (2010) extends the former curriculum by incre-

mentally adding more complex sets of training instances to the training set, instead of using every
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set separately. Again, the data is divided into k buckets based on the complexity of the instances.

The model is first trained on the bucket with the easiest data and when the model does not get any

better after p epochs, the next bucket is added to the training data. In this algorithm, the amount

of training instances presented to the model is thus incrementally increased based on the difficulty of

the instances, hence the name. The training stops when all the data is used. The difference between

the one-pass curriculum and the baby steps curriculum is that the later curriculum strategy cumu-

lates the buckets once the difficulty is increased in the training process, while the former strategy

discards them.

Xu et al. (2020) split the training data into k buckets and train a BERT model for each of them.

Next, each BERT model is tested for the remaining k − 1 buckets meaning that there are k − 1

results for each training instance. In the end, the difficulty arrangement of the training instances is

done based on their average performance obtained over the k − 1 buckets. The approach is tested

using one-pass curricula with a BERT model for different tasks included in the General Language

Understanding Evaluation (GLUE) benchmark (Wang et al., 2019). Since the topic of our paper

is related to sentiment analysis, we observed that the curriculum usage of Xu et al. (2020) for this

topic does not outperform the baseline without the curriculum strategy.

Cirik et al. (2016) order their data from shorter to longer sentences, based on the assumption

that shorter sequences are easier to learn than longer ones (Spitkovsky et al., 2010). The authors use

the one-pass and baby steps curricula to study the effect of curriculum learning on LSTM networks,

where they pay extra attention to sentiment analysis. They found out that the baby steps curriculum

performs significantly better than the other approaches. They show that the baby steps curriculum

works particularly well in case of contrasting conjunctions, where two contrary signals come from

two different directions, i.e., the left and right phrases.

Similar to the work of Cirik et al. (2016), Nagatsuka et al. (2021) create multiple buckets based

on the length of the input instances. The new data buckets are used for pre-training RoBERTa,

introduced as a variant of BERT by Liu et al. (2019). Considering again the GLUE downstream

tasks, the curriculum strategy improves the performance of the fine-tuned RoBERTa model in most

cases. Additionally, Nagatsuka et al. (2021) examine the anti-curriculum learning as a strategy

where the buckets are organised from the most difficult to the easiest (i.e., from longer instances to

the shortest instances). Even if, the anti-curriculum strategy is less effective than the conventional

learning, it outperforms the baseline without any curriculum strategy.

Given the past research, it is clear that curriculum learning can be very effective in sentiment

analysis. Rao et al. (2020) claim that the curriculum strategies that have been proposed so far

are all based on the difficulty of the dataset, irrespective of the task that the data will be used for

(in our case sentiment analysis). That is why the authors propose a curriculum strategy that uses

information about the sentiment level of the samples in order to sort them based on the baby steps
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srategy. Their task relied on the lexical resource SentiWordNet that assigns positivity, negativity,

and objectivity scores to every synset (Esuli & Sebastiani, 2006; Baccianella et al., 2010) found in

the WordNet lexical database (Miller, 1995).

In order to determine the effect of the SentiWordNet strategy, Rao et al. (2020) also perform a

different curriculum strategy, where the ordering is based on sentence length (as is done by Cirik

et al. (2016)). Based on this setup, they show that the SentiWordNet strategy performs better than

the strategy based on sentence length. They state that this result can be explained by the fact that

the sentence length strategy defines the complexity of sentences more generally, instead of focusing

specifically on sentiment analysis. The SentiWordNet strategy, on the other hand, ranks the training

data based on how difficult it is to assign a sentiment and is thus much more specific. However,

the study of Rao et al. (2020) focuses on sentiment analysis, whereas our study focuses on ABSA.

Given the fact that ABSA gives deeper insight into the characteristics of a product than general

sentiment analysis, it is therefore very interesting to find out whether this curriculum strategy leads

to improved results as well when we focus on aspects rather than sentences.

The aforementioned curriculum learning algorithms all have in common that they begin with

the simpler examples and gradually extend to the more difficult ones. In order to decide the best

curriculum learning approach, Cirik et al. (2016) and Rao et al. (2020) have analyzed and compared

different algorithms. Tsvetkov et al. (2016) deviate from this approach of testing and comparing a

handful of curricula, by searching for an optimal curriculum utilizing Bayesian optimization. In their

research, the authors order the paragraphs in the dataset based on their paragraph score, which is

given by the linear function w⊤ϕ(X). In this function, X represents the training corpus consisting

of n paragraphs and ϕ(X) is a vector that contains a value for each of the following features for

every paragraph: diversity, simplicity, and prototypicality. Finally, w represents the weights learned

for these features. The feature weights are optimized using Bayesian optimization. In this way,

curriculum learning proposed by Tsvetkov et al. (2016) is thus treated as an optimization problem,

instead of shuffling the data according to human intuitions.

