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Abstract

Currently, deep learning models are commonly used for Aspect-Based Sentiment Analysis (ABSA).
These deep learning models are often seen as black boxes, meaning that they are inherently difficult
to interpret. To improve deep learning models, it is crucial to understand their inner workings.
We aim to interpret black box models by implementing model-agnostic local interpretation meth-
ods. Inspired by Local Interpretable Model-agnostic Explanations (LIME) and Local Rule-based
Explanations (LORE) and combined with a Similarity-based Sampling (SS) method, we propose
SS-LIME and SS-LORE, and use Anchor to explain two state-of-the-art ABSA deep learning
models. The deep learning models build upon the Left-Center-Right separated neural network
with Rotatory attention (LCR-Rot) model, extended by iterating multiple times over the rotatory
attention mechanism (LCR-Rot-hop) and hierarchical attention and context-dependent word em-
beddings (LCR-Rot-hop++). We evaluate the proposed models in terms of fidelity, hit rate, and
user interpretability using the SemEval 2016 dataset consisting of restaurant reviews for ternary
sentiment classification. Results show that the LCR-Rot-hop and LCR-Rot-hop++ models are
best explained by SS-LIME and SS-LORE, respectively. Furthermore, we conclude that the LCR-
Rot-hop+-+ model can be better interpreted than the LCR-Rot-hop model.

Keywords: Machine learning, Model-agnostic interpretation models, Textual data, Sentiment
analysis

*Corresponding author; tel: +31 (0)10 408 1340; fax: +31 (0)10 408 9162
Email addresses: 481922s1@student.eur.nl (Stefan Lam), 473979yl@student.eur.nl (Yin Liu),
471390mb@student . eur.nl (Max Broers), 481019jv@student.eur.nl (Jasper van der Vos), frasincar@ese.eur.nl
(Flavius Frasincar), boekestijn@ese.eur.nl (David Boekestijn), 573834fk@student.eur.nl (Finn van der Knaap)

Preprint submitted to Engineering Applications of Artificial Intelligence November 24, 202/



1. Introduction

The increase in Social Web popularity causes tremendous growth in online reviews. In these
reviews, customers express their opinions on a certain product or service they have used. These
opinions can be categorized using the sentiment of the review, which we are able to determine
based on the interpretation and classification of the emotions the text reflects (Cambria et al.,
2011, |[Susanto et al.| 2020). Certain words can influence whether a review is positive, negative,
or neutral. Aspect-Based Sentiment Analysis (ABSA) (Schouten and Frasincar, 2016) techniques
identify the sentiment of a review and link the sentiment to the corresponding aspects, like specific
products or services (Liu, 2015, |Cambria, 2016]). In order to process large amounts of customer
reviews, businesses often use automated approaches, frequently based on machine learning (Salehan
and Kim, [2016} Saggi and Jain| 2018)).

However, some machine learning models, such as deep neural networks, are highly complicated.
Such models are often seen as black boxes, which means that there is little knowledge of how
the model determines the output from a given input. This creates a lack of transparency within
the model, making algorithms harder to understand. It leads to a risk of machine learning models
using wrong reasoning to make a prediction. Since machine learning techniques are being integrated
into modern life for Decision Support Systems (DSSs) more frequently, such as those in finance
(Kraus and Feuerriegel, [2017)), the medical sector (Panigutti et al., 2021), and sentiment analysis
(Rana et al., [2021)), it is important to correctly interpret these models to build user trust (Giboney
et al., [2015). Thus, to improve complex models, methods are needed to interpret them. Moreover,
transparency about data classification corresponds to the General Data Protection Regulation (EU),
2016)), which states that customers have the right to know how companies make their predictions.
Interpretability is thus relevant for both companies and consumers.

In this paper, we focus on ABSA in the restaurant domain. Wallaart and Frasincar| (2019)
introduce a state-of-the-art hybrid model for ABSA, which combines a domain ontology approach
with the LCR-Rot-hop deep learning model. Trusca et al.| (2020) extend this deep learning model
by adding a so-called hierarchical attention layer to the LCR-~-Rot-hop model, which is referred to as
the LCR-Rot-hop++ model. These hybrid models are highly accurate for sentiment classification
and could also be used in a DSS setting. For example, managers of restaurants might find it useful

to know whether reviews about various aspects of their restaurant are negative, neutral, or positive,
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such that they can make decisions accordingly.

