LATS: Low Resource Abstractive Text Summarization

Chris van Yperen?, Flavius Frasincar®*, Kamilah El Kanfoudi®

¢ Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, the Netherlands
b Tinbergen Institute, Gustav Mahlerplein 117, 1082 MS Amsterdam, the Netherlands

Abstract

Text summarization is an increasingly crucial focus of Natural Language Processing (NLP), and state-
of-the-art models such as PEGASUS have demonstrated remarkable potential to ever more efficient and
accurate abstractive summarization. Nonetheless, recent developments of deep learning models that focus
on training with large datasets can become at risk of sub-optimal generalization, inefficient training time,
and can get stuck at local optima due to high-dimensional non-convex optimization domains. Current
research in the field of NLP suggests that leveraging curriculum learning techniques to guide model training
(enabling the model to learn from training data with increasing difficulty) could provide a means to achieve
enhanced model performance. In this paper we investigate the effectiveness of curriculum learning strategies
and data augmentation techniques on PEGASUS to increase performance with low-resource training data
from the CNN/DM dataset. We introduce a novel text-summary pair complexity scoring algorithm along
with two simple baseline difficulty measures. We find that our novel complexity sorting method consistently
outperforms the baseline sorting methods and boosts performance of PEGASUS. The Baby-Steps curriculum
learning strategy with this sorting method leads to performance improvements of 5.65%, from a combined
ROUGE F1-score of 83.28 to 87.99. When this strategy is combined with a data augmentation technique,
Easy Data Augmentation, this leads to an improvement to 6.54%. These statistics are relative to a baseline
without curriculum learning or data augmentation.

Keywords:

abstractive text summarization, curriculum learning, low-resource summarization, complexity scoring

1. Introduction

The exponential growth of available information, largely textual, distributed through the Internet has
postulated a challenge in effective information processing. This phenomena leads to questions about how
can we effectively capture, understand, and distribute the increasingly large and diverse textual resources
available to users. Therefore, text summarization has emerged an ever-more critical task to address this,

and more efficient algorithms can be an important aid (El-Kassas et al., 2021).

*Corresponding author; tel: +31 (0)10 408 1340; fax: +31 (0)10 408 9162
Email addresses: chrisvanyperen@gmail.com (Chris van Yperen), frasincar@ese.eur.nl (Flavius Frasincar),
597783kk@student . eur.nl (Kamilah El Kanfoudi)

Preprint submitted to Expert Systems with Applications May 15, 2025

Text summarization comes in two forms, extractive and abstractive (Gambhir & Gupta, 2017). The
former requires the model to simply extract the most salient words or phrases, and composes a summary
from existing text. The latter method requires the model to construct a semantic characterization of the text
and generates a representative summary, allowing for newly generated vocabulary (Srivastava et al., 2022).
Generally, the latter technique results in more grammatically fluent summaries and is therefore preferable,
despite its relative computational complexity (Moratanch & Chitrakala, 2016). Therefore, our work focuses
on abstractive summarization.

A vast majority of the literature concerned with Natural Language Processing (NLP) tasks, including text
summarization, explores the performance of models and techniques based on large English training corpora
of several hundred thousand training examples. Although using large volumes of data is a sensible approach
in academic literature, in real-world applications it is often difficult and costly to collect a sufficient amount
of example text-summary pairs to train a summarization model. Therefore, there is a mismatch between the
datasets used in academic research and those commonly available in real-world applications (Zhang et al.,
2020). Bridging the gap would unlock the potential harbored within the range of textual data scattered
across organizations with fewer training samples, and provide a means to sustain model performance with
fewer computing resources.

Due to the “data-hungry” (Vaswani et al., 2017) nature of neural methods, such as Transformers (which
rely on relative dependencies in sequence position), the challenge of a low-resource environment generally
sacrifices model performance (Tang et al., 2024). When faced with a low-resource situation where a limited
amount of training data is available, and the possibility of gathering more data is excluded, there are two
approaches to explore in order to find solutions to this data scarcity problem. Firstly, the available data
can be more effectively exploited by training a model in a more efficient manner. A possible approach to
achieve this is a curriculum learning strategy (Bengio et al., 2009). Curriculum learning follows from the
idea that a machine can be more effectively trained by emulating the way that humans learn. This is done
by presenting the training data ordered from easy samples to more complex, instead of in randomly sampled
batches, using approaches such as One-Pass (Bengio et al., 2009) and Baby-Steps (Spitkovsky et al., 2010).
Another approach includes artificially expanding the dataset by creating new samples based on the available
data, such that more training data will become available without the necessity to collect more data. This
strategy of data augmentation has been applied in multiple research domains and with various types of
data (Ramirez et al., 2019b) (Aftab & Siddiqui, 2018) (Ramirez et al., 2019a). Here, data augmentation
techniques such as Easy Data Augmentation (EDA) (Wei & Zou, 2019) can be applied to generate altered
versions of the text-summary pair training data from which the model can extract new information and leads
to further performance improvements. Overall, this research aims to make the abstractive summarization
models more accessible to use cases with smaller amounts of training data by exploring the effectiveness of
curriculum learning strategies and data augmentation techniques. The code is written in Python and made

freely available at https://github.com/CBvanYperen/LATS.

The remainder of this paper is organised as follows. Section 2 describes the existing literature regarding
abstractive text summarization, data augmentation techniques, and curriculum learning strategies. We
describe the data we used and collected in order to perform our research in Section 3. Section 4 lays out
our methodology, where we describe the model type, pre-training and training methods, as well as the
performance evaluation techniques. In Section 5 we present the results and discuss our findings. Last, in
Section 6 we conclude our paper and mention subjects for future research.

The major contributions of this paper can be summarized as follows:

e Introduced a novel complexity sorting algorithm for a continuous ex-ante definition of relative text

complexity based on four key operations that consistently outperforms baseline sortings;

e Analysed Transformer model optimization within low-resource environments with a range of combina-

tions of curriculum learning strategies, sorting techniques, and with and without EDA;

e Demonstrated the optimal combination for model performance of curriculum learning with Baby-Steps

and EDA.

2. Related Work

In this section we outline the current related literature. The section is divided into three subsections which
address the literature concerned with abstractive text summarization, curriculum learning, and low-resource

text summarization.

2.1. Abstractive Text Summarization

Some of the earliest work on Abstractive Text Summarization (ATS) uses traditional phrase-based ma-
chine translation approaches to generate newspaper article headlines (Banko et al., 2000). This became one
of the foundational approaches towards the text summarization task, as it is analogous to translation where
the target language is Compact English.

Cohn & Lapata (2018) expanded the scope of ATS by building on sentence compression, which previously
aimed only on optimising sequences of deletions in texts. The research focused on generating abstracts,
considering also operations of substitutions, reorderings, and word insertion through a tree-to-tree sentence
compression task. This is done through synchronous tree substitution grammar rules (Eisner, 2003) between
tree nodes to model syntactic expressions and abstractively create sentence summaries. This method was
later extended to relax the basis on strict structural correspondence between source and target languages.
Quasi-synchronous substitution grammar rules, as introduced by Woodsend et al. (2010) allow for flexible
correspondence which can handle non-isomorphic structures and do not require a perfect structural alignment
between source and target constituents. This method is able to effectively operate at a phrase level, in

contrast to the synchronous model. As phrases are shorter than sentences, ATS using the latter technique

tends to read more fluently. This is because important phrases, not whole sentences, are prioritized in the
summarization task.

Collobert et al. (2011) shifted the approach in ATS by proposing deep learning algorithms for text
summarization, effectively reducing the task-specific nature of the model and reliance on linguistic knowledge.
Consequently, researchers have continued to navigate the potential for deep learning as an effective approach
for a breadth of NLP problems. The trend towards a deep learning architecture in the literature was further
developed by Sutskever et al. (2014) whose work introduced sequence-to-sequence (seq2seq) models with
an encoder-decoder architecture based on Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986).
This became the dominant framework for ATS (Zhang et al., 2020) and is also applied plentifully in other
NLP tasks such as machine translation. Various researchers have achieved state-of-the-art results by building
further upon seq2seq models with an encoder-decoder architecture. One example is the work of Chopra et al.
(2016) which reported notable results with an attention-based summarization approach. This was built upon
the work of Bahdanau et al. (2015) which employed an attention-based decoder, using a latent soft alignment
over the vector encodings to gain additional contextual information for a more efficient network.Likewise,
Nallapati et al. (2017) built further upon the attentional RNN encoder-decoder model (Bahdanau et al.,
2015). Nallapati et al. (2017) made several improvements to the original model to address specific problems
not considered in the former model. The authors implemented the “large vocabulary trick” (Jean et al.,
2015) to reduce computational constraints in the softmax layer. Additionally, the authors propose a switching
generator-pointer architecture to handle unseen or rare words during training.