In the work of Tsvetkov et al. (2016), the curriculum using Bayesian optimization is compared

with other curricula created using certain heuristics. The authors evaluate these approaches using

four different well-known NLP tasks, including sentiment analysis. They show that using a cur-

riculum leads to significantly better results than when no curriculum is used, which is in line with

previous research. Next to this, the optimized curricula for the different NLP models are investi-

gated to see which features are most important. They found out that for sentiment analysis, the

best curriculum is sorting by prototypicality features. This is a set of semantic features that uses

information from child language acquisition and cognitive linguistics. The authors first compute

these features for every word after tokenization, and then average them over the sentences.

Considering the previous research, curriculum learning thus seems promising for our research.

7



We are interested in starting with the samples that are easy to classify and then gradually add the

more difficult samples to the training data. Interestingly, a method exists that focuses more on the

difficult instead of the easy instances. This method is called boosting and it assigns weights to the

samples such that the classifiers focus on the samples that are hard to classify (Tan et al., 2005).

After every boosting round, the weights of the training instances are updated and used during the

next round. Multiple implementations of the boosting algorithm exist, differing on how the weights

of the training samples are updated and how the predictions of the classifiers are combined. One

well-known implementation is AdaBoost (Freund & Schapire, 1997).

3. Methodology

Our work is dedicated to improving the backup neural network of the HAABSA++ approach

based on curriculum learning. According to the initial setup of the HAABSA++method, an ontology

is used first to predict the sentiments of the aspects, and the neural network backs up only if the

ontology is indecisive. By doing so, the ontology typically classifies straightforward instances with

clear positive or negative polarity. Instances with more complex, ambiguous sentiment polarities,

as well as those labeled as neutral, remain unresolved by the ontology and are therefore handled by

the neural network. Alternative approaches for addressing ambiguity and neutrality in sentiment

analysis have been proposed by Wang et al. (2020) and Sonawane & Kolhe (2022). Wang et al. (2020)

introduce a multi-level attention mechanism to capture neutrality when both positive and negative

scores are either low or similar in magnitude. Similarly, Sonawane & Kolhe (2022) treat neutrality

as part of the ambiguity spectrum, determining it via an ensemble of classifiers that assign the

neutral class when predictions are uncertain or conflicting. While these methods represent promising

research directions, our work focuses on applying curriculum learning to sentiment analysis, and thus

we continue with the standard multi-label classification task that is able to detect all three sentiment

labels: positive, negative, and neutral.

3.1. Ontology Reasoner

The ontology reasoner used in HAABSA++ is based on the study of Schouten & Frasincar (2018).

This ontology reasoner uses predefined classes and relations between classes in order to predict the

sentiment of the aspects. The tree main classes of the ontology are SentimentValue, AspectMention,

and SentimentMention. The SentimentValue class contains the subclasses Positive and Negative,

which are assigned to, respectively, positive and negative expressions. The neutral sentiment was not

modeled in the ontology due to the inherent ambiguity of this sentiment class. The AspectMention

class identifies the aspects in the data that are related to the discovered sentiments. Last, the

SentimentMention class models the sentiment expressions.
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Using these classes, the ontology reasoner identifies positive or negative sentiments in case that

all sentiment expressions related to an aspect point to positive or negative sentiments, respectively.

In the event that both sentiments are predicted for the same aspect or when no sentiment is given,

the neural network is used as a backup. This model is discussed in the next section.

3.2. Multi-Hop LCR-Rot with Hierarchical Attention

For our neural network backup model, we use the LCR-Rot-hop++ proposed by Trusca et al.

(2020). To define this model, we use the definitions given by Zheng & Xia (2018). To begin with,

we display every sentence s with N words as s = [w1, w2, .., wN ]. Each sentence is then divided into

the following three parts: the left context [wl
1, w

l
2, .., w

l
L], the target phrase [wt

1, w
t
2, .., w

t
M ], and the

right context [wr
1, w

r
2, .., w

r
R]. L, M , and R are the lengths of the tree parts, respectively, and sum

up to N . We use BERT Base word embeddings with dimension 768. From now on, the dimension

of the word vectors is denoted by d.

The LCR-Rot-hop model consists of three Bi-directional Long-Short-Term-Memory (Bi-LSTM)

modules, one left-, one center-, and one right-Bi-LSTM. These three Bi-LSTMs model, respectively,

the left context, the target phrase, and the right context. The input of each Bi-LSTM is represented

by the words of that specific part, represented as word embeddings of dimension 768 × 1. After

feeding these word embeddings to the Bi-LSTM, three hidden states are returned: [hl
1, h

l
2, .., h

l
L] for

the left context, [ht
1, h

t
2.., h

t
M ] for the target phrase, and [hr

1, h
r
2, .., h

r
R] for the right context. Since

we use Bi-LSTMs, the module propagates both backwards and forwards, resulting in a hidden state

vector that is twice the initial size (300). Because of this fact, the dimension of the hidden state

vector is 600× 1.

After obtaining the three hidden states, a two-step rotatory attention mechanism is applied to

these hidden states outputs to capture the most indicative words in the target phrase and the left

and right contexts. In the first step, the most indicative sentiment words in the left/right context

are captured, using target information. These results are then used in the second step, where the

most indicative words of the target phrase with respect to the contexts are captured.

