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Abstract

This paper proposes a Semantic Web Service Discovery framework for finding Semantic Web services by

making use of natural language processing techniques. The framework allows searching through a set of

semantic Web services in order to find a match with a user query consisting of keywords. By specify-

ing the search goal using keywords, end-users do not need to have knowledge about semantic languages,

which makes it easy to express the desired semantic Web services. For matching keywords with semantic

Web service descriptions given in WSMO, techniques like part-of-speech tagging, lemmatization, and word

sense disambiguation are used. After determining the senses of relevant words gathered from Web service

descriptions and the user query, a matching process takes place. The performance evaluation shows that the

three proposed matching algorithms are able to effectively perform matching and approximate matching.

Keywords: Natural language processing, Semantic Web services, WSMO, Web service discovery

1. Introduction

With the emergence of Web services and the Service Oriented Architecture (SOA), business process

components are more and more being decoupled. Using Web services in SOA creates a wide network of

services that collaborate in order to implement complex tasks.

Currently, Web services are commonly described via narrative Web pages containing information about

their operations in natural languages. These Web pages contain plain text with no machine interpretable

structure and therefore cannot be used by machines to automatically process the descriptive information

about a Web service.
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To promote the automation of Web service discovery (Keller et al., 2005) and composition (Hikimpour

et al., 2005), a number of different semantic languages (Martin et al., 2004; de Bruijn et al., 2005; Vitvar

et al., 2007) have been created that allow describing the functionality of services in a machine interpretable

form, while original Web service descriptions contained only information about the data types and bindings

as a description of a Web service functionality.

The semantic Web service descriptions use ontologies to describe the behavior of a Web service by

applying reasoning over Web service semantics. In this way, the semantics described in ontologies enable

systems to interpret what a Web service is doing, stimulating automatic Web service discovery and compo-

sition. The ontologies, however, are created by humans and therefore contain natural language. This allows

humans to understand the concepts defined, but a system, in contrary to humans, can only understand on-

tology concepts and their relationships to a limited extend. Natural Language Processing (NLP) techniques

can therefore help in better defining the context of a Web service.

When using one holistic ontology, machines can discover and compose Web services automatically

based on the semantics defined. Using one holistic ontology is, however, hardly reachable and therefore

it is impossible to reason based only on formal logic. NLP techniques can help overcome the ambiguity

problems between different ontologies that are being used by semantic Web service descriptions.

Last, service composition should be driven by people who know business processes and not by techni-

cians. Thus, end users must be able to discover these Web services based on keywords written in human

language. Therefore, a discovery mechanism must be developed in such a way that a bridge between key-

words written in a natural language, on one hand, and Web service descriptions provided using semantically

enhanced languages, on the other hand, can be created.

In this paper, the Semantic Web Service Discovery (SWSD) framework is proposed, which enables end

users to search, using keywords, for existing Web services described by means of a Semantic Web language

for service annotation. This process consists of several steps including:

• Extraction of information from semantic descriptions to create the context of a Web service;

• NLP for disambiguating words’ meanings and establishing a context for a set of words;

• Matching the users search context with a Web service context by means of a similarity measure.

The result of this process will be a ranked list of Web services that match the users search criteria. This

context-based matchmaking mechanism provides flexibility by not only searching for exact word matches,
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but also by looking for synonyms found in a popular lexical database as WordNet (Miller et al., 1990) and

making use of its extensive network of relationships between different words (e.g., synonyms, hypernyms,

etc.).

This work is based on our previous efforts (Sangers et al., 2012), in which we propose a linguistic

approach for semantic Web service discovery, yet in our current endeavours we provide more details on

the proposed approach and, additionally, we present a genetic algorithm-based method to learn the feature

weights. The remainder of this paper is structured as follows. Section 2 discusses related technologies for

describing and searching Web services. Next, Section 3 proposes the SWSD framework for discovery of

Web services based on keywords. A possible implementation of the framework is described in Section 4.

Subsequently, Section 5 evaluates different matching algorithms between the user input and a Web service

description. Last, Section 6 concludes the paper and discusses future work.

2. Related Work

This section reviews state-of-the-art languages and tools for service discovery. First, a comparison is

made between different types of Web service description languages in Section 2.1. Since this paper covers

the discovery of semantic Web services, three semantic Web service description languages are described

and compared with each other in Section 2.2. Last, several approaches for discovering Web services are

discussed in Section 2.3.

2.1. Web Service Description Languages

Because Web service discovery depends to a large extent on how Web services are described, an

overview of the different types of languages used for describing Web services is first given. These lan-

guages differ in models and formalisms used for describing Web services and which Web service properties

they cover. This range of languages can go from a simple piece of plain text describing the Web service, to

large and complex semantic descriptions of the Web service’s behavior by means of ontologies. Figure 1

shows an overview of the most widely used languages for describing a Web service. Distinction among four

description layers is made in order to demonstrate an increasing role of semantics in such languages. Each

layer can contribute to the process of matching a service with a given query. Thus, it is necessary to be able

to make use of the information encoded into each layer in order to have a good overview on the capability

of a service.
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Figure 1: Web service description languages.

To make machines use Web services automatically, their interfaces are commonly defined in languages

such as Web Service Description Layer (WSDL) (Christensen et al., 2001), Web Application Description

Layer (WADL) (Hadley, 2009), or hRESTs (Kopecký et al., 2009). These languages describe the bind-

ings, the operations and their associated input and output data types, and the end points of a Web service.

These descriptions enable humans and applications to understand where, when, and what a Web service is

expecting from the user on a syntactical level.

The top layer depicted in Figure 1 consists of semantic Web service description languages such as Web

Service Modeling Ontology (WSMO) (de Bruijn et al., 2005) and OWL-S (Martin et al., 2004). These lan-

guages employ ontologies for describing the behavior of a Web service. Concepts, attributes, and relations

from existing ontologies and logical expressions can be used to state conditions and effects of a Web service.