However, the high accuracy of these models is not a good indication of how well we under-
stand them, as deep learning models contain a huge number of parameters and are thus often not
interpretable. Hence, the high accuracy could be based on wrong reasoning. For managers, it is
important to know the reasoning behind the decisions made by a model, as this increases their
trustworthiness in the model. For this reason, researchers have worked on explainable Artificial
Intelligence (AI) solutions in order to explain such black box deep learning models (Arrieta et al.,
2020).

Specifically, we focus on different model-agnostic methods to compare the interpretability of
state-of-the-art hybrid models for ABSA in the restaurant domain. In particular, we aim to create
local faithful interpretation models that explain the predictions made by these hybrid models.
We focus on local interpretability as opposed to global interpretability, since it offers a more
detailed explanation of why a certain instance is classified in a particular way. We formulate the
following research question: Which state-of-the-art hybrid model for ABSA can be best interpreted
by a local interpretation model? To answer this research question, we formulate the following
subquestion: Which local interpretation models give the best interpretation for each of the state-of-
the-art hybrid models for ABSA? To answer the subquestion, we propose three different methods
to create interpretation models for the deep learning part of the hybrid models. These methods
are adapted versions of existing methods. Adaptations are needed since the methods are originally
defined for binary classification, while we work with ternary classification (positive, negative, and
neutral).

The first method creates a linear interpretation model inspired by Local Interpretable Model-
agnostic Explanations (LIME) (Ribeiro et all 2016]). Complementary to this method we propose
the Weighted Submodular Pick (WSP) algorithm, which is a weighted version of the Submodular
Pick (SP) algorithm (Ribeiro et al., 2016). This algorithm selects the most representative instances
to be locally interpreted. The other methods create rule-based interpretation models and are thus
nonlinear. The first rule-based method is Anchor (Ribeiro et al.;2018]). Anchors are sets of features
able to explain predictions made by deep learning models using if-then rules. They explain an
instance by analyzing a set of local instances and determining the most important features for the

classification of the aspect. The last method is based on Local Rule-based Explanations (LORE)



(Guidotti et al., 2018al). The LORE method uses a decision tree classifier to extract decision rules
and counterfactual rules. These rules provide us with similar explanations to Anchor but also
consider counterfactuals.

In this paper we implement LIME and LORE with a Similarity-based Sampling (SS) method,
which is based on part-of-speech (POS) tags and word embedding similarity between different
features (Ribeiro et al., 2018). Our implementations are referred to as SS-LIME and SS-LORE.
For the implementation of the proposed methods, we use the same datasets as in the works of
Wallaart and Frasincar| (2019)) and Trusca et al. (2020). More specifically, we use the SemEval
2016 Task 5 Subtask 1 Slot 3 (Pontiki et al., 2016) dataset, consisting of restaurant reviews, on
model-agnostic local classifiers for interpretability.

We extend the current literature as follows:

e We utilize textual data instead of tabular data used by (Guidotti et al.| (2018al).

e We work with ternary classification (negative, neutral, positive) as opposed to binary classi-

fication (negative, positive) in previous literature (Ribeiro et al., [2016]).

e We provide a homogeneous comparison between the implemented methods through the use

of the same sampling method.

e We extend the SP algorithm to the WSP algorithm by adding a weighted component to

better cater for local interpretability.

e We find that the LCR-~-Rot-hop and LCR-~Rot-hop++ models can be best explained by SS-
LIME and SS-LORE, respectively. Furthermore, The SS-LIME method is able to highlight
the most important features. However, SS-LORE is more user-friendly than SS-LIME, since
it provides us with explanations consisting of the reasons for a decision, and the changes of

features leading to another decision.

The rest of the paper is structured as follows. In Section [2] we discuss relevant related work.
Section [3| provides an overview of the data we use. Section [4] describes the used framework and
our proposed methods and we evaluate the results of our research in Section Last, Section [0]

presents conclusions, discusses limitations, and suggests future research directions.