Step 1: Target2Context Attention

In this step, an average representation of the target phrase is used to obtain better representations

of the two contexts. To obtain this average representation of the target phrase, an average pooling

operation is utilized, as proposed by Zheng & Xia (2018):

rtp
2d×1

= pooling([ ht
1

2d×1

, ht
2

2d×1

, .., ht
M

2d×1

]). (1)

Then, an attention function f is created that takes the average target phrase rtp and the hidden

states of each word in one of the contexts. Looking at the left context for example, we define the

9



attention function f as:

f( hl
i

1×1
, rtp) = tanh

(
hl′

i
1×2d

· W l
c

2d×2d

· rtp
2d×1

+ blc
1×1

)
(2)

where hl
i is the ith hidden state for i = 1, .., L, W l

c a weight matrix, blc a bias term, and tanh a

nonlinear function. The attention scores f are then put into a softmax function to obtain normalized

attention scores. Again looking at the left context for example, the normalized attention scores αl
i

are computed as follows:

αl
i =

exp(f(hl
i, r

tp))∑L
j=1 exp(f(h

l
j , r

tp))
. (3)

Finally, the normalized attention scores are used to compute a weighted combination of the hidden

states in order to represent the left context:

rl

2d×1

=

L∑
i=1

αl
i

1×1
× hl

i
2d×1

. (4)

The representation rr for the right context can be retrieved in a similar way by following Equa-

tions (2)-(4).

Step 2: Context2Target Attention

In this step, the representation of the target phrase is improved by using the left and right context

representations, respectively, rl and rr, obtained in the previous step. The target representations

are computed similar to Equations (2)-(4), with the only difference that rl and rr are used instead of

the representation vector rtp . Following the equations, we get a left-aware target representation, rtl ,

and a right-aware target representation rtp . Again taking the left context as example, the left-aware

target representation is then given by:

rtl
2d×1

=

T∑
i=1

αtl
i

1×1

× ht
i

2d×1

. (5)

Since the LCR-Rot model contains a multi-hop rotatory attention mechanism, the given two

steps are repeated sequentially for n times. According to Wallaart & Frasincar (2019), the optimal

iteration number is three. It is important to realize that the average target vector rtp is only utilized

during the first iteration and is replaced in the next iterations by rtl or rtp , depending on the context.

After performing the iterations over the rotatory mechanism, a final presentation for the sentence

is obtained by concatenating the left- and right-context representations, respectively, rl and rr, and

the left- and right-aware target representations, respectively, rtl and rtr :

v
8d×1

= [ rl
2d×1

; rtl
2d×1

; rtr
2d×1

; rr
2d×1

]. (6)

10



Since LCR-Rot-hop has the disadvantage that the four representation vectors are computed

utilizing only local information, Trusca et al. (2020) propose including hierarchical attention by

adding an extra layer to the model. The authors present a high-level representation of the input

sentence that updates every representation vector with a relevance score computed at the sentence

level.

In order to use this hierarchical attention, v is updated after every iteration Trusca et al. (2020).

To do this, we begin with computing an attention function f as follows:

f( vi
1×1

) = tanh( vi
′

1×2d
× W

2d×1
+ b

1×1
), (7)

where vi is the ith representation of the input sentence (vi ∈{rl, rtl , rtr , rr}, i=1,..,4), W a weight

matrix, and b a bias. The attention function is then used to apply the attention weighting separately

on the intermediate context and target vector pairs. The left and right context attention scores are

given by α1 and α4, respectively, and can be computed as follows:

α1,4 =
exp(f(v1,4))∑
j=1,4 exp(f(v

j))
, (8)

with α1 + α4 = 1. The two target vector attention scores, α2 and α3, can be computed in the same

way. For these scores we see as well that α2 + α3 = 1.

These attention scores are then used to compute the new scaled left- and right-context represen-

tations and the two target representations:

vi

2d×1

= αi

1×1
× vi

2d×1

. (9)

Trusca et al. (2020) have shown that applying the weighting in each iteration of the rotatory

mechanism separately on the target vectors leads to the best results. That is why, in our study,

we use hierarchical attention in the same way. In total, we iterate three times over the rotatory

mechanism.

After completing the iterations, one uses the final sentence representation vector v to predict

the corresponding sentiment. This vector is then fed to a softmax function in order to compute the

sentiment of the target:

p
|C|×1

= softmax( Wc
|C|×8d

× v
8d×1

+ bc
|C|×1

), (10)

where p is a conditional probability distribution, C the set of sentiment categories, Wc a weight

matrix, and bc a bias. The vector p gives a probability for every sentiment category in C. The final

predicted sentiment is given by the highest probability of p.
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3.3. Curriculum Learning

As mentioned in Section 2.2, using a curriculum strategy when training the model instead of

presenting the samples in a random order, can significantly improve the accuracy and efficiency of a

model. During the training of our model, we use both the baby steps and the one-pass curriculum,

which are now discussed.