In order to provide a bridge between the syntactical languages such as WSDL and hRESTs to the

semantically enriched languages such as WSMO and OWL-S, middle layer languages were defined. Mi-

croWSMO (Kopecký et al., 2009), SA-REST (Lathem et al., 2007), and Semantic Annotations for WSDL

(SAWSDL) (Farrell and Lausen, 2007) link the concepts from the semantic descriptions with the data types

for the input and output of a Web service, or with its operations, and provide methods to transform data

types to semantic concepts and the other way around.

The latter two layers are not widely used yet. Therefore most Web service discovery systems use only

the descriptions written in languages like WSDL. However, since semantics provide more information about
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Web services, they can easily be used for Web service discovery. In our view, both types of languages can

contribute to the discovery of Web services.

2.2. Semantic Web Service Description Languages

Table 1 lists the core differences between three semantic Web service description languages, OWL-S,

WSMO and WSMO-Lite. They mainly differ in the syntax they have, the different parts they consist of, and

which kind of reasoning they use to describe the logic behavior of a Web service.

OWL-S builds on Web Ontology Language (OWL) (Bechhofer et al., 2004) and consists of different

ontologies to describe a Web service. The language is defined in order to enable three major tasks which

could not be fulfilled with older technologies (WSDL). These are automatic Web service discovery, auto-

matic Web service invocation, and automatic Web service composition and interoperation. Because OWL-S

uses ontologies to describe Web services, these services and their behavior become machine interpretable

and thus tasks such as discovery and composition can be automated. OWL-S makes use of three different

ontologies: a Service Profile, which states what the Web service does, a Service Model, which describe

how the Web service performs the tasks, and a Service Grounding, which describes how to access the Web

service. In recent work, Farrag et al. (2012) introduced an algorithm for mapping WSDL descriptions to

OWL-S descriptions by making use of an ontology-based approach.

WSMO is a framework for describing Web services and consists of four top-entities: Ontologies, Web

services, Goals, and Mediators. Ontologies provide the terminology used by other WSMO elements. Web

services describe the capabilities, interfaces, and internal working of Web services. Goals represent user

desires, and Mediators provide bridges between different Ontologies, Web services, or Goals to overcome

interoperability problems. WSMO uses a specific designed language called WSML (de Bruijn, 2008) and

can contain powerful logical formulae to describe the different WSMO elements. It also contains a ground-

ing feature to link concepts with WSDL data types so that automatic invocation can be achieved.

Table 1: Core differences between OWL-S, WSMO and WSMO-Lite.

OWL-S WSMO WSMO-Lite

Syntax OWL WSML RDF/XML

Parts Service Profile, Service

Model, Service Grounding

Ontology, Web Service,

Goal, Mediator

Ontology, Web Service

Reasoning Logic language Logic and rule language Logic language
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WSMO-Lite (Vitvar et al., 2007) was created because of the need for a simple semantic Web service de-

scription language. It is therefore a lightweight set of semantic service descriptions written in RDFS (Brick-

ley and Guha, 2004) that can be used for annotations of various WSDL elements using SAWSDL annota-

tion mechanism. WSMO-Lite only makes use of Ontologies and Web service descriptions and contains no

grounding information, which makes it dependent of SAWSDL. The behavior of a Web service is only im-

plicitly described by defining just preconditions and effects, so no specific how-questions can be answered.

Although these three languages have different properties, they all describe the semantics of a Web

service. They provide information about the context domain, behavior and usage of a Web service. Because

they use elements from predefined ontologies, those ontologies have to be used together with the semantic

Web service descriptions for the discovery and matching of the services.

2.3. Web Service Discovery Engines

We can distinguish between two types of approaches for Web service discovery, i.e., discovery based

on clustering operation parameters on the one hand, and rich semantics on the other hand. This section

continues by elaborating on existing or proposed Web service discovery systems for each of these two

different approaches.

2.3.1. Web service discovery based on clustering operation parameters

One approach for Web service discovery is by searching for similarities among different WSDL service

descriptions, enabling searching for substitutable and composable Web services as similar operations and

services can be discovered based on operation parameters. Web service operation semantics can be extracted

and employed for discovery purposes.

Woogle (Dong et al., 2004) is a Web service search engine that employs clustering techniques for group-

ing operation parameters, and for a given query, it searches for similar and/or composable Web service

operations. For this, Woogle automatically defines the underlying semantics of WSDL descriptions based

on the operation parameters and uses these semantics to match operations. However, if independent ontolo-

gies which define the Web service semantics exist, the behavior of a Web service can be known without

investigating parameter names and is therefore preferable to use.

Operation parameter clustering techniques are also employed in Seekda! (Semantic Technology Insti-

tute, 2009), which extracts service semantics from WSDL files, enabling runtime exchange of similar and

composable services. Seekda! is part of the Service-Finder (Cefriel et al., 2009) framework, which is a
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platform for service discovery where information about services is gathered from various sources like Web

pages and blogs. The information is automatically added to a semantic model using automatic service an-

notation, realizing flexible discovery of services. Service-Finder uses service semantics for discovery and

composition, but gathers this information dynamically and hence does not take into account predefined

semantics.

2.3.2. Web service discovery using rich semantics

Another approach for semantic Web service discovery is the use of predefined ontologies. By identify-

ing semantic similarities between ontologies, related semantic Web services can be discovered. To identify

semantic similarities, Mediation Spaces can be used (Dietze et al., 2009). These Mediation Spaces me-

diate on data-level as well as semantic-level for discovery of related semantic Web services according to

ontologies, other semantic Web services, or WSMO Goals.

GODO (Gomez et al., 2004) does not search for similar Web services, but instead employs a goal-driven

approach. GODO has a repository with WSMO Goals and analyzes a user-described goal (in natural lan-

guage). The WSMO Goal with the highest match will be sent to WSMX (DERI Galway, 2008), which is

an execution environment for WSMO service discovery and composition. The WSMX environment subse-

quently searches for a WSMO Web service that is linked to the given WSMO Goal via WSMO Mediators

and returns the WSMO Web service. Although this approach makes good use of the capabilities of the

WSMO framework, it cannot be applied for other semantic languages like OWL-S and WSMO-Lite, as

they do not have goal representation elements.

