Modeling Second Language Acquisition with Pre-trained Neural
Language Models

Alvaro J. Jiménez Palenzuela?, Flavius Frasincar®, Maria Mihaela TrugcaP*

% Erasmus University Rotterdam, P.O. Box 1738, 3000DR, Rotterdam, the Netherlands
¥ Bucharest University of Economic Studies, Piata Romana 6, 010374, Bucharest, Romania

Abstract

Prediction of language mistakes is a task introduced by Duolingo as part of the Second
Language Acquisition Modeling topic that aims to learn from the history of mistakes to
improve the experience of language learners. Using transfer learning by means of pre-trained
language models, we propose a framework that can learn the actual mistakes distribution
according to which faraway words of a sentence have a higher chance to produce errors.
To adapt the information provided by the pre-trained language models, more approaches
based on feature extraction or fine-tuning were tried. However, according to our experiments,
integrating these two options in a stack-and-finetune approach seems to be more appropriate
for our task. Regarding the comparison of language models in terms of model distillation,
we notice that distillation does not affect the effectiveness while significantly reducing the
training time. We conclude that the model complexity should be adjusted to the specifics
of the analysed problem and the distillation is an efficient option for low complexity corpora
without considerably affecting the overall performance.

Keywords: Second Language Acquisition, Pre-trained Language model, Model Distillation,

Fine-tuning, Feature extraction

1. Introduction

For many years, foreign languages have been taught in a traditional, non-data-driven way
with little or no personalization of the contents. In contrast, language learning platforms

such as Duolingo now collect data on millions of users that can be used to find patterns in

*Corresponding author.
Email addresses: alvarojimpal@gmail.com (Alvaro J. Jiménez Palenzuela), frasincar@ese.eur.nl
(Flavius Frasincar), maria.trusca@csie.ase.ro (Maria Mihaela Trusca)

Preprint submitted to Expert Systems with Applications April 7, 2022

language learning and make adjustments to the learning process. Given the vast number of
people that study foreign languages, small improvements in the language learning process can
have a huge impact

One of the key factors that influence success in second language acquisition is motivation
(Gardner, 1972), which has been proved to be tightly related to contextualization, person-
alization, and provision of choices in a learning environment (Cordova and Lepper, 1996).
Thus, it is expected that by tailoring the exercises, the language learners will remain more
motivated, learn faster, and be less likely to drop out. To tailor the contents presented to
each learner, we first need to gain insight into the language learning process. Being able to
accurately determine whether a language learner has effectively learned a concept is a way of
doing this.

Second Language Acquisition Modeling (SLAM) is a task that belongs to the educational
data mining research domain (Ferreira-Mello et al., 2014; Mihaescu and Popescu, 2021). The
main aim of the task is to predict the mistakes that language learners will make in the future,
given their history of mistakes. This new research field was commenced recently by Duolingo
with a challenge (Settles et al., 2018). Several teams submitted papers with their solutions to
the problem of predicting the mistakes that certain language learners will make, given their
learning history and some demographic information. The learning history is the sequence of
sentences produced by a user, where each word is labeled with a zero or a one depending on
whether the user wrote it correctly. Several approaches and techniques have been proposed
in the past to model Second Language Acquisition (SLA); these approaches are reviewed
in Section 2. However, there have been some major breakthroughs recently in the Deep
Learning and Natural Language Processing (NLP) community (Young et al., 2018). In fact,
Deep Learning and NLP are currently two very hot topics. Multi-head attention mechanisms
and transfer learning through pre-trained language models have been key in the development
of new state-of-the-art models (Ruder, 2019).

Transformer-based Language Models (Vaswani et al., 2017) have been a major break-
through in the NLP field, achieving state-of-the-art results in popular benchmarks such as
the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018)
and its successor SuperGLUE (Wang et al., 2019a). These large language models have been

proved to be successful across many traditional NLP tasks. In this paper, the focus is to

investigate how language models and transfer learning can also be applied to the SLAM task.

There are several signs that indicate that transfer learning through pre-trained language
models might be useful for the SLAM task. First, word embeddings were the third most effec-
tive feature (after response time and days in course) according to the SLAM Task Overview
paper (Settles et al., 2018). Second, the morpho-syntactic features were shown to not affect
or even have weakly negative effects. In (Xu et al., 2018) and (Yuan, 2018) it is demonstrated
that including these features hurt the performance of the models. This is counter-intuitive,
as one would expect such linguistic features to be related to language acquisition. However,
these features were generated with SyntaxNet (Andor et al., 2016), a language parser that
was released prior to NLP’s modern era of transformer-based models. As a result, there are
many parsing errors easily observed when taking a quick glance at the dataset.

Previous models (see Section 2) have used contextualized word embeddings learned only
with the small set of within-task sentences provided in the SLAM dataset (Settles, 2018).
Alternatively, our model incorporates a pre-trained language model that generates much richer
representations of the sentences to capture many more aspects of the language. Precisely, the
input representations of our model are provided by Bidirectional Encoder Representations
from Transformers (BERT) and its distilled version (DistillBERT'). The contribution of our

work can be summarized as follows:
e A state-of-the-art solution is proposed for the SLAM task that relies on transfer learning;

e Given the low complexity of the employed corpus, distillation turns out to boost the

efficiency of our model compared to the conventional BERT model;

e The stack-and-finetune approach used to extract the information stored in a pre-trained

language model was proved to be the most suitable for the SLAM task.

2. Related Literature

This section provides an overview of the techniques proposed for the 2018 Duolingo Shared
Task on SLAM. We start by presenting the best performing models submitted to the 2018
Duolingo competition and then provide a summary of the most recent methods relevant to

SLAM. A thorough review and meta-analysis of all the papers that were submitted to the

Duolingo competition are presented in (Settles et al., 2018). Despite not being the most effec-
tive approach, our solution has high-efficiency rates due to the use of DistillBERT. Therefore,
the aim of our paper is twofold. Firstly, to introduce transfer learning in the field of SLAM.
Secondly, to prove that distillation is an efficient alternative to the widely used BERT model
with small performance reductions, especially when the complexity of the employed data is
low.

Osika et al. (2018) used an ensemble model that combines the predictions of an Recurrent
Neural Network (RNN) with Gradient Boosted Decision Trees (GBDT'). They also engineered
a set of additional features such as the number of times the current token has been practiced
and the time since the current token was last seen. The authors excluded morphological
features due to their poor predictive ability when evaluated by a decision tree model. The
three most valuable features were token, user, and format. Furthermore, they observed that
4% of the instances with the least common words in the development set contribute to 10%
of the prediction error.

Xu et al. (2018) designed an RNN with four types of encoders: a context encoder (both at
word level and character level), a linguistic feature encoder (including part-of-speech, morpho-
logical, and syntactic information), a user information encoder (including user ID, country,
and days in course), and a format information encoder (including device type and response
time). The context encoder consists of two LSTMs that work at both word and character
levels, respectively. The authors found out that the context and the format encoders are the
most effective ones and that the linguistic encoder is the least effective.