3.3.1. Baby Steps Curriculum

We use the formal definition given by Rao et al. (2020) to explain the baby steps algorithm in

ABSA. For every sentence si in our dataset D, the sentiment is described as yi ∈ {1, .., C}, where i

∈ {1, .., n} for n sentences in D, and C is the number of sentiment categories. The order in which

the sentences are fed to the model is determined by the curriculum strategy S(si), where S defines

how difficult a sample si is. The easiest sample gets the lowest S score and the most difficult sample

the highest S score. We then use these S scores to order all the sentences in our dataset D from

easy to difficult, which results in the ordered dataset D′.

With the baby steps algorithm, we then divide the ordered dataset D′ into k buckets. We start

by taking the bucket with the easiest instances, D1, and train the model with these instances until

convergence or until p epochs have passed. After this, the next bucket of data, containing more

difficult samples, is added to the training data and we repeat the training process until convergence

or until p epochs have passed. We keep adding more difficult batches to the training data until

all the sentences of D are included and the model is trained on the complete training dataset. A

visualization of the baby steps algorithm is given by the pseudocode in Algorithm 1.

Data: M , the model; D, the training data; S the curriculum score
begin

D′ = sort(D,S)

{D1, D2, .., Dk} = D′, where S(da) < S(db), da ∈ Di, db ∈ Dj , ∀i < j
Dtrain = ∅
for s = 1,..,k do

Dtrain = Dtrain ∪Ds

while not converged for p epochs do
train(M , Dtrain)

end

end

end
Algorithm 1: The baby steps algorithm

3.3.2. One-Pass Curriculum

Next to the baby steps algorithm, Cirik et al. (2016) also use the one-pass algorithm in their study.

As mentioned in Section 2.2, the authors show that a model trained with the baby steps algorithm

outperforms the one-pass algorithm. However, their conclusions are for sentiment analysis, while we
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focus on ABSA. That is why, in this research, we use both the baby steps algorithm and the one-pass

algorithm to implement our curriculum strategy.

The one-pass curriculum is similar to the baby steps curriculum, with the difference that we

discard every bucket of data after training until convergence or until p epochs have passed. The

final model is obtained after the training on the final bucket is completed. A visualization of the

one-pass algorithm is given in Algorithm 2.

Data: M , the model; D, the training data; S the curriculum score
begin

D′ = sort(D,S)

{D1, D2, .., Dk} = D′, where S(da) < S(db), da ∈ Di, db ∈ Di, ∀i < j
for s = 1,..,k do

while not converged for p epochs do
train(M , Ds)

end

end

end
Algorithm 2: The one-pass algorithm

3.4. Curriculum Strategy

In our research, the curriculum strategy relies on the SentiWordNet sentiment lexicon proposed

by Rao et al. (2020). The authors have shown that this strategy has good results for sentiment

analysis of sentences. Given this fact, in our research, we investigate whether these improved results

are also visible in case of ABSA. We follow the research of Rao et al. (2020), by using SentiWordNet

features to order the instances and subsequently use the baby steps and one-pass curriculum strategy

to train our model.

For every word in a sentence, SentiWordNet gives a positivity, a negativity, and an objectivity

score (Baccianella et al., 2010). The objectivity score is computed as 1− positivity score - negativity

score. Important to note here, is that the SentiWordNet scores are for a synset and not for a word,

which means that one word possibly has multiple scores. That is why in our research we make use

of word sense disambiguation to determine which particular synset of the word is meant, given its

context. We perform word sense disambiguation by implementing the Simplified Lesk algorithm

(Lesk, 1986). This algorithm considers all the different definitions from every possible synset of a

word and determines the number of overlapping words between the word’s context sentence and the

definitions. The synset with the most overlapping words is then returned as the most appropriate

meaning of the word in the given sentence. We improve the performance of Simplified Lesk by

including the part-of-speech tag of the word we disambiguate. The part-of-speech tag can be for

example noun, verb, or adjective. We determine the part-of-speech tag using the NLTK platform

(Bird et al., 2009).
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After applying the Simplified Lesk algorithm, we end up with all the appropriate synsets for

the given sentences. We then proceed with these disambiguated words and compute the associated

SentiWordNet scores for all the words in our dataset. Then, for each sentence, we sum up all the

positivity scores of the words in the sentence, leading to the feature Net Positivity Score, denoted

by P . In a similar way we compute the features Net Negativity Score, denoted by N , and Net

Objectivity Score, denoted byO. In addition to these scores, we also compute the Absolute Difference

Score, denoted by AD. This feature is the absolute difference between the Net Positivity and the

Net Negativity Score. Next to these features, we also include the total amount of words in the

sentence, denoted by l. This feature is included since it is shown that shorter sequences are easier

to train than longer ones (Spitkovsky et al., 2010).

