
LATS: Low Resource Abstractive Text Summarization

Chris van Yperena, Flavius Frasincara,∗, Kamilah El Kanfoudib

aEconometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, the Netherlands
bTinbergen Institute, Gustav Mahlerplein 117, 1082 MS Amsterdam, the Netherlands

Abstract

Text summarization is an increasingly crucial focus of Natural Language Processing (NLP), and state-

of-the-art models such as PEGASUS have demonstrated remarkable potential to ever more efficient and

accurate abstractive summarization. Nonetheless, recent developments of deep learning models that focus

on training with large datasets can become at risk of sub-optimal generalization, inefficient training time,

and can get stuck at local optima due to high-dimensional non-convex optimization domains. Current

research in the field of NLP suggests that leveraging curriculum learning techniques to guide model training

(enabling the model to learn from training data with increasing difficulty) could provide a means to achieve

enhanced model performance. In this paper we investigate the effectiveness of curriculum learning strategies

and data augmentation techniques on PEGASUS to increase performance with low-resource training data

from the CNN/DM dataset. We introduce a novel text-summary pair complexity scoring algorithm along

with two simple baseline difficulty measures. We find that our novel complexity sorting method consistently

outperforms the baseline sorting methods and boosts performance of PEGASUS. The Baby-Steps curriculum

learning strategy with this sorting method leads to performance improvements of 5.65%, from a combined

ROUGE F1-score of 83.28 to 87.99. When this strategy is combined with a data augmentation technique,

Easy Data Augmentation, this leads to an improvement to 6.54%. These statistics are relative to a baseline

without curriculum learning or data augmentation.

Keywords:

abstractive text summarization, curriculum learning, low-resource summarization, complexity scoring

1. Introduction

The exponential growth of available information, largely textual, distributed through the Internet has

postulated a challenge in effective information processing. This phenomena leads to questions about how

can we effectively capture, understand, and distribute the increasingly large and diverse textual resources

available to users. Therefore, text summarization has emerged an ever-more critical task to address this,

and more efficient algorithms can be an important aid (El-Kassas et al., 2021).

∗Corresponding author; tel: +31 (0)10 408 1340; fax: +31 (0)10 408 9162
Email addresses: chrisvanyperen@gmail.com (Chris van Yperen), frasincar@ese.eur.nl (Flavius Frasincar),

597783kk@student.eur.nl (Kamilah El Kanfoudi)

Preprint submitted to Expert Systems with Applications May 15, 2025

Text summarization comes in two forms, extractive and abstractive (Gambhir & Gupta, 2017). The

former requires the model to simply extract the most salient words or phrases, and composes a summary

from existing text. The latter method requires the model to construct a semantic characterization of the text

and generates a representative summary, allowing for newly generated vocabulary (Srivastava et al., 2022).

Generally, the latter technique results in more grammatically fluent summaries and is therefore preferable,

despite its relative computational complexity (Moratanch & Chitrakala, 2016). Therefore, our work focuses

on abstractive summarization.

A vast majority of the literature concerned with Natural Language Processing (NLP) tasks, including text

summarization, explores the performance of models and techniques based on large English training corpora

of several hundred thousand training examples. Although using large volumes of data is a sensible approach

in academic literature, in real-world applications it is often difficult and costly to collect a sufficient amount

of example text-summary pairs to train a summarization model. Therefore, there is a mismatch between the

datasets used in academic research and those commonly available in real-world applications (Zhang et al.,

2020). Bridging the gap would unlock the potential harbored within the range of textual data scattered

across organizations with fewer training samples, and provide a means to sustain model performance with

fewer computing resources.

Due to the “data-hungry” (Vaswani et al., 2017) nature of neural methods, such as Transformers (which

rely on relative dependencies in sequence position), the challenge of a low-resource environment generally

sacrifices model performance (Tang et al., 2024). When faced with a low-resource situation where a limited

amount of training data is available, and the possibility of gathering more data is excluded, there are two

approaches to explore in order to find solutions to this data scarcity problem. Firstly, the available data

can be more effectively exploited by training a model in a more efficient manner. A possible approach to

achieve this is a curriculum learning strategy (Bengio et al., 2009). Curriculum learning follows from the

idea that a machine can be more effectively trained by emulating the way that humans learn. This is done

by presenting the training data ordered from easy samples to more complex, instead of in randomly sampled

batches, using approaches such as One-Pass (Bengio et al., 2009) and Baby-Steps (Spitkovsky et al., 2010).

Another approach includes artificially expanding the dataset by creating new samples based on the available

data, such that more training data will become available without the necessity to collect more data. This

strategy of data augmentation has been applied in multiple research domains and with various types of

data (Ramirez et al., 2019b) (Aftab & Siddiqui, 2018) (Ramirez et al., 2019a). Here, data augmentation

techniques such as Easy Data Augmentation (EDA) (Wei & Zou, 2019) can be applied to generate altered

versions of the text-summary pair training data from which the model can extract new information and leads

to further performance improvements. Overall, this research aims to make the abstractive summarization

models more accessible to use cases with smaller amounts of training data by exploring the effectiveness of

curriculum learning strategies and data augmentation techniques. The code is written in Python and made

freely available at https://github.com/CBvanYperen/LATS.

2

The remainder of this paper is organised as follows. Section 2 describes the existing literature regarding

abstractive text summarization, data augmentation techniques, and curriculum learning strategies. We

describe the data we used and collected in order to perform our research in Section 3. Section 4 lays out

our methodology, where we describe the model type, pre-training and training methods, as well as the

performance evaluation techniques. In Section 5 we present the results and discuss our findings. Last, in

Section 6 we conclude our paper and mention subjects for future research.

The major contributions of this paper can be summarized as follows:

• Introduced a novel complexity sorting algorithm for a continuous ex-ante definition of relative text

complexity based on four key operations that consistently outperforms baseline sortings;

• Analysed Transformer model optimization within low-resource environments with a range of combina-

tions of curriculum learning strategies, sorting techniques, and with and without EDA;

• Demonstrated the optimal combination for model performance of curriculum learning with Baby-Steps

and EDA.

2. Related Work

In this section we outline the current related literature. The section is divided into three subsections which

address the literature concerned with abstractive text summarization, curriculum learning, and low-resource

text summarization.

2.1. Abstractive Text Summarization

Some of the earliest work on Abstractive Text Summarization (ATS) uses traditional phrase-based ma-

chine translation approaches to generate newspaper article headlines (Banko et al., 2000). This became one

of the foundational approaches towards the text summarization task, as it is analogous to translation where

the target language is Compact English.

Cohn & Lapata (2018) expanded the scope of ATS by building on sentence compression, which previously

aimed only on optimising sequences of deletions in texts. The research focused on generating abstracts,

considering also operations of substitutions, reorderings, and word insertion through a tree-to-tree sentence

compression task. This is done through synchronous tree substitution grammar rules (Eisner, 2003) between

tree nodes to model syntactic expressions and abstractively create sentence summaries. This method was

later extended to relax the basis on strict structural correspondence between source and target languages.

Quasi-synchronous substitution grammar rules, as introduced by Woodsend et al. (2010) allow for flexible

correspondence which can handle non-isomorphic structures and do not require a perfect structural alignment

between source and target constituents. This method is able to effectively operate at a phrase level, in

contrast to the synchronous model. As phrases are shorter than sentences, ATS using the latter technique

3

tends to read more fluently. This is because important phrases, not whole sentences, are prioritized in the

summarization task.

Collobert et al. (2011) shifted the approach in ATS by proposing deep learning algorithms for text

summarization, effectively reducing the task-specific nature of the model and reliance on linguistic knowledge.

Consequently, researchers have continued to navigate the potential for deep learning as an effective approach

for a breadth of NLP problems. The trend towards a deep learning architecture in the literature was further

developed by Sutskever et al. (2014) whose work introduced sequence-to-sequence (seq2seq) models with

an encoder-decoder architecture based on Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986).

This became the dominant framework for ATS (Zhang et al., 2020) and is also applied plentifully in other

NLP tasks such as machine translation. Various researchers have achieved state-of-the-art results by building

further upon seq2seq models with an encoder-decoder architecture. One example is the work of Chopra et al.

(2016) which reported notable results with an attention-based summarization approach. This was built upon

the work of Bahdanau et al. (2015) which employed an attention-based decoder, using a latent soft alignment

over the vector encodings to gain additional contextual information for a more efficient network.Likewise,

Nallapati et al. (2017) built further upon the attentional RNN encoder-decoder model (Bahdanau et al.,

2015). Nallapati et al. (2017) made several improvements to the original model to address specific problems

not considered in the former model. The authors implemented the “large vocabulary trick” (Jean et al.,

2015) to reduce computational constraints in the softmax layer. Additionally, the authors propose a switching

generator-pointer architecture to handle unseen or rare words during training.

PEGASUS, introduced by Zhang et al. (2020), showed state-of-the-art text summarization results mea-

sured by ROUGE-F1 scores across all twelve considered data sets and set a precedent for the future of ATS

models. The PEGASUS model is a seq2seq encoder-decoder based on Transformers (Vaswani et al., 2017).

It leverages a novel pre-training and fine-tuning paradigm, known as Gap Sentences Generation (GSG) and

a denoising auto-encoder, to achieve remarkable results in generating coherent and informative summaries.