Rich et al. (2018) used an ensemble of GBDTs with features motivated by theories from
the psychology literature. They engineered features that aimed to capture the motivation and
diligence of users. Other features such as corpus frequency and L1-L2 cognates were included.
The authors concluded that morphological features and part-of-speech tags contributed very
little to the predictive ability. Furthermore, they indicated that word order, subject-verb
matching, and other grammatical rules are aspects in which users commonly make mistakes,
and that explains the importance of considering the word contexts.

Kaneko et al. (2018) proposed a system with two components: a predictive Bi-LSTM that
predicts whether a learner has made a mistake for the current word and a history LSTM that

tracks the learning history of each specific learner. The output of the predictive Bi-LSTM

is fed into the history LSTM at each step. The authors trained a single model for all three
language tracks (Spanish, English, and French) without any engineered features or language-
specific information. An ablation experiment confirmed the importance of the history LSTM;
the AUC decreased from 0.834 to 0.648 when excluding it.

Bestgen (2018) used a model based on logistic regression. Multiple conjunctive features
(that is, features that are built by combining several primitive features) were engineered by
taking word n-grams and combining them with metadata about the exercises and the users.
The author decided not to incorporate morpho-syntactic information due to the lexical and
syntactical simplicity of the exercises. The most effective conjunctive features included the
tokens and the exercise format.

A more recent work proposed for SLAM is introduced in (Hu et al., 2020) by means of an
encoder-decoder architecture. The encoding part is represented by two modules for capturing
both the input sentences features and the meta-information (user and exercise features). To
decode the encoded information, the method employs a multi-layer perceptron that yields the
final token-level predictions. The proposed method is further enriched by a multi-task learning
approach used to provide predictions for multiple language learning datasets simultaneously.

A similar encoder-decoder is also approached by Ruan et al. (2021). However, the meta-
information is not further encoded, and the decoder has an auto-regressive nature to better
capture the dependencies between words. In the end, the predictions are generated by a
variational inference layer. To mimic the most effective method introduced for SLAM by
Osika et al. (2018), Ruan et al. (2021) pack their solution as an ensemble model that combines
the proposed encoder-decoder with a GBDT model.

Sense et al. (2021) are concerned to enhance a machine learning model via a cognitive
approach. While given a sufficient volume of training data, the machine learning model is
able to perform satisfactorily, training on limited data might benefit from the insights of a
cognitive model. Considering the SLAM data on the English track as a reference, GBDT is
selected as the main token classifier, and the Predicted Performance Equation (PPE) is chosen
as the cognitive model. Despite the small performance margin reported between GBDT and
PPE-GBDT models on the entire data, the margin is more significant for small subsets.

In addition to the above works that have as the main target the prediction of the token-

level mistakes, there are some worth mentioning works that have slightly different aims for

improving the users’ learning experience. The model proposed by Srivastava and Goodman
(2021) has a coarser approach predicting the correct/incorrect label at the exercise level in-
stead of the token level. The labels are simply assigned with respect to the presence of a right
or wrong answer in the exercise solution. Similar to our approach, the proposed binary classi-
fier relies on a transformer-based language model - GPT-2 (Radford et al., 2019). To improve
the learning experience, the authors also include an exercise generator model that returns
a new exercise based on the quality of the previous answers. Basically, more wrong/correct
answers require the generation of simpler/more complex exercises. Next, according to Wu
et al. (2020), the purpose of the Duolingo dataset to predict the users’ capability to answer
correctly is redefined to infer the proficiency of the language learners. The solution is pro-
vided by considering the Item Response Theory in an approach that relies on the principle of

variational inference.

3. Methodology

3.1. Language Models

Language modeling is the task of predicting the word that will appear next in a given
text. This simple idea has been shown to lead to very powerful representations of language.
Language models are trained on huge corpora that contain unlabeled data, what is commonly
referred to as unsupervised training. In this way, one can take advantage of the enormous
amounts of text data that are available and learn how languages work.

Language models compute the probability of a sequence of words appearing in a certain
sentence. This probability P(wi,...,wy) over the N words of the input sentence can be
expressed as the product of the conditional probabilities P (w;|ws, ..., w;—1) of each word w;.
One might also choose a window of n previous words to compute the conditional probabilities,

which is approximately equal:

=N
P(wl,...,wN): P(wi]wl,...,wi_l) (1)
=1
i=N
~ P (wilw;_(n-1), -, wi—1) (2)
=1

Neural language models, also referred to as continuous space language models, make use of

neural networks to solve the task of predicting the next word in a sentence. As opposed to tra-

ditional language models, neural language models represent words as non-linear combinations
of weights in a neural network, in a so-called distributed way. While the first neural language
models used feed-forward and recurrent networks, the latest rely heavily on attention-based
mechanisms.

Several neural language models have been conceived in the last years, achieving SoTA
results across many NLP tasks. In fact, the emergence of these models was described by
Sebastian Ruder as “the ImageNet! moment of NLP”. The latest neural language models
such as ULMFit (Howard and Ruder, 2018), GPT-2 (Radford et al., 2019), and BERT (Devlin
et al., 2019) are able to capture many more complex language phenomena (e.g., polysemy and
negation). As opposed to using word embeddings, which are very limited representations
of language, language models allow us to pretrain an entire model and not just the first
layer. Hence, instead of training a language model from scratch, one can take advantage
of transfer learning by taking a language model that has been pre-trained on huge corpora
(usually millions of sentences) and fine-tuning it to solve a specific task. In this way, complex
language phenomena do not have to be learned from scratch every time a model is trained
for a certain task. As a result, one needs significantly fewer tagged examples and much less
computing power to train a model as compared to using word embeddings. This is of great
importance, since collecting tagged data can be very expensive or even unfeasible in the case

of minority languages (e.g., Estonian) or for certain tasks (e.g., sarcasm detection).

3.2. Transformer Architecture

The transformer architecture was proposed by Vaswani et al. (2017), and it is based only
on attention mechanisms instead of RNNs. It consists of two parts: a stack of encoders and a
stack of decoders. Both the encoders and the decoders are composed of modules that consist
mainly of multi-head attention and feed-forward layers. All the encoders share the same
structure; however, they do not share weights. As opposed to RNN-based encoder-decoder
architectures, transformers are parallelizable and require less time to train.

Figure 1 displays a high-level schema of the transformer architecture. First, the inputs

and outputs of the transformer are embedded into an n-dimensional space. In order to pre-

'The ImageNet challenge fostered the creation of computer vision models which achieved astonishing accu-

racy results through deep learning and transfer learning.

Output Probabilities

1
T

|
|

Encoder #3 Decoder #3

Encoder #2 Decoder #2

Encoder #1 Decoder #1
i i

Figure 1: The simplified architecture of the transformer with three encoders and three decoders.

serve the sequential nature of the elements in the sequences (i.e., their relative positions), a
positional encoding technique is used. These positions are added to the n-dimensional vector
embeddings. These resulting word embeddings are then fed to the first encoder. The rest of
the encoders have as input the output of the previous encoder, i.e., a fixed-length vector.