Rao et al. (2020) use the above features to determine the difficulty of the sentences. However,

their research is focused on sentiment analysis of sentences, while our study focuses on aspects

rather than sentences. This means that there can be sentences that contain multiple aspects. When

a sentence contains more than one aspect, we include multiple samples of the same sentence in

our dataset, every sample having a different aspect marked as target. It is, however, imaginable

that it is more difficult for the model to predict the sentiment of an aspect when there are multiple

aspects in the same sentence, since the model then has to decide which words are connected to which

aspect. That is why, next to the features used by Rao et al. (2020), we also include the feature A,

representing the total number of different aspects in the sentence. Furthermore, we include the

context words in the sentence, denoted by W .

Also, we include the aspect category of the marked aspect in the sentence as a feature as well.

We do this by creating a one-hot encoding for every sample, denoted by C. This one-hot encoding

is a vector of length twelve, representing the twelve different aspect categories in the dataset. All

the indices of this vector contain a zero, except for the index of the marked aspect category, which

contains a one. In this way, for every sentence, the aspect category of the marked aspect is included

as a feature.

An overview of the eight discussed features is given in Table 1. The first five features are proposed

by Rao et al. (2020) for sentiment analysis. The remaining three features are added by us to make

the set of features more appropriate for ABSA. Looking at all these features, it is likely that a longer

sentence has higher scores than a shorter sentence because of the larger total number of words. That

is why, we include the scaled features as well. A feature is scaled by dividing the features with the

length of their associated sentence. For example, the Scaled Positivity Score is then P
l . We do not

include a scaled feature for the aspect category, since this is just a one-hot encoding and does not

correlate with the sentence length. In this way, next to the eight features mentioned in Table 1, six

more (scaled) features are added. In total, we use fourteen features for our curriculum strategy. As

proposed by Rao et al. (2020), we normalize all the features between 0 and 1, to allow them to lie
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Table 1: The features used for the curriculum strategy.

Features Description
Sentence Length (l) Number of words in the sentence
Net Positivity Score (P) Sum of all positivity scores

Features proposed by Net Negativity Score (N) Sum of all negativity scores
Rao et al. (2020) Net Objectivity Score (O) Sum of all objectivity scores

Absolute Difference Score (AD) Absolute difference between P and N

Aspects (A) Number of aspects in the sentence
Added features Context Words (W) Number of context words in the sentence

Aspect Category (C) The aspect category of the marked aspect

in the same range.

Rao et al. (2020) feed these features to an auxiliary feed-forward model Aux in order to learn

which samples are the most difficult. The authors use the results of this model to determine the

curriculum score of the samples of the dataset as follows:

S(si) =

C∑
j=1

(Aux(si)
j − yji )

2, (11)

where Aux(si)
j is the prediction of the auxiliary model for the marked aspect in sample si for

class j, with C the total amount of classes, and yji ∈ {0, 1} represents whether or not the target

shows polarity j. If S(si) is low, this means that it is easy to classify the target’s sentiment. The

computed scores S(si) for every sample si in the training data are then used to determine the

ordering of the samples before training our neural network of HAABSA++. We now discuss the

auxiliary feed-forward model we use to calculate the curriculum scores.

3.4.1. Auxiliary Feed-Forward Model

The auxiliary feed-forward model is trained by minimizing a cross-entropy loss function, defined

as:

L
1×1

= −
∑
j

yj
|C|×1

× log(p̂j)
|C|×1

, (12)

where yj is a vector containing the true sentiment of training instance j, p̂j the predicted senti-

ment for that instance, and C the set of sentiment categories.

The weight matrices are initialized by the Glorot uniform initializer (Glorot & Bengio, 2010)

and all biases are set to zero. Adam optimization is used to update the weights and biases (Kingma

& Ba, 2015). Furthermore, during training, units are randomly dropped from the neural network

(Srivastava et al., 2014). This is called the dropout technique and we apply this to all hidden layers

to prevent units from co-adapting too much on the training instances.

Before training, the hyperparameters of the feed-forward model are tuned using the Hyperopt

package (Bergstra et al., 2015). Hyperoptimization is used to determine the number of hidden layers
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in the neural network and the number of neurons per hidden layer. Furthermore, the dropout rate

and the learning rate are optimized as well. We use 80% of the training data for the hyperopti-

mization of the hyperparameters. The remaining 20% is used as a validation set. When the optimal

values of the given hyperparameters are found, we use these parameters and train the model on the

entire training set.

After applying hyperoptimization, we end up using a feed-forward neural network with two

hidden layers and the following numbers of layer units: 183 and 140, respectively. The Rectified

Linear Unit activation function (ReLU) is used as an activation function in our model. Inspired by

the work of Rao et al. (2020), the final layer uses a softmax activation function. The accuracy of

our feed-forward model is 74.0%.

Furthermore, Hyperopt is used not only for tuning of the hyperparameters of the auxiliary

model, but it is also used when applying our curriculum strategies to the HAABSA++ model. In

the neural network of HAABSA++ (LCR-Rot-hop++), multiple hyperparameters are optimized for

the training data. However, when applying the baby steps or one-pass curriculum, we do not use the

complete training data during every step. That is why we optimize the hyperparameters for every

subset of the data. In this way, when during the training process a new bucket of data is selected,

we simultaneously update the hyperparameters by using the optimal parameters for the currently

used training data. The hyperparameter optimization is thus done for every possible combination

of training data separately and we thus do not ‘borrow’ the optimal hyperparameters found for the

HAABSA++ model, where no curriculum strategy is applied.