PEGASUS, introduced by Zhang et al. (2020), showed state-of-the-art text summarization results mea-
sured by ROUGE-F1 scores across all twelve considered data sets and set a precedent for the future of ATS
models. The PEGASUS model is a seq2seq encoder-decoder based on Transformers (Vaswani et al., 2017).
It leverages a novel pre-training and fine-tuning paradigm, known as Gap Sentences Generation (GSG) and
a denoising auto-encoder, to achieve remarkable results in generating coherent and informative summaries.
One of the key strengths of PEGASUS is its ability to generate abstractive summaries while incorporating
important information from the source text. The model utilizes a novel GSG technique, where it predicts
missing sentences from the input document, ensuring that important content is not missed during the sum-
marization process. This model signified a paradigm shift in the field as successive models have built upon
this base architecture to enhance performance. Wang et al. (2022) introduced an additional component which
allocated salience estimators across sentences in input documents to guide ATS through more accurate self-
attention. He et al. (2023) introduces the Fourier Transformer, which incorporates spectral filters to achieve
more effective computation of the Transformer hidden state vectors. Zhao et al. (2023) incorporates the
coordination target in the PEGASUSop model through an additional step appended to the original model,
called Sequence Likelihood Calibration. Zhao et al. (2025) builds a on the Transformer archiecture by using
a bidirectional decoder to better represent the characterstics of natural language. These recent developments

of ATS are derivatives of the prevailing standard of the Transformer architecture. For this reason, we take

the base model of PEGASUS and aim to boost its performance using CL and EDA.

2.2. Curriculum Learning

The concept of Curriculum Learning (CL) was first introduced by Elman (1993), denoted in their work as
incremental learning. Elman (1993) demonstrated improved neural network performance by gradually adding
more complex observations, whereas a model that was trained with all (simple and complex) observations
in random order showed very poor performance. The work of Bengio et al. (2009) has been accredited to
formalizing our understanding of CL in the context of machine learning. As described by Bengio et al.
(2009), CL acts essentially as an implementation of a continuation method, providing a means to explore the
solution landscape of non-convex optimization problems systematically and can help overcome challenges
associated with local optima and non-convexity.

As the complexity of the machine learning tasks have increased over the recent years, CL has received
more attention due to its potential for aiding models to achieve improved convergence (MacAvaney et al.,
2020), increased robustness (Wang et al., 2021a), and mitigating catastrophic forgetting (Kirkpatrick et al.,
2017) (Lesort, 2020). Recent works have also made steps towards creating a generalized benchmark for CL
evaluations across domains and baseline models (Zhou et al., 2024). However, Zaremba & Sutskever (2014)
found that a straightforward application of CL to RNNs with LSTM units did not consistently improve
network performance. The research underlines that it is imperative to form a CL strategy suited for the task.
For neural networks performing addition and memorization tasks, it is beneficial for the network to distribute
the information across its hidden state or memory cells, using a distributed representation. However, as the
difficulty of the examples increases, the network may need to restructure its memory patterns to accommodate
additional information. This process of memory pattern restructuring can be challenging to implement, which
could explain why the naive CL strategy can show poor performance. The research introduces a combined
strategy that addresses this issue by reducing the need for memory pattern restructuring.

Wang et al. (2021a) defined the landscape of CL methods by its approach toward two seminal compo-
nents of CL architectures: Difficulty Measurer and Training Scheduler, separating Predefined CL (where
both the Difficulty Measurer and Training Scheduler are fixed a priori) and Automatic CL (at least one of
the components is driven in some manner by the algorithm). Wang et al. (2021a) describes the Training
Schedulers (the order in which the model processes the data) in Predefined CL as separable into discrete
and continuous variations. Discrete training schedulers separate the data into buckets, and after a fixed
number of epochs introduce new data into the running training subset. Continuous Training Schedulers are
functions that relate the training epoch to some scalar which indicates the proportion of instances (starting
with ‘easy’) available at each stage of training (Hacohen & Weinshall, 2019). Automatic CL methods have
been applied in different forms, each of which is characterized by the manner through which automation is
applied in the CL process (Wang et al., 2020). One notable example is Self-Paced Learning (Kumar et al.,
2010), in which the model concurrently selects easy samples and learns parameters for the latent variable

model. The objective function involves optimizing a regularization function and a criterion for parameter

learning. Gradual Machine Learning is a similar method, but does not assume I.I.D or good coverage data
and subverts this by iteratively inferring and labeling unlabeled instances based on their evidential certainty
in a factor graph (Wang et al., 2021b). Other Automatic CL methods include those which incorporate
an auxiliary model for the Difficulty Measurer (Tsvetkov et al., 2016) (Hacohen & Weinshall, 2019). Fur-
thermore, Reinforcement Learning methods (Fang et al., 2019) (Milani et al., 2024) involve an even more
dynamic system through a ‘teacher’ model (Wang et al., 2021a) that uses a reward algorithm to dynamically
set both the Difficulty criterion and Training Scheduler, surveyed extensively by Narvekar et al. (2020). One
example of the dynamic Teacher-Student architecture explores the problem of enabling an unknown Deep
Reinforcement Learning (DRL) student to master a skill across various environments proposed by Portelas
et al. (2020). The authors introduce an innovative teacher algorithm that addresses the challenge of cre-
ating a learning curriculum through sequential parameter sampling to generate diverse environments. The
components of the CL approach are often also task-dependant. For example, Kwon et al. (2024) propose
a curriculum construction method that relies on class-based frequency measures for a personality detection
task. This way, the method allows to first identify what words are informative for personality classes. The
priority of these words within their class is then used to construct a difficulty measure.

As CL methods have become more widely adopted and increasingly complex, Wang et al. (2021a) high-
lights the importance of a more robust theoretical understanding of CL, revealing relationships between its
efficacy with varying noise in data distributions and model ablations. Furthermore, they aim to understand
the manners through which CL interacts with stochastic gradient descent and how its possible conflicts can
be regulated (Soviany et al., 2022). Lastly, the selection of an optimal CL strategy for real-life applications is
still unclear, as the methods trade-off between effectiveness, cost, flexibility, and robustness (Soviany et al.,
2022).

For this problem, we utilize a CL algorithm that enhances performance with fewer epochs and low
computational cost. We construct a simple and effective CL architecture though a pre-defined Difficulty
Measurer and a discrete Training Scheduler. Ranaldi et al. (2023) similarly defined an a-priori complexity
metric using sentence length, word rarity, and readability as components. However, we believe our proposed
metric is better defined for the summarization task as it relates directly to the transformation from text to
summary, rather than text attributes themselves. We use Baby-Steps (Spitkovsky et al., 2010) and One-Pass
(Bengio et al., 2009) for the curriculum framework. Both methods are intuitive meta-heuristics that guide

the learning task and support increased convergence.

2.3. Low Resource Text Summarization

The difficulty in constructing datasets of sizes large enough to engineer and run ATS algorithms is
particularly well documented for languages that are resource-poor (Kurniawan & Louvan, 2018). The ATS
task requires a vast amount of labelled training data which makes the pre-trained models very good at a very
specific task. Yet, without a similarly robust data set for downstream training, the performance tends to

suffer. Thus, a multitude of methods have been explored to synthetically expand the working dataset. For

example, multiple studies have demonstrated performance improvements in NLP models through dataset
expansion with iterative back translation (Hoang et al., 2018) (Zhang et al., 2018), noising (Kim et al., 2019)
and resource-intensive autoencoder-based or GPT techniques (Kesgin & Amasyali, 2024). Wei & Zou (2019)
introduced Easy Data Augmentation (EDA), which outlines a method based on defined operations (synonym
replacement, random insertion, random swap, and random deletion). Although marginal on large data sizes,
EDA is the most significant improvements in low-resource environments for both RNN’s and Convolutional
Neural Networks (CNN).

There have been a multitude of models built upon the paradigms in ATS. However, optimizing in low-
resource and zero-shot environments progresses much more slowly and few of the newest models have ad-
dressed this problem domain. Radford et al. (2019) GPT-2 model trained on WebText (consisting of a large
amount of scraped webpages) achieved a ROUGE-2 F1 score of 8.27 on the CNN/DailyMail dataset in the
zero-shot setting. Other research has utilized Transformer-based architectures for specific low-resource use
cases (Su et al., 2025). Khandelwal et al. (2019) achieved a ROUGE-2 F1 score of 13.1 with a pre-trained
decoder-only network with only 3000 samples. Having a decoder-only setting allows all of the parameters,
including the attention layer parameters to be pre-trained before the fine-tuning step and the number of
training samples for the fine-tuning step to be reduced considerably. In addition, many recent developments
in ATS with promising performance on the CNN/Daily Mail dataset such as SimCLS (Liu & Liu, 2021) and
SEASON (Wang et al., 2022) do not address the zero or few-shot predicton capability at all.

The aforementioned PEGASUS model (Zhang et al., 2020) achieved a ROUGE-2 F1 score of 13.28 in
a zero-shot setting and was able to increase this score to 19.35 with merely 1000 training samples of the
CNN/DailyMail dataset. Developments in the PEGASUS model (Zhao et al., 2023) continue to surpass the
ROUGE performance of alternate state-of-the-art ATS models such as BRIO (Liu et al., 2022) , thus making
PEGASUS one of the best-performing models in low-resource abstractive text summarization. Moreover,
PEGASUS is specifically architecturally suited for ATS due to its use of GSG, as apposed to models like
BART that are general-purpose language models (Lewis et al., 2020).