Each embedding flows through its own path in the encoder, making transformers paral-
lelizable. Each encoder consists mainly of two sub-layers, as Figure 2(a) shows. First, the
encoder’s inputs flow through a self-attention layer. In this way, the encoder attends to other
words in the input sentence in order to encode each word. Then, the outputs of the self-
attention layer flow through a feed-forward neural network. Decoders (see Figure 2(b)) are
similar to encoders; they also have a self-attention layer and a feed-forward neural network.
However, between the two layers, the decoder has an additional attention layer for capturing
relevant parts of the input sentence. Residual connections are used around each sub-layers of
both the encoders and the decoders, followed by layer normalization.

The output of the decoder stack is fed to a fully connected neural network which projects

it into a logits vector, i.e., a vector of size vocab_size where a score is assigned to each word in

]

\
— Add & Normalize
T
FNN
T —]
— Add & Normalize — Add & Normalize
T T
FNN Enc-Dec Attention
— Add & Normalize — Add & Normalize
T T
Multi-Head Attention Multi-Head Attention
Fixed-size Fixed-size
vector input vector input
(a) Encoder block (b) Decoder block

Figure 2: A more detailed architecture of the transformer including separate blocks for the Encoder and

Decoder.

the vocabulary. Then, a softmax layer converts these scores into probabilities, and the word

with the highest probability is selected as the output of the transformer.

3.3. BERT

In late 2018, Devlin et al. released BERT (Bidirectional Encoder Representations from
Transformers), a language representation model based on the popular transformer architecture
widely used for different NLP tasks that vary from sentiment classification (Meskelé and
Frasincar, 2020) to multi-term response selection (Li et al., 2021). Unlike previous models such
as ULMFiT (Howard and Ruder, 2018) and GPT (Radford et al., 2018), BERT learns deep
bidirectional representations by taking into account both the left and right context of a word
when constructing its representation. Devlin et al. show that by adding only one additional
layer to BERT and fine-tuning it, state-of-the-art results can be achieved for a large variety

of sentence-level and token-level NLP tasks, outperforming many task-specific architectures.

BERT only uses encoders in its architecture and comes in two sizes: base and large. The base
model consists of 12 encoder layers, 12 self-attention heads, hidden size 768, and a total of
110M parameters. The large model has 24 encoder layers, 16 self-attention heads, a hidden
size of 1024, and a total of 340M parameters. Two datasets were used to pre-train BERT:
BooksCorpus (800M words) (Zhu et al., 2015) and English Wikipedia (2,500M words). In
this way, BERT learns rich language representations through unsupervised learning.

There are two ways to adapt BERT’s pre-trained language representations to downstream
tasks: feature extraction and fine-tuning. Feature extraction requires less computation time,
as the model’s layers are kept frozen (i.e., their weights are not updated), and the resulting
vector embeddings can be reused. On the other hand, fine-tuning is more computationally
intensive but leads to better results in many cases. Peters et al. (2019) explore these two
adaptation strategies across different NLP tasks and conclude that their relative performance
depends on the similarity of the pretraining and target tasks.

Two tasks were used to pre-train BERT: Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP). MLM randomly masks 15% of the input tokens and predicts the
masked tokens based only on their context. A [MASK] tag is assigned to each randomly
masked input token. NSP uses pairs of sentences (sentenceA, sentenceB) to capture the
relationships between consecutive sentences. To that end, 50% of the training pairs are
contiguous sentences selected from the text corpus and assigned the label IsNext, while the
other half are non-contiguous sentences that are randomly selected and assigned the label
NotNext.

BERT’s input representation is the sum of three embeddings: token, segment, and position
embeddings. The token embeddings are obtained from an embedding dictionary that contains
30,000 tokens, the segment embeddings allow BERT to distinguish between sentence A and
sentence B, and the position embeddings are used to model the sequential nature of the words
in the sentences. BERT uses two special tags, namely a [CLS] tag and a [SEP] tag. The
[CLS] tag corresponds to the first input token and is used in order to construct an aggregate
sequence representation. The [SEP] tag is used to separate sentences A and B. These tags

are added in the preprocessing stage of the input sentences.

10

3.4. Model Distillation

Much of the attention in the NLP field has been paid to large transformer models since
the release of BERT. However, at least some of the focus has shifted lately into making these
massive models smaller in size and reducing their inference times. In this way, language models
are becoming more accessible and manageable to researchers that lack huge computational
power. There are several techniques available to reduce the size of a model. Knowledge
distillation is a compression technique that allows us to obtain a reduced model, called the
student, from a larger model, called the teacher. The student model is trained to mimic the
teacher model’s behavior. Other commonly used techniques are quantization and pruning.
Quantization reduces the size of a model by decreasing the numerical precision of its weights,
whereas pruning consists in removing parts of a model to reduce its size. This can be done
in several ways; one can prune weights, neurons, or even weight matrices, e.g., by removing
entire attention heads from transformers.

Model compression was introduced by Bucila and Niculescu-Mizil (2006), who showed that
complex ensembles of hundreds or thousands of base-level classifiers can be compressed into
smaller, faster models with little loss in performance. A few years later, Hinton et al. (2015)
developed this approach further and generalized it by using a different compression technique.
Neural networks are usually trained to predict class probabilities by using a softmax layer that
converts logits z; into probabilities p;. Hinton et al. introduce a temperature parameter in

these softmax probabilities:

o _ca(=/T)
T eap(z/T)

where T is a temperature parameter that controls the smoothness of the output distribution.

3)

Larger values result in a softer probability distribution over classes. That is, the temperature
value T' allows us to control the uncertainty in the teacher’s output. The same temperature
value is assigned to both the student and the teacher networks at training time. However,
during inference 7T is set to 1 in order to recover a standard softmax.

As opposed to the usual classification problems in supervised learning where only the
estimated probability of gold labels is maximized, knowledge distillation aims to train a smaller

network that mimics the whole distribution of the output probability of the teacher network.

11

This is important because we are usually not only interested in the gold labels but also in other
labels that might have a lower probability. For example, book might be the most likely masked
word in the sentence "This is an interesting [MASK]", but the probabilities assigned to
the words movwie, story, and task are also valuable and reflect part of the knowledge learned
by the teacher network. To this end, cross-entropy over soft targets is used rather than over
hard targets. In this way, the model learns to generalize better and faster. This is achieved
by using a distillation loss L. = Y, t; * log(s;), where t; is the estimated weight of the soft
target s;.