One of the key strengths of PEGASUS is its ability to generate abstractive summaries while incorporating

important information from the source text. The model utilizes a novel GSG technique, where it predicts

missing sentences from the input document, ensuring that important content is not missed during the sum-

marization process. This model signified a paradigm shift in the field as successive models have built upon

this base architecture to enhance performance. Wang et al. (2022) introduced an additional component which

allocated salience estimators across sentences in input documents to guide ATS through more accurate self-

attention. He et al. (2023) introduces the Fourier Transformer, which incorporates spectral filters to achieve

more effective computation of the Transformer hidden state vectors. Zhao et al. (2023) incorporates the

coordination target in the PEGASUS2B model through an additional step appended to the original model,

called Sequence Likelihood Calibration. Zhao et al. (2025) builds a on the Transformer archiecture by using

a bidirectional decoder to better represent the characterstics of natural language. These recent developments

of ATS are derivatives of the prevailing standard of the Transformer architecture. For this reason, we take

4

the base model of PEGASUS and aim to boost its performance using CL and EDA.

2.2. Curriculum Learning

The concept of Curriculum Learning (CL) was first introduced by Elman (1993), denoted in their work as

incremental learning. Elman (1993) demonstrated improved neural network performance by gradually adding

more complex observations, whereas a model that was trained with all (simple and complex) observations

in random order showed very poor performance. The work of Bengio et al. (2009) has been accredited to

formalizing our understanding of CL in the context of machine learning. As described by Bengio et al.

(2009), CL acts essentially as an implementation of a continuation method, providing a means to explore the

solution landscape of non-convex optimization problems systematically and can help overcome challenges

associated with local optima and non-convexity.

As the complexity of the machine learning tasks have increased over the recent years, CL has received

more attention due to its potential for aiding models to achieve improved convergence (MacAvaney et al.,

2020), increased robustness (Wang et al., 2021a), and mitigating catastrophic forgetting (Kirkpatrick et al.,

2017) (Lesort, 2020). Recent works have also made steps towards creating a generalized benchmark for CL

evaluations across domains and baseline models (Zhou et al., 2024). However, Zaremba & Sutskever (2014)

found that a straightforward application of CL to RNNs with LSTM units did not consistently improve

network performance. The research underlines that it is imperative to form a CL strategy suited for the task.

For neural networks performing addition and memorization tasks, it is beneficial for the network to distribute

the information across its hidden state or memory cells, using a distributed representation. However, as the

difficulty of the examples increases, the network may need to restructure its memory patterns to accommodate

additional information. This process of memory pattern restructuring can be challenging to implement, which

could explain why the naive CL strategy can show poor performance. The research introduces a combined

strategy that addresses this issue by reducing the need for memory pattern restructuring.

Wang et al. (2021a) defined the landscape of CL methods by its approach toward two seminal compo-

nents of CL architectures: Difficulty Measurer and Training Scheduler, separating Predefined CL (where

both the Difficulty Measurer and Training Scheduler are fixed a priori) and Automatic CL (at least one of

the components is driven in some manner by the algorithm). Wang et al. (2021a) describes the Training

Schedulers (the order in which the model processes the data) in Predefined CL as separable into discrete

and continuous variations. Discrete training schedulers separate the data into buckets, and after a fixed

number of epochs introduce new data into the running training subset. Continuous Training Schedulers are

functions that relate the training epoch to some scalar which indicates the proportion of instances (starting

with ‘easy’) available at each stage of training (Hacohen & Weinshall, 2019). Automatic CL methods have

been applied in different forms, each of which is characterized by the manner through which automation is

applied in the CL process (Wang et al., 2020). One notable example is Self-Paced Learning (Kumar et al.,

2010), in which the model concurrently selects easy samples and learns parameters for the latent variable

model. The objective function involves optimizing a regularization function and a criterion for parameter

5

learning. Gradual Machine Learning is a similar method, but does not assume I.I.D or good coverage data

and subverts this by iteratively inferring and labeling unlabeled instances based on their evidential certainty

in a factor graph (Wang et al., 2021b). Other Automatic CL methods include those which incorporate

an auxiliary model for the Difficulty Measurer (Tsvetkov et al., 2016) (Hacohen & Weinshall, 2019). Fur-

thermore, Reinforcement Learning methods (Fang et al., 2019) (Milani et al., 2024) involve an even more

dynamic system through a ‘teacher’ model (Wang et al., 2021a) that uses a reward algorithm to dynamically

set both the Difficulty criterion and Training Scheduler, surveyed extensively by Narvekar et al. (2020). One

example of the dynamic Teacher-Student architecture explores the problem of enabling an unknown Deep

Reinforcement Learning (DRL) student to master a skill across various environments proposed by Portelas

et al. (2020). The authors introduce an innovative teacher algorithm that addresses the challenge of cre-

ating a learning curriculum through sequential parameter sampling to generate diverse environments. The

components of the CL approach are often also task-dependant. For example, Kwon et al. (2024) propose

a curriculum construction method that relies on class-based frequency measures for a personality detection

task. This way, the method allows to first identify what words are informative for personality classes. The

priority of these words within their class is then used to construct a difficulty measure.

As CL methods have become more widely adopted and increasingly complex, Wang et al. (2021a) high-

lights the importance of a more robust theoretical understanding of CL, revealing relationships between its

efficacy with varying noise in data distributions and model ablations. Furthermore, they aim to understand

the manners through which CL interacts with stochastic gradient descent and how its possible conflicts can

be regulated (Soviany et al., 2022). Lastly, the selection of an optimal CL strategy for real-life applications is

still unclear, as the methods trade-off between effectiveness, cost, flexibility, and robustness (Soviany et al.,

2022).

For this problem, we utilize a CL algorithm that enhances performance with fewer epochs and low

computational cost. We construct a simple and effective CL architecture though a pre-defined Difficulty

Measurer and a discrete Training Scheduler. Ranaldi et al. (2023) similarly defined an a-priori complexity

metric using sentence length, word rarity, and readability as components. However, we believe our proposed

metric is better defined for the summarization task as it relates directly to the transformation from text to

summary, rather than text attributes themselves. We use Baby-Steps (Spitkovsky et al., 2010) and One-Pass

(Bengio et al., 2009) for the curriculum framework. Both methods are intuitive meta-heuristics that guide

the learning task and support increased convergence.

2.3. Low Resource Text Summarization

The difficulty in constructing datasets of sizes large enough to engineer and run ATS algorithms is

particularly well documented for languages that are resource-poor (Kurniawan & Louvan, 2018). The ATS

task requires a vast amount of labelled training data which makes the pre-trained models very good at a very

specific task. Yet, without a similarly robust data set for downstream training, the performance tends to

suffer. Thus, a multitude of methods have been explored to synthetically expand the working dataset. For

6

example, multiple studies have demonstrated performance improvements in NLP models through dataset

expansion with iterative back translation (Hoang et al., 2018) (Zhang et al., 2018), noising (Kim et al., 2019)

and resource-intensive autoencoder-based or GPT techniques (Kesgin & Amasyali, 2024). Wei & Zou (2019)

introduced Easy Data Augmentation (EDA), which outlines a method based on defined operations (synonym

replacement, random insertion, random swap, and random deletion). Although marginal on large data sizes,

EDA is the most significant improvements in low-resource environments for both RNN’s and Convolutional

Neural Networks (CNNs).

There have been a multitude of models built upon the paradigms in ATS. However, optimizing in low-

resource and zero-shot environments progresses much more slowly and few of the newest models have ad-

dressed this problem domain. Radford et al. (2019) GPT-2 model trained on WebText (consisting of a large

amount of scraped webpages) achieved a ROUGE-2 F1 score of 8.27 on the CNN/DailyMail dataset in the

zero-shot setting. Other research has utilized Transformer-based architectures for specific low-resource use

cases (Su et al., 2025). Khandelwal et al. (2019) achieved a ROUGE-2 F1 score of 13.1 with a pre-trained

decoder-only network with only 3000 samples. Having a decoder-only setting allows all of the parameters,

including the attention layer parameters to be pre-trained before the fine-tuning step and the number of

training samples for the fine-tuning step to be reduced considerably. In addition, many recent developments

in ATS with promising performance on the CNN/Daily Mail dataset such as SimCLS (Liu & Liu, 2021) and

SEASON (Wang et al., 2022) do not address the zero or few-shot predicton capability at all.

The aforementioned PEGASUS model (Zhang et al., 2020) achieved a ROUGE-2 F1 score of 13.28 in

a zero-shot setting and was able to increase this score to 19.35 with merely 1000 training samples of the

CNN/DailyMail dataset. Developments in the PEGASUS model (Zhao et al., 2023) continue to surpass the

ROUGE performance of alternate state-of-the-art ATS models such as BRIO (Liu et al., 2022) , thus making

PEGASUS one of the best-performing models in low-resource abstractive text summarization. Moreover,

PEGASUS is specifically architecturally suited for ATS due to its use of GSG, as apposed to models like

BART that are general-purpose language models (Lewis et al., 2020).