Bener et al. (2009) proposed an architecture that performs semantic matching of Web services based

on both input and output descriptions, as well as preconditions and effects. In the semantic Web service

matchmaking process, OWL-S descriptions are assumed (in contrast to the WSMO descriptions which

are the focus of our research), and the matchmaking is done at the conceptual level using SWRL rules.

Similar to the previous approach, Yang et al. (2008) make use of rules for matching semantic Web services.

However, in contrast to the work of Bener et al. (2009), the authors take into account the service context,

which is described by means of a context profile in OWL-S. Contexts are gathered through a Java Expert

System Shell (JESS)-enabled context elicitation system featuring an ontology-based context model formally

describing and acquiring contextual information. Service matching is done based in inputs and outputs and

can result in an exact match, a plug-in match, and a subsumed match.
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Luna et al. (2013) proposed BAX-SET PLUS, which is a multi-agent taxonomy-based method for

categorization, search, and retrieval, of semantic Web services described in OWL-S. Here, user-selected

concepts from a taxonomy are matched against concepts contained in OWL-S service descriptions. An

important difference is that, in contrast to the work presented by the authors, we extract concepts from a

natural language query instead of from an existing taxonomy that is browsed by the user. Moreover, our

work focuses on WSMO service descriptions in WSML, instead of the OWL-S specifications focused on

by Luna et al. (2013). Also, for all aforementioned approaches, no deep linguistic analysis, like proposed

in our paper, is performed.

Recently, Paulraj and Swamynathan (2012) proposed a method for content-based semantic Web ser-

vice discovery. In contrast to the general approach where user queries are matched against OWL-S inputs,

outputs, preconditions, and effects (IOPE), the framework allows users to submit free text as input. This

alleviates the restrictions put on user queries in that they must be of the same format as that of the IOPEs

present in OWL-S. In their work, nouns are extracted from text that is initially unstructured. These nouns

are subsequently used for service discovery, after a disambiguation process that makes use of the Word-

Net lexical database for determining the meaning of the nouns. Although there are similarities with the

work presented in our paper, it should be noted that, similar to many semantics-based Web service discov-

ery frameworks, Paulraj and Swamynathan (2012) focus specifically on OWL-S. In contrast, we focus on

WSMO and aim for a more universal approach that can be utilized in various semantic Web service de-

scription languages (with a few adaptations). Although both in (Paulraj and Swamynathan, 2012) and our

work, inputs are initially unstructured, in our current endeavours we provide a means for ranking the results,

while Paulraj and Swamynathan (2012) do not implement any form of result ranking.

3. Semantic Web Service Discovery Framework

The SWSD framework comprises a keyword-based discovery process for searching Web services that

are described using a semantic language. The search mechanism incorporates NLP techniques in order

to establish a match between a user search query and a semantic Web service description. Logics-based

specifications that are defined in the Web service descriptions are not taken into consideration, but the

definitions of concepts stated in other imported ontologies are exploited. In this way, the framework is able

to establish a broader search field by also using related concepts from the ontologies for identifying the

context in which the Web service is operating.
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Section 3.1 covers the global architecture of the SWSD framework and a short description of the main

components. Section 3.2 describes how the SWSD framework reads semantic Web service descriptions and

which elements from those descriptions are being used for the discovery. In Section 3.3 is presented how

the context of a semantic Web service is established. Last, Section 3.4 describes two different algorithms to

match a user query with a semantic Web service using the query and service contexts.

3.1. Framework Architecture

As an input, the SWSD framework requires a set of Web services that are described in semantic lan-

guages (e.g., WSMO (de Bruijn et al., 2005), WSMO-Lite (Vitvar et al., 2007), or OWL-S (Martin et al.,

2004)). The descriptions are subsequently analyzed, resulting in the extraction of words that could rep-

resent the context of the Web services (i.e., the names of the operations, and nouns and verbs stated in

non-functional descriptions of concepts or conditions). Next, the extracted words are disambiguated, as

multiple senses can be assigned to the same words. Last, the disambiguated words are matched with the

disambiguated words from the search query, resulting in a ranked list of Web services.

Figure 2 describes the architecture of the SWSD framework. The process is subdivided into three major

tasks, i.e., Service Reading, Word Sense Disambiguation (WSD), and Match Making. Service Reading

comprises parsing a semantic Web service description, extracting names and non-functional descriptions

of used concepts. The WSD task subsequently determines the senses of a set of words. Last, the Match

Making step determines the similarity between the different sets of senses, which is ultimately used for

ranking the analyzed Web services.

3.2. Semantic Web Service Reader

To enable a search engine to look through Web service descriptions written in different languages, it has

to have several different Web service description readers, one for each language. In the case of semantically

described Web services, the readers must be able to parse a description and extract concepts, attributes, and

relations from WSMO, WSMO-Lite, OWL-S, etc. Therefore the first step in the process of searching for

semantically described Web services is to implement readers for different languages and formats.

A semantic Web service reader must be able to extract various elements out of a Web service description

and its used ontologies. In the case of a WSMO Web service, names and non-functional descriptions of

elements such as the capabilities and their subelements, conditions and effects, help in understanding the

context of the Web service. Thereby, by extracting concepts out of the definedBy statement of those
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Figure 2: SWSD architecture.

elements and searching their non-functional descriptions in an ontology, the context of the Web service can

be determined in a more accurate manner than just by using service names. The non-functional descriptions

are written in natural language and thus contain a human description of the specified element. By extracting

these descriptions, one can thus establish the context of the Web service operations.

Before extracting words from a Web service description, the description has to be parsed. Different

languages can mean different syntaxes and therefore different parsers are needed. For WSMO a WSML

parser like WSMO4J (EU IST and FIT-IT, 2008) can help in this process and for OWL-S and WSMO-Lite,

which are written using an OWL (Bechhofer et al., 2004) or RDF (Klyne and Carroll, 2004) language, a

parser like Sesame (openRDF.org, 2009) or Jena (HP Labs Semantic Web, 2009) can be used.
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To find useful words for WSD, the element names and non-functional descriptions must be split into

different words. In the case of element names, simply splitting the words when a case transition has occurred

is enough, since in most cases they are written in “camel notation” (e.g., HotelBookingWebService). Each

word in the sentences found in the non-functional descriptions, must be tagged with the right Part-of-Speech

(POS) in order to be useful. Using a POS-tagger, nouns and verbs from sentences are extracted and used

for the WSD.