DistilBERT (Sanh et al., 2019) was trained on the same corpus as the original BERT
model following the knowledge distillation approach proposed by Hinton et al. (2015), which
was presented above. It retains 97% of BERT’s performance on the GLUE benchmark and
is 60% faster, while only having roughly half of BERT’s parameters. Furthermore, it is the
fifth best language model for the Semantic Textual Similarity task. In order to achieve this,
Sanh et al. (2019) introduce a triple loss function that combines a masked language modeling
loss Lim, a distillation loss L., and a cosine-distance loss L.,s which intends to preserve the
similarity of the vectors (embeddings) belonging to the teacher and the student. DistilBERT
has the same general architecture as BERT, although the number of layers is reduced by half.
However, the hidden size dimension is kept at 768, since most of the operations used in the
transformer architecture are highly optimized and reducing it has a relatively smaller impact
on the computational efficiency. DistilBERT is initialized with BERT’s weights by taking one

layer out of two, thus benefiting from their common dimensionality.

3.5. Model Architecture

The proposed model consists of three main parts: a set of embedding layers, a pre-trained
Language Model (BERT or DistilBERT), and a set of layers on top of both. Since it has been
shown that BERT-base (see Section 3.3) outperforms BERT-large in some cases (Goldberg,
2019), the proposed model is developed on the simpler BERT-base variant. As the number
of observations available in our dataset is limited, and the model capacity of BERT-large is
large, our model would likely overfit. Furthermore, in order to use BERT-large a larger GPU
is required as well as longer training times. Figure 3 shows the architecture of our model as

well as its inputs and outputs. The reported experimental results consider both BERT and

12

DistilBERT. The latter is a compact language model learned from BERT (see Section 3.4).
The main advantage of DistilBERT is that it requires less computing resources while losing
very little performance. Furthermore, it was trained without BERT’s NSP task, which seems

irrelevant for our task.

0/ 1 } Output
T
[Layer 3: Linear }
) 1 1 T
[Layer 2: Linear }
T T 1 1 T T
[Layer 1: Linear/GRU/BiGRU/LSTM/BiLSTM }
I I I |
o)
1 BiGRU ; day
I time

3 Pre-trained language model
1 (DistilBERT /BERT)

W token userid day
co?ntry time Input
client format
session

Figure 3: Model architecture.

The pre-trained language model (DistilBERT or BERT) takes as input a token belonging
to an aligned reference answer. Hence, it is not required to learn an embedding from scratch for
the pre-trained language model; there is already a pre-trained embedding layer in DistilBERT
and BERT. The output of the pre-trained language model (of size 768 for both BERT and
DistilBERT) is then fed into a bidirectional Gated Recurrent Unit (BiGRU) of size 256 in
order to reduce the dimensionality of the pre-trained language model’s output. Our model
also takes as input several features that are provided in the dataset (see Section 4). An

embedding is learned from scratch for each of these categorical features. All embedding layers

13

are of size 64 except for that of userid, which is of size 128, and token, which is of size 256.
Those features have larger embeddings because of their higher cardinality (i.e., more unique
values). Note that the token feature is input to both the pre-trained language model and
an embedding layer. This allows our model to learn task-specific information more easily by
means of a learned embedding and results in a more fair comparison. The continuous features
(day and time) are fed into Layer 1 directly after standardizing their values. We also cap
the time values at 100 seconds, as some of the values reported in the dataset are much above
that. The output of the BiGRU on top of the pre-trained language model, the embeddings,
and the continuous features are concatenated before being input into the upper layers of our
model.

There are three layers on top of the pre-trained language model and the embedding layers.
For Layer 1, several neural network architectures (linear and RNN layers) were tried with
different configurations (number of layers and number of neurons). The next two layers are
linear. The output of Layer 3 is a value in the range [0.0, 1.0] predicting the probability that
the user made a mistake at that token. A softmax activation function and a cross-entropy
classification loss are used to obtain this probability.

The path through the entire network is as follows. First, the categorical features (token,
userid, country, client, format, and session) are fed through their embedding layers. The
token is also fed into the pre-trained language model, and its output goes through a BiIGRU
of size 256 with a dropout rate of 0.3, as a way of regularizing the input of Layer 1. Then,
the embeddings, as well as the output from the BiGRU and the continuous features (day and
time) are concatenated and fed into Layer 1, which can be a linear layer, a (Bi)GRU, or a
(Bi)LSTM. The output of Layer 1 (of size 512) is fed into Layer 2, and that of Layer 2 (of size
32) into Layer 3 (of size 1), subsequently. A dropout rate of 0.5 is applied for Layers 1 and 2,
which was found to be optimal for a wide range of neural networks and tasks (Srivastava et al.,
2014). Note that the embedding layers and Layers 1, 2, and 3 are trained from scratch in
every experiment reported in Section 6. Finally, a softmax layer is used to output a per-token
probability of a mistake.

We use the PyTorch-Transformers library from HuggingFace (Wolf et al., 2019), a popular
library with PyTorch implementations of state-of-the-art pre-trained language models. The

models were trained on a 16GB Tesla P100 GPU provided by Google Colab. Our code is pub-

14

licly available at https://github.com/alvaro768/slam-pre-trained-LM/. The employed
dataset is available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/8SWHNO.

The optimization was done by the Adam algorithm by means of the minimization of the
binary cross-entropy between the predicted labels and the true labels given in Equation 4.
The learning rate and the batch size are set to 3e-4 and 256, respectively. The max sequence
length is 20, which is sufficient to accommodate any tokenized sentence (exercise instance)

from our corpus.

T
L= _;;[%-logwﬁ(l—y» log(1 —)], (4)

where x; and y; are the token and its label at time step ¢, respectively.

4. Data

The corpus of language learner data that we employ in this work was released by Duolingo
to support the 2018 Duolingo Shared Task on Second Language Acquisition Modeling (Settles
et al., 2018). The corpus collects data on three language tracks: English from Spanish (2.6k
users), Spanish from English (2.6k users), and French from English (1.2k users). The task
proposed by Duolingo consists in predicting the word-level mistakes that users will make
given their learning history and some additional metadata such as the exercise format and the
response time. In the following, L1 denotes the source language of a learner (not necessarily
her native language) and L2 the target language (i.e., the language she is learning).

All the data available correspond to three types of exercises linked to written production:
reverse translate, reverse tap, and listening. Reverse translate requires the user to translate
from L1 to L2, reverse tap involves translating a sentence from L1 to L2 by selectively tapping
words that are provided to the user, and the listening exercise consists in transcribing an
L2 utterance. The three types of exercises that are provided involve active recall, which is a
principle of efficient learning. Figure 4 illustrates these three types of exercises with examples.

The dataset includes all the sentences (exercise instances) produced by the users during the
first 30 days of learning a language. Each exercise instance in the dataset collects information

related to the exercise and the user. Figure 5 shows all the information available for a sample

15

https://github.com/alvaro768/slam-pre-trained-LM/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8SWHNO
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8SWHNO

Traduce esta oracion Traduce esta oracion Escuchay escribe

Un agricultor que lo guid hacia el ¢Te gustan el arroz y los frijoles?
norte.
Do you like rice and ‘))
)
A farmer who guided him to beans
the north
Do they like beans
meat
eat usually
Traduccion: (=]

Tu respuesta es g Tu respuesta es q 0 N
correcta correcta frijoles?