In addition, PEGASUS is based on a Transformer encoder-decoder architecture, which makes it more

versatile than decoder-only models like GPT-2, as monolithic design can be less adaptable to various tasks

that require different processing for input and output sequences (Vaswani et al., 2017) (Radford et al.,

2019). While capable of performing tasks like text generation and completion, a decoder-only model is less

generalizable for tasks that require a transformation from one sequence to another, as it does not explicitly

separate the encoding and decoding processes. Furthermore, GPT-2 is an example of a large language model,

which requires extensive training. For these reasons, we built our model based on PEGASUS.

3. Data

In this section we describe the data sets used in our research. As the PEGASUS model that we are

applying in this research requires both pre-training and training (fine-tuning) we need two data sets, both

7

with their own requirements.

3.1. Pre-Training Corpus

In our research we utilize the pre-trained PEGASUS model (Zhang et al., 2020). In this study, the model

is not pre-trained once again but has only been fine-tuned for the downstream summarization tasks. This

model was pre-trained on a combination of the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) and

HugeNews (Zhang et al., 2020) data sets. The pre-training corpus consists of 1.85 billion texts stochastically

sampled from the two corpora weighted by the individual data set sizes. The pre-training corpus does not

include any summaries as the pre-training task is unsupervised and therefore does not require text-summary

pairs.

3.2. Training Corpus

For the model fine-tuning, a data set is required that contains texts with a parallel summary. For this

research we chose to utilize the CNN/DailyMail (CNN/DM) data set introduced by Hermann et al. (2015).

The CNN/DM data set contains over 300,000 documents, all of which are articles from either the CNN (∼

93,000) or DailyMail (∼220,000) news websites. Both news websites provide multi-sentence human generated

summarizing sentences for each article, making this corpus particularly appropriate for ATS. This provides

us with a gold standard on which the model can be trained and evaluated. Table 1 shows summary statistics

for the CNN articles, DM articles, and the combined data set.

Table 1: This table shows the summary statistics concerning the text-summary pair datasets. The first column shows the

number of samples in the dataset, followed by the average, minimum, and maximum text and summary length. These lengths

are measured by the number of words that a text contains.

Text-summary

pairs

Average length

text

Average length

summary

Average

reduction

Range length

article

Range length

summary

Range

reduction

Full datasets

CNN Dataset 92,541 757 46 79% [20,2529] [7,108] [59%,99%]

DM Dataset 219,506 787 55 91% [9,2865] [7,197] [66%,99%]

CNN/DM Dataset 312,047 778 52 87% [9,2865] [7,197] [59%,99%]

CNN/DM Dataset samples

CNN/DM Dataset 1,000 763 46 92% [32,2072] [11,76] [64%,99%]

CNN/DM Dataset 100 772 46 92% [180,2049] [21,67] [66%,98%]

CNN/DM Dataset 10 923 51 91% [214,2049] [40,58] [77%,97%]

4. Methodology

The model is pre-trained and then fine-tuned with a variation of curriculum learning strategies and

data augmentation techniques. The following sections delve into the various components of this framework.

Section 4.1 describes the pre-training method. Next, Section 4.2.1 describes the various CL strategies and

8

data augmentation steps applied during the model’s training phase. Lastly, Section 4.2.2 describes the

evaluation methods used to determine the performance of the models.

The workflow of the LATS architecture is depicted in Figure 1. The top row presents the application

of the self-supervised pre-training objective of PEGASUS described proposed by Zhang et al. (2020). The

downstream training task consists of applying EDA (Wei & Zou, 2019) to a corpus sub-sample of the

CNN/DM dataset. Each text-summary pair is given a complexity score through our novel scoring system,

sorted, and presented to PEGASUS according to a Training Scheduler (Baby-Steps (Spitkovsky et al., 2010)

or One-Pass (Bengio et al., 2009)).

C4

HugeNews

Compute Edit
Distance Task

Complexity Score

Pretrained
Model

(PEGASUS)

LATS Model

CNN

Daily Mail

Unlabelled Document Data

Paired Document + Golden Summary Data

Corpus Sample

Operation Values
Summary

Sorting Task

Training Data
Curriculum

Pre-training GSG Task
(PEGASUS)

Operation
Hyperparameter
Selection Task

Downstream Training
Task (PEGASUS)

Easy Data
Augmentation

Augmented
Corpus Sample

Figure 1: The complete workflow of the proposed LATS model.

4.1. Pre-training

The essence of training a neural network lies in the ability to find the optimal weights and biases for

each node in the network. This is traditionally done through training on a large training dataset with, e.g.,

back-propagation (Rumelhart et al., 1986), where at the beginning of the training, the weights and biases are

initialized randomly. Determining a good pre-training task is more of an art than a science and is where the

work of (Zhang et al., 2020) provided a significant contribution by developing a novel pre-training method

(GSG).

GSG consists of removing one or more sentences from a text and then using the remaining text to fill in

9

those gaps in the text. That is, the remainder of the text is the input data for the model which then generates

the missing sentences as output. The generated sentence can then be compared with the original sentence

and thereby the model can be trained. Zhang et al. (2020) showed that this task is similar enough to the main

task, ATS, and this pre-training method leads to high-quality generated summary outputs. The question

that remains is which sentence should be deleted from the original text to achieve optimal results. Zhang

et al. (2020) introduced and compared several approaches. These are the following; (1) masking a random

selection of m sentences, (2) masking the first m sentences, and (3) masking the m most important sentences,

where the importance is determined through the ROUGE-1 F1 (Lin, 2004) score between each sentence and

the remainder of the document. The latter method, called the principal approach, can be further subdivided

into four variations. First of all, the sentences can be scored independently or sequentially (Nallapati et al.,

2017). Additionally, when calculating the ROUGE-1 F1 score, the n-grams can be considered as a set in

order to prevent identical n-grams to be counted multiple times or simply as a bag where duplicates are

allowed. This leads to the four options: (1) independent scoring + set of n-grams, (2) independent scoring

+ bag of n-grams, (3) sequential scoring + set of n-grams, and (4) sequential scoring + bag of n-grams. The

methods were compared by pre-training with each approach on the pre-training dataset and fine-tuning the

model on four different datasets. The performance was measured by a non-weighted average of the ROUGE-

1, ROUGE-2, and ROUGE-L F1 scores. The results showed that the principal approach with independently

scored sentences and a bag of n-grams outperformed or performed very similar to the other approaches

across all 4 datasets. Therefore, our research builds further upon the model pre-trained with the principal

gap-sentences approach with independently scored sentences while allowing multiple identical n-grams.

PEGASUS consists of two model sizes. In this research, we use the PEGASUSLARGE which consists of

568M parameters. We use the pre-trained model as calibrated by Zhang et al. (2020). For fine-tuning, we

adjust the batch size and number of steps to accommodate our hardware constraints. The hyperparamer

values are presented in Table 2.

4.2. Model Training

The following section outlines the model training approaches aimed at optimising the model’s performance

with the smallest amount of required training samples. Section 4.2.1 describes the CL concept and how it

is applied in our research where we introduce a novel text-summary pair difficulty scoring system. Lastly,

Section 4.2.2 describes the data augmentation technique applied in the study.

4.2.1. Curriculum Learning

Recent literature in the field of CL has dispersed over a variety of domains, each with differing levels

of complexity. Furthermore, selecting the correct model Difficulty Measurer and Training Scheduler (Wang

et al., 2020) must be carefully decided based on the task at hand. For our research pertaining to low-resource

environments, we intend to focus on scalable and effective techniques with an emphasis on economical and

10

Pre-Training Fine-Tuning

Hyperparameter Value Hyperparameter Value

Encoder- Decoder Layers 16 Encoder- Decoder Layers 16

Hidden Size 1024 Hidden Size 1024

Feed Forward Layer Size 4096 Feed Forward Layer 4096

Self-Attention Heads 16 Self-Attention Heads 16

Batch Size 8192 Batch Size 2

Learning Rate 1.00E-01 Learning Rate 5.00E-04

Pre-training Steps 500,000 Fine-Tuning Steps 50,000

Table 2: Comparison of pre-training and fine-tuning hyperparameters. The pre-trainig hyperperameters are that of the model

of Zhang et al. (2020) which were decided by grid search. The fine-tuning parameters are taken from those of Zhang et al.

(2020), with adjustments made to the batch size and step count.

efficacious use of data. For this reason, we consider two methods to dictate the sequence of training data

subsets at a given epoch.

Firstly, a CL strategy that we apply is the One-Pass curriculum learning strategy as proposed by (Bengio

et al., 2009). In this strategy the training data D is sorted from easy samples to complex samples by a

curriculum C which is then divided into k buckets. The strategy would train the model on the first bucket,

containing the simplest training samples, then continue to the next bucket once it trained on the first bucket

for a fixed number of epochs. In this paper we follow the modified version with early stopping (Cirik et al.,

2016), which means that the training from a bucket will stop once the accuracy of the model has not improved

during the last p epochs, therefore, allowing it to move to the next bucket of training samples faster in order

to avoid overfitting on any particular sample bucket. The model accuracy is computed on a sample held-out

from each bucket consisting of 10% of the samples in the bucket. The training of the model is finalised once

all buckets have been used to train the model.

Spitkovsky et al. (2010) proposed another CL strategy, Baby-Steps, which is identical to the One-Pass

curriculum until the moment where the accuracy of the model does not improve for p subsequent epochs.

Whereas the samples in the current bucket are discarded in the One-Pass CL strategy, in the Baby-Steps

curriculum the current bucket’s training samples are merged with the next training bucket, thereby, increas-

ing the average complexity of the training samples through expansion of the total sample pool instead of

replacement of the sample pool as in One-Pass.