Last, it is important to note that in the baby steps and one-pass algorithms, we train the model

with a subset of the data until convergence, before adding new data. Since we want to compare

our strategy with the performance of the LCR-Rot-hop++ model of our baseline HAABSA++

method, we slightly alter the LCR-Rot-hop++ model to also take convergence into consideration.

For this, before training the model, the training data is split into a training and a validation set,

with, respectively, 80% and 20% of the original training data. We then train the model using this

new training set and look at the performance of the model on the validation data to determine when

the model has converged and, thus, when the training can be stopped. In case the model has not

converged after p epochs, we also stop the training, as is done in our employed curriculum strategies

as well.

4. Performance Evaluation

We now discuss the dataset that is used in our research and the different evaluation measures

that we consider.
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4.1. Datasets

For this research, restaurant reviews collected from the widely used datasets SemEval-2015 Task

12 Subtask 1 Slot 3 (Pontiki et al., 2015) and SemEval-2016 Task 5 Subtask 1 Slot 3 (Pontiki et al.,

2016) are used. The SemEval-2015 dataset is a subset of the SemEval-2016 dataset, and therefore

has the same properties as the SemEval-2016 data.

The SemEval-2015 and SemEval-2016 datasets includes restaurant reviews with one or multiple

sentences, containing one or more opinions. An opinion represents the sentiment given to an aspect.

The aspect has a target expression associated and an aspect category. In our research, we use the

word aspect to denote the aspect category, unless otherwise specified.

The data is divided into a train and test set. We use our training data to train our neural

network model. Before feeding the training data to our model, we use a curriculum strategy to

order the train data. An overview of the sentiment classes in the SemEval-2015 and SemEval-2016

train and test datasets is given in Table 2, ordered on the frequency of the sentiment classes. As can

be seen, the majority of the opinions is positive. Furthermore, it can be observed that the training

and testing datasets are similar.

Table 2: The frequencies of the sentiments in the SemEval-2015 SemEval-2016 datasets.

Positive Negative Neutral Total

Freq. % Freq. % Freq. % Freq. %

SemEval-2015 Train data 925 72.4 41 3.2 312 24.4 1278 100
Test data 320 53.7 32 5.3 245 41.0 597 100

SemEval-2016 Train data 1318 70.2 489 26.0 72 3.8 1879 100
Test data 483 74.3 135 20.8 32 4.9 650 100

The data is in XML format and is preprocessed in a similar way as done by Wallaart & Frasincar

(2019). To begin with, all the opinions that are stated implicitly are removed from the dataset. This

is done because the employed neural network assumes that the target is present. Implicitly stated

opinions have a non-existent aspect and therefore the target in the sentence is defined as NULL. In

total, we delete 24.8% of the SemEval-2016 dataset and 25.0% of the SemEval-2015 dataset for this

reason. After deleting these samples, the remaining samples are processed using the NLTK platform

(Bird et al., 2009). All the instances are tokenized utilizing the WordNet lexical database (Miller,

1995).

In our research, we use BERT deep contextual word embeddings, computed in the same way as

in the HAABSA++ model (Trusca et al., 2020). The BERT word embeddings are obtained using

the pre-trained BERT Base model (Devlin et al., 2019). The dimension of the word embedding

vectors is 768.
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4.2. Evaluations Measures

In this paper, the HAABSA++ model without curriculum learning is used as a baseline method.

Since the first part of this model is the ontology reasoner and this is not altered by curriculum

learning, we only look at the performance of the neural network of HAABSA++, which is the LCR-

Rot-hop++ model. As explained in Section 3.4.1, we train this model with 80% of the training data

until convergence on the validation dataset, or until p (p = 100) epochs have passed. The validation

dataset consists of the remaining 20% of the training data and is held out during training. The

results of this final model are then used as our baseline results.

In order to test the performance of implementing the one-pass and baby steps curriculum strate-

gies, we divide our training data in k buckets, with k = 1,..,10. For the one-pass algorithm, we use

the results of the final model that is trained with the last bucket of the training data and compare

these with the results of the baseline model. For the baby steps algorithm, we look at the results of

the final model that is trained with the complete training dataset.

Different evaluation metrics are used to compare our different strategies. First, we compute

the accuracy of the model. The accuracy is computed by taking the sum of all correctly predicted

sentiments, divided by the total number of samples. We look at both the in-sample accuracy and

the out-of-sample accuracy. The first one is the accuracy for the complete training data and the

latter one for the test data.

Furthermore, since Bengio et al. (2009) state that applying curriculum learning leads to faster

convergence, we also compare the training times. This is the number of minutes the model is trained

until the final model converges.