CONTINUAR CONTINUAR CONTINUAR

Figure 4: Types of exercises available on Duolingo: Reverse translate, Reverse tap, and Listening.

exercise instance. The following meta-data information are available: an anonymous user ID,
the countries from which the user has done exercises, the number of days since the user started
learning the language on Duolingo, the client (platform) which the learner used, the session
type (lesson or practice), the exercise format (reverse translate, reverse tap, or listening), and
the time (in seconds) that the learner took to finish the exercise. This meta-data is provided
in the first line of each exercise instance (see Fig. 5). The rest of the lines include a token ID,
the actual token (word) from the reference answer, and morpho-syntactic features (part of
speech, morphology features, dependency parse labels, and dependency edges). Importantly,
these features were not handcrafted but generated with SyntaxNet (Andor et al., 2016). The
last column contains the labels: a 1 if the user made a mistake and a 0 otherwise.

In our work, following the approach proposed by Xu et al. (2018), there are three groups of
features: token, user, and format features. Table 1 displays the grouping of these features. The
morpho-syntactic features (part of speech, morphology features, dependency parse labels, and
dependency edges) are excluded, as they were found to have weakly negative effects (Settles
et al., 2018).

Note that the sentences provided in the corpus are not the actual responses that the
learners submitted. Instead, their responses were aligned with the most similar reference
(correct) answer and labels were assigned per-token: 0 if the learner’s answer coincided with

the most similar reference answer, and 1 otherwise. This matching was done by means of

16

F#user:XUaq7Hc4 countries:NZ days:16.540 client:android session:practice format:listen time:17

Token 1D Token P.O.S. Morphology feats. Labels Edges Tag
rx42R1d/0201 Yo PRON Case=Nom|Number=Sing|Person=1 nsubj 2 0
PronType=Prs|fPOS=PRON++
rx42R1d/0202 veo VERB Mood=Ind|Number=Sing|Person=1 ROOT 0 0
Tense=Pres|VerbForm=Fin|/fPOS=VERB++

rx42R1d/0203 que SCONJ fPOS=SCONJ++ mark 4 0

rx42R1d/0204 tienes VERB Mood=Ind|Number=Sing|Person=2 ccomp 2 1
Tense=Pres|VerbForm=Fin|/fPOS=VERB++

rx42R1d/0205 una DET Definite=Ind|Gender=Fem|Number=Sing det 6 0
PronType=Art|fPOS=DET++

rx42R1d/0206 gata NOUN Gender=Fem|Number=Sing|[fPOS=NOUN++ dobj 4 0

Figure 5: Sample exercise instance (meta-information is provided on the first line; the rest of the lines offers

information about the exercise).

Token User Format
token userid day
country time
client format
session

Table 1: Feature grouping.

the finite-state transducer method (Mohri, 1997). Figure 6 illustrates this alignment with
an example. The learner sentence is the sentence provided by the learner (possibly with
mistakes) and the reference sentence is the most similar correct answer. Note that special

characters such as accents and punctuation marks are not taken into account.

5. Evaluation

All datasets (for the three language tracks) are provided pre-partitioned; the first 80% of
the learning data for each user is used for training, the next 10% for development, and the
last 10% for testing. The performance of this per-token binary classification task is assessed

by measuring the AUROC and the F}-score, two evaluation metrics that are widely used for

17

learner: Cuantas mansanas tienes ?
reference: i Cuéntas manzanas tienes ti ?

label: 0 1 0 1

Figure 6: Sentence alignment example with the learners’ responses allocated per token (labels indicate whether

the learners’ answers are correct).

classification problems. The AUROC measures the area under the ROC (Receiver Operating
Characteristics) curve, which is a probability curve obtained by plotting TPR (True Positive
Rate) against FPR (False Positive Rate). The Fj-scores were computed using a threshold of
0.5.

Precision is defined as the number of true positive results divided by the sum of true
positives and false positives, and recall is the number of true positives divided by the sum of

true positives and false negatives.

TP
Precision = m (5)
TP
N=——
Reca TP 1 FN (6)

The Fi-score is the harmonic mean of precision and recall:

Fl—2. pre(?is'ion - recall (1)
precision + recall

6. Results

This section presents the performance evaluation of several models previously described in
Section 3. These models incorporate the token feature, the user features user id, country, and
client, and the format features day, time, format, and session. First, a baseline model is defined
by including a linear layer as Layer 1 without a pre-trained language model. Then, different
architectures are explored by comparing several types of layers and numbers of neurons for
Layer 1. Finally, it is presented a comparison between several approaches for the incorporating
of DistilBERT and BERT in our model. The considered approaches are: feature extraction
(Peters et al., 2019), fine-tuning (Peters et al., 2019), and stack-and-finetune (Wang et al.,
2019b).

18

6.1. Baseline Models

Table 2 presents the results of the baseline models. Settles et al. (2018) provide a baseline
that uses a simple L2-regularized logistic regression trained via stochastic gradient descent
(SGD) with all the dataset features provided. This logistic regression was trained using only
the training set. This baseline model achieves an AUC value of 0.774 and an F} score of 0.190.

Our baseline model uses the neural architecture presented in Section 3. This baseline
model features a 64-neuron linear layer as Layer 1. The rest of the model is left unchanged.
Furthermore, it does not include a pre-trained language model. We also train this model
using only the training set and report the results on the development set. Our baseline model

achieves an AUC of 0.811 and an Fj score of 0.379.

Model AUC F
SLAM baseline (Logistic Regression) 0.774 0.190
Our baseline (Neural Network) 0.811 0.379

Table 2: Baseline models results.

6.2. Architecture

Several architectural choices for Layer 1 are evaluated (see Fig. 3) before incorporating
a pre-trained language model into our model. Table 3 reports the results for different com-
binations of layers (linear, GRU, BiLSTM, and BiGRU) and numbers of neurons (128, 256,
and 512). Note that the bidirectional layers actually have twice as many neurons (e.g., a
128-neuron BiGRU has 256 neurons in total).

Using an RNN decoding layer (GRU, BiGRU, or BiLSTM) or larger layers (i.e., layers
with more neurons) results in better AUC and F} scores. However, it can be clearly seen that
the layer size has a much lower impact than the layer type. Furthermore, we observe that
increasing the number of neurons exhibits diminishing returns.