3.3. Word Sense Disambiguation

A user can represent its goal by defining a sets of words (nouns and verbs). Because many words have

associated multiple meanings (e.g., mouse can be used to represent either an animal or a computer device),

disambiguation of word senses helps in finding the correct context. The disambiguation will be applied to

the set of words gathered from the user input and from a semantic Web service description, resulting in two

sets of disambiguated senses that can be employed for matching.

As non-supervised WSD allows disambiguation of words without user interference, we use a variant

of the SSI algorithm (Navigli and Velardi, 2005) for retrieving the senses out of a set of words, which is

defined as follows:

selectedS ense(word) = arg max
s j∈senses(word)

∑
sci∈I

sim(s j, sci) . (1)

The algorithm disambiguates a word (word) based on a previously disambiguated set of words and their

related senses. Per word sense s j, a similarity with the senses from the context (sci) is calculated, and the

sense with the highest similarity is chosen. Subsequently, the word and its chosen sense are added to context

I and the process is iterated until there are no ambiguous words left.

Naturally, at the start of the process, a context is not yet established, and hence I = ∅. Hence, we fill

context I with all monosemous words, i.e., words that have only one sense, as these do not require any

disambiguation. Subsequently, the iterative process of disambiguating polysemous words can be initiated,

always targeting the least ambiguous words (i.e., with the least amount of senses) first. For each of the

available senses, the algorithm is simulated as if the sense was used as the starting context. Each time a

new sense is added to the context, the similarity between the new sense and the context is stored. The

sense which creates the highest sum of similarity measures during its simulation run is used for the context

initialization.

Because previous studies have shown that the method of Jiang and Conrath (Jiang and Conrath, 1997)

performs better than other Semantic distance measures (Budanitsky and Hirst, 2001), we employ this
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method for computing the sense similarities. The measure makes use of the Information Content (IC),

which depends on the probability of the occurrence of a particular sense in a large corpus:

IC(sense) =
1

log P(sense)
. (2)

Formula (3) gives the similarity between two senses. Besides the IC, also the Least Common Subsumer

(LCS ) between two concepts is used, representing the first ancestor concept that subsumes both senses

when going in a bottom-up direction through a hypernym tree of senses. The IC of the LCS is computed

and compared with the IC of the two senses:

sim(si, s j) =
1

IC(si) + IC(s j) − 2 × IC(LCS (si, s j))
. (3)

3.4. Sense Matching

After the disambiguation of all words gathered from the user input and a semantic Web service descrip-

tion, one is left with several different sets of senses. For the matching process, each word in the user query

is assumed to be equally important and hence the user input contains one set of senses. However, a Web

service description can contain words that better represent the context of the Web service than other words.

Therefore, after the WSD, several sets of senses, each having a different weight for the matching process,

are computed for a Web service.

This section starts with a high level view of the matching between the user input and the different levels

of information extracted from a Web service description. Next, the Jaccard matcher for matching sets of

words or senses is described. Last, a matching approach based on similarities between words or senses is

explained.

3.4.1. Level Matching

Not only the disambiguated senses are matched, but also words that are not appearing in the used

lexicon, as these words can represent important names or concepts for the discovery of Web services. Hence,

for matching user input with a semantic Web service description, the user input contains a set of ambiguous

words wsu and a set of senses ssu. The Web service description on the other hand contains multiple sets of

words mwsw and multiple sets of senses mssw. Because the Web service description, presented in the next

section, provides n sets containing words and senses, each having a different importance for the matching

process, the final similarity between the user input and the Web service input is computed as a weighted
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average of the similarities between each set of words mwswi ∈ mwsw and senses msswi ∈ mssw from the

Web service description and the set of words and senses from the user input:

f inalS im(ssu,mssw,wsu,mwsw) =
n∑

i=1

wi × levelS im(ssu,msswi,wsu,mwswi) . (4)

Here, the weights wi are established through optimization techniques and sum up to 1 in order to make sure

that the final similarity between the user query and a Web service description has a range between 0 and 1.

For each set of words and senses from the Web service description, the system employs two mea-

sures, i.e., one for sense matching (defined in Formulas (6) and (8)), and one for the matching of non-

disambiguated words (see Formulas (7) and (11)). These measures range between 0 (no match) and 1

(exact match) and are combined into a single measure using a weighted average:

levelS im(ssu, ssw,wsu,wsw) = wsense × senseS im(ssu, ssw) + wword × wordS im(wsu,wsw) , (5)

which is used n times in Formula (4), where msswi = ssw and mwswi = wsw. The weights corresponding

to the sense similarity and the word similarity are, as with the final similarity, established by means of

optimization techniques and must sum up to 1.

3.4.2. Jaccard Matching

The Jaccard matcher, which is employed for matching sets of words or senses, makes use of the Jaccard

Index (Jaccard, 1901). This method is often used for computing set similarity and thus compares different

sense sets:

senseS im(ssu, ssw) =
|ssu
∩

ssw|
|ssu
∪

ssw|
. (6)

Subsequently, we calculate a similarity coefficient by dividing the number of senses appearing in both

sets by the total number of senses in both sets. This results in a percentage of exact matching items and can

also be applied for matching the words that could not be disambiguated:

wordS im(wsu,wsw) =
|wsu
∩

wsw|
|wsu
∪

wsw|
. (7)

3.4.3. Similarity Matching

Normally, for the calculation of similarity values, only perfect matching items are used. In order to

additionally take into consideration partial matches, the similarity matcher makes use of a similarity-based

approach for matching different sets of senses or non-disambiguated words, expressing close relatedness

with values approaching 1, and non-relatedness with values close to 0.
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Sense set similarities are calculated using the same similarity function as in WSD. The similarity be-

tween the user set of senses ssu and a Web service set of senses ssw is computed as follows:

senseS im(ssu, ssw) =
∑

su∈ssu

senseS core(su, ssw)
|ssu| + |ssw|

+
∑

sw∈ssw

senseS core(sw, ssu)
|ssu| + |ssw|

, (8)

where the average of the similarity between each sense su from the user set of senses, and the Web service

set of senses is computed. The average of the similarity between each sense sw from the Web service set of

senses, and the user set of senses is added to that to provide a symmetric match.