In addition, PEGASUS is based on a Transformer encoder-decoder architecture, which makes it more
versatile than decoder-only models like GPT-2, as monolithic design can be less adaptable to various tasks
that require different processing for input and output sequences (Vaswani et al., 2017) (Radford et al.,
2019). While capable of performing tasks like text generation and completion, a decoder-only model is less
generalizable for tasks that require a transformation from one sequence to another, as it does not explicitly
separate the encoding and decoding processes. Furthermore, GPT-2 is an example of a large language model,

which requires extensive training. For these reasons, we built our model based on PEGASUS.

3. Data

In this section we describe the data sets used in our research. As the PEGASUS model that we are

applying in this research requires both pre-training and training (fine-tuning) we need two data sets, both

with their own requirements.

3.1. Pre-Training Corpus

In our research we utilize the pre-trained PEGASUS model (Zhang et al., 2020). In this study, the model
is not pre-trained once again but has only been fine-tuned for the downstream summarization tasks. This
model was pre-trained on a combination of the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) and
HugeNews (Zhang et al., 2020) data sets. The pre-training corpus consists of 1.85 billion texts stochastically
sampled from the two corpora weighted by the individual data set sizes. The pre-training corpus does not
include any summaries as the pre-training task is unsupervised and therefore does not require text-summary

pairs.

3.2. Training Corpus

For the model fine-tuning, a data set is required that contains texts with a parallel summary. For this
research we chose to utilize the CNN/DailyMail (CNN/DM) data set introduced by Hermann et al. (2015).
The CNN/DM data set contains over 300,000 documents, all of which are articles from either the CNN (~
93,000) or DailyMail (~220,000) news websites. Both news websites provide multi-sentence human generated
summarizing sentences for each article, making this corpus particularly appropriate for ATS. This provides
us with a gold standard on which the model can be trained and evaluated. Table 1 shows summary statistics

for the CNN articles, DM articles, and the combined data set.

Table 1: This table shows the summary statistics concerning the text-summary pair datasets. The first column shows the
number of samples in the dataset, followed by the average, minimum, and maximum text and summary length. These lengths

are measured by the number of words that a text contains.

Text-summary Average length Average length ~ Average Range length Range length Range

pairs text summary reduction article summary reduction
Full datasets
CNN Dataset 92,541 757 46 79% [20,2529] [7,108] [59%,99%]
DM Dataset 219,506 787 55 91% [9,2865] [7,197] [66%,99%]
CNN/DM Dataset 312,047 778 52 87% [9,2865] [7,197] [59%,99%]
CNN/DM Dataset samples
CNN/DM Dataset 1,000 763 46 92% [32,2072) [11,76] [64%,99%]
CNN/DM Dataset 100 772 46 92% (180,2049] [21,67] [66%,98%]
CNN/DM Dataset 10 923 51 91% (214,2049] [40,58] [77%,97%]

4. Methodology

The model is pre-trained and then fine-tuned with a variation of curriculum learning strategies and
data augmentation techniques. The following sections delve into the various components of this framework.

Section 4.1 describes the pre-training method. Next, Section 4.2.1 describes the various CL strategies and

data augmentation steps applied during the model’s training phase. Lastly, Section 4.2.2 describes the
evaluation methods used to determine the performance of the models.

The workflow of the LATS architecture is depicted in Figure 1. The top row presents the application
of the self-supervised pre-training objective of PEGASUS described proposed by Zhang et al. (2020). The
downstream training task consists of applying EDA (Wei & Zou, 2019) to a corpus sub-sample of the
CNN/DM dataset. Each text-summary pair is given a complexity score through our novel scoring system,
sorted, and presented to PEGASUS according to a Training Scheduler (Baby-Steps (Spitkovsky et al., 2010)
or One-Pass (Bengio et al., 2009)).

Unlabelled Document Data

e Pre-training GSG Task ’: Pr;ltgzlgle @
(PEGASUS) d (PEGASUS)
HugeNews

A 4

Downstream Training

- s Task (PEGASUS)
= Corpus Sample
Daily Mail i
Paired Document + Golden Summary Data
Easy Data Tramnlwg Data : \
Augmentation Curriculum
¢ . LATS Model

Sorting Task

Complexity Score

Augmented
Corpus Sample

|

Compute Edit T
Distance Task Operation
Hyperparameter
l Selection Task

Operation Values 4

Summary

Figure 1: The complete workflow of the proposed LATS model.

4.1. Pre-training

The essence of training a neural network lies in the ability to find the optimal weights and biases for
each node in the network. This is traditionally done through training on a large training dataset with, e.g.,
back-propagation (Rumelhart et al., 1986), where at the beginning of the training, the weights and biases are
initialized randomly. Determining a good pre-training task is more of an art than a science and is where the
work of (Zhang et al., 2020) provided a significant contribution by developing a novel pre-training method
(GSG).

GSG consists of removing one or more sentences from a text and then using the remaining text to fill in

those gaps in the text. That is, the remainder of the text is the input data for the model which then generates
the missing sentences as output. The generated sentence can then be compared with the original sentence
and thereby the model can be trained. Zhang et al. (2020) showed that this task is similar enough to the main
task, ATS, and this pre-training method leads to high-quality generated summary outputs. The question
that remains is which sentence should be deleted from the original text to achieve optimal results. Zhang
et al. (2020) introduced and compared several approaches. These are the following; (1) masking a random
selection of m sentences, (2) masking the first m sentences, and (3) masking the m most important sentences,
where the importance is determined through the ROUGE-1 F1 (Lin, 2004) score between each sentence and
the remainder of the document. The latter method, called the principal approach, can be further subdivided
into four variations. First of all, the sentences can be scored independently or sequentially (Nallapati et al.,
2017). Additionally, when calculating the ROUGE-1 F1 score, the n-grams can be considered as a set in
order to prevent identical n-grams to be counted multiple times or simply as a bag where duplicates are
allowed. This leads to the four options: (1) independent scoring + set of n-grams, (2) independent scoring
+ bag of n-grams, (3) sequential scoring + set of n-grams, and (4) sequential scoring + bag of n-grams. The
methods were compared by pre-training with each approach on the pre-training dataset and fine-tuning the
model on four different datasets. The performance was measured by a non-weighted average of the ROUGE-
1, ROUGE-2, and ROUGE-L F1 scores. The results showed that the principal approach with independently
scored sentences and a bag of n-grams outperformed or performed very similar to the other approaches
across all 4 datasets. Therefore, our research builds further upon the model pre-trained with the principal
gap-sentences approach with independently scored sentences while allowing multiple identical n-grams.
PEGASUS consists of two model sizes. In this research, we use the PEGASUS| aArgr which consists of
568M parameters. We use the pre-trained model as calibrated by Zhang et al. (2020). For fine-tuning, we
adjust the batch size and number of steps to accommodate our hardware constraints. The hyperparamer

values are presented in Table 2.

4.2. Model Training

The following section outlines the model training approaches aimed at optimising the model’s performance
with the smallest amount of required training samples. Section 4.2.1 describes the CL concept and how it
is applied in our research where we introduce a novel text-summary pair difficulty scoring system. Lastly,

Section 4.2.2 describes the data augmentation technique applied in the study.

4.2.1. Curriculum Learning

Recent literature in the field of CL has dispersed over a variety of domains, each with differing levels
of complexity. Furthermore, selecting the correct model Difficulty Measurer and Training Scheduler (Wang
et al., 2020) must be carefully decided based on the task at hand. For our research pertaining to low-resource

environments, we intend to focus on scalable and effective techniques with an emphasis on economical and

10

Pre-Training Fine-Tuning

Hyperparameter Value Hyperparameter Value
Encoder- Decoder Layers 16 Encoder- Decoder Layers 16
Hidden Size 1024 Hidden Size 1024
Feed Forward Layer Size 4096 Feed Forward Layer 4096
Self-Attention Heads 16 Self-Attention Heads 16
Batch Size 8192 Batch Size 2
Learning Rate 1.00E-01 Learning Rate 5.00E-04
Pre-training Steps 500,000 Fine-Tuning Steps 50,000

Table 2: Comparison of pre-training and fine-tuning hyperparameters. The pre-trainig hyperperameters are that of the model
of Zhang et al. (2020) which were decided by grid search. The fine-tuning parameters are taken from those of Zhang et al.
(2020), with adjustments made to the batch size and step count.

efficacious use of data. For this reason, we consider two methods to dictate the sequence of training data
subsets at a given epoch.

Firstly, a CL strategy that we apply is the One-Pass curriculum learning strategy as proposed by (Bengio
et al., 2009). In this strategy the training data D is sorted from easy samples to complex samples by a
curriculum C which is then divided into k& buckets. The strategy would train the model on the first bucket,
containing the simplest training samples, then continue to the next bucket once it trained on the first bucket
for a fixed number of epochs. In this paper we follow the modified version with early stopping (Cirik et al.,
2016), which means that the training from a bucket will stop once the accuracy of the model has not improved
during the last p epochs, therefore, allowing it to move to the next bucket of training samples faster in order
to avoid overfitting on any particular sample bucket. The model accuracy is computed on a sample held-out
from each bucket consisting of 10% of the samples in the bucket. The training of the model is finalised once
all buckets have been used to train the model.