Finally, it is also worth noting that biGRUs perform much better than their unidirectional
counterpart. This confirms the importance of having bidirectional layers for text data. The
difference between the BiGRU and the BiLSTM layers is small, with the former achieving

slightly better AUC scores (our primary evaluation metric) but worse Fj scores. As it results

19

in better AUC scores than the bidirectional LSTM layer, a 256-neuron BiGRU layer is used

for our base model (see highlighted cells in Table 3). Furthermore, GRU layers are simpler

(two gates instead of the three LSTM layers) and are computationally more efficient.

of neurons 64 128 256 512
Architecture AUC F AUC Fi AUC F AUC F
Linear layer 0.8176 0.3627 | 0.8207 0.3626 | 0.8219 0.3710 | 0.8223 0.3876
GRU layer 0.8345 0.4289 | 0.8352 0.4163 | 0.8367 0.4523 | 0.8391 0.4546
BiGRU layer 0.8429 0.4328 | 0.8454 0.4493 | 0.8459 0.4380 | 0.8462 0.4467
LSTM layer 0.8351 0.4199 | 0.8357 0.4214 | 0.8374 0.4481 | 0.8376 0.4480
BiLSTM layer | 0.8425 0.4563 | 0.8445 0.4650 | 0.8448 0.4662 | 0.8452 0.4603

Table 3: Model performance for different architectures.

In order to determine the relative importance of the model’s features before incorporating

a pre-trained language model, an ablation study is performed. Table 4 shows the decrease in

the AUC and F} scores after removing each set of features from our base model as described in

Section 3.2. Leaving out the token feature has the largest impact on the model performance,

resulting in a 0.1005 absolute decrease of the AUC score. This decrease is larger than that

of leaving out both the format and the user features, which include seven categorical and

numerical variables.

Ablated features A AUC A Fy

Token feature -0.1005 -0.2595
Format features -0.0498 -0.1669
User features -0.0229 -0.1580

Table 4: Ablation study.

6.3. Distribution of Mistakes and Confusion Graphs

Next, the distribution of the actual mistakes made by the language learners in a sentence

is compared with the distribution of the mistakes that were predicted by our model. The

distribution plots in Figure 7 resembles a truncated right-skewed Normal distribution; users

20

make more mistakes at the beginning of a sentence. However, this does not take into account
the fact that long sentences are less common in the dataset than short ones. Figure 8 controls
for this and indicate the percentage of mistakes for each position in a sentence. These plots
show that users are more likely to make a mistake in a word the further away a word is in a

sentence. The reported numbers and percentages are computed per position in the sentence.

17500
8000

IIII moIlII
I-_i , Il__
Y 1 > & S © 1 ? 9 Y 1 > B) © 1 ? 9

N\
Position in sentence Position in sentence

15000

o
=}
<3
o

= =
o N~
<3 [
<3 =)
o)

7500

of actual mistakes
of predicted mistakes

v
=}
<3
o

N

<3

<3

o

2500

0
40

Figure 7: Corrected actual and predicted mistakes distribution.

The performance of our model at a token level is analysed hereinafter in order to under-
stand when our model makes accurate predictions and when it fails to do so. Figure 9 shows
two confusion graphs with the percentage of true positives, false positives, false negatives, and
true negatives for every position in a sentence. The percentage of true positives (predicting a
mistake and being correct) increase the further away a token is, while the percentage of true
negatives (predicting no mistake and being correct) decreases. This is in line with the distri-
bution of actual mistakes shown in Figure 8. Furthermore, the percentage of false positives
(predicting a mistake and not being correct) and false negatives (predicting no mistake and
not being correct) increase the further away a token is, which implies that the model makes

more mistakes when less data is available (longer sentences are rarer in the dataset).

6.4. Feature Extraction

Feature extraction is the first approach used to incorporate a pre-trained language model
in our solution. Precisely, we freeze all the layers of the pre-trained language model and extract
the weight values of a subset of layers. The rest of the model (embedding layers and layers 1,
2, and 3) is trained after randomly initializing their weights. To that end, three models are
built using (a) layers 1-2, (b) layers 3-4, and (c) layers 5-6 of DistilBERT, and three models
using (a) layers 1-4, (b) layers 5-8, and (c) layers 9-12 of BERT. The outputs of these layers

21

o
2
o o o o
E N -

o
W

% of actual mistakes
% of predicted mistakes

o
N}

o
o

03
0.2 .
e
. =mEH
T+ 2 % x5 6 1 8 9 o 2 % x5 6 1 % 9 o

Position in sentence Position in sentence

Figure 8: Actual and predicted mistakes distribution.

= True Positives mmm True Negatives
0.25 mmm False Positives
W False Negatives

0.8

0.20

0.10 3
s
- I I ‘ I | ‘ I I I ‘ ‘ |
0.00 I' I I I I 0.0
12 3 a4 5 6 7 8 10

9 1 2 3 4 5 6 7 8 9 10
Position in sentence Position in sentence

©
o

% of occurrences
o
IS

% of occurrences

o
N

Figure 9: Confusion graphs.

are concatenated into a vector (of lengths 1,536 (2 x 768) and 3,072 (4 x 768), respectively)
and then fed into a bidirectional GRU layer (see Figure 3). The effect of the token embedding
is analysed by generating the results of the model with and without this embedding (see the
top part of the table). These two models use the final output of (Distil)BERT.

As shown in Table 5, the AUC scores are higher than those achieved with our base model
(without a pre-trained language model). Furthermore, the training times of the model with
BERT are approximately twice as long as those of the model with DistilBERT. The times are
given in hh:mm:ss format. The results of the models with and without a token embedding
indicate that it is useful to have a token embedding as well as a pre-trained language model,
which supports our decision of including both in our model. In this way, our model can learn
SLAM-specific information that cannot be found in pre-trained models. As it has been shown
that different layers of BERT learn different aspects of language, we compare the results
across them. Extracting upper layers resulted in a lower AUC score for both DistilBERT and

BERT; these layers capture linguistic phenomena that are more specific to the pre-training

22

Model AUC Fy Time

NN+DistilBERT (with emb.) 0.8504 0.4647 1:26:54
NN+DistilBERT (no emb.) ~ 0.8492 0.4693 1:54:49
NN+BERT (with emb.) 0.8501 0.4674 2:23:44
NN+BERT (no emb.) 0.8488 0.4548 3:07:24

NN+DistilBERT (extr. 1-2) 0.8512 0.4772 1:19:21
NN+DistilBERT (extr. 3-4) 0.8515 0.4591 1:19:07
NN+DistilBERT (extr. 5-6) 0.8508 0.4605 1:20:54

NN+BERT (extr. 1-4) 0.8518 0.4695 2:48:43
NN-+BERT (extr. 5-8) 0.8503 0.4613 2:47:38
NN-+BERT (extr. 9-12) 0.8495 0.4572 2:51:47

Table 5: Feature extraction results.

task it was trained on, while lower layers capture more general patterns. Last, note that
NN+BERT (extr. 9-12) (i.e., concatenation of the features extracted from the four last layers)
was the best-performing feature extraction approach in Devlin et al. (2019) for the Named
Entity Recognition task. Given that our corpus is much different (and more simple) than the
corpora on which BERT was trained, the lower layers of (Distil) BERT contain probably more

useful information for SLAM than its upper layers.

6.5. Fine-Tuning

The fine-tuning approach, which consists in freezing some layers of the language model
and updating (fine-tuning) the weights of the rest is explored next. The rest of the model
(as depicted in Figure 3) is trained from scratch after randomly initializing the weights. Four
different options are considered: fine-tuning only the last layer (layer 6), fine-tuning the last
two layers (layers 5-6), fine-tuning the last three layers (layers 4-6), and fine-tuning all of
them (layers 1-6). Table 6 shows the results for each of these options.