The similarity between a sense sa and a set of senses ssb is calculated by taking the maximum similarity

between the sense and one of the senses sb from the other set, i.e.:

senseS core(sa, ssb) = max
sb∈ssb

senseNorm(sa, sb) . (9)

The similarities calculated with Formula (3) range between 0 and infinity, yet we prefer a range between

0 and 1 for quantifying the matching degree. Hence, we employ a logarithmic function in order to transform

the values of the similarity:

senseNorm(sa, sb) = 1 − e−sim(sa,sb) . (10)

Here, exact similar senses will have 1 as resulting similarity and a total mismatch between senses will result

in 0.

As we are unable to determine the senses of some words, we fall back to non-semantic measurements

of similarities for matching the sets of non-disambiguated words. For this, we employ the Levenshtein

distance metric (Levenshtein, 1966), which calculates the total number of operations that need to be done in

order to transform one word to another. The similarity between two sets of words is subsequently calculated

similarly to the comparison of two sense sets, yet now the Levenshtein distance is applied instead of the

similarity function from WSD.

We calculate the similarity between the user set of words wsu and a Web service set of words wsw as:

wordS im(wsu,wsw) =
∑

wu∈wsu

wordS core(wu,wsw)
|wsu| + |wsw|

+
∑

ww∈wsw

wordS core(ww,wsu)
|wsu| + |wsw|

, (11)

where the similarity between a word and a set of words, wordS core(wa,wsb) is computed as:

wordS core(wa,wsb) = max
wb∈wsb

wordNorm(wa,wb) , (12)

and the Levenshtein distance is used in the following way for comparing two words wa and wb:

wordNorm(wa,wb) = max(0, 1 − 2 × levenshtein(wa,wb)
maxLength(wa,wb)

) . (13)
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Here, maxLength(wa,wb) denotes the number of tokens of the longest word that is being compared. If this

formula returns a negative value, which means that the amount of changes that should be made exceed half

of the length of the largest word, a value of 0 will be used to indicate a total mismatch.

4. Semantic Web Service Discovery Engine

This section describes the SWSD engine, which is an implementation of the SWSD approach and allows

users to search for Web services on an existing repository by defining a set of keywords. The steps required

for this implementation are closely related to the steps stated for the SWSD framework stated in the previous

section. However, this is one possible implementation of the framework, using specific languages and

external libraries to provide a discovery engine.

Section 4.1 introduces the SWSD engine as an implementation of the SWSD framework. Section 4.2

describes how the SWSD engine reads WSMO descriptions and which elements from those descriptions are

being used for the service discovery. How the context of a semantic Web service is established is presented

in Section 4.3. Last, Section 4.4 describes how matching algorithms are used for computing the similarity

between the user input and semantic Web service information.

4.1. SWSD Engine

At the moment, the SWSD engine can only apply a search on Web services which are annotated using

the WSMO (de Bruijn et al., 2005) framework as WSMO is a powerful framework that can contain very

wide information about Web services. So, only a WSMO Web service reader and a WSMO Ontology reader

have been implemented, but based on the modularity of the implementation, the engine can be extended with

readers that can parse other semantic Web service languages.

To read the WSMO files, WSMO4J (EU IST and FIT-IT, 2008) is used. WSMO4J is an API and a

reference implementation for building semantic Web Services and Semantic Business Process applications

based on WSMO. By using WSMO4J, WSMO files can be parsed, read, and written. For the WSD, Word-

Net (Miller et al., 1990) is used through two WordNet API’s, in order to find senses belonging to words.

The Java WordNet Library (JWNL) (Walenz and Didion, 2011) is used for the morphological analysis of

each word, and the MIT Java WordNet Interface (JWI) (Finlayson, 2012) is subsequently employed for

retrieving WordNet synsets. Next, JWordNetSim (The University of Sheffield, 2009) is used to calculate

the similarity between two WordNet senses because it contains an implementation of the Jiang and Conrath

formula, which we proposed to use in the SWSD framework. For the part-of-speech tagging, the Stanford
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Figure 3: Result presentation example.

parser (The Stanford Natural Language Processing Group, 2009) is used. The overall implementation is

made in Java, due to the availability of external packages written in this language for WSD and WSMO

parsing and reading.

Figure 3 shows the user interface of the SWSD engine. The user can fill in a comma-separated list of

words representing his goal and click the search button. The system will then check if each word given by

the user can be a noun, verb, both noun or verb, or something else. This is needed since the WSD process

can only be used for a set of words containing the same POS tag. For the words that do not have a clear

POS, the user will be asked to select the appropriate POS to use for the search. After that, the system will do

the search and propose a list of Web services, which are ranked by their similarity with the user input. Each

item in the list contains the name of the Web service, its non-functional description, its similarity score and

a normalized similarity score that has a range from 0 to 1 (computed by dividing the similarity score with

the highest similarity score).
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namespace { _"http://api.google.com/GoogleSearch#", 

         dc _"http://purl.org/dc/elements/1.1#" }

webService GoogleSearchWebService
    nonFunctionalProperties

        dc#description hasValue "Web service that searches for Web sites containing words that matches given search words."
endNonFunctionalProperties

importsOntology

    _"http://api.google.com/http_api.google.com_GoogleSearch#GoogleOntology.wsml"

    capability DoSearch

 

    postcondition
        nonFunctionalProperties

            dc#description hasValue "If there is an input with at least a query, the output must be a GoogleSearchResult.
                                     Some values in the input, must also be returned in the output."
        endNonFunctionalProperties
        definedBy

            ?input[hasQuery hasValue ?query] memberOf GoogleSearchParameterSet and ?query memberOf Query implies

            exists ?output (?output memberOf GoogleSearchResult and ?output[hasSearchQuery hasValue ?query]) .

Name and non-functional description of the Web service are

extracted. Nouns and verbs are used for WSD.

Identifier of the ontology where concepts are defined.