2. Related Work

With the recent advancements in sentiment analysis and more specifically ABSA, models are more
and more referred to as black boxes, which implies that there is little knowledge of how the models
generate the output from a given input. This leads to a lack of transparency in models, making
it more difficult to comprehend them. First, in Section we delve into state-of-the-art ABSA
models, after which we shift our focus to existing techniques that focus on the interpretability of

such black box models in Section 2.2

2.1. State-of-the-art ABSA Models

Three categories of algorithms exist for ABSA (Schouten and Frasincar, 2016, [Brauwers and Fras-
incar,, 2023)): knowledge-based approaches, machine learning approaches, and hybrid approaches.
For knowledge-based algorithms, a sentiment dictionary is often used to find the sentiment score
of a particular word. Then, the sentiment scores are used to determine the combined sentiment
score of all words relevant to an aspect (Schouten and Frasincar), 2016). One such knowledge base
is SenticNet, which is built using symbolic and subsymbolic AT methods (Cambria et al., 2022).

Machine learning approaches, in particular deep learning approaches, have recently shown great
potential for ABSA. Because of their flexibility, deep learning models often provide better results
than knowledge-based approaches for ABSA when a large annotated dataset is available. Many
of these deep learning models make use of an attention mechanism, which allows them to focus
on the relevant sentence features in the context of aspects (Zhang et al.l 2019, Wang et al., 2020,
Liang et al 2022)). The two approaches can be easily combined in hybrid methods.

The two proposed state-of-the-art hybrid models by [Wallaart and Frasincar| (2019) and [Trusca
et al.[ (2020) use an ontology approach in combination with a deep learning model: the LCR-Rot-
hop or the LCR-Rot-hop++ model. We explain the common structure of the deep learning models
as well as their differences. When the ontology approach fails to detect the sentiment, the hybrid
model uses a deep learning model as a backup to determine the sentiment. In this paper, we
consider LCR-Rot-hop and LCR-Rot-hop++ as backup models. These models use a Left-Center-
Right separated neural network with Rotatory attention (LCR-Rot) (Zheng and Xia, [2018]). The

LCR-Rot splits sentences into three parts: the aspect, the left context, and the right context. Then,



it assigns attention weights to capture the most important words in a context (Zheng and Xia,
2018)). Wallaart and Frasincar| (2019)) extend the LCR-Rot model by iterating multiple times over
the rotatory attention mechanism, creating the LCR-Rot-hop model. [Trusca et al.| (2020) further
extend the LCR-Rot-hop model by adding hierarchical attention to represent input sentences;
this model is referred to as LCR-Rot-hop+-+. Another difference between the two deep learning
models is the used word embeddings. The LCR-Rot-hop model uses the context-independent
GloVe embeddings (Pennington et al., |2014), while the LCR-Rot-hop++ model uses the context-
dependent Bidirectional Encoder Representations from Transformers (BERT) embeddings (Devlin

et al., [2019).

2.2. Interpretability of Black Box Models

To explain a black box model, such as the previously mentioned deep learning models, an inter-
pretation model has to be faithful to the model, i.e., the interpretation model has to show similar
behavior as the black box model (Ribeiro et al.l 2016]). A distinction is made between global
and local interpretability (Du et al. 2019, Guidotti et al., [2018b]). Global interpretability aims
to understand the structure and parameters of a model in its entirety. However, this requires the
interpretation model to be faithful to all instances of the black box model, which is impractical
(Ribeiro et al., [2016). In contrast, local interpretability explains how individual predictions are
made (Luo et al., 2024). The advantage of this approach is that the interpretation model only has
to be locally faithful, i.e., it only has to behave the same as the black box model in the vicinity of
the instance being explained (Ribeiro et al., [2016]).

Du et al.| (2019) introduce the post-hoc approach to create an interpretation model. This
approach is based on a separate model constructed to provide explanations of the original model.
The post-hoc approach is model-agnostic since it does not depend on the structure of a black box
model and can thus be implemented on all models (Madsen et al., 2023). This approach does
not affect the underlying model accuracy, but it is sometimes difficult to interpret the separately
constructed model (Du et al., 2019)). In this paper, we focus on the post-hoc approach by using
different model-agnostic methods to create locally faithful interpretation models able to explain
the LCR-Rot-hop and LCR-Rot-hop++ models. Previously, we proposed post-hoc approaches
using diagnostic classifiers for global interpretation models of LCR-Rot-hop and LCR-~Rot-hop++



(Meijer et al., |2021, |Geed et al., 2022]).