Finally, we look deeper into the progress of the out-of-sample and in-sample accuracy during the

training of the model when a curriculum strategy is applied. For every k, we create a graph of the

two accuracies and their course during the epochs. In this way, we can see how the accuracy changes

when new buckets of data are added to the training data.

5. Results

In Table 3, the results for the SemEval-2016 and SemEval-2015 datasets are presented. The

out-of-sample and in-sample accuracies are mentioned for every curriculum strategy together with

the number of minutes required for the model convergence. The best results are marked in bold.

When comparing the results of the two curriculum strategies, we see that both strategies give

very different results. In general, training the model with the baby steps curriculum leads to a better

out-of-sample accuracy than when no curriculum or the one-pass curriculum is applied, as already

suggested by Vijjini et al. (2021). For both the SemEval-2016 and the SemEval-2015 datasets, the

optimal number of buckets that the training data should be divided into, is seven. Using the baby

steps algorithm with seven buckets leads to an increase in the out-of-sample accuracy of 1.2-3.0
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percentage points. For the other possible numbers of buckets, we see that the accuracy is at least as

good as the accuracy of the baseline model. These results thus indicate that applying the baby steps

curriculum strategy leads, in general, to a higher out-of-sample accuracy than when no curriculum

is applied.

Since Bengio et al. (2009) state that applying a curriculum strategy does not only lead to better

results, but can also lead to faster convergence, we compare the times needed to train the neural

network with and without the baby steps curriculum strategy. Interestingly, we see that applying the

curriculum approach during training leads to longer training times than the baseline model when

the SemEval-2016 dataset is used. However, for the SemEval-2015 dataset, we see that if the data

is divided into two, four, or five buckets, the training time is shorter than for the baseline model. In

these cases, the model thus converges faster when the curriculum strategy is applied. Our results

thus indicate that applying the baby steps curriculum leads to improved results, and also to faster

convergence, in a few cases.

When we look at the training time of the one-pass curriculum, we see that this leads to faster

convergence of the model than the baseline model and the baby steps curriculum. This is as expected,

since with the one-pass curriculum the model is trained on a small set of samples, while the baseline

model uses all the samples and in the baby steps curriculum the number of training samples gradually

increases.

At the same time, we see a very low out-of-sample and in-sample accuracy for the one-pass

Table 3: Accuracy results and training times for the LCR-Rot-hop++ model with different curriculum strategies.

SemEval-2016 SemEval-2015
Out-of-sample In-sample Time Out-of-sample In-sample Time

acc. acc. (min.) acc. acc. (min.)
No Curriculum Learning

Baseline model 86.3% 96.3% 1.70 77.2% 96.7% 1.34

Baby Steps Curriculum
Two buckets 87.1% 95.4% 3.77 79.9% 96.7% 1.06

Three buckets 87.1% 95.9% 3.00 77.9% 96.7% 2.08
Four buckets 86.9% 96.0% 3.23 77.4% 96.6% 1.08
Five buckets 86.3% 95.8% 4.62 77.2% 96.7% 1.18
Six buckets 86.3% 94.2% 4.44 78.4% 96.7% 1.66

Seven buckets 87.5% 94.6% 3.94 80.2% 93.3% 1.80
Eight buckets 86.3% 95.4% 5.22 80.1% 96.9% 3.52
Nine buckets 86.3% 94.3% 5.43 79.2% 97.5% 2.78
Ten buckets 86.3% 93.9% 5.00 76.9% 95.9% 3.29

One-Pass Curriculum
Two buckets 83.2% 88.2% 1.19 76.4% 92.4% 0.67

Three buckets 71.7% 80.7% 0.81 65.8% 74.3% 0.43
Four buckets 29.8% 35.6% 1.03 35.0% 21.9% 0.28
Five buckets 44.3% 50.7% 0.99 35.5% 22.7% 0.34
Six buckets 38.6% 44.5% 0.82 34.8% 23.1% 0.52

Seven buckets 21.7% 29.4% 0.99 34.2% 23.6% 0.63
Eight buckets 38.4% 44.2% 0.58 39.5% 32.4% 0.51
Nine buckets 22.0% 28.6% 1.02 36.0% 26.1% 0.33
Ten buckets 18.0% 25.8% 0.77 36.5% 26.8% 0.39
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curriculum, compared to the baseline model and the baby steps curriculum. It is quite surprising

that the one-pass curriculum leads to such a big decrease in terms of accuracy. The lowest out-of-

sample accuracy is obtained when the training data is divided into ten buckets for the SemEval-2016

dataset. For this curriculum strategy, the course of the out-of-sample and in-sample accuracy is given

in Figure 1. The gray lines mark that the model is trained on a new bucket of data and that the

previous bucket is discarded. It can be observed that both the out-of-sample and in-sample accuracy

increase for the first eight buckets, but decrease for the ninth and tenth bucket. So, looking at this

graph, it seems like the accuracy of the model decreases a lot when the model is trained on more

difficult training data. For every k number of buckets that we divide our training data into, a similar

pattern can be observed, where training on the last one or two buckets leads to a big decrease in

the accuracy.