For the same discussed motivations when selecting the CL scheduler we focus on a heuristics approach

for measuring difficulty. Although utilizing sentence length is a common approach (Spitkovsky et al., 2010),

it comes short of capturing in its entirety the various means of measuring syntactic complexity. We propose

a novel difficulty measure based on the rewriting operations required to get from the original text to the

11

summary. To do this we take inspiration from the work of Cohn and Lapata (Cohn & Lapata, 2018). This

research used Synchronous Tree Substitution Grammer (STSG) rules to build abstractive summaries through

operations including substitution, reordering, insertion, and deletion for a sentence compression task. We

build upon this to create a complexity score for the text-summary training pair for our proposed LATS

model through a weighted sum of text operations. Naturally, some operations will be much more common

than others and some operations are harder for a model to learn. A weighted average will therefore give a

fairer representation of the difficulty of a text-summary pair than an unweighted average.

We hypothesise that the magnitude of the weights, from lowest weight to highest weight, of the text

operations are expected to be in the following order:

1. Word deletion;

2. Word reordering;

3. Word substitution;

4. Word addition.

Each of these text operations could be further subdivided into easier and more complex versions of their

respective operation. E.g., we expect that adding the word “the” to a sentence will be much easier for the

model to learn than adding the word “snowstorm”, simply because the former word is much more common

than the latter. However, as there is certainly value in the simplicity of a ranking system we choose to not

delve further into these possible sublevels of text operations and consider all versions of a text operation as

equivalent. Furthermore, the simplicity of this method is advantageous in that it requires no initialization

or pre-training itself. Let us formalise the method described above by defining the complexity (C) of a

training sample (s) as the weighted sum of the text operations word deletion (wd), word reordering (wr),

word substitution (ws), and word addition (wa) as described in Equations 1-3.

C(s) = wwd ∗
∑
i

wdi + wwr ∗
∑
j

wrj + wws ∗
∑
k

wsk + wwa ∗
∑
l

wal (1)

wwd, wwr, wws, wwa ∈ [0, 1] (2)

wwd + wwr + wws + wwa = 1 (3)

Algorithms 1, 2, 3, and 4 outline the methods used to derive values for wd, wa, wr, and ws, respectively.

These functions are called after having cleaned both text and summary samples (removed stopwords, stripped

for punctuation, and lowercasing). We define a deletion as the presence of a word in the text but not in the

summary, and an addition as the inverse operation.

The weights of these text operations are optimized through a random search approach. We iterate though

10 randomly generated possible weight combinations within the constraints given by Equations 2 and 3. Using

these weight combinations, 1,000 training samples are generated and divided into 5 buckets (200 samples per

bucket) after sorting them according to the complexity scores using their respective hyperparameters. Each

12

bucket is trained up to 5 epochs using the One-Pass curriculum learning strategy without early stopping

and a checkpoint is created after each epoch. Then the performance of each model checkpoint is evaluated

on the validation set (10% of training sample) and the best checkpoint is used as the initialization point of

the next bucket.

Algorithm 1 Deletion

1: ti = Corpus Text Sample i

2: si = Corpus Summary i

3: procedure DeletionValue(ti, si)

4: DelNum← 0

5: DelWords← []

6: for word in ti do

7: countt ← 0

8: counts ← 0

9: countt ← |{y | y ∈ ti ∧ y = word}|

10: counts ← |{y | y ∈ si ∧ y = word}|

11: countd ← countt −min(countt, counts)

12: DelNum← DelNum+ countd

13: for d in range countd do

14: DelWords ∪ {word}

15: end for

16: end for

17: DelResult← [DelNum,DelWords]

18: return DelResult

19: end procedure

13

Algorithm 2 Addition

1: ti = Corpus Text Sample i

2: si = Corpus Summary i

3: procedure AdditionValue(ti, si)

4: AddNum← 0

5: AddWords← []

6: for word in ti do

7: countt ← 0

8: counts ← 0

9: countt ← |{y | y ∈ ti ∧ y = word}|

10: counts ← |{y | y ∈ si ∧ y = word}|

11: counta ← counts −min(counts, countt)

12: AddNum← AddNum+ counta

13: for a in range counta do

14: AddWords ∪ {word}

15: end for

16: end for

17: AddResult← [AddNum,AddWords]

18: return AddResult

19: end procedure

Algorithm 3 Reorder

1: td = Corpus Text Sample i [Removed Deletions]

2: sa = Corpus Summary i [Removed Additions]

3: procedure ReorderValue(ti, si)

4: ThreeGrams ← []

5: ThreeGramt ← []

6: Reorder ← 0

7: for i ∈ [0, length(si)− 2) do

8: ThreeGrams := ThreeGrams ∪ Sublist of sc from index[i, i+ 2]

9: end for

10: for i ∈ [0, length(ti)− 2) do

11: ThreeGramt := ThreeGramt ∪ Sublist of td from index[i, i+ 2]

12: end for

13: for threegram in ThreeGrams do

14: countt ← 0

15: counts ← 0

16: countt ← |{y | y ∈ ThreeGramt ∧ y = threegram}|

17: counts ← |{y | y ∈ ThreeGrams ∧ y = threegram}|

18: countr ← counts −min(counts, countt)

19: ReoNum← ReoNum+ countr

20: end for

21: return ReoNum

22: end procedure

14

Algorithm 4 Substitution

1: procedure SubstitutionValue(DelResult, AddResult)

2: LemDeletions← []

3: LemAdditions← []

4: for word in DelResult[1] do

5: LemDeletions := lemmatize(word)

6: end for

7: for word in AddResult[1] do

8: LemAdditions := lemmatize(word)

9: end for

10: SubNum← |LemDeletions ∩ LemAdditions|

11: DelNum← DelResult[0]− SubNum

12: AddNum← AddResult[0]− SubNum

13: return SubNum,DelNum,AddNum

14: end procedure

The procedure defined in Algorithm 1 produces a count of word deletions and a list of deleted words. It

calculates the number of deletions for each word by considering the excess occurrences in the text sample

over the summary. The result is a list containing the total number of deletions and a list of words that were

deleted along with their frequency. The algorithm is designed to identify and quantify the deletions made

from the summary compared to the original text.

The procedure defined in Algorithm 2 produces a count of word additions and a list of added words. The

algorithm computes the difference between the occurrences of each word in the summary and the sample text.

It calculates the number of additions for each word by considering the excess occurrences in the summary.

The algorithm is designed to identify and quantify the additions made in the summary compared to the

original text.

The reorder procedure outlined in Algorithm 3 uses as input the text sample and summary less deleted

and added words, respectively (so that both samples contain the same words). This procedure utilizes sub-

lists of sets of 3 consecutive words (three-gram), and counts a reorder when a three-gram is in the text but

not in the summary in that order. The output, ReoNum, represents the number of reordered three-grams

in the summary compared to the text.

Substitution is defined as a word that is deleted from the text, but added to the summary in a alternate

form. For example, if the text contains the word “having” and the summary contains the word “had”, this

is considered a substitution. The algorithm 4 first lemmatizes the words in the deleted and added sets to

normalize them. Then, it calculates the number of substitutions by finding the intersection of lemmatized

deletions and lemmatized additions. DelNum,AddNum,SubNum, and ReoNum are used to instantiate

wd, wa, ws, and wr respectively. Please note that the used values for DelNum and AddNum are those

computed in Algorithm 4, and not the values from Algorithms 1 and 2.

The performance is measured based on a combined ROUGE F1 score as defined in Section 4.3. In order to

15

incorporate our hypothesis stated in Section 4.2.1, we add an 11th weight combination into the comparison

which is in line with our hypothesis and has the following weights;

- wwd = 0.1

- wwr = 0.2

- wws = 0.3

- wwa = 0.4.

Lastly, two baseline measures will be included in our final results. Firstly, the length of the input text,

measured in number of words, will be used as a proxy for complexity. Secondly, the reduction percentage

between the input text and human-written summary will be considered as a complexity proxy. E.g., if a

text has 1000 words and the corresponding summary consists of 50 words, then the reduction percentage is

95%. The input data will be sorted from low to high based on these values and then the curriculum learning

strategies will be applied. The performance of these methods will then be compared to our novel complexity

scoring method in order to assess its effectiveness to improve performance.

4.2.2. Data Augmentation

Another technique to improve model performance with small training datasets is data augmentation

(Ramirez et al., 2019b) (Aftab & Siddiqui, 2018). Data augmentation is a technique to artificially expand

the pool of training samples by altering the existing training samples in some way with minimal diversion

from original meaning. Common applications in image based training samples include rotating, cropping,

and mirroring the image. In our research we apply EDA for NLP proposed by (Wei & Zou, 2019), which

presents four easy-to-implement data augmentation techniques that create significant performance improve-

ments for five classification tasks, especially with small datasets. Therefore we expect that applying similar

techniques to our text and summary data could result in performance improvements in the ATS task. The

four techniques proposed by (Wei & Zou, 2019) are (1) Synonym Replacement (SR), (2) Random Insertion

(RI), (3) Random Swap (RS), and (4) Random Deletion (RD). The details of the techniques are outlined in

Table 3.