In current literature, several methods are able to provide us with local interpretation models
explaining the inner workings of a black box model for a particular instance. The first method we
study is LIME (Ribeiro et all 2016|). LIME is able to locally explain a black box by estimating a
local interpretation model for each instance. The estimation is done by first uniformly sampling
local instances in the vicinity of an instance and then estimating the interpretation model on this
sample. However, this process does introduce instability in explanations, as repeated explanations
with the same parameters might vary due to the sampling process. Several extensions have been
proposed to address the above problem (Zhou et al., [2021, [Tan et al., [2023). Yet, to make a fair
comparison with the work of Ribeiro et al.| (2016, we focus on LIME. Achieving a global explanation
for the black box model is difficult with LIME since we have to consider all instances. [Ribeiro et al.
(2016)) still aim to give a global explanation by picking a set of instances to explain with the highest
global importance (best coverage of the features) according to the SP algorithm. We propose the
WSP algorithm, which extends the SP algorithm by incorporating the local importance as weights
when picking instances for global importance.

Another method mentioned in current literature is the Anchor method (Ribeiro et al.| 2018).
Anchor greedily selects a set of features that explain a black box model by comparing various sets
of features in their coverage and precision. Another rule-based method is LORE (Guidotti et al.,
2018al), which is used to create explanations that consist of a decision rule and a counterfactual
rule. Both rules are extracted from a decision tree classifier.

Decision rules are of the form: “if X had occurred, then Y would have occurred”, while coun-
terfactuals are of the form: “if X had not occurred, then Y would not have occurred”. LORE has
a high level of applicability that obeys the domain constraints since humans want to know which
changes lead to another prediction (Molnar}, |2019). A benefit of this method is that it provides
us with high-level and minimal-change contexts to modify the prediction (Guidotti et al., [2018a))
compared to LIME or Anchor. We use restaurant reviews for our research and thus apply LORE
to textual data, in which we extend the original paper of (Guidotti et al.| (2018al).

Pastor and Baralis (2019) introduce the Local Agnostic attribute Contribution Explanation
(LACE) method, which is able to capture the joint effect of features on an instance. From the

LACE method, we only implement the prediction differences defined by Pastor and Baralis| (2019))



to evaluate the influence of the rules produced by Anchor and LORE on the prediction of an
instance. Due to the high similarity of LACE and LORE, we only focus on the LORE method
(they are both decision tree-based methods).

Mei et al.| (2023)) propose a disentangled linguistic graph model using signals to enhance trans-
parency and explainability. The authors propose a knowledge-based approach, injecting extra
external information into the model to help capture feature representations and boost explainabil-
ity. Both Zhao and Yul (2021) and Dekker et al. (2023)) inject external knowledge into the BERT
model to better capture sentiment relations, thus focusing on intrinsic explainability (Du et al.,
2019). In this paper, contrary to the above literature, we focus on a post-hoc approach, which
does not change the underlying representation of a model. Post-hoc approaches do not make use
of external information but change the surroundings of a model, keeping the underlying model
accuracy the same.

Another stream of literature delves into attention mechanisms and if we can leverage the po-
tential interpretability of those, especially as they are used by many state-of-the-art neural models
for natural language processing. To be precise, |Jain and Wallace| (2019) explore the relationship
between attention weights and model outputs, finding that the ability of attention weights to pro-
vide transparency or interpretability is limited. Yet, |Wiegreffe and Pinter| (2019) challenge many
of the assumptions made by Jain and Wallace (2019), and propose four alternative tests to dis-
cern whether attention weights do not provide interpretability. Wiegreffe and Pinter| (2019) show
that previous literature does not disprove the functionality of attention weights when it comes
to explainability. However, Bastings and Filippoval (2020) question the use of attention for inter-
pretability compared to, for example, saliency methods, showing that for user interpretability and
explainability, there is no reason to use attention weights over saliency methods.