Note that fine-tuning the last layer of DistilBERT results in an AUC score similar to those
obtained with feature extraction, while all the other fine-tuning options yield significantly
worse results. This is due to the learning rate being too high. The weights of the pre-trained

language model are close to their optimal values, while those of the embeddings and layers 1,

23

Model AUC Fy Time
NN+DistilBERT (fin. 6) 0.8515 0.4819 1:55:05

NN-+BERT (fin. 6) 0.8500 0.4611 2:39:40
NN-+DistilBERT (fin. 5-6) 0.8464 0.4548 1:41:14
NN-+BERT (fin. 5-6) 0.8454 0.4534 2:38:22

NN+DistilBERT (fin. 4-6) 0.8461 0.4446 1:56:34
NN+DistilBERT (fin. 1-6) 0.8453 0.4330 2:48:41

Table 6: Fine-tuning results.

2, and 3 are randomly initialized and need a higher learning rate. A more robust fine-tuning
alternative is presented in the next section. Note as well that fine-tuning the models takes
longer than using feature extraction, and that the difference in time needed to fine-tune the
last layers of BERT and DistilBERT (while keeping the rest of their layers frozen) is smaller
than the one observed between them when performing feature extraction. Again, the times

are given in hh:mm:ss format.

6.6. Stack-and-Finetune

The stack-and-finetune training strategy is as follows. First, we train the entire neural
network (keeping the weights of the language model frozen) until convergence with the same
learning rate as before, i.e., 3e-4. Then, the whole neural network is fine-tuned (including the
language model) during a few epochs with a lower learning rate. This prevents catastrophic
forgetting from happening, a phenomenon that might occur when language models are trained
with a high learning rate. Table 7 shows our model results after using the stack-and-finetune
approach with a learning rate of le-5 for the fine-tuning stage. The execution times of the

stacking and the fine-tuning stages are reported separately in hh:mm:ss format.

Model AUC Fi Time

NN+DistilBERT (Ir=1e-5) 0.8518 0.4847 1:08:37 + 1:48:01
NN+BERT (Ir=1e-5) 0.8525 0.4789 1:18:40 + 4:22:04

Table 7: Stack-and-finetune results.

24

The AUC and Fj scores are higher (for both DistilBERT and BERT) than the scores
obtained with feature extraction and fine-tuning alone. By using a higher learning rate at a
first stage and a lower one thereafter, we were able to avoid catastrophic forgetting. Further-
more, the model with BERT achieves a higher AUC score than with DistilBERT, which is in
line with BERT being a larger language model. However, note that stack-and-finetune the
model with BERT takes twice as long as with DistilBERT. Last, we highlight that using the
stack-and-finetune approach results in AUC scores of 0.8518 and 0.8525 (with DistilBERT
and BERT, respectively), which is substantially higher than that of the model without a
pre-trained language model (0.8459).

Considering the stack-and-finetune approach with BERT word embeddings, Table 8 com-
pares our model with the SLAM-related techniques introduced in Section 2. Even though our
model ranks in the seventh position, our main aim is to show that the pre-trained language
models are useful for the SLAM task and prove that model distillation might enhance the
efficiency much more than affect the effectiveness (one can note that the differences between

AUC and F} are relatively small).

Method AUC "

1 Hu et al. (2020) 0.864 0.564
2 Ruan et al. (2021) 0.863 0.564
3 Osika et al. (2018) 0.861 0.561
4 Xuet al (2018) 0.861 0.559
5 Rich et al. (2018) 0.859 0.468
6 Sense et al. (2021) 0.854 -

7 Our method 0.853 0.479
8 Kaneko et al. (2018) 0.848 0.476
9 Bestgen (2018) 0.846 0.414
10 Yuan (2018) 0.841 0.479

Table 8: Comparition between our method and the methods proposed for the SLAM shared task.

7. Conclusion

We provided evidence that transfer learning through using pre-trained Language Models

such as BERT and DistilBERT is effective for Second Language Acquisition Modeling. The

25

stack-and-finetune approach is preferred in terms of AUC and Fj scores among the three
methods presented. However, it must be noted that these improvements come at the expense
of a larger computational cost and longer training times.

We explored three different ways of extracting and adapting the information stored in
the pre-trained language model (DistilBERT or BERT). Feature extraction of the lowest two
layers achieved a substantially higher AUC score and Fj-score than our base model (without
a pre-trained language model); 0.8512 and 0.4772, respectively, for DistilBERT. Extracting
the features of the last layers resulted in a worse performance, which is in line with the fact
that upper layers learn more task-specific information. We argued that our corpus is much
different from the corpora on which BERT was trained as our sentences are shorter and less
syntactically complex. Fine-tuning the layers of the pre-trained language model did not show
an improvement over feature extraction — fine-tuning the last layer of DistiIBERT yielded an
AUC score of 0.8515, while fine-tuning more layers damaged the model’s performance due to
the learning rate being too high. As a more robust fine-tuning alternative, we lastly showed
the stack-and-finetune approach, which first freezes the pre-trained language model and then
fine-tunes the whole model with a lower learning rate. This resulted in an AUC score of
0.8520 when using DistilBERT and a learning rate of 1e-6 for the fine-tuning stage, as well
as an AUC score of 0.8525 when using BERT and a learning rate of le-5 for the fine-tuning
stage.

Our work can be expanded in several directions. Regarding the data, we believe it would
be interesting to make available and analyze the answers of more advanced language learners.
It can be expected that, with more complex data (i.e., longer, more complex sentences), the
benefits of using pre-trained language models such as BERT will be greater, as these models
are trained on huge corpora with long, syntactically complex sentences. Regarding the model,
a next step could be comparing the performance of pre-trained language models of smaller

sizes in order to determine the trade-off between model capacity and performance for SLAM.

References

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., &
Collins, M. (2016). Globally normalized transition-based neural networks. In 54th Annual

26

Flavius
Note
Marked set by Flavius

Meeting of the Association for Computational Linguistics (ACL 2016), 2442-2452. ACL.
https://doi.org/10.18653 /v1/P16-1231

Bestgen, Y. (2018). Predicting second language learner successes and mistakes by means of
conjunctive features. In NAACL-HLT Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2018), 349-355. ACL. https://doi.org/10.18653/v1/w18-
0542.

Bucila, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
2006), 535-541. ACM. https://doi.org/10.1145/1150402.1150464.

Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning:
Beneficial effects of contextualization, personalization, and choice. Journal of Educational

Psychology, 88, 715-730. https://doi.org/10.1037/0022-0663.88.4.715.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training
of deep bidirectional transformers for language understanding. In 2019 Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-HLT 2019), 1, 4171-4186. ACL.
https://doi.org/10.18653/v1/N19-1423.