16

Table 3: The operations described are Synonym Replacement (SR), Random Insertion (RI), Random Swap (RS), and Random

Deletion (RD). For further clarification an example sentence is included for each operation.

Operation Description Example Sentence

None
His very rough summary does not do justice

to the original text and its intellectual sophistication.

SR
Choose n words from the sentence at random (excluding stop words).

Replace those words with a randomly selected synonym.

His very unpolished summary does not do justice

to the original text and its intellectual sophistication.

RI

Insert a synonym of a random word in the sentence (excluding stop words)

at a random position in the sentence.

Perform this n times.

His very rough summary does not do elegance justice

to the original text and its intellectual sophistication.

RS
Swap the position of two random words in the sentence.

Perform this n times.

His do rough summary does not very justice

to its original text and the intellectual sophistication.

RD Remove each word in the sentence with probability p.
His rough summary does not do

to the original text and its sophistication.

4.3. Evaluation methods

A measure that is widely applied as an evaluation method for text summarization models is the Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) package introduced by (Lin, 2004). The ROUGE

package consists of a precision score, a recall score, and an F1 score which combines the precision and

recall scores by calculating their harmonic mean. Several variations of the ROUGE score exist, the key

difference between each variation is the manner in which the overlap between the generated output and the

gold standard output is measured. In this paper we use mainly the F1 score of ROUGE-N and ROUGE-L

measures, as these are commonly used in existing literature to evaluate abstractive summaries. The F1 score

of these metrics will be denoted as ROUGE −NF1 and ROUGE − LF1, respectively. The ROUGE-N and

ROUGE-L scores are further described in Sections 4.3.1 and 4.3.2.

4.3.1. ROUGE-N

The ROUGE-N method considers the overlap of N-grams (a sequence of n words) between the generated

summary and the actual summary. The N-gram recall is the amount of overlapping N-grams divided by

the total amount of N-grams in the reference summary, i.e., the human written summary. The precision

measure is calculated by dividing the number of overlapping N-grams by the total amount of N-grams in

the model generated summary. Thus, recall measures how many of the possible N-grams the model is able

to generate and precision measures how many of the generated N-grams are in the reference summary. The

ROUGE −NF1 measure combines these measure into a single value through a harmonic mean. The three

measures are defined in Equations 4, 5 and 6.

F1N−gram =
2

1
recallN−gram

+ 1
precisionN−gram

, (4)

17

where

recallN−gram =
number of overlapping N-grams

total N-grams in the reference summary
, (5)

and

precisionN−gram =
number of overlapping N-grams

total N-grams in the model summary
. (6)

4.3.2. ROUGE-L

The ROUGE-L compares the generated and actual summary, similarly to ROUGE-N, but does this based

on the longest common sub-sequence (LCS). The LCS is the longest sequence of words that is present in

both the reference summary and the model generated summary. The recall is the LCS divided by the total

number of words in the reference summary (m) and precision is the LCS divided by the total number of

words in the model generated summary (n). The ROUGE −LF1 score is the harmonic mean between these

two measures. The three ROUGE-L measures are defined in Equations 7, 8 and 9.

F1LCS =
2

1
recallLCS

+ 1
precisionLCS

, (7)

where

recallLCS =
LCS(sentencereference, sentencemodel)

m
, (8)

and

precisionLCS =
LCS(sentencereference, sentencemodel)

n
. (9)

4.3.3. Combined ROUGE

In this research we follow the measures used by (Nallapati et al., 2017) and (Zhang et al., 2020), which are

the ROUGE − 1F1 (ROUGE-N with N = 1), ROUGE − 2F1 (ROUGE-N with N = 2) and ROUGE − LF1

scores. However, it is possible that three separate scores can provide inconsistent conclusions between models.

Therefore we combine these measures into a combined ROUGE score (see Equation 10) through a weighted

average of these three scores, as was introduced in the code of Zhang et al. (2020) available at https:

//github.com/google-research/pegasus. The weights are 1 for the ROUGE − 1F1 and ROUGE − LF1

scores, and 2 for the ROUGE−2F1 score. The weights are chosen in favour of the ROUGE−2F1 score as we

believe this score strikes the best balance when evaluating summary quality between determining whether

a model generates the correct words and whether it places them in the correct order. The ROUGE − 2F1

score does not assign any value to a model that chooses all the correct words but places them in a completely

wrong order, however, we would certainly prefer such a summary to a summary that has none of the correct

words. Therefore, the ROUGE−1F1 score is still an important measure to include in the combined ROUGE

score. Furthermore, the ROUGE −LF1 score is beneficial to include in the combined ROUGEF1 score as it

captures the value of the longer correct sequences that a model can generate.

18

Combined ROUGE F1 score = ROUGE − 1F1 + 2 ∗ROUGE − 2F1 +ROUGE − LF1 (10)

As all the ROUGE scores are proportions, the range of the ROUGE scores is [0, 1]. For improved

readability we scale all the reported ROUGE scores in this paper by 100 (e.g., a ROUGE score of 0.20567

will be 20.567).

5. Results

The following section outlines the results of our research. Firstly, Section 5.1 outlines the results of the

optimal parameters for our novel summary-text complexity ranking system. Then, Section 5.2 describes the

achieved combined ROUGEF1 scores through the various strategies and techniques applied to the datasets.

5.1. Complexity Scoring

Table 4 shows that the best overall results were achieved by combination number 4 (in bold) which was

1.7% above the overall average. This is likely explained by the fact that the word additions task was far less

common than the word deletion and word reordering tasks, as shown in Table 5. Thus, although the task

is likely still more complex for the model to learn, it is not so important to learn because even if the model

performs poorly in that task the generated summary can still be of high quality. Comparing the results in

Table 4, the word deletion task is not assigned the highest weight, despite being the most common task,

which contradicts our hypothesis that frequency is an important parameter for weight selection. It is possible

that deletion is regarded by the model as a less complex task than reordering or substitution. Therefore, it

is not informative for the CL algorithm in forming an effective complexity ranking. Combinations 2, 7, and

8, which have high weights for word deletion, show average or below-average results. The word substitution

task has the lowest occurrence and standard deviation. However, it is assigned a relatively high weight

in the well-scoring models (combinations 1, 3 and 4). The quality of the complexity scoring depends on

the relative distribution of weights among the tasks. Optimal results are achieved when similar weights

are assigned to word deletion and word addition, and a weight approximately four times higher is given to

word replacement. The word addition task’s weight also has a significant impact, as shown by the difference

between combinations 4 and 5.

The astute reader might note that, when rounding off the weights of each text operation to two decimals,

we are left with 126,851 possible weight combinations. This is a well-known discrete mathematics problem

commonly solved by a “stars-and-bars” approach (see Equation 11). In order to determine how many ways

there are in which one can assign a value between 0 and 1 to four weights such that they sum to 1 let us

first consider a single possible solution as shown in Equation 11. In this solution we assign a weight of 0.97

to wwd, 0.01 to wwr, 0.01 to wws, and 0.01 to wwa. We can represent this solution in “stars” and “bars”,

where we split up the numbers into their smallest components, which we chose to be 0.01, and represent

them by stars and use the bars to show where the split is made between the weights. That is, every star

19

to the left of the first bar represents a value of 0.01 assigned to the first weight, every star in between the

first and second bar represents a value of 0.01 assigned to the second weight, etc. Using this representation

it becomes clear that the number of possible ways that we can assign the weights is the same as the number

of ways we can place 3 bars among those 100 stars. The bars can be placed in 103 positions (100 stars +

3 bars), considering they may also be placed directly after each other, and of these we select 3 positions.

The order in which these positions are selected does not matter, as the arrangement of variable weights is

automatically encoded in the bar positions regardless of selection order. This is equal to the number of

possible combinations of length 3 (3 bars) out of a set of 103 elements, namely 126, 851 (see Equation 12).

Figure 2 shows that the Baby-steps and One-Pass curriculum learning strategies follow a similar pattern

for the majority of the combinations, indicating that the effect of the hyperparameter choice is comparable

for both strategies. Although we do not expect both curriculum learning strategies to have the same optimal

hyperparameters, we continue our research with the weights of combination four for both CL strategies as

it gave the highest overall combined ROUGEF1 score.

wwd + wwr + wws + wwa = 1

0.97 + 0.01 + 0.01 + 0.01 = 1

⋆ ⋆ ⋆... ⋆ ⋆⋆︸ ︷︷ ︸
97

| ⋆ | ⋆ |⋆ = 1, with ⋆ = 0.01

(11)

Number of weight sets = C(103, 3) =
103!

(103− 3)! ∗ 3!
=

103 ∗ 102 ∗ 101
6

= 126, 851 (12)

0,97

0,98

0,99

1

1,01

1,02

1,03

1,04

1 2 3 4 5 6 7 8 9 1 0 1 1

CO
M

BI
N

ED
 R

O
U

G
E

F1
 S

CO
RE

COMBINATION

CL COMPLEXITY SCORING COMPARISON
Babysteps One-Pass OverallBaby-Steps

Figure 2: This figure shows the relative combined ROUGE F1 scores for the complexity scoring hyperparameter comparison

for all the weight combinations as described in Table 4.