A branch of saliency methods focuses on gradient-based approaches, implying that these ap-
proaches use the gradient of a method’s output to calculate the sensitivity of a model to changes
in the input. For example, Bykov et al. (2022)) introduce NoiseGrad, a method that introduces
stochasticity into the weights of the model by drawing samples from tempered a Bayes posterior
(Wenzel et al., 2020), which perturbs the decision boundary. Whilst the proposed method enhances
local and global explanations compared to the considered baselines, it is computationally expen-

sive as it suffers from increasing parameter spaces. However, gradient-based methods also have



possible shortcomings. [Srinivas and Fleuret| (2021) show that such methods are prone to capture
information relating to the implicit density model, not the underlying black box model.

In this paper, we keep the comparison between Anchor, SS-LIME, and SS-LORE fair by using
the same sampling method to generate the local instances. Specifically, we use a version of the SS
method (Ribeiro et al., 2018)), exploiting contextualized BERT embeddings to create local instances
in a neighborhood. Compared to the uniform sampling method (Ribeiro et al., [2016), this method
aims to generate a diverse proportion of positively, negatively, and neutrally labeled local instances.

Yet, the literature also proposes other methods of sampling in a neighborhood. [Botari et al.
(2020) introduce Meaningful LIME (MeLIME), which, in contrast to the work of Ribeiro et al.
(2016)), leverages the distribution of the data used to train the model in order to create more
meaningful explanations. As a result, MeLIME is able to create improved explanations on, among
others, tabular data and text. Instead, we use BERT to generate more contextualized word em-
beddings in order to sample around the neighborhood of the instance. In addition, MeLIME is
more broad, as we specifically focus on ABSA. Focusing instead on SHapley Additive exPlanations
(SHAP) compared to the approaches in this work, |Ghalebikesabi et al.| (2021)) propose Neighbor-
hood SHAP, sampling from a local reference population to create local instances, such that the
neighborhood samples not only consider the metric space with regards to the original instance but

also the data distribution.

3. Data

This section presents the data used in our research. First, in Section [3.1]we introduce the raw data
and discuss how we preprocess the data. Next, Section describes descriptive statistics of our

data after preprocessing.

3.1. Raw Data and Preprocessing

The data used in this paper correspond to the datasets used by |Wallaart and Frasincar| (2019) and
Trusca et al.| (2020), since we compare the interpretability of these state-of-the-art ABSA models.
In particular, we use the SemEval 2016 Task 5 Subtask 1 Slot 3 (Pontiki et al., |2016) training
and test datasets. These datasets consist of restaurant reviews with one or multiple sentences
represented in the XML markup language. Each sentence contains one or multiple opinions, each
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about a certain aspect (target) with a corresponding category, and with a polarity that expresses
whether the reviewer is positive, negative, or neutral towards this aspect. Sentences containing
more than one aspect are considered multiple times to classify the sentiment of each aspect. The
XML data is preprocessed by first removing the opinions where the target is implicit (Wallaart
and Frasincar, 2019) since this paper focuses on ABSA deep learning models that need a target
to split the sentence into three parts. There are 657 (25%) sentences with implicit targets in the
training dataset and 209 (24.3%) in the test dataset which we remove. The remaining sentences
are processed using the NLTK platform (Bird et al. |2009)). The data is then tokenized, and all the
words are lemmatized using the WordNet lexical database (Miller, |1998). We could also use the
SemEval 2015 dataset (Pontiki et al [2015) in the experiments, but given that this one is contained

in SemEval 2016 we only use the larger SemEval 2016 dataset.

3.2. Data Characteristics

The polarity frequencies of the SemEval 2016 train and test datasets after preprocessing are given
in Table [I} We notice that the positive opinions dominate the negative and neutral opinions by a

large percentage. Especially the neutral opinions are in the minority.

Table 1: Polarity counts and frequencies of the SemEval 2016 datasets.