Figure 1: The out-of-sample and in-sample accuracy of the model trained with the one-pass curriculum with k=10
for the SemEval-2016 dataset.

The large decrease in the accuracy during the training of the model on the last few buckets of

data thus leads to a final model that performs much worse than the baseline model. This remarkable

result can be partly explained by looking at the composition of the ordered training data. This is

the data ordered from easy to difficult based on their curriculum scores. It turns out that the

majority of the easy samples has a positive sentiment, while the majority of the difficult samples

has a negative sentiment. For example, when we divide the training data into ten buckets and look

at the first bucket, which contains the easiest samples, we see that almost all the instances have

a positive sentiment (99.6%), only one sample has a negative sentiment (0.4%), and there are no

samples with a neutral sentiment. When the model is trained with this bucket of data, it always

predicts a positive sentiment for the instances. Since the frequency of the positive sentiment in the

test data is 74.3%, this results in a moderately high accuracy. However, in the tenth bucket, only
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Figure 2: The out-of-sample and in-sample accuracy of the model with baby steps curriculum with k=7 for the
SemEval-2016 dataset

1.6% of the samples have a positive sentiment, 36.4% has a neutral sentiment, and the majority

of the samples has a negative sentiment (62.0%). When the model is trained with this data, it is

thus more likely that the model predicts a negative or neutral sentiment, rather than a positive

sentiment, given these frequencies. Therefore, it is not too surprising that the accuracy decreases

when more difficult samples are used. However, the intuition behind the one-pass algorithm is that

the model remembers what it has learned during the passed epochs and uses this knowledge during

the training on the new samples. Unfortunately, for our case, the model does not seem to be good in

remembering what it has learned during the training on the easier samples, which results in the low

accuracies. So, in our study, the one-pass algorithm performs worse than the baby steps algorithm,

which is also in line with the research of Cirik et al. (2016).

As mentioned in Section 4.2, we also take a look at the course of the out-of-sample and in-sample

accuracy during the training of the model. From Table 3, we see that the best out-of-sample accuracy

is obtained when we use the baby steps algorithm and divide the training data into seven buckets.

The course of the corresponding out-of-sample and in-sample accuracy is given in Figure 2. The

gray lines in this figure denote when a new bucket of data is added to the training data. We clearly

see that every time that a new bucket of training data is added, the accuracy increases. The graphs

also show that the model spends little time on training with the complete dataset and more time on

training with intermediate buckets.

Again, a similar pattern can be observed for every k number of buckets that we divide our training

data in. Remarkable is the fact that when the data is divided into a small number of buckets (k=2,

3, or 4), the largest part of the training is done with the complete training dataset, which can be

seen in Figure 3. When we divide the data in a larger number of buckets, less time is spent on
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training with the complete data, as can be observed from Figure 2. We thus see that incrementally

adding more difficult samples to the training data leads to an increase of accuracy and also to less

needed training time on the complete training dataset, which makes sense as the easy samples can

be learned faster.

Finally, when looking at the course of the out-of-sample and in-sample accuracy of the baby steps

algorithm, we see that during the training of the first buckets of data, the accuracy does not change.

This could, again, be explained by the composition of the training data. The first buckets contain the

easiest samples, which mainly have a positive sentiment, as is explained before. Therefore, during

the first few buckets, the accuracy does not change much, as it is optimal for the model to predict

a positive sentiment for the easy samples.

6. Conclusion

The aim of our research is to improve the results of a hybrid approach for ABSA by using

curriculum learning based on baby steps and one-pass strategies. We use SentiWordNet features

and an auxiliary model to obtain curriculum scores for the training samples. These scores are then

used to order the samples and divide them into buckets for our curriculum strategies. Based on our

results, only the baby steps curriculum strategy can improve the baseline with a margin between

1.2-3.0 percentage points. The poor results of the one-pass curricula might be explained by the

unequal distribution of the classes over the buckets of data. Precisely, the easy samples are mainly

positive and the difficult samples are mainly negative and neutral.

Given the importance of the topic of this research, we think that it would be useful if more

research is done. Knowing that the data we use are restaurant reviews, which makes it likely

Figure 3: The out-of-sample and in-sample accuracy of the model with baby steps curriculum with k=3 for the
SemEval-2016 dataset

22



that a big part of the data consists of short sentences, it would be interesting to see whether our

inferences work for longer, and thus more difficult, sentences. Also, it would be interesting to see

if the performance of this curriculum strategy could be improved if the sentiment classes are more

equally distributed over the ordered training data. Finally, it might be interesting to investigate

the effect of active learning as a closely related discipline to curriculum learning in the domain of

ABSA. Unlike curriculum learning which imitates human learning, active learning is used to select

new instances for training based on the information amount they bring (Settles, 2012). The most

informative instances are usually picked based on the entropy or margin of prediction probabilities.

Additionally, we can consider for future work the hybrid approach proposed by Jafarpour et al.

(2021) as a linear combination between the active and curriculum learning strategies. Last, we

would like to improve our curriculum learning strategy by making it adaptive to what the model

has learned so far (Tu et al., 2024).
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