20

Table 4: The results of the curriculum learning complexity scoring strategy hyperparameter optimisation. Through a random

search approach weight combination 1-10 have been generated and weight combination 11 has been added based on our

hypothesis. The weights indicate the relative importance given to a text operation. These operations are word deletion (wwd),

word reordering (wwr), word substitution (wws), and word addition (wwa). After sorting a dataset of 1,000 samples using these

hyperparameters and separating the samples into 5 buckets based on their complexity score, the PEGASUS model fine-tuned

using the One-Pass and Baby-Steps curriculum learning strategy. This resulted in a ROUGE − 1F1, ROUGE − 2F1, and

ROUGE − LF1 score for all weight combinations. All ROUGE scores have been divided by their mean value across the 11

weight combinations, as this gives easier insight into relative performance. The scores are aggregated into one score such that

comparisons can be made by adding up the ROUGE − 1F1, 2 times the ROUGE − 2F1 score, and the ROUGE − LF1 score.

The last row shows the overall score, which consists of the average of the combined scores of the One-Pass curriculum learning

strategy and Baby-Steps curriculum learning strategy.

Combination 1 2 3 4 5 6 7 8 9 10 11

wwd 0.02 0.52 0.25 0.11 0.02 0.19 0.64 0.33 0.08 0.30 0.10

wwr 0.01 0.06 0.23 0.41 0.08 0.53 0.21 0.19 0.23 0.45 0.20

wws 0.43 0.20 0.41 0.37 0.81 0.02 0.01 0.14 0.57 0.20 0.30

wwa 0.54 0.21 0.11 0.11 0.09 0.26 0.13 0.34 0.12 0.06 0.40

One-Pass Curriculum

Rouge-1 1.003 1.007 1.005 0.994 1.008 0.997 1.001 0.998 0.993 1.003 0.992

Rouge-2 1.009 1.014 1.018 0.987 1.004 0.999 1.004 0.999 0.983 1.004 0.980

Rouge-L 0.996 0.95 0.996 1.124 0.984 0.85 0.991 0.987 0.976 0.990 0.975

Score 1.003 1.006 1.007 1.028 1.000 0.994 0.999 0.995 0.985 1.000 0.983

Baby-Steps Curriculum

Rouge-1 0.994 0.999 0.996 1.006 1.006 1.006 0.986 1.017 1.000 1.001 1.003

Rouge-2 1.000 0.989 0.995 1.004 1.003 1.004 0.985 1.008 0.998 1.017 1.008

Rouge-L 0.995 0.996 1.000 1.007 0.999 1.007 0.991 1.002 1.002 1.005 1.006

Score 0.996 0.995 0.997 1.005 1.003 1.006 0.987 1.010 1.000 1.007 1.005

Overall score 1.000 1.000 1.002 1.017 1.001 1.000 0.993 1.002 0.992 1.003 0.994

Table 5: The average occurrence, with the respective standard deviation in brackets, of each task in the 1000 samples used for

the complexity scoring strategy hyperparameter optimisation.

Word Deletion Word Reordering Word Substitution Word Additions

Average occurence 287.2 (156.54) 18.31 (5.82) 0.4 (0.62) 4.4 (2.99)

5.2. Summarization Results

Table 6 shows the achieved ROUGE F1 scores for the various training strategies described in the method-

ology section of this paper. The first row shows the results with no adaptation to the original PEGASUS

framework and is the baseline against which we compare our other strategies. The percentage improvements

with respect to this baseline are shown in square brackets below the score.

21

The CL strategies have been executed as described in Section 4.2.1 with p = 3. Thus, if the validation

performance of a model has not improved during the last 3 epochs, the algorithm moved forward to the next

training bucket. For the dataset with 10 samples we chose to use 2 buckets, for the dataset with 100 samples

we use 5 buckets and for the dataset with 1,000 samples we use 10 buckets. All the results are achieved by

testing on the out-of-sample test set as is common practice when using the CNN/DM dataset (Wang et al.,

2021b) consisting of 11,490 samples.

Let us first consider the results of the One-Pass CL strategy. In the dataset consisting of 10 samples, the

various sorting methods did not result in any major differences with a 0.14% decrease in performance for a CL

strategy without sorting and a 0.29% increase for all other strategies compared to the baseline performance

of no CL. This is not surprising, as with such a small dataset a variation in the sample training order is likely

to have limited effects. Furthermore, in this case, the length, reduction, and complexity sorting methods led

to the exact same results as all strategies led to the exact same ordering of the samples. Applying EDA to

the complexity scoring strategy resulted only in a very small score improvement compared to the complexity

strategy without EDA, namely from 78.47 to 78.51. When considering the results for the dataset consisting

of 100 samples, Table 6 shows that the performance of the CL strategy without any sorting method is slightly

worse than the baseline (No CL) performance (-2%). We expect this to be due to the limited sample, and

consequently, bucket size in this training process. The first buckets determine the starting point for the

model’s solution space and thus have a large effect on the final performance. We expect that the limited

sample representation in the initial buckets, due to their small size, resulted in a too narrow representation

of summaries for the model. The remainder of the training sample set seems to not be large enough to

correct for this initial misalignment. However, applying EDA to the dataset in combination with Baby-Steps

boosted the performance by 4.3% in comparison to the no CL strategy using Baby-Steps. The final sample

size we considered in our research consists of 1000 samples as shows in Table 6. With a dataset of this

size we see the hypothesised performance improvements resulting from the Curriculum Learning strategy

and EDA. The complexity sorting strategy results in an performance improvement of 5.66% compared to

the baseline performance of no CL strategy using Baby-Steps. Extending the CL strategy with the EDA

techniques increased the performance further to a total performance increase of 6.54% compared to the the

no CL baseline.

22

Table 6: The results of the abstractive summarization tasks. The CL strategy indicates the curriculum learning strategy we

used, either One-Pass (CLOP) or Baby-Steps (CLBS). The EDA column indicates whether the data has been augmented with

the EDA techniques. The sorting method column shows the data sorting method for the curriculum learning strategy, where

complexity refers to our novel complexity scoring algorithm and length and reduction refer to the baseline sorting methods.

The score column shows the sum of R1, 2 ∗ R2, and RL. All results were achieved with a batch size of 2 and learning rate of

5e−4. Percentage improvements from the baseline (first row) are shown in square brackets.

CL strategy EDA Sorting method 10 samples 100 samples 1.000 samples

R1 R2 RL Score R1 R2 RL Score R1 R2 RL Score

No CL No None 32.14 12.33 21.44 78.24 32.41 12.58 22.27 79.84 33.21 13.45 23.17 83.28

CLOP No None 32.15 12.29 21.40 78.13 32.16 12.32 21.44 78.24 33.25 13.74 23.38 84.11

[0.03%] [-0.32%] [-0.19%] [-0.14%] [-0.77%] [-2.07%] [-3.73%] [-2.00%] [0.12%] [2.16%] [0.91%] [1.00%]

CLOP No Length 32.22 12.39 21.47 78.47 32.05 12.24 21.40 77.93 33.33 13.46 23.11 83.37

[0.25%] [0.49%] [0.14%] [0.29%] [-1.11%] [-2.70%] [-3.91%] [-2.39%] [0.36%] [0.07%] [-0.26%] [0.11%]

CLOP No Reduction 32.22 12.39 21.47 78.47 32.05 12.24 21.40 77.93 33.73 13.76 23.30 84.56

[0.25%] [0.49%] [0.14%] [0.29%] [-1.11%] [-2.70%] [-3.91%] [-2.39%] [1.57%] [2.30%] [0.56%] [1.54%]

CLOP No Complexity 32.22 12.39 21.47 78.47 32.02 12.22 21.47 77.93 34.31 14.25 23.78 86.60

[0.25%] [0.49%] [0.14%] [0.29%] [-1.20%] [-2.86%] [-3.59%] [-2.39%] [3.31%] [5.95%] [2.63%] [3.99%]

CLOP Yes Complexity 32.24 12.38 21.51 78.51 32.42 12.67 22.07 79.83 34.74 14.72 24.46 88.63

[0.31%] [0.41%] [0.33%] [0.35%] [0.03%] [0.72%] [-0.90%] [-0.01%] [4.61%] [9.44%] [5.57%] [6.42%]

CLBS No None 32.10 12.27 21.50 78.14 32.49 12.60 22.16 79.85 34.65 13.74 23.04 85.17

[-0.12%] [-0.49%] [0.28%] [-0.13%] [0.25%] [0.16%] [-0.49%] [0.01%] [4.34%] [2.16%] [-0.56%] [2.25%]

CLBS No Length 32.06 12.22 21.50 78.00 32.39 12.54 22.08 79.55 34.05 13.42 23.43 84.33

[-0.25%] [-0.89%] [0.28%] [-0.31%] [-0.06%] [-0.32%] [-0.85%] [-0.36%] [2.53%] [-0.22%] [0.73%] [1.26%]

CLBS No Reduction 32.06 12.22 21.50 78.00 32.39 12.54 22.08 79.55 35.51 14.16 24.08 85.48

[-0.25%] [-0.89%] [0.28%] [-0.31%] [-0.86%] [-0.32%] [-0.85%] [-0.36%] [6.93%] [5.28%] [3.93%] [2.64%]

CLBS No Complexity 32.06 12.22 21.50 78.00 32.13 12.38 21.85 78.74 33.89 14.20 23.93 87.99