Spitkovsky et al. (2010) proposed another CL strategy, Baby-Steps, which is identical to the One-Pass
curriculum until the moment where the accuracy of the model does not improve for p subsequent epochs.
Whereas the samples in the current bucket are discarded in the One-Pass CL strategy, in the Baby-Steps
curriculum the current bucket’s training samples are merged with the next training bucket, thereby, increas-
ing the average complexity of the training samples through expansion of the total sample pool instead of
replacement of the sample pool as in One-Pass.

For the same discussed motivations when selecting the CL scheduler we focus on a heuristics approach
for measuring difficulty. Although utilizing sentence length is a common approach (Spitkovsky et al., 2010),
it comes short of capturing in its entirety the various means of measuring syntactic complexity. We propose

a novel difficulty measure based on the rewriting operations required to get from the original text to the

11

summary. To do this we take inspiration from the work of Cohn and Lapata (Cohn & Lapata, 2018). This
research used Synchronous Tree Substitution Grammer (STSG) rules to build abstractive summaries through
operations including substitution, reordering, insertion, and deletion for a sentence compression task. We
build upon this to create a complexity score for the text-summary training pair for our proposed LATS
model through a weighted sum of text operations. Naturally, some operations will be much more common
than others and some operations are harder for a model to learn. A weighted average will therefore give a
fairer representation of the difficulty of a text-summary pair than an unweighted average.

We hypothesise that the magnitude of the weights, from lowest weight to highest weight, of the text

operations are expected to be in the following order:

1. Word deletion;

2. Word reordering;
3. Word substitution;
4. Word addition.

Each of these text operations could be further subdivided into easier and more complex versions of their
respective operation. E.g., we expect that adding the word “the” to a sentence will be much easier for the
model to learn than adding the word “snowstorm”, simply because the former word is much more common
than the latter. However, as there is certainly value in the simplicity of a ranking system we choose to not
delve further into these possible sublevels of text operations and consider all versions of a text operation as
equivalent. Furthermore, the simplicity of this method is advantageous in that it requires no initialization
or pre-training itself. Let us formalise the method described above by defining the complexity (C) of a
training sample (s) as the weighted sum of the text operations word deletion (wd), word reordering (wr),

word substitution (ws), and word addition (wa) as described in Equations 1-3.

C(8) = Wypq * dei + Wy * Zwrj + Wyps * Zwsk + Wopq * Zwal (1)
7 7 k l

Wawds Wwr, Wwss Wwa € [Oa 1] (2)

Wid + Wepr + Wys + Wywe =1 (3)

Algorithms 1, 2, 3, and 4 outline the methods used to derive values for wd, wa, wr, and ws, respectively.
These functions are called after having cleaned both text and summary samples (removed stopwords, stripped
for punctuation, and lowercasing). We define a deletion as the presence of a word in the text but not in the
summary, and an addition as the inverse operation.

The weights of these text operations are optimized through a random search approach. We iterate though
10 randomly generated possible weight combinations within the constraints given by Equations 2 and 3. Using
these weight combinations, 1,000 training samples are generated and divided into 5 buckets (200 samples per

bucket) after sorting them according to the complexity scores using their respective hyperparameters. Each

12

bucket is trained up to 5 epochs using the One-Pass curriculum learning strategy without early stopping
and a checkpoint is created after each epoch. Then the performance of each model checkpoint is evaluated
on the validation set (10% of training sample) and the best checkpoint is used as the initialization point of

the next bucket.

Algorithm 1 Deletion

1: t; = Corpus Text Sample i

2: s; = Corpus Summary i

3: procedure DELETIONVALUE(t;, S;)

4: DelNum < 0

5: DelWords «+ ||

6: for word in t; do

7 county + 0

8: counts <+ 0

9: counts < |[{y|y € t; Ny = word}|
10: counts < |{y|y € s; Ay = word}|
11: countg < count; — min(counts, counts)
12: DelNum < DelNum + countg
13: for d in range county do
14: DelWords U {word}

15: end for

16: end for

17: DelResult < [Del Num, DelW ords)
18: return DelResult

19: end procedure

13

Algorithm 2 Addition

1: t; = Corpus Text Sample i
2: s; = Corpus Summary i
: procedure ADDITIONVALUE(%;, $;)
AddNum < 0
AddWords + ||

county <— 0

3

4

5

6: for word in t; do
7

8 counts <+ 0
9

county + |{y |y € ti Ay = word}|

10: counts < |{y|y € s; ANy = word}|

11: countq < counts — min(counts, county)
12: AddNum < AddNum -+ countq

13: for a in range count, do

14: AddWords U {word}

15: end for

16: end for
17: AddResult + [AddNum, AddW ords]
18: return AddResult

19: end procedure

Algorithm 3 Reorder

: tq = Corpus Text Sample i [Removed Deletions]
: 8¢ = Corpus Summary i [Removed Additions]
: procedure REORDERVALUE(¢;, s;)

ThreeGrams + |]

1

2

3

4

5: ThreeGram; < [|

6 Reorder < 0

7 for i € [0, length(s;) — 2) do
8 ThreeGrams := ThreeGrams U Sublist of s. from index[i, ¢ + 2]
9 end for

10: for ¢ € [0, length(t;) — 2) do

11: ThreeGramg := ThreeGram U Sublist of t4 from index[i, ¢ + 2]
12: end for

13: for threegram in ThreeGrams do

14: county <+ 0

15: counts < 0

16: county < |{y |y € ThreeGram; Ay = threegram}|

17: counts < |{y|y € ThreeGrams N\ y = threegram}|

18: count, < counts — min(counts, county)

19: ReoNum < ReoNum + count,

20: end for
21: return ReoNum

22: end procedure

14

Algorithm 4 Substitution

1: procedure SUBSTITUTIONVALUE(DelResult, AddResult)

2: LemDeletions + |]

3: LemAdditions < ||

4: for word in DelResult[1] do

5: LemDeletions := lemmatize(word)
6: end for

7 for word in AddResult[1] do

8: LemAdditions := lemmatize(word)
9: end for

10: SubNum < |LemDeletions N LemAdditions|
11: DelNum < DelResult[0] — SubNum
12: AddNum + AddResult[0] — SubNum
13: return SubNum, Del Num, AddNum

14: end procedure

The procedure defined in Algorithm 1 produces a count of word deletions and a list of deleted words. It
calculates the number of deletions for each word by considering the excess occurrences in the text sample
over the summary. The result is a list containing the total number of deletions and a list of words that were
deleted along with their frequency. The algorithm is designed to identify and quantify the deletions made
from the summary compared to the original text.

The procedure defined in Algorithm 2 produces a count of word additions and a list of added words. The
algorithm computes the difference between the occurrences of each word in the summary and the sample text.
It calculates the number of additions for each word by considering the excess occurrences in the summary.
The algorithm is designed to identify and quantify the additions made in the summary compared to the
original text.

The reorder procedure outlined in Algorithm 3 uses as input the text sample and summary less deleted
and added words, respectively (so that both samples contain the same words). This procedure utilizes sub-
lists of sets of 3 consecutive words (three-gram), and counts a reorder when a three-gram is in the text but
not in the summary in that order. The output, ReoNum, represents the number of reordered three-grams
in the summary compared to the text.

Substitution is defined as a word that is deleted from the text, but added to the summary in a alternate
form. For example, if the text contains the word “having” and the summary contains the word “had”, this
is considered a substitution. The algorithm 4 first lemmatizes the words in the deleted and added sets to
normalize them. Then, it calculates the number of substitutions by finding the intersection of lemmatized
deletions and lemmatized additions. DelNum, AddNum, SubNum, and ReoNum are used to instantiate
wd, wa, ws, and wr respectively. Please note that the used values for DelNum and AddNwum are those
computed in Algorithm 4, and not the values from Algorithms 1 and 2.

The performance is measured based on a combined ROUGE F1 score as defined in Section 4.3. In order to

15

incorporate our hypothesis stated in Section 4.2.1, we add an 11th weight combination into the comparison

which is in line with our hypothesis and has the following weights;

- Wyq = 0.1
- Wy = 0.2
- Wys = 0.3
- Wye = 0.4.

Lastly, two baseline measures will be included in our final results. Firstly, the length of the input text,
measured in number of words, will be used as a proxy for complexity. Secondly, the reduction percentage
between the input text and human-written summary will be considered as a complexity proxy. E.g., if a
text has 1000 words and the corresponding summary consists of 50 words, then the reduction percentage is
95%. The input data will be sorted from low to high based on these values and then the curriculum learning
strategies will be applied. The performance of these methods will then be compared to our novel complexity

scoring method in order to assess its effectiveness to improve performance.

4.2.2. Data Augmentation

Another technique to improve model performance with small training datasets is data augmentation
(Ramirez et al., 2019b) (Aftab & Siddiqui, 2018). Data augmentation is a technique to artificially expand
the pool of training samples by altering the existing training samples in some way with minimal diversion
from original meaning. Common applications in image based training samples include rotating, cropping,
and mirroring the image. In our research we apply EDA for NLP proposed by (Wei & Zou, 2019), which
presents four easy-to-implement data augmentation techniques that create significant performance improve-
ments for five classification tasks, especially with small datasets. Therefore we expect that applying similar
techniques to our text and summary data could result in performance improvements in the ATS task. The
four techniques proposed by (Wei & Zou, 2019) are (1) Synonym Replacement (SR), (2) Random Insertion
(RI), (3) Random Swap (RS), and (4) Random Deletion (RD). The details of the techniques are outlined in
Table 3.