Polarity Counts and Frequencies
Positive Neutral Negative Total
Train data 1319 (70.2%) 72 (3.8%) 488 (26.0%) 1879 (100.0%)
Test data 483 (74.3%) 32 (4.9%) 135 (20.8%) 650 (100.0%)

Furthermore, the LCR-Rot-hop model uses GloVe word embeddings (Pennington et al., [2014)
with a dimensionality of 300, while the LCR-Rot-hop++ model uses BERT word embeddings
(Devlin et al., 2019) with a dimensionality of 768. We initialize the embeddings of the words not
appearing in the GloVe vocabulary with a normal distribution N (0,0.052) (Wallaart and Frasincar,
2019), while the out-of-vocabulary words of BERT are initialized by averaging the embeddings of
the corresponding subwords (Devlin et al., 2019).
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4. Methodology

To explain the LCR-Rot-hop and LCR-Rot-hop++ models, we first train them on the SemEval
2016 training dataset. Next, we implement different interpretation models for the trained models
to explain the predictions made on the instances of the test dataset. An overview of the notations
used in this section is provided in Table

This section elaborates on the methods used in this paper. First, Section[4.I]explains the general
structure of our local interpretation models. Section describes the SS method. Then, Section
describes the local interpretation models. Finally, in Section .4 we present the performance

measures used to compare the local interpretation models.

4.1. General Approach of Local Interpretation Models

The methods we use (SS-LIME, Anchor, and SS-LORE) all try to learn the local behavior of a
deep learning model around an instance x € X. To learn this we draw a perturbed sample Z of
M local instances z € Z, where a local instance z is similar to x except for small changes in the
features. In our research, x is (part of) a sentence from a restaurant review consisting of f features
(words). The aspect has been excluded from these features since the sentiment towards the aspect
has to be explained (Wallaart and Frasincar, 2019). In this paper, b(x) = p is referred to as the
predicted sentiment p by the black box model b and m € {SS-LIME, Anchor, SS-LORE} as the
used interpretation model. In this research, the black box model is either the LCR-Rot-hop or the
LCR-Rot-hop++ model.

Let |X| = N denote the number of available instances and £J* be the local explanation of
instance z by the interpretation model m. For the LCR-Rot-hop and LCR-Rot-hop++ models,
x is represented as a sequence of f word embeddings, which is not easily interpretable and thus
difficult to change. For this reason, we define 2’ € {0, 1}|F | as the interpretable representation of
x, where F' is the set consisting of all different words in the SemEval 2016 datasets. Consequently,
we define the set Z’ consisting of M interpretable local instances 2z’ € {0, 1}|F |. The interpretable
instance x’ can be interpreted as a binary vector indicating the presence or absence of features.
The interpretable representation z’ is necessary because we are only able to explain the prediction

made by a black box model if we are able to interpret the predicted instance x first. The general
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Table 2: Overview of used notations.

(1]

»

o R QN

Set of original instances

Number of available instances (|X|)

Set of local instances around x € X

Set of binary representations of local instances z € Z

Local neighborhood size of instances generated around = € X
Local explanation of instance x by the interpretation model m

Word in a sentence

Marginal effect of the jth feature to indicate which class an original instance is classified as

Local influence of the jth feature on the ith instance

Total absolute marginal effect of the jth feature on all classes
Global importance of the jth feature across all the instances

Set of R instances from X selected by a picking algorithm

Influence matrix

Set of all different words in the SemEval 2016 datasets (vocabulary)
Maximum number of features to be considered for local explanation
Set of features contained in the instances of A

Set of features influencing the sentiment of x (anchor)

Minimum precision of A(z)

Black box prediction for z

Width of confidence

Tolerance of confidence

Proximity kernel between x and z

Width of proximity kernel

Set of B best anchors

Maximum number of iterations for the Anchor algorithm

Decision tree classifier

Maximum depth of decision tree

Set of counterfactual rules
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approach for explaining the prediction of an instance z is given in Algorithm

Algorithm 1 General approach: Explaining the prediction of instance x

Input: The black box b, interpretation model m, and the instance x € X

ARS| > Initialization of the set of local interpretable instances
foriec {1,2,..,M} do
2!+ sample_around(x) > Sampling a local instance 2] around x
VAR ANCE
end

& = m(Z',b)

return £

To further illustrate the general approach, Figure [l| provides a flowchart indicating the relations
between our implemented methods. The SS method, which is used to sample around the instance
x, is further discussed in Section [£.2] Lastly, the specification of each local explanation £J* is
provided in Sections [4.3.1] [4.3.3| and [4.3.4] for SS-LIME, Anchor and SS-LORE, respectively.