[-0.25%] [-0.89%] [0.28%] [-0.31%] [0.06%] [-0.32%] [-1.89%] [-1.38%] [1.74%] [5.58%] [3.28%] [5.66%]

CLBS Yes Complexity 32.77 12.79 22.06 80.41 33.39 13.39 23.10 83.27 36.56 13.87 24.43 88.73

[1.96%] [3.73%] [2.89%] [2.77%] [3.02%] [6.44%] [3.73%] [4.30%] [10.09%] [3.12%] [5.44%] [6.54%]

The Baby-Steps strategy improves model performance more than the One-Pass curriculum in most sit-

uations. This is likely due to the nature of the algorithm which expands the training buckets instead of

replacing them. Thus, if the number of epochs is equal, the Baby-Steps curriculum will see the simpler

training samples more often than the One-Pass curriculum. Especially in a low-resource setting, it is not

surprising that this has a positive effect on performance. The samples consisting of 10 and 100 samples

sizes showed similarly limited performance differences as with the One-Pass curriculum learning strategy. A

major difference between the two strategies is the effect EDA has on the performance. With the One-Pass

curriculum learning strategy the performance improvement between the complexity sorting method without

EDA and with EDA for the sample sizes of size 10 and 100 are 0.06% and 2.38%, respectively. When consid-

ering the same effects for the Baby-Steps algorithm, we see performance improvements of 3.08% and 5.68%

for these two datasets. This again indicates the increased exposure the model has to the simpler examples

is strengthened further by the application of EDA techniques.

An interesting aspect to highlight is the effect of the sorting methods. For this examination we consider

the CLOP and CLBS strategies without any sorting as our baseline performances. In this comparison we

23

ignore the dataset of 10 samples as the sorting methods resulted in identical order for each method. In the

CLOP strategy for 1000 samples, the length (-0.99%) and reduction (+0.54%) sorting methods show little

difference in performance when compared to the non-sorted baseline. Thus, we can can conclude that in this

setting these sorting methods have very limited effect on the model’s performance. The complexity sorting

algorithm does show a performance improvement of 2.99% compared to the One-Pass algorithm without any

sorting. Thus, our complexity sorting algorithm demonstrates a positive effect on the model’s performance.

Similar results are achieved with the CLBS strategy with 1000 samples, the length and reduction sorting

method resulted in very limited performance differences of -0.99% and 0.39%, respectively, compared to

the CLBS strategy with no sorting strategy. However, the complexity sorting algorithm does result in a

performance improvement of 3.41% compared to the baseline without a sorting strategy.

Combining the individual effects described in the previous paragraphs allows us to compare the final per-

formance to the initial baseline performance of no CL strategy. The combination of methods that achieves

the best performance is the CLBS strategy with a complexity sorting algorithm and with EDA data aug-

mentation techniques applied, which resulted in a performance gain of 6.54% compared to the baseline of

no curriculum learning, from a combined ROUGE F1-score of 83.28 to 88.73. The performance gain for the

CLOP strategy with the complexity sorting algorithm and EDA applied is very close with 6.42%.

6. Concluding Remarks

In this final section we give some concluding remarks about our research. In Section 6.1 we present

the conclusions that we draw based on the findings described in this paper. Topics for further research are

outlined in Section 6.2.

6.1. Conclusion

In this research we investigated whether the state-of-the-art summarization models could be improved

in low-resource environments by combining these models with selected methods to optimize efficiency. This

was done by applying CL strategies in combination with data augmentation. To do so, we introduced a novel

text-summary pair complexity scoring algorithm and have shown that our extensions help improve results.

We believe that our novel complexity scoring system for text-summary pairs is an important step which

opens up extensive possibilities for further research into simple and efficient applications of CL strategies

within text summarization, as well as other applications where a ranking system is useful. We found that the

optimal operation weight assignment gave a much higher weight to word reordering and word substitution

operations, compared to the word deletion and word addition operations. This implies that the proficiency

of a model in the former two tasks are much more indicative of the summary quality of the model, measured

in ROUGE F1 scores, than the latter two tasks.

We examined the performance of this complexity scoring system by comparing it with baseline perfor-

mances of the state-of-the-art PEGASUS model and with baseline scoring systems based on the length and

24

reduction measurements of the test-summary pairs. We found that our complexity scoring system outper-

formed the baseline sorting methods up to 5.7% with 1,000 samples without EDA techniques. Applying the

EDA techniques in combination with the complexity sorting algorithms increasing this improvement up to

6.5%.

6.2. Further Research

As for future research, the optimisation of the weights in the complexity scoring system should be

investigated further. A more elaborate exploration of the optimal weights using the random search technique

applied in this paper could reveal better weight combinations that lead to higher performing curriculum

learning strategies. Additionally, other methods could be applied to find these weight combinations such as

grid search, Bayesian optimisation, or meta-heuristic algorithms for optimisation such as genetic algorithms.

A limitation of this work is the focus on a granular analysis, as the data-augmentation and complexity

scoring both happen at the word-level. Although our model showed promising results in improving ATS in

low-resource environments, future research may focus on making summaries more informative by accounting

for summary sentiment. By employing sentiment mining solutions in addition to the proposed architecture,

such as those in the work of Srinivasarao & Sharaff (2024) and Srinivasarao & Sharaff (2023) it could be

possible to assess and penalize semantic mismatch and generate even more faithful and coherent results. Fur-

thermore, it may be interesting to explore more sophisticated data augmentation techniques by augmenting

at the phrase level while maintaining class-labels to come up with a richer and more diverse set of synthetic

data.

Furthermore, we would recommend further research into the optimal representation of the quality of a

summary such that easy comparison is possible, e.g., by having the quality represented by a single number.

In this paper we used a combination of the ROUGE-1, ROUGE-2, and ROUGE-L F1 scores, with more

importance assigned to the ROUGE-2 F1 score. To the best of our knowledge, no research has investigated

whether this combination of these F1 scores is the best representation of the quality of a summary. We

believe that this would be a valuable contribution to the text summarization literature.

Bibliography

Aftab, U., & Siddiqui, G. F. (2018). Big data augmentation with data warehouse: A survey. In 3rd IEEE

International Conference on Big Data (ICBDA 2018) (pp. 2785–2794). IEEE.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and

translate. In 3rd International Conference on Learning Representations, (ICLR 2015).

Banko, M., Mittal, V. O., & Witbrock, M. J. (2000). Headline generation based on statistical translation. In

38th Annual Meeting of the Association for Computational Linguistics (ACL 2000) (pp. 318–325). ACL.

25

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In 26th Annual

International Conference on Machine Learning (ICML 2009) (pp. 41–48). ACM.

Chopra, S., Auli, M., & Rush, A. M. (2016). Abstractive sentence summarization with attentive recur-

rent neural networks. In 15th Annual Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (NAACL-HLT 2016) (pp. 93–98).

Cirik, V., Hovy, E. H., & Morency, L. (2016). Visualizing and understanding curriculum learning for long

short-term memory networks. arXiv preprint , arXiv:1611.06204 .

Cohn, T., & Lapata, M. (2018). Sentence compression beyond word deletion. In 22nd International Confer-

ence on Computational Linguistics (COLING 2008) (pp. 137–144). ACL.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language

processing (almost) from scratch. Journal of Machine Learning Research, 12 , 2493–2537.

Eisner, J. (2003). Learning non-isomorphic tree mappings for machine translation. In 41st Annual Meeting

of the Association for Computational Linguistics (ACL 2003) (pp. 205–208). ACL.

El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text summarization:

A comprehensive survey. Expert Systems with Applications, 165 , 113679.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small.

Cognition, 48 , 71–99.

Fang, M., Zhou, T., Du, Y., Han, L., & Zhang, Z. (2019). Curriculum-guided hindsight experience replay.

In 32nd Annual Conference on Neural Information Processing Systems (NIPS 2019) (pp. 12602–12613).

Curran Associates.

Gambhir, M., & Gupta, V. (2017). Recent automatic text summarization techniques: A survey. Artificial

Intelligence Review , 47 , 1–66.

Hacohen, G., & Weinshall, D. (2019). On the power of curriculum learning in training deep networks. In

36th International Conference on Machine Learning (ICML 2019) (pp. 2535–2544). PMLR.

He, Z., Yang, M., Feng, M., Yin, J., Wang, X., Leng, J., & Lin, Z. (2023). Fourier transformer: Fast long

range modeling by removing sequence redundancy with FFT operator. In Findings of the Association for

Computational Linguistics: ACL 2023 (pp. 8954–8966). ACL.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., & Blunsom, P. (2015).

Teaching machines to read and comprehend. In 29th Annual Conference on Neural Information Processing

Systems (NIPS 2015) (pp. 1693–1701). MIT Press.

26

Hoang, V. C. D., Koehn, P., Haffari, G., & Cohn, T. (2018). Iterative back-translation for neural machine

translation. In 2nd Workshop on Neural Machine Translation and Generation (WNMT 2018) (pp. 18–24).

ACL.

Jean, S., Cho, K., Memisevic, R., & Bengio, Y. (2015). On using very large target vocabulary for neural

machine translation. In 53rd Annual Meeting of the Association for Computational Linguistics (ACL

2015) and the 7th International Joint Conference on Natural Language Processing (IJCNLP 2015) (pp.

1–10). ACL.