Non-functional descriptions of properties of the capabilities

are extracted. Nouns and verbs are used for WSD.

Concepts uses from ontologies are extracted

and searched in their ontologies.

Figure 4: A WSMO Web service information extraction example.

namespace { _"http://api.google.com/GoogleSearch#", 

         dc _"http://purl.org/dc/elements/1.1#" }

ontology SimpleGoogleOntology

 

concept GoogleSearchResult

    nonFunctionalProperties

        dc#description hasValue "Result of a Google search method."

    endNonFunctionalProperties

    hasSearchQuery ofType (1) Query

        nfp

            dc#description hasValue "The query for the search request." 

        endnfp

concept Query

    hasText ofType (1) _string

        nfp

            dc#description hasValue "String containing keywords representing the search query." 

        endnfp

Name and non-functional description of the concept

are extracted. Nouns and verbs are used for WSD.

Name and non-functional description of the attribute

are extracted. Nouns and verbs are used for WSD.

Concepts related via a property are also searched in the ontology.

Figure 5: A WSMO ontology information extraction example.

4.2. Semantic Web Service Reader

For reading WSMO files, an implementation of the WSMO4J API is used, resulting in an engine that

can extract different types of information from WSMO Web services and WSMO ontologies. Because

WSMO Web services and ontologies use different structures, two different readers must be used.

Figure 4 shows an example WSMO Web service describing the Google Search Web service. The parts

surrounded by rectangles are extracted by the system to establish the context of the Web service. First

the name and non-functional description of the Web service are analyzed for extracting relevant words

(nouns/verbs). Then the words from the non-functional descriptions of the properties of the capabilities are

extracted and the reader will search in the logical formulae, written after each definedBy statement, for

concepts used from external ontologies, which are stated after the importsOntology statement.
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After reading the WSMO Web service file, the found concepts are used to search in ontologies to find

their description. Figure 5 shows an example WSMO Ontology containing some concepts used in the Web

service description from Figure 4. Based on a full identifier, the reader can search for a concept. If a concept

is found, the non-functional definition, attributes and related concepts can be used for WSD.

In total the engine creates seven different levels of information about the Web service. Each of these

levels has a different amount of importance to the matching process. Those amounts are expressed in

weights, summing up to 1. The different levels and their associated weights are:

• Non-functional description and name of the Web service, 0.210, (direct relation, from Web service);

• Non-functional descriptions of properties of capabilities of the Web service, 0.167, (direct relation,

from Web service);

• Non-functional descriptions and names of concepts used by Web service, 0.191, (direct relation, from

ontology);

• Non-functional descriptions and names of attributes of concepts used by the Web service, 0.008,

(indirect relation, from ontology);

• Non-functional descriptions and names of concepts related via attributes with concepts used by the

Web service, 0.153, (indirect relation, from ontology);

• Non-functional descriptions and names of superconcepts of the concepts used by the Web service,

0.158, (semi-direct relation, from ontology);

• Non-functional descriptions and names of subconcepts of the concepts used by the Web service,

0.113, (semi-direct relation, from ontology).

The weights are established by making use of a Genetic Algorithm, which is a specific technique to find

approximate solutions for optimization problems. In our case, we want to find a set of weights which opti-

mize the search results. Genetic Algorithms mimic an evolution of individuals in a certain population. Each

individual is represented with a chromosome consisting of data that can be recombined and mutated during

next generations. We choose to represent the individuals using a chromosome consisting of nine variables,

the seven weights used for stating the importance of the information gathered from a Web service, and two

weights for setting the trade-off between the sense similarity and the lexical representation similarity.
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From each generation, the best individuals will survive and create an offspring. To define which indi-

viduals are good enough to survive, a fitness function is used. In our case, this is a function that takes the

average precision values for each query used in our two data sets described in Section 5. Last, the genetic

algorithm has been executed with a population size of 100 and the number of generations set to 50.

As can be seen from the weights, the information directly related to the Web service is the most im-

portant information for the matching process. This information consists of the name and non-functional

descriptions of the Web service, its capabilities, and concepts used. Less important for the matching are

the non-functional descriptions and names of the super- and subconcepts of the used concepts by the Web

service. Least important and thus given a low weight is the information that is indirectly related to the

Web service description. This information is represented by attributes and concepts related to the concepts

used by the Web service. Using these weights, the information that is semantically closest to the core Web

service description will have the most impact for the matching process.

The names and non-functional descriptions of the entities returned from these two readers will then go

through a NLP step. Nouns and verbs are extracted from the non-functional descriptions using the Stanford

POS-tagger and words are split if they consist of case-transitions.

A sentence like the non-functional description of the Google Search Web service presented in Figure 4

(“Web service that searches for Web sites containing words that matches given search words.”) will generate

a set of nouns {Web, service, sites, words} and verbs {searches, containing, matches, given}. The name of

the Google Search Web service, GoogleSearchWebService, will be split into the set of nouns {Google, Web,

Service} and verbs {Search}. So instead of using compound words and whole sentences, the system only

uses nouns and verbs extracted from them (as only these can be found in WordNet).

4.3. Word Sense Disambiguation

For WSD the system makes use of two different API’s of WordNet. By using them, words can be found

in WordNet by giving a lexical representation of the word and its POS. These words will have different

senses and each sense has its own identifier, a WordNet synset. The system has to find the synsets based on

a set of lexical representations of words employed by users or a Web service description.

For establishing a starting context, WordNet will be used to find monosemous words. If no monosemous

word is found, the word with the least synsets will be used to simulate the best starting context. For each

synset, the similarity of the other words will be computed as if this synset was the starting context. Each

time a new synset is added to the context, the similarity between the new synset and the context is stored.
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The synset which creates the highest sum of similarity measures during its simulation is used as the real

starting context.

Once having a context, the SSI algorithm will be used to find the synsets of the other words. The

similarity is measured using an implementation of the Jiang and Conrath method (Greenwood, 2007). It

can handle pairs of WordNet synsets as input and will return the similarity between them. For each word,

the synset with the highest similarity to the context, will be added to the context.