16

Table 3: The operations described are Synonym Replacement (SR), Random Insertion (RI), Random Swap (RS), and Random

Deletion (RD). For further clarification an example sentence is included for each operation.

Operation Description Example Sentence
His very rough summary does not do justice
None
to the original text and its intellectual sophistication.
SR Choose n words from the sentence at random (excluding stop words). His very unpolished summary does not do justice
Replace those words with a randomly selected synonym. to the original text and its intellectual sophistication.
Insert a synonym of a random word in the sentence (excluding stop words)
His very rough summary does not do elegance justice
RI at a random position in the sentence.
to the original text and its intellectual sophistication.
Perform this n times.
RS Swap the position of two random words in the sentence. His do rough summary does not very justice
Perform this n times. to its original text and the intellectual sophistication.
. . - His rough summary does not do
RD Remove each word in the sentence with probability p.

to the original text and its sophistication.

4.3. Evaluation methods

A measure that is widely applied as an evaluation method for text summarization models is the Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) package introduced by (Lin, 2004). The ROUGE
package consists of a precision score, a recall score, and an F1 score which combines the precision and
recall scores by calculating their harmonic mean. Several variations of the ROUGE score exist, the key
difference between each variation is the manner in which the overlap between the generated output and the
gold standard output is measured. In this paper we use mainly the F1 score of ROUGE-N and ROUGE-L
measures, as these are commonly used in existing literature to evaluate abstractive summaries. The F1 score
of these metrics will be denoted as ROUGE — Ng; and ROUGE — Ly, respectively. The ROUGE-N and
ROUGE-L scores are further described in Sections 4.3.1 and 4.3.2.

4.3.1. ROUGE-N

The ROUGE-N method considers the overlap of N-grams (a sequence of n words) between the generated
summary and the actual summary. The N-gram recall is the amount of overlapping N-grams divided by
the total amount of N-grams in the reference summary, i.e., the human written summary. The precision
measure is calculated by dividing the number of overlapping N-grams by the total amount of N-grams in
the model generated summary. Thus, recall measures how many of the possible N-grams the model is able
to generate and precision measures how many of the generated N-grams are in the reference summary. The
ROUGFE — Np; measure combines these measure into a single value through a harmonic mean. The three

measures are defined in Equations 4, 5 and 6.

2
F]-Nfgram = 1 1) (4)

recallN —gram PrecisSionN — gram

17

where

number of overlapping N-grams

recall y_ = -
gram = total N-grams in the reference summary’

and

number of overlapping N-grams

(6)

TEeCiSION N — = .
b N=gram =4 tal N-grams in the model summary

4.3.2. ROUGE-L

The ROUGE-L compares the generated and actual summary, similarly to ROUGE-N, but does this based
on the longest common sub-sequence (LCS). The LCS is the longest sequence of words that is present in
both the reference summary and the model generated summary. The recall is the LCS divided by the total
number of words in the reference summary (m) and precision is the LCS divided by the total number of
words in the model generated summary (n). The ROUGE — Ly score is the harmonic mean between these

two measures. The three ROUGE-L measures are defined in Equations 7, 8 and 9.

2
Flios = —3 — ™
recallpcs + precisionrcs
where
recallp,cs = LCS(sentencereference, SENtENcemodel) ’ -
m
and
. LCS(sentencere ference; SENLENCEmodel)
precisionpcs = .)
n

4.3.3. Combined ROUGE

In this research we follow the measures used by (Nallapati et al., 2017) and (Zhang et al., 2020), which are
the ROUGE — 1p; (ROUGE-N with N = 1), ROUGE — 2r; (ROUGE-N with N = 2) and ROUGE — Lg;
scores. However, it is possible that three separate scores can provide inconsistent conclusions between models.
Therefore we combine these measures into a combined ROUGE score (see Equation 10) through a weighted
average of these three scores, as was introduced in the code of Zhang et al. (2020) available at https:
//github.com/google-research/pegasus. The weights are 1 for the ROUGE — 1p; and ROUGE — Ly
scores, and 2 for the ROUGE — 2 score. The weights are chosen in favour of the ROUGE — 2g; score as we
believe this score strikes the best balance when evaluating summary quality between determining whether
a model generates the correct words and whether it places them in the correct order. The ROUGE — 2p;
score does not assign any value to a model that chooses all the correct words but places them in a completely
wrong order, however, we would certainly prefer such a summary to a summary that has none of the correct
words. Therefore, the ROUGE — 1g; score is still an important measure to include in the combined ROUGE
score. Furthermore, the ROUGE — Ly score is beneficial to include in the combined ROUG Eg; score as it

captures the value of the longer correct sequences that a model can generate.

18

Combined ROUGE F1 score = ROUGE — 1p1 + 2% ROUGE — 2p1 + ROUGE — Ly (10)

As all the ROUGE scores are proportions, the range of the ROUGE scores is [0,1]. For improved
readability we scale all the reported ROUGE scores in this paper by 100 (e.g., a ROUGE score of 0.20567
will be 20.567).

5. Results

The following section outlines the results of our research. Firstly, Section 5.1 outlines the results of the
optimal parameters for our novel summary-text complexity ranking system. Then, Section 5.2 describes the

achieved combined ROU G Ey; scores through the various strategies and techniques applied to the datasets.

5.1. Complexity Scoring

Table 4 shows that the best overall results were achieved by combination number 4 (in bold) which was
1.7% above the overall average. This is likely explained by the fact that the word additions task was far less
common than the word deletion and word reordering tasks, as shown in Table 5. Thus, although the task
is likely still more complex for the model to learn, it is not so important to learn because even if the model
performs poorly in that task the generated summary can still be of high quality. Comparing the results in
Table 4, the word deletion task is not assigned the highest weight, despite being the most common task,
which contradicts our hypothesis that frequency is an important parameter for weight selection. It is possible
that deletion is regarded by the model as a less complex task than reordering or substitution. Therefore, it
is not informative for the CL algorithm in forming an effective complexity ranking. Combinations 2, 7, and
8, which have high weights for word deletion, show average or below-average results. The word substitution
task has the lowest occurrence and standard deviation. However, it is assigned a relatively high weight
in the well-scoring models (combinations 1, 3 and 4). The quality of the complexity scoring depends on
the relative distribution of weights among the tasks. Optimal results are achieved when similar weights
are assigned to word deletion and word addition, and a weight approximately four times higher is given to
word replacement. The word addition task’s weight also has a significant impact, as shown by the difference
between combinations 4 and 5.

The astute reader might note that, when rounding off the weights of each text operation to two decimals,
we are left with 126,851 possible weight combinations. This is a well-known discrete mathematics problem
commonly solved by a “stars-and-bars” approach (see Equation 11). In order to determine how many ways
there are in which one can assign a value between 0 and 1 to four weights such that they sum to 1 let us
first consider a single possible solution as shown in Equation 11. In this solution we assign a weight of 0.97
t0 Wyd, 0.01 to Wy, 0.01 to wys, and 0.01 to wye. We can represent this solution in “stars” and “bars”,
where we split up the numbers into their smallest components, which we chose to be 0.01, and represent

them by stars and use the bars to show where the split is made between the weights. That is, every star

19

to the left of the first bar represents a value of 0.01 assigned to the first weight, every star in between the
first and second bar represents a value of 0.01 assigned to the second weight, etc. Using this representation
it becomes clear that the number of possible ways that we can assign the weights is the same as the number
of ways we can place 3 bars among those 100 stars. The bars can be placed in 103 positions (100 stars +
3 bars), considering they may also be placed directly after each other, and of these we select 3 positions.
The order in which these positions are selected does not matter, as the arrangement of variable weights is
automatically encoded in the bar positions regardless of selection order. This is equal to the number of
possible combinations of length 3 (3 bars) out of a set of 103 elements, namely 126,851 (see Equation 12).
Figure 2 shows that the Baby-steps and One-Pass curriculum learning strategies follow a similar pattern
for the majority of the combinations, indicating that the effect of the hyperparameter choice is comparable
for both strategies. Although we do not expect both curriculum learning strategies to have the same optimal
hyperparameters, we continue our research with the weights of combination four for both CL strategies as

it gave the highest overall combined ROUGEg; score.

Wyd T Wyr + Wys + Wya = 1

0.97 +0.01 + 0.01 4 0.01 = 1 (11)
Kk k... Kok | x| % % =1, with « = 0.01
—_—
97
103! 103 * 102 101
Number of weight sets = C(103,3) = {752 _02)! — = 03+ 2 <100 _ 196,851 (12)

CL COMPLEXITY SCORING COMPARISON

=—4—Baby-Steps == One-Pass Overall

1,04
1,03

1,02

COMBINED ROUGE F1 SCORE
-
o

1 2 3 4 5 6 7 8 9 10 11
COMBINATION

Figure 2: This figure shows the relative combined ROUGE F1 scores for the complexity scoring hyperparameter comparison

for all the weight combinations as described in Table 4.