Kesgin, H. T., & Amasyali, M. F. (2024). Advancing NLP models with strategic text augmentation: A

comprehensive study of augmentation methods and curriculum strategies. Natural Language Processing

Journal , 7 , 100071.

Khandelwal, U., Clark, K., Jurafsky, D., & Kaiser, L. (2019). Sample efficient text summarization using a

single pre-trained transformer. arXiv preprint arXiv:1905.08836 , .

Kim, H.-Y., Roh, Y.-H., & Kim, Y.-K. (2019). Data augmentation by data noising for open-vocabulary slots

in spoken language understanding. In 17th Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL 2019) (pp. 97–102). ACL.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,

Ramalho, T., Grabska-Barwinska, A. et al. (2017). Overcoming catastrophic forgetting in neural networks.

Proceedings of the National Academy of Sciences, 114 , 3521–3526.

Kumar, M., Packer, B., & Koller, D. (2010). Self-paced learning for latent variable models. In 24th Annual

Conference on Neural Information Processing Systems (NIPS 2010) (pp. 1189–1197). Curran Associates.

Kurniawan, K., & Louvan, S. (2018). Indosum: A new benchmark dataset for indonesian text summarization.

In 9th International Conference on Asian Language Processing (IALP 2018) (pp. 215–220). IEEE.

Kwon, N., Yoo, Y., & Lee, B. (2024). Novel curriculum learning strategy using class based TF-IDF for

enhancing personality detection in text. IEEE Access, 12 , 87873–87882.

Lesort, T. (2020). Continual learning: Tackling catastrophic forgetting in deep neural networks with replay

processes. arXiv preprint arXiv:2007.00487 , .

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L.

(2020). BART: denoising sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. In 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020)

(pp. 7871–7880). ACL.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In 2004 Workshop on Text

Summarization Branches Out (WAS 2004) (pp. 74–81). ACL.

27

Liu, Y., & Liu, P. (2021). SimCLS: A simple framework for contrastive learning of abstractive summarization.

In In 59th Annual Meeting of the Association for Computational Linguistics and the 11th International

Joint Conference on Natural Language Processing (ACL-IJCNLP 2021) (pp. 1065–1072). ACL.

Liu, Y., Liu, P., Radev, D. R., & Neubig, G. (2022). BRIO: bringing order to abstractive summarization.

In 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022) (pp. 2890–2903).

ACL.

MacAvaney, S., Nardini, F. M., Perego, R., Tonellotto, N., Goharian, N., & Frieder, O. (2020). Training

curricula for open domain answer re-ranking. In 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR 2020) (pp. 529–538). ACM.

Milani, S., Topin, N., Veloso, M., & Fang, F. (2024). Explainable reinforcement learning: A survey and

comparative review. ACM Computing Survey , 56 , 168:1–168:36.

Moratanch, N., & Chitrakala, S. (2016). A survey on abstractive text summarization. In 2016 International

Conference on Circuit, Power and Computing Technologies (ICCPCT 2016) (pp. 1–7). IEEE.

Nallapati, R., Zhai, F., & Zhou, B. (2017). SummaRuNNer: A recurrent neural network based sequence

model for extractive summarization of documents. In 31st AAAI Conference on Artificial Intelligence

(AAAI 2017) 1.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M. E., & Stone, P. (2020). Curriculum learning

for reinforcement learning domains: A framework and survey. Journal of Machine Learning Research, 21 ,

7382–7431.

Portelas, R., Colas, C., Hofmann, K., & Oudeyer, P.-Y. (2020). Teacher algorithms for curriculum learning

of deep rl in continuously parameterized environments. In 4th Conference on Robot Learning (CoRL 2020)

(pp. 835–853). PMLR.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. et al. (2019). Language models are

unsupervised multitask learners. OpenAI blog , 1 , 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020).

Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21 , 5485–5551.

Ramirez, J. M., Montalvo, A., & Calvo, J. R. (2019a). A survey of the effects of data augmentation for

automatic speech recognition systems. In 24th Iberoamerican Congress on Pattern Recognition (CIARP

2019) (pp. 669–678). Springer.

28

Ramirez, J. M., Montalvo, A. R., & Calvo, J. R. (2019b). A survey of the effects of data augmentation for

automatic speech recognition systems. In 24th Iberoamerican Congress: Progress in Pattern Recognition,

Image Analysis, Computer Vision, and Applications (CIARP 2019) (pp. 669–678). Springer.

Ranaldi, L., Pucci, G., & Zanzotto, F. M. (2023). Modeling easiness for training transformers with curriculum

learning. In 14th International Conference on Recent Advances in Natural Language Processing (RANLP

2023) (pp. 937–948). INCOMA.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating

errors. Nature, 323 , 533–536.

Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Curriculum learning: A survey. International

Journal of Computer Vision, 130 , 1526–1565.

Spitkovsky, V. I., Alshawi, H., & Jurafsky, D. (2010). From baby steps to leapfrog: How ”less is more” in

unsupervised dependency parsing. In 2022 Conference of the North American Chapter of the Association

of Computational Linguistics Human Language Technologies (NAACL-HLT 2022) (pp. 751–759). ACL.

Srinivasarao, U., & Sharaff, A. (2023). Machine intelligence based hybrid classifier for spam detection and

sentiment analysis of SMS messages. Multimedia Tools and Applications, 82 , 31069–31099.

Srinivasarao, U., & Sharaff, A. (2024). Sentiment analysis from email pattern using feature selection algo-

rithm. Expert Systems, 41 .

Srivastava, R., Singh, P., Rana, K., & Kumar, V. (2022). A topic modeled unsupervised approach to single

document extractive text summarization. Knowledge-Based Systems, 246 , 108636.

Su, Z., Zhang, Z., Xu, G., Liu, J., Han, X., Zhang, T., & Dong, Y. (2025). Multilingual encoder knows

more than you realize: shared weights pretraining for extremely low-resource languages. arXiv preprint

arXiv:2502.10852 , .

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In 27th

Annual Conference on Neural Information Processing Systems (NIPS 2014) (pp. 3014–3112). Curran

Associates.

Tang, Y., Wang, Y., Guo, J., Tu, Z., Han, K., Hu, H., & Tao, D. (2024). A survey on transformer compression.

arXiv preprint arXiv:2402.05964 , .

Tsvetkov, Y., Faruqui, M., Ling, W., MacWhinney, B., & Dyer, C. (2016). Learning the curriculum with

bayesian optimization for task-specific word representation learning. In 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL 2016) (pp. 130–139). ACL.

29

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I.

(2017). Attention is all you need. In 31st Annual Conference on Neural Information Processing Systems

(NIPS 2017) (pp. 5998–6008). Curran Associates.

Wang, F., Song, K., Zhang, H., Jin, L., Cho, S., Yao, W., Wang, X., Chen, M., & Yu, D. (2022). Salience

allocation as guidance for abstractive summarization. In 2022 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2022) (pp. 6094–6106). ACL.

Wang, X., Chen, Y., & Zhu, W. (2021a). A survey on curriculum learning. Transactions on Pattern Analysis

and Machine Intelligence, 44 , 4555–4576.

Wang, X., Wang, K., & Lian, S. (2020). A survey on face data augmentation for the training of deep neural

networks. Neural Computing and Applications, 32 , 15503–15531.

Wang, Y., Chen, Q., Shen, J., Hou, B., Ahmed, M., & Li, Z. (2021b). Aspect-level sentiment analysis based

on gradual machine learning. Knowledge-Based Systems, 212 , 106509.

Wei, J., & Zou, K. (2019). EDA: Easy data augmentation techniques for boosting performance on text

classification tasks. In 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP

2019) and the 9th International Joint Conference on Natural Language Processing (IJCNLP 2019) (pp.

6382–6388). ACL.

Woodsend, K., Feng, Y., & Lapata, M. (2010). Generation with quasi-synchronous grammar. In Conference

on empirical methods in natural language processing (EMNLP 2010) (pp. 513–523). ACL.

Zaremba, W., & Sutskever, I. (2014). Learning to execute. arXiv preprint , arXiv:1410.4615 .

Zhang, J., Zhao, Y., Saleh, M., & Liu, P. (2020). PEGASUS: Pre-training with extracted gap-sentences

for abstractive summarization. In 37th International Conference on Machine Learning (ICML 2020) (pp.

11328–11339). PMLR.

Zhang, Z., Liu, S., Li, M., Zhou, M., & Chen, E. (2018). Joint training for neural machine translation models

with monolingual data. In 32nd AAAI Conference on Artificial Intelligence (AAAI 2018) (pp. 555–562).

AAAI.

Zhao, J., Sun, X., & Feng, C. (2025). Introducing bidirectional attention for autoregressive models in

abstractive summarization. Information Sciences, 689 , 121497.

Zhao, Y., Khalman, M., Joshi, R., Narayan, S., Saleh, M., & Liu, P. J. (2023). Calibrating sequence likelihood

improves conditional language generation. In 11th International Conference on Learning Representations

(ICLR 2023). OpenReview.net.

30

Zhou, Y., Pan, Z., Wang, X., Chen, H., Li, H., Huang, Y., Xiong, Z., Xiong, F., Xu, P., Liu, S., & Zhu,

W. (2024). Curbench: curriculum learning benchmark. In 41st International Conference on Machine

Learning, (ICML 2024) (pp. 62088–62107). PMLR.

31