4.4. Sense Matching

The synsets resulting from the disambiguation process must be matched in order to get a final similarity

measure. Because the information in a Web service description has different levels of importance in the

matching process, several sets of synsets belonging to a Web service will come out after the disambiguation

phase. Thus one set of synsets coming from the user input must be matched with several sets of synsets

coming from a Web service.

Each set from the Web service will have a weight representing the value of its information for the

matching process. For example, the synsets found from the non-functional description of the Web service

are more important during the matching, than the names of related concepts. These weights are determined

using a Genetic Algorithm and must sum up to 1 in order to get a final match with the range [0 . . . 1].

To overcome the fact that words that are not present in WordNet are not used in the matching process,

every lexical representation of the extracted words from the user input, which are not in WordNet, is being

compared to the lexical representations of the extracted words from a Web service description that are not

in WordNet. To provide a flexible matching, the words that are not in WordNet are first being lemmatized

before they are matched. This means that for example the word searching will also match the word searched.

By combining the synset similarity value and the lexical representation similarity, using a weighted

average, we determine a final similarity value. The weights have been optimized by the genetic algorithm

described in Section 4.2 and set to 44/100 for the synset similarity and 56/100 for the lexical representation

similarity. The value of the synset similarity is higher than the lexical representation similarity as they

provide for a richer information comparison.

5. Evaluation

This section covers the evaluation of different matching algorithms that can be used for semantic Web

service discovery. The algorithms described in Section 3.4 are implemented in the SWSD engine and are
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evaluated by using a set of predefined queries and sets of preferred Web services related to one of the

queries.

Section 5.1 explains how the testing is done. In Section 5.2 the results of those tests are presented.

Section 5.3 concludes which algorithms provides the best matching for discovery of semantic Web services.

5.1. Experimental Setup

For testing the algorithms provided in Section 3.4, we make use of a repository of 35 WSMO Web ser-

vice descriptions stored in WSML format. As for WSMO Web service descriptions there are no existing data

sets readily available such as for instance the OWLS-TC 4.0 OWL-S service retrieval test collection (Klusch

et al., 2010), we have manually built 35 WSMO service descriptions.

For evaluation purposes, we have defined 61 test queries in order to analyze the outcomes of each of

the algorithms. These queries represent possible sets of keywords a user could use when searching for a

Web service. For each query, we have defined a list of preferred Web services (present in the repository of

the SWSD engine) that should be returned with a high ranking, as they all are significantly related to the

queries.

Besides the algorithms described in Section 3.4, a simple matching algorithm that does not make use

of natural language processing is added for the evaluation. The algorithm employs the Jaccard matching

algorithm only for lexical representations of the query keywords and the extracted words. The algorithm

makes use of the different information levels of a Web service and can therefore be used for testing whether

there is an added value in using NLP in the process of semantic Web service discovery.

The testing is done with usage of precision and recall metrics. For every query, the precision and recall

values for each of the algorithms are computed according to the list of Web services they provide using that

particularly query as an input. This list is a ranked list, based on the similarity values calculated by the used

matching algorithm, of all the Web services that are in the repository and will be compared with the list of

preferred Web services stated for the query.

The precision and recall values are computed by traversing the provided list of Web services, according

to a query and matching algorithm, from top to bottom. If a Web service y j is stated as preferred, then

the Web service is classified as 1. If it is not preferred, the Web service is classified as 0. Using this

classification, the precision pi and recall ri for a position i in the list of provided Web services can be

calculated as follows, where k is the number of preferred Web services:
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pi =

∑i
j=1 y j

i
, (14)

ri =

∑i
j=1 y j

k
. (15)

Figure 6 shows the calculation of precision and recall for a given list of classified Web services. For

each preferred Web service – classified as 1 and visualized with a blue dot – the precision and recall values

are calculated. Each time a Web service that is not stated as preferred (classified as 0 and visualized with

a yellow dot) is found, the precision will drop. The PR-graph can show when it takes a long time before

another preferred Web service is found in the list. This is the case when the precision drops heavily.

5.2. Experimental Results

To test the performances of the three matching algorithms, we divide our 61 predefined queries into two

types. In total, 33 queries are used for measuring the matching performance of the algorithms for searches

for Web services that are present in the repository. The remaining 28 queries are used for measuring the

performance of queries for Web services that are not present in the repository. In the latter set of queries, a

number of similar Web services from the repository are defined in order to test performance of similar Web

service discovery when a specified service does not exist in the repository. Both sets of queries are divided

into two parts, a training set and a test set. The training set, consisting of 40 queries, is used for training the

weights that are used by the matching algorithms, while the test set, having 21 queries, is used for testing

the performance of the matching algorithms.

Testing with 21 queries and three matching algorithms generates 63 PR-graphs. Visualizing this amount

of graphs is not very insightful and hence we create PR-graphs consisting of average precision values for the

recall points. This enables us to relate all the different algorithms at once. However, the testing is done with

Figure 6: Precision and recall calculation example.
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lists of preferred Web services that can vary in the number of Web services they consists of. For testing,

lists that contain two to five preferred Web services have been used. Because these variations in number of

Web services cause different recall values, average precision values was only be calculated for queries that

have the same amount of preferred Web services.

Hence, we analyze eight different PR-graphs that visualize the performances of the different match-

ing algorithms. The four PR-graphs that are depicted in Figure 7, show the average results for the exact

matching tests. For each of the four different numbers of preferred returned Web services (n) a PR-graph

is created. The four PR-graphs that are shown in Figure 8, show the average results for the approximate

matching tests.

From the different PR-graphs that are shown in Figure 7, we can make two observations. First, in

most cases, the Jaccard algorithm shows a higher precision for most recall values than the simple and the

similarity algorithm. Second, all algorithms require about the same precision for providing a full recall.

This means that in order to provide all the preferred Web services to the user, the algorithms are required to

display about the same amount of Web services. However, according to the fact that the Jaccard algorithm

provides a higher precision for a lower recall, the Jaccard algorithm provides at least some of the preferred

Web services in an earlier stage to the user than the others. It can therefore be seen as the best algorithm to

discover exact matching Web services.