Ferreira-Mello, R., André, M., Pinheiro, A., Costa, E., & Romero, C. (2019). Text mining in
education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9.

https://doi.org/10.1002/widm.1332.

Gardner, R. C. (2014). Attitudes and motivation in second language learning. In Bilingualism,

Multiculturalism, and Second Language Learning, 63-84. Psychology Press.
Goldberg, Y. (2019). Assessing BERT’s syntactic abilities. arXiv preprint arXiv:1901.05287.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification.

27

In 56th Annual Meeting of the Association for Computational Linguistics (ACL 2018),
328-339. ACL. https://doi.org/10.18653/v1/P18-1031.

Hu, Y., Huang, H., Lan, T., Wei, X., Nie, Y., Qi, J., Yang, L., & Mao, X. (2020). Multi-
task Learning for Low-Resource Second Language Acquisition Modeling. In Asia-Pacific
Web and Web-Age Information Management Joint International Conference on Web and
Big Data (APWeb-WAIM 2020), 603-611. Springer. https://doi.org/10.1007/978-3-030-
60259-8_44.

Kaneko, M., Kajiwara, T., & Komachi, M. (2018). TMU system for SLAM-2018. In NAA-
CLHLT Workshop on Innovative Use of NLP for Building Educational Applications (BEA
2018), 365-369. ACL. https://doi.org/10.18653/v1/w18-0544.

Li, L., Li, C.,, & Ji, D. (2021). Deep context modeling for multi-turn re-
sponse selection in dialogue systems. Information Processing & Management, 58.

https://doi.org/10.1016 /j.ipm.2020.102415.

Meskele, D., & Frasincar, F. (2020). Aldonar: A hybrid solution for sentence-
level aspectbased sentiment analysis using a lexicalized domain ontology and a

regularized neural attention model. Information Processing & Management, 57.

https://doi.org/10.1016/j.ipm.2020.102211.

Mihaescu, M. C., & Popescu, P. S. (2021). Review on publicly available datasets for ed-
ucational data mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 11. https://doi.org/10.1002/widm.1403.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational

Linguistics, 23 , 269-311. MIT Press.

Osika, A., Nilsson, S., Sydorchuk, A., Sahin, F., & Huss, A. (2018). Second language
acquisition modeling: An ensemble approach. In NAACL-HLT Workshop on Innova-
tive Use of NLP for Building Educational Applications (BEA 2018), 217-222. ACL.
https://doi.org/10.18653/v1/W18-0525.

Peters, M., Ruder, S., & Smith, N. A. (2019). To tune or not to tune? Adapting pretrained

28

representations to diverse tasks. In 4th Workshop on Representation Learning for NLP

(RepLANLP 2019), 7-14. ACL. https://doi.org/10.18653,/v1/W19-4302.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language un-
derstanding by generative pre-training. OpenAl blog.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language

models are unsupervised multitask learners. OpenAl blog.

Rich, A., Popp, P. O., Halpern, D., Rothe, A., & Gureckis, T. (2018). Modeling secondlan-
guage learning from a psychological perspective. In NAACL-HLT Workshop on Inno-
vative Use of NLP for Building Educational Applications (BEA 2018), 223-230. ACL.
https://doi.org/10.18653/v1/w18-0526.

Ruan, S., Wei, W., & Landay, J. (2021). Variational Deep Knowledge Tracing for Language
Learning. In 11th International Learning Analytics and Knowledge Conference (LAK
2021), 323-332. ACM. https://doi.org/10.1145/3448139.3448170.

Ruder, S. (2019). Neural transfer learning for natural language processing. Ph.D. thesis NUI
Galway.

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Sense, F., Wood, R., Collins, M. G., Fiechter, J., Wood, A., Krusmark, M., Jastrzem-
bski, T., & Myers, C. W. (2021). Cognition-Enhanced Machine Learning for Better
Predictions with Limited Data. Topics in Cognitive Science. Wiley Online Library.
https://doi.org/10.1111/tops.12574.

Settles, B. (2018). Data for the 2018 Duolingo Shared Task on Second Language Acquisition
Modeling (SLAM). https://doi.org/10.7910/DVN/8SWHNO.

Settles, B., Brust, C., Gustafson, E., Hagiwara, M., & Madnani, N. (2018). Second language
acquisition modeling. In NAACL-HLT Workshop on Innovative Use of NLP for Building
Educational Applications (BEA 2018), 56-65. ACL. https://doi.org/10.18653/v1/W18-
0506.

29

Srivastava, M., & Goodman, N. (2021). Question generation for adaptive education. In 59th
Annual Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing, (ACL/IJCNLP 2021), 692-701.
ACL. https://doi.org/10.18653/v1/2021.acl-short.88.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15, 1929-1958.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention is all you need. In 31st Annual Conference on Neural
Information Processing Systems (NIPS 2017), 5998-6008. Curran Associates.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., &
Bowman, S. R. (2019a). SuperGLUE: A stickier benchmark for general-purpose language
understanding systems. In 32nd Annual Conference on Neural Information Processing

Systems (NIPS 2019), 3261-3275.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2018). GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In
Analyzing and Interpreting Neural Networks for NLP (EMNLP 2018) 353-355. ACL.
https://doi.org/10.18653/v1/W18-5446.

Wang, R., Su, H., Wang, C., Ji, K., & Ding, J. (2019b). To tune or not to tune? How about
the best of both worlds? arXiv preprint arXiv:1907.05338.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T,
Louf, R., Funtowicz, M. et al. (2019). Transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771. https://doi.org/10.18653/v1/2020.emnlp-

demos.6.

Wu, M., Davis, R. L., Domingue, B. W., Piech, C., & Goodman, N. D. (2020). Variational
item response theory: Fast, accurate, and expressive. In 13th International Conference

on Educational Data Mining (EDM 2020). IEDMS.

30

Xu, S., Chen, J., & Qin, L. (2018). CLUF: A neural model for second language acquisition
modeling. In NAACL-HLT Workshop on Innovative Use of NLP for Building Educational
Applications (BEA 2018), 374-380. ACL. https://doi.org/10.18653/v1/W18-0546.

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based
natural language processing. IEEE Computational Intelligence Magazine, 13 , 55-75.
https://doi.org/10.1109/MCI.2018.2840738.

Yuan, Z. (2018). Neural sequence modelling for learner error prediction. In NAACL-HLT
Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2018),
381-388. ACL. https://doi.org/10.18653/v1/W18-0547.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S.
(2015). Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In IEEE International Conference on Computer Vision (ICCV

2015), 19-27. IEEE. https://doi.org/10.1109/ICCV.2015.11.

31

	Introduction
	Related Literature
	Methodology
	Language Models
	Transformer Architecture
	BERT
	Model Distillation
	Model Architecture

	Data
	Evaluation
	Results
	Baseline Models
	Architecture
	Distribution of Mistakes and Confusion Graphs
	Feature Extraction
	Fine-Tuning
	Stack-and-Finetune

	Conclusion