55-LIME
& ={Br. 8., 85}

------------------------------------------------------------------------------------------------

Set of local
interpretable instances

Instance

zeX

EgS—LORE — {T‘, @}

7

&Anchor — A(z)

Figure 1: Flowchart of the general approach to locally explain an instance x € X with the considered methods:

SS-LIME, Anchor, and SS-LORE.

4.2. The Similarity-based Sampling Method

We generate the set of local instances Z according to the SS method, which is similar to the method
used by Ribeiro et al.| (2018). This perturbation approach is used for all our methods to keep the
performance comparison fair. In particular, we generate the local instances z € Z by replacing
the features in z with different features that have the same POS tag according to a perturbation

distribution D. To be precise, new features are chosen with a probability that is proportional to
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the similarity of the original and new features in an embedding space. We consider the following
POS tags: NOUN, VERB, ADJ, ADV, ADP, and DET. These POS tags represent the noun, verb,
adjective, adverb, adposition, and determiner, respectively. The similarity between two words W7
and Wj is calculated with the cosine distance function D and the corresponding word embeddings.

The distance function is given as:

Wi« Wy
DWW, We) = ————, 1
N AT W)

which measures the similarity between the words W7 and W5 based on the angle of the corre-
sponding word embeddings (Molnar, [2019). The intuition behind the sampling method is that we
ensure that the sampled instances are in the vicinity or neighborhood of the local instance (i.e.,
the sampled instances have a similar meaning) by replacing words based on the similarity in the
word embedding space, given that the POS tags are the same such that the semantic structure of
the sentence does not change. Algorithm [2| gives the procedure for generating a local interpretable
instance z’ according to the SS method.

To generate a local interpretable instance 2’ for instance x, we first generate a local instance
z by calculating the distances between a word W; € x and the words Wy € F' with the distance
function given in Equation . Then, for a word W7, we pick the top n = 50 similar words in
F with the same POS tag. We consider these n words as possible replacements for the word Wj.
To pick a replacement we randomly choose between these n words, where the distances between
W1 and the n words are used to increase the probability of choosing a word. The generated local
instance z can then be easily transformed to a binary interpretable representation z’. However,
the LCR-Rot-hop and LCR-Rot-hop++ both use different word embeddings. As a result, the

generated local instances for these models are different.
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Algorithm 2 Similarity-based Sampling method to generate a local interpretable instance 2’

Input: Instance z € X

2+ 0 > Initialization of the local instance z
for Wi € z do
distances < @ > Set of distances for the word W7 €
for W5 € F do
| distances < distances U D(W71, Wa) > Distance according to Equation (1))
end
top_n, distances_n < pick_top_n(distances) > Top n similar words with the distances
W <« random_choice(top_n, distances_n) > Picking a random word W
z4—2zUW
end

2!« transform(z)

return 2/

4.3. Local Interpretation Model

In this section, we describe the used local interpretation models and the (W)SP algorithm, which

provide an interpretation of the sentiment prediction by the deep learning models.

4.3.1. SS-LIME

SS-LIME is an adaptation of the LIME method (Ribeiro et al., [2016), which uses a local log-linear
interpretation model for a one-vs-all logistic regression to explain the sentiment prediction of an
instance x. In our case, the interpretation model corresponds to a classification problem with three
classes k € K = {-1, 0, 1} denoting the negative, neutral, and positive sentiment, respectively.
Multinomial logistic regression (Bishop, 2006)) is a technique that essentially trains a single model
g*(z') for each class k by solving |K| binary classification problems consisting of two classes: k
and the complement k°. The log-linear interpretation model g* (') with 2/ as the interpretable
representation is defined as:

g*(z') = In(Prlb(z) = k | a]) = B5 + Y Bfa} — In(L), (2)

jeF

which is the natural logarithm of the probability that the predicted sentiment of the black box
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model b towards the aspect of x is classified as k. The coefficients ﬂf denote the marginal effects of
the jth feature to indicate whether x is classified as class k or k¢. Let 8% be the vector consisting
of the coefficients {35, ¥, ,ﬁﬁw} Then, L is a normalization term defined as k%{ A" 2’ which
ensures that the set of probabilities Pr{b(z) = k | x] forms a probability distribution (Bishop,