From the different PR-graphs that are shown in Figure 8, we can make the observation that the similarity

algorithm performs overall better for discovery of similar Web services than the Jaccard and the simple

matching algorithm, as in most of the cases the PR-graph lines of the similarity algorithm are above the

lines of the Jaccard algorithm and the simple matching algorithm.

5.3. Summary

In order to test the performance of the three matching algorithms explained in Section 3.4, we have

performed 61 tests, of which 31 tests were done to measure the performance of the algorithms according

to discovery of exact matching Web services, and 28 tests were done to measure the performance of the

algorithms according to discovery of similar Web services. Each test consisted of a set of keywords used as

a query and a set of Web services that were preferred to be provided to the user as early as possible. Based

on our evaluation, we conclude that the Jaccard matching algorithm is the best method for discovering

exact matching Web services, whereas the similarity matching algorithm is the best method for discovering

similar Web services.
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n=2 n=3

n=4 n=5

Figure 7: PR-Graphs for discovery of exact matching services.

n=2 n=3

n=4 n=5

Figure 8: PR-Graphs for discovery of similar services.
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6. Conclusions and Future Work

The SWSD framework proposes a keyword-based discovery process for searching Web services that

are described using semantically enriched annotations done by means of semantic languages for service

description. It makes an intensive use of natural language processing techniques and a WordNet-based

similarity measure for matching keywords. By using an approach with two different similarity functions,

one for lexical similarities and one for semantic similarities, standard lexical matching algorithms as well

as semantic matching algorithms, using ontologies, can be applied for discovery of semantic Web services.

The SWSD engine can search for WSMO Web services based on user search keywords. A matching

score is computed based on the similarity between the words in the user query and a Web service description.

Experiments have been done to test the performance of three different matching algorithms. The Jaccard

matching algorithm performs best for discovering exact matching Web services, while matching using a

similarity approach gives the best results for finding similar Web services.

As a future work, the SWSD engine could be extended in such a way that it has the ability to read

more annotation formats, e.g., WSMO-Lite. In this case, not only WSMO Web services can be discovered,

but also Web services described using other semantic languages than WSMO. Also, additional information

about a Web service (e.g., signature of its operations, messages being exchanged, etc.) could be retrieved

from its WSML specification. With this information, the context of the Web service can be described in

more detail.

References

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., Stein, L. A., 2004. OWL Web

Ontology Language Reference – W3C Recommendation 10 February 2004. From: http://www.w3.org/TR/owl-ref/.

Bener, A. B., Ozadali, V., Ilhan, E. S., 2009. Semantic Matchmaker with Precondition and Effect Matching Using SWRL. Expert

Systems with Applications 36 (5), 9371–9377.

Brickley, D., Guha, R., 2004. RDF Vocabulary Description Language 1.0: RDF Schema – W3C Recommendation 10 February

2004. From: http://www.w3.org/TR/rdf-schema/.

Budanitsky, A., Hirst, G., 2001. Semantic Distance in WordNet: An Experimental, Application-Oriented Evaluation of Five Mea-

sures. In: Workshop on WordNet and Other Lexical Resources at 2nd Meeting of the North American Chapter of the Association

for Computational Linguistics (NAACL 2001). Association for Computational Linguistics, pp. 29–34.

Cefriel, Seekda!, Ontoprise, University of Sheffield, 2009. Service-Finder. From: http://www.service-finder.eu/.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., 2001. Web Services Description Language (WSDL) 1.1 – W3C Note

15 March 2001. From: http://www.w3.org/TR/wsdl.

25



de Bruijn, J., 2008. D16 The WSML Specification – WSML Working Draft 2008-08-08. From: http://www.wsmo.org/TR/

d16/.

de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M., Konig-Ries, B., Kopecky, J., Lara, R., Lausen,

H., Oren, E., Polleres, A., Roman, D., Scicluna, J., Stollberg, M., 2005. Web Service Modeling Ontology (WSMO) – W3C

Member Submission 3 June 2005. From: http://www.w3.org/Submission/WSMO/.

DERI Galway, 2008. Web Service Execution Environment. From: http://www.wsmx.org/.

Dietze, S., Gugliotta, A., Domingue, J., 2009. Exploiting Metrics for Similarity-based Semantic Web Service Discovery. In: IEEE

7th International Conference on Web Services (ICWS 2009). IEEE Computer Society, pp. 327–334.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J., 2004. Similarity Search for Web Services. In: 30th International

Conference on Very Large Data Bases (VLDB 2004). Vol. 30. pp. 372–383.

EU IST, FIT-IT, 2008. WSMO4J API. From: http://wsmo4j.sourceforge.net/.

Farrag, T. A., Saleh, A. I., Ali, H. A., 2012. Towards SWSs Discovery: Mapping from WSDL to OWL-S Based on On-

tology Search and Standardization Engine. IEEE Transactions on Knowledge and Data Engineering. To appear (DOI:

10.1109/TKDE.2012.25).

Farrell, J., Lausen, H., 2007. Semantic Annotations for WSDL and XML Schema – W3C Recommendation 28 August 2007. From:

http://www.w3.org/TR/sawsdl.

Finlayson, M., 2012. JWI: The MIT Java WordNet Interface. From: http://projects.csail.mit.edu/jwi/.

Gomez, J. M., Rico, M., Garcia-Sanchez, F., Bejar, R. M., Bussler, C., 2004. GODO: Goal Driven Orchestration for Semantic Web

Services. In: 1st Workshop on Web Services Modeling Ontology Implementations (WIW 2004). Vol. 113. CEUR Workshop

Proceedings.

Greenwood, M., 2007. JWordNetSim. From: http://nlp.shef.ac.uk/result/software.html.

Hadley, M. J., 2009. Web Application Description Language – W3C Member Submission 31 August 2009. From: http://www.

w3.org/Submission/wadl/.

Hikimpour, F., Sell, D., Cabral, L., Domingue, J., Motta, E., 2005. Semantic Web Service Composition in IRS-III: The Structured

Approach. In: 7th IEEE International Conference on E-Commerce Technology (CEC 2005). IEEE Computer Society, pp. 484–

487.

HP Labs Semantic Web, 2009. Jena. From: http://jena.sourceforge.net/.

Jaccard, P., 1901. Étude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura. Bulletin de la Société
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