20

Table 4: The results of the curriculum learning complexity scoring strategy hyperparameter optimisation. Through a random
search approach weight combination 1-10 have been generated and weight combination 11 has been added based on our
hypothesis. The weights indicate the relative importance given to a text operation. These operations are word deletion (wy,q),
word reordering (wqr), word substitution (wys), and word addition (wwa). After sorting a dataset of 1,000 samples using these
hyperparameters and separating the samples into 5 buckets based on their complexity score, the PEGASUS model fine-tuned
using the One-Pass and Baby-Steps curriculum learning strategy. This resulted in a ROUGE — 1p;, ROUGE — 2p1, and
ROUGE — Ly score for all weight combinations. All ROUGE scores have been divided by their mean value across the 11
weight combinations, as this gives easier insight into relative performance. The scores are aggregated into one score such that
comparisons can be made by adding up the ROUGE — 1gq, 2 times the ROUGE — 2y score, and the ROUGE — Lg; score.
The last row shows the overall score, which consists of the average of the combined scores of the One-Pass curriculum learning

strategy and Baby-Steps curriculum learning strategy.

Combination 1 2 3 4 5 6 7 8 9 10 11
Wyd 0.02 0.52 0.25 0.11 0.02 0.19 0.64 0.33 0.08 0.30 0.10
Wapr 0.01 0.06 0.23 0.41 0.08 0.53 0.21 0.19 0.23 0.45 0.20
Wys 0.43 0.20 0.41 0.37 0.81 0.02 0.01 0.14 0.57 0.20 0.30
Wwa, 0.54 0.21 0.11 0.11 0.09 0.26 0.13 0.34 0.12 0.06 0.40

One-Pass Curriculum
Rouge-1 1.003 1.007 1.005 0.994 1.008 0.997 1.001 0.998 0.993 1.003 0.992
Rouge-2 1.009 1.014 1.018 0.987 1.004 0.999 1.004 0.999 0.983 1.004 0.980
Rouge-L 0.996 0.95 0996 1.124 0.984 0.85 0.991 0.987 0976 0.990 0.975
Score 1.003 1.006 1.007 1.028 1.000 0.994 0.999 0.995 0.985 1.000 0.983

Baby-Steps Curriculum
Rouge-1 0.994 0.999 0.996 1.006 1.006 1.006 0.986 1.017 1.000 1.001 1.003
Rouge-2 1.000 0.989 0.995 1.004 1.003 1.004 0.985 1.008 0.998 1.017 1.008
Rouge-L 0.995 0.996 1.000 1.007 0.999 1.007 0.991 1.002 1.002 1.005 1.006
Score 0.996 0995 0.997 1.005 1.003 1.006 0.987 1.010 1.000 1.007 1.005

Overall score 1.000 1.000 1.002 1.017 1.001 1.000 0.993 1.002 0.992 1.003 0.994

Table 5: The average occurrence, with the respective standard deviation in brackets, of each task in the 1000 samples used for

the complexity scoring strategy hyperparameter optimisation.

Word Deletion Word Reordering Word Substitution = Word Additions

Average occurence 287.2 (156.54) 18.31 (5.82) 0.4 (0.62) 4.4 (2.99)

5.2. Summarization Results

Table 6 shows the achieved ROUGE F1 scores for the various training strategies described in the method-
ology section of this paper. The first row shows the results with no adaptation to the original PEGASUS
framework and is the baseline against which we compare our other strategies. The percentage improvements

with respect to this baseline are shown in square brackets below the score.

21

The CL strategies have been executed as described in Section 4.2.1 with p = 3. Thus, if the validation
performance of a model has not improved during the last 3 epochs, the algorithm moved forward to the next
training bucket. For the dataset with 10 samples we chose to use 2 buckets, for the dataset with 100 samples
we use 5 buckets and for the dataset with 1,000 samples we use 10 buckets. All the results are achieved by
testing on the out-of-sample test set as is common practice when using the CNN/DM dataset (Wang et al.,
2021b) consisting of 11,490 samples.

Let us first consider the results of the One-Pass CL strategy. In the dataset consisting of 10 samples, the
various sorting methods did not result in any major differences with a 0.14% decrease in performance for a CL
strategy without sorting and a 0.29% increase for all other strategies compared to the baseline performance
of no CL. This is not surprising, as with such a small dataset a variation in the sample training order is likely
to have limited effects. Furthermore, in this case, the length, reduction, and complexity sorting methods led
to the exact same results as all strategies led to the exact same ordering of the samples. Applying EDA to
the complexity scoring strategy resulted only in a very small score improvement compared to the complexity
strategy without EDA, namely from 78.47 to 78.51. When considering the results for the dataset consisting
of 100 samples, Table 6 shows that the performance of the CL strategy without any sorting method is slightly
worse than the baseline (No CL) performance (-2%). We expect this to be due to the limited sample, and
consequently, bucket size in this training process. The first buckets determine the starting point for the
model’s solution space and thus have a large effect on the final performance. We expect that the limited
sample representation in the initial buckets, due to their small size, resulted in a too narrow representation
of summaries for the model. The remainder of the training sample set seems to not be large enough to
correct for this initial misalignment. However, applying EDA to the dataset in combination with Baby-Steps
boosted the performance by 4.3% in comparison to the no CL strategy using Baby-Steps. The final sample
size we considered in our research consists of 1000 samples as shows in Table 6. With a dataset of this
size we see the hypothesised performance improvements resulting from the Curriculum Learning strategy
and EDA. The complexity sorting strategy results in an performance improvement of 5.66% compared to
the baseline performance of no CL strategy using Baby-Steps. Extending the CL strategy with the EDA
techniques increased the performance further to a total performance increase of 6.54% compared to the the

no CL baseline.

22

Table 6: The results of the abstractive summarization tasks. The CL strategy indicates the curriculum learning strategy we
used, either One-Pass (CLOP) or Baby-Steps (CLBS). The EDA column indicates whether the data has been augmented with
the EDA techniques. The sorting method column shows the data sorting method for the curriculum learning strategy, where
complexity refers to our novel complexity scoring algorithm and length and reduction refer to the baseline sorting methods.
The score column shows the sum of R1, 2 * R2, and Ry. All results were achieved with a batch size of 2 and learning rate of

5e—4. Percentage improvements from the baseline (first row) are shown in square brackets.

CL strategy EDA Sorting method 10 samples 100 samples 1.000 samples
Ry Ry Ry, Score Ry Ry Ry, Score R Ry Ry, Score
No CL No None 32.14 12.33 21.44 78.24 32.41 12.58 22.27 79.84 33.21 13.45 23.17 83.28
CLOP No None 32.15 12.29 21.40 78.13 32.16 12.32 21.44 78.24 33.25 13.74 23.38 84.11
[0.03%] [0.32%] [-0.19%] [-0.14%] [-0.77%] [-2.07%] [-3.73%] [-2.00%)] [0.12%] [2.16%] [0.91%] [1.00%)]
CLOP No Length 32.22 12.39 21.47 78.47 32.05 12.24 21.40 77.93 33.33 13.46 23.11 83.37
[0.25%)] [0.49%] [0.14%] [0.29%] [-1.11%] [-2.70%] [-3.91%] [-2.39%] [0.36%] [0.07%] [-0.26%] [0.11%]
CLOP No Reduction 32.22 12.39 21.47 78.47 32.05 12.24 21.40 77.93 33.73 13.76 23.30 84.56
[0.25%)] [0.49%] [0.14%] [0.29%] [-1.11%] [-2.70%] [-3.91%] [-2.39%] [1.57%] [2.30%] [0.56%] [1.54%)]
CLOP No Complexity 32.22 12.39 21.47 78.47 32.02 12.22 21.47 77.93 34.31 14.25 23.78 86.60
[0.25%)] [0.49%] [0.14%] [0.29%] [1.20%] [-2.86%)] [-3.59%] [-2.39%] [3.31%] [5.95%] [2.63%] [3.99%]
CLOP Yes Complexity 32.24 12.38 21.51 78.51 32.42 12.67 22.07 79.83 34.74 14.72 24.46 88.63

(0.31%) [0.41%] [0.33%] [0.35%] [0.03%] [0.72%] [-0.90%] [-0.01%] [4.61%] [9.44%] [5.57%] [6.42%]

CLBS No None 32.10 1227 2150 7814 3249 1260 2216 79.85 34.65 1374 23.04 85.17
[0.12%] [0.49%] [0.28%] [0.13%] [0.25%] [0.16%] [0.49%] [0.01%] [4.34%] [2.16%] [-0.56%] [2.25%)
CLBS No Length 32.06 1222 2150 7800 3239 1254 2208 T79.55 34.05 1342 2343 8433
[0.25%] [0.89%] [0.28%] [0.31%] [-0.06%] [-0.32%] [0.85%] [-0.36%] [2.53%] [-0.22%] [0.73%] [1.26%)
CLBS No Reduction 32.06 1222 2150 7800 3239 1254 2208 79.55 35.51 1416 2408 85.48
[0.25%] [0.89%] [0.28%] [-0.31%] [-0.86%] [-0.32%] [-0.85%] [-0.36%] [6.93%] [5.28%] [3.93%] [2.64%]
CLBS No Complexity 32.06 1222 2150 7800 3213 1238 2185 78.74 3380 1420 2393 87.99
[0.25%] [-0.89%] [0.28%] [-0.31%] [0.06%] [-0.32%] [-1.89%] [-1.38%] [1.74%] [5.58%] [3.28%] [5.66%]
CLBS Yes Complexity 32.77 1279 2206 8041 33.39 1339 2310 83.27 3656 13.87 2443 88.73

[1.96%] [3.73%] [2.89%] [2.77%] [3.02%] [6.44%] [3.73%] [4.30%] [10.00%] [3.12%] [5.44%] [6.54%)]

The Baby-Steps strategy improves model performance more than the One-Pass curriculum in most sit-
uations. This is likely due to the nature of the algorithm which expands the training buckets instead of
replacing them. Thus, if the number of epochs is equal, the Baby-Steps curriculum will see the simpler
training samples more often than the One-Pass curriculum. Especially in a low-resource setting, it is not
surprising that this has a positive effect on performance. The samples consisting of 10 and 100 samples
sizes showed similarly limited performance differences as with the One-Pass curriculum learning strategy. A
major difference between the two strategies is the effect EDA has on the performance. With the One-Pass
curriculum learning strategy the performance improvement between the complexity sorting method without
EDA and with EDA for the sample sizes of size 10 and 100 are 0.06% and 2.38%, respectively. When consid-
ering the same effects for the Baby-Steps algorithm, we see performance improvements of 3.08% and 5.68%
for these two datasets. This again indicates the increased exposure the model has to the simpler examples
is strengthened further by the application of EDA techniques.

An interesting aspect to highlight is the effect of the sorting methods. For this examination we consider

the CLOP and CLBS strategies without any sorting as our baseline performances. In this comparison we

23

ignore the dataset of 10 samples as the sorting methods resulted in identical order for each method. In the
CLOP strategy for 1000 samples, the length (-0.99%) and reduction (4+0.54%) sorting methods show little
difference in performance when compared to the non-sorted baseline. Thus, we can can conclude that in this
setting these sorting methods have very limited effect on the model’s performance. The complexity sorting
algorithm does show a performance improvement of 2.99% compared to the One-Pass algorithm without any
sorting. Thus, our complexity sorting algorithm demonstrates a positive effect on the model’s performance.
Similar results are achieved with the CLBS strategy with 1000 samples, the length and reduction sorting
method resulted in very limited performance differences of -0.99% and 0.39%, respectively, compared to
the CLBS strategy with no sorting strategy. However, the complexity sorting algorithm does result in a
performance improvement of 3.41% compared to the baseline without a sorting strategy.

Combining the individual effects described in the previous paragraphs allows us to compare the final per-
formance to the initial baseline performance of no CL strategy. The combination of methods that achieves
the best performance is the CLBS strategy with a complexity sorting algorithm and with EDA data aug-
mentation techniques applied, which resulted in a performance gain of 6.54% compared to the baseline of
no curriculum learning, from a combined ROUGE F1-score of 83.28 to 88.73. The performance gain for the

CLOP strategy with the complexity sorting algorithm and EDA applied is very close with 6.42%.

6. Concluding Remarks

In this final section we give some concluding remarks about our research. In Section 6.1 we present
the conclusions that we draw based on the findings described in this paper. Topics for further research are

outlined in Section 6.2.

6.1. Conclusion

In this research we investigated whether the state-of-the-art summarization models could be improved
in low-resource environments by combining these models with selected methods to optimize efficiency. This
was done by applying CL strategies in combination with data augmentation. To do so, we introduced a novel
text-summary pair complexity scoring algorithm and have shown that our extensions help improve results.

We believe that our novel complexity scoring system for text-summary pairs is an important step which
opens up extensive possibilities for further research into simple and efficient applications of CL strategies
within text summarization, as well as other applications where a ranking system is useful. We found that the
optimal operation weight assignment gave a much higher weight to word reordering and word substitution
operations, compared to the word deletion and word addition operations. This implies that the proficiency
of a model in the former two tasks are much more indicative of the summary quality of the model, measured
in ROUGE F1 scores, than the latter two tasks.

We examined the performance of this complexity scoring system by comparing it with baseline perfor-

mances of the state-of-the-art PEGASUS model and with baseline scoring systems based on the length and

24

reduction measurements of the test-summary pairs. We found that our complexity scoring system outper-
formed the baseline sorting methods up to 5.7% with 1,000 samples without EDA techniques. Applying the
EDA techniques in combination with the complexity sorting algorithms increasing this improvement up to

6.5%.

6.2. Further Research

As for future research, the optimisation of the weights in the complexity scoring system should be
investigated further. A more elaborate exploration of the optimal weights using the random search technique
applied in this paper could reveal better weight combinations that lead to higher performing curriculum
learning strategies. Additionally, other methods could be applied to find these weight combinations such as
grid search, Bayesian optimisation, or meta-heuristic algorithms for optimisation such as genetic algorithms.

A limitation of this work is the focus on a granular analysis, as the data-augmentation and complexity
scoring both happen at the word-level. Although our model showed promising results in improving ATS in
low-resource environments, future research may focus on making summaries more informative by accounting
for summary sentiment. By employing sentiment mining solutions in addition to the proposed architecture,
such as those in the work of Srinivasarao & Sharaff (2024) and Srinivasarao & Sharaff (2023) it could be
possible to assess and penalize semantic mismatch and generate even more faithful and coherent results. Fur-
thermore, it may be interesting to explore more sophisticated data augmentation techniques by augmenting
at the phrase level while maintaining class-labels to come up with a richer and more diverse set of synthetic
data.

Furthermore, we would recommend further research into the optimal representation of the quality of a
summary such that easy comparison is possible, e.g., by having the quality represented by a single number.
In this paper we used a combination of the ROUGE-1, ROUGE-2, and ROUGE-L F1 scores, with more
importance assigned to the ROUGE-2 F1 score. To the best of our knowledge, no research has investigated
whether this combination of these F1 scores is the best representation of the quality of a summary. We

believe that this would be a valuable contribution to the text summarization literature.

Bibliography

Aftab, U., & Siddiqui, G. F. (2018). Big data augmentation with data warehouse: A survey. In 3rd IEEE
International Conference on Big Data (ICBDA 2018) (pp. 2785-2794). IEEE.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and
translate. In 3rd International Conference on Learning Representations, (ICLR 2015).

Banko, M., Mittal, V. O., & Witbrock, M. J. (2000). Headline generation based on statistical translation. In
38th Annual Meeting of the Association for Computational Linguistics (ACL 2000) (pp. 318-325). ACL.

25

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. In 26th Annual
International Conference on Machine Learning (ICML 2009) (pp. 41-48). ACM.

Chopra, S., Auli, M., & Rush, A. M. (2016). Abstractive sentence summarization with attentive recur-
rent neural networks. In 15th Annual Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (NAACL-HLT 2016) (pp. 93-98).

Cirik, V., Hovy, E. H., & Morency, L. (2016). Visualizing and understanding curriculum learning for long
short-term memory networks. arXiv preprint, arXiv:1611.06204 .

Cohn, T., & Lapata, M. (2018). Sentence compression beyond word deletion. In 22nd International Confer-
ence on Computational Linguistics (COLING 2008) (pp. 137-144). ACL.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural language
processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493-2537.

Eisner, J. (2003). Learning non-isomorphic tree mappings for machine translation. In 41st Annual Meeting

of the Association for Computational Linguistics (ACL 2003) (pp- 205-208). ACL.

El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text summarization:
A comprehensive survey. Ezxpert Systems with Applications, 165, 113679.

Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small.

Cognition, 48, 71-99.

Fang, M., Zhou, T., Du, Y., Han, L., & Zhang, Z. (2019). Curriculum-guided hindsight experience replay.
In 32nd Annual Conference on Neural Information Processing Systems (NIPS 2019) (pp. 12602-12613).

Curran Associates.

Gambhir, M., & Gupta, V. (2017). Recent automatic text summarization techniques: A survey. Artificial
Intelligence Review, 47, 1-66.

Hacohen, G., & Weinshall, D. (2019). On the power of curriculum learning in training deep networks. In

36th International Conference on Machine Learning (ICML 2019) (pp. 2535-2544). PMLR.

He, Z., Yang, M., Feng, M., Yin, J., Wang, X., Leng, J., & Lin, Z. (2023). Fourier transformer: Fast long
range modeling by removing sequence redundancy with FFT operator. In Findings of the Association for

Computational Linguistics: ACL 2023 (pp. 8954-8966). ACL.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., & Blunsom, P. (2015).
Teaching machines to read and comprehend. In 29th Annual Conference on Neural Information Processing

Systems (NIPS 2015) (pp. 1693-1701). MIT Press.

26

Hoang, V. C. D., Koehn, P., Haffari, G., & Cohn, T. (2018). Iterative back-translation for neural machine
translation. In 2nd Workshop on Neural Machine Translation and Generation (WNMT 2018) (pp. 18-24).
ACL.

Jean, S., Cho, K., Memisevic, R., & Bengio, Y. (2015). On using very large target vocabulary for neural
machine translation. In 53rd Annual Meeting of the Association for Computational Linguistics (ACL
2015) and the Tth International Joint Conference on Natural Language Processing (IJCNLP 2015) (pp.
1-10). ACL.

Kesgin, H. T., & Amasyali, M. F. (2024). Advancing NLP models with strategic text augmentation: A
comprehensive study of augmentation methods and curriculum strategies. Natural Language Processing

Journal, 7, 100071.

Khandelwal, U., Clark, K., Jurafsky, D., & Kaiser, L. (2019). Sample efficient text summarization using a
single pre-trained transformer. arXiv preprint arXiv:1905.08836, .

Kim, H.-Y., Roh, Y.-H., & Kim, Y.-K. (2019). Data augmentation by data noising for open-vocabulary slots
in spoken language understanding. In 17th Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL 2019) (pp. 97-102). ACL.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A. et al. (2017). Overcoming catastrophic forgetting in neural networks.

Proceedings of the National Academy of Sciences, 114, 3521-3526.

Kumar, M., Packer, B., & Koller, D. (2010). Self-paced learning for latent variable models. In 2/th Annual
Conference on Neural Information Processing Systems (NIPS 2010) (pp. 1189-1197). Curran Associates.

Kurniawan, K., & Louvan, S. (2018). Indosum: A new benchmark dataset for indonesian text summarization.

In 9th International Conference on Asian Language Processing (IALP 2018) (pp. 215-220). IEEE.

Kwon, N., Yoo, Y., & Lee, B. (2024). Novel curriculum learning strategy using class based TF-IDF for
enhancing personality detection in text. IEEE Access, 12, 87873-87882.

Lesort, T. (2020). Continual learning: Tackling catastrophic forgetting in deep neural networks with replay
processes. arXiv preprint arXiw:2007.00487, .

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L.
(2020). BART: denoising sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. In 58th Annual Meeting of the Association for Computational Linguistics (ACL 2020)
(pp. 7871-7880). ACL.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In 2004 Workshop on Text
Summarization Branches Out (WAS 2004) (pp. 74-81). ACL.

27

Liu, Y., & Liu, P. (2021). SimCLS: A simple framework for contrastive learning of abstractive summarization.
In In 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (ACL-IJCNLP 2021) (pp. 1065-1072). ACL.

Liu, Y., Liu, P., Radev, D. R., & Neubig, G. (2022). BRIO: bringing order to abstractive summarization.
In 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022) (pp. 2890-2903).
ACL.

MacAvaney, S., Nardini, F. M., Perego, R., Tonellotto, N., Goharian, N., & Frieder, O. (2020). Training
curricula for open domain answer re-ranking. In 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR 2020) (pp. 529-538). ACM.

Milani, S., Topin, N.; Veloso, M., & Fang, F. (2024). Explainable reinforcement learning: A survey and
comparative review. ACM Computing Survey, 56, 168:1-168:36.

Moratanch, N., & Chitrakala, S. (2016). A survey on abstractive text summarization. In 2016 International

Conference on Circuit, Power and Computing Technologies (ICCPCT 2016) (pp. 1-7). IEEE.

Nallapati, R., Zhai, F., & Zhou, B. (2017). SummaRuNNer: A recurrent neural network based sequence
model for extractive summarization of documents. In 31st AAAI Conference on Artificial Intelligence

(AAAI 2017) 1.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M. E., & Stone, P. (2020). Curriculum learning
for reinforcement learning domains: A framework and survey. Journal of Machine Learning Research, 21,

7382-7431.

Portelas, R., Colas, C., Hofmann, K., & Oudeyer, P.-Y. (2020). Teacher algorithms for curriculum learning
of deep rl in continuously parameterized environments. In 4th Conference on Robot Learning (CoRL 2020)

(pp. 835-853). PMLR.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I. et al. (2019). Language models are

unsupervised multitask learners. OpenAlI blog, 1, 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2020).
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21, 5485-5551.

Ramirez, J. M., Montalvo, A., & Calvo, J. R. (2019a). A survey of the effects of data augmentation for
automatic speech recognition systems. In 24th Iberoamerican Congress on Pattern Recognition (CIARP

2019) (pp. 669-678). Springer.

28

Ramirez, J. M., Montalvo, A. R., & Calvo, J. R. (2019b). A survey of the effects of data augmentation for
automatic speech recognition systems. In 24th Iberoamerican Congress: Progress in Pattern Recognition,

Image Analysis, Computer Vision, and Applications (CIARP 2019) (pp. 669-678). Springer.

Ranaldi, L., Pucci, G., & Zanzotto, F. M. (2023). Modeling easiness for training transformers with curriculum
learning. In 14th International Conference on Recent Advances in Natural Language Processing (RANLP

2023) (pp. 937-948). INCOMA.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323, 533-536.

Soviany, P., Ionescu, R. T., Rota, P., & Sebe, N. (2022). Curriculum learning: A survey. International
Journal of Computer Vision, 130, 1526-1565.

Spitkovsky, V. L., Alshawi, H., & Jurafsky, D. (2010). From baby steps to leapfrog: How ”less is more” in
unsupervised dependency parsing. In 2022 Conference of the North American Chapter of the Association
of Computational Linguistics Human Language Technologies (NAACL-HLT 2022) (pp. 751-759). ACL.

Srinivasarao, U., & Sharaff, A. (2023). Machine intelligence based hybrid classifier for spam detection and
sentiment analysis of SMS messages. Multimedia Tools and Applications, 82, 31069—31099.

Srinivasarao, U., & Sharaff, A. (2024). Sentiment analysis from email pattern using feature selection algo-

rithm. Fxpert Systems, 41.

Srivastava, R., Singh, P., Rana, K., & Kumar, V. (2022). A topic modeled unsupervised approach to single

document extractive text summarization. Knowledge-Based Systems, 246, 108636.

Su, Z., Zhang, Z., Xu, G., Liu, J., Han, X., Zhang, T., & Dong, Y. (2025). Multilingual encoder knows
more than you realize: shared weights pretraining for extremely low-resource languages. arXiv preprint

arXi:2502.10852, .

Sutskever, 1., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In 27th
Annual Conference on Neural Information Processing Systems (NIPS 2014) (pp. 3014-3112). Curran

Associates.

Tang, Y., Wang, Y., Guo, J., Tu, Z., Han, K., Hu, H., & Tao, D. (2024). A survey on transformer compression.
arXiw preprint arXiv:2402.05964 , .

Tsvetkov, Y., Faruqui, M., Ling, W., MacWhinney, B., & Dyer, C. (2016). Learning the curriculum with
bayesian optimization for task-specific word representation learning. In 54th Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL 2016) (pp. 130-139). ACL.

29

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I.
(2017). Attention is all you need. In 31st Annual Conference on Neural Information Processing Systems

(NIPS 2017) (pp. 5998-6008). Curran Associates.

Wang, F., Song, K., Zhang, H., Jin, L., Cho, S., Yao, W., Wang, X., Chen, M., & Yu, D. (2022). Salience
allocation as guidance for abstractive summarization. In 2022 Conference on Empirical Methods in Natural

Language Processing (EMNLP 2022) (pp. 6094-6106). ACL.

Wang, X., Chen, Y., & Zhu, W. (2021a). A survey on curriculum learning. Transactions on Pattern Analysis
and Machine Intelligence, 44, 4555-4576.

Wang, X., Wang, K., & Lian, S. (2020). A survey on face data augmentation for the training of deep neural
networks. Neural Computing and Applications, 32, 15503-15531.

Wang, Y., Chen, Q., Shen, J., Hou, B., Ahmed, M., & Li, Z. (2021b). Aspect-level sentiment analysis based
on gradual machine learning. Knowledge-Based Systems, 212, 106509.

Wei, J., & Zou, K. (2019). EDA: Easy data augmentation techniques for boosting performance on text
classification tasks. In 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP
2019) and the 9th International Joint Conference on Natural Language Processing (IJCNLP 2019) (pp.
6382-6388). ACL.

Woodsend, K., Feng, Y., & Lapata, M. (2010). Generation with quasi-synchronous grammar. In Conference
on empirical methods in natural language processing (EMNLP 2010) (pp. 513-523). ACL.

Zaremba, W., & Sutskever, I. (2014). Learning to execute. arXiv preprint, arXiv:1410.4615.

Zhang, J., Zhao, Y., Saleh, M., & Liu, P. (2020). PEGASUS: Pre-training with extracted gap-sentences
for abstractive summarization. In 37th International Conference on Machine Learning (ICML 2020) (pp.
11328-11339). PMLR.

Zhang, Z., Liu, S., Li, M., Zhou, M., & Chen, E. (2018). Joint training for neural machine translation models
with monolingual data. In 32nd AAAI Conference on Artificial Intelligence (AAAI 2018) (pp. 555-562).
AAAL

Zhao, J., Sun, X., & Feng, C. (2025). Introducing bidirectional attention for autoregressive models in

abstractive summarization. Information Sciences, 689, 121497.

Zhao, Y., Khalman, M., Joshi, R., Narayan, S., Saleh, M., & Liu, P. J. (2023). Calibrating sequence likelihood
improves conditional language generation. In 11th International Conference on Learning Representations

(ICLR 2023). OpenReview.net.

30

Zhou, Y., Pan, Z., Wang, X., Chen, H., Li, H., Huang, Y., Xiong, Z., Xiong, F., Xu, P., Liu, S., & Zhu,
W. (2024). Curbench: curriculum learning benchmark. In 41st International Conference on Machine

Learning, (ICML 2024) (pp. 62088-62107). PMLR.

31