2006). Using the normalization term, the probabilities can then be written as:

e/ka/
Prib(z) =k | 2] = S (3)

ceK

which shows that the sign and magnitude of BJ]? determine the effect of the jth feature on the
probability of classifying z’ as class k. The marginal effects provide us with the local explanation
for an instance x. However, local explanations should remain concise to be interpretable by users
(Ribeiro et all 2016)). Thus, we select a maximum of S features to be considered for the local
explanation. LIME originally uses Lasso regression to select S features, therefore it is possible to
select features not contained in the instance x. For the explanations to stay interpretable, we need
to select features contained in the instance x. Thus, in contrast to LIME, we first estimate Equation
(2) on all features, and we then select a maximum of S features that have the highest influence
given that the features are contained in z. These influences can be measured with e; = > | ﬂﬂ,
which is the total absolute marginal effect of the jth feature on all classes. v

The local explanation of x for the prediction on class k can be given by the following specification
§fi_LIME = {B{“*, 5*, ...,,Bg*}, which is the set of marginal effects towards class k with the S
highest influences. To determine this explanation we estimate Equation by applying a weighted

multinominal logistic regression trained on the set Z’ of interpretable local instances 2’ with label

b(z), obtained by the SS method, using the proximity 7, (z) between = and z as our sample weights:
me(2) = exp(=D(x, 2)* /o?). (4)

Equation represents an exponential kernel function (Molnar, 2019) with the hyperparameter
o as the width of the kernel and D(z, z) defined as the distance function which measures the cosine
similarity between the word embeddings of instances x and z. The kernel function measures
how close two instances are from each other, consequently giving the highest weights to the local

instances z which are closest to £ when estimating Equation .
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4.3.2. (Weighted) Submodular Pick Algorithm

Estimating Equation provides us with a local interpretable model for an instance x. Never-
theless, we still try to obtain an approximate global interpretation by interpreting a set of rep-
resentative instances for the whole dataset, as this would be desired. We aim to give a global
understanding by explaining a set A of R instances. Since users cannot check all the instances
individually, we introduce the WSP algorithm to solve this problem. This algorithm is similar
to the SP algorithm (Ribeiro et all [2016) but with a difference in the use of local weights when
picking the instances.

The SP algorithm tries to pick R instances with the highest coverage across the features, i.e.,
it picks the R instances containing the highest number of different features, while keeping the
global importance of the features as high as possible. Let 2 denote the N x |F| influence matrix
containing the local influences e;; of the ith instance and jth feature. The global importance of
the jth feature across all the instances can be measured as I; = \/Zfil eij (Ribeiro et al., 2016).
Let W(A) be the set of features contained in the instances of A. Then, the SP coverage of these

instances is calculated as:

cov P (A, 1) = Z I, (5)

JET(A)

which can also be seen as the total global importance across all the features in W(A). The SP
algorithm iteratively picks instances with the largest gain in the SP coverage. The SP gain in
coverage for the ith instance is defined as:
G?P(A7 E, I) = Z ﬂ[eij>0}jj7 (6)
JEF\¥(A)
where 1., .~ is an indicator function indicating whether the influence of the jth feature on the
ith instance is positive. We apply a weighted version of SP, which considers the local influences

e;; when picking instances. To incorporate the local influences, we define the WSP coverage as

follows:
CCUEDWASIED oY g
JjEW(A) €A JEW(A
where ) Jew(A 3 is an upper bound on the WSP coverage. Then, the WSP gain in coverage for

the ith instance is given by:
GIVSPNED = Y el (8)
JEF\¥(A)
17



where the local influences e;; ensure that the coverage is also dependent on the local importance
of features. Note that we do not have to use the indicator function as in Equation @ because the
local influences are nonnegative and we care about the sizes of the local influences. Both the SP
and WSP algorithms aim to maximize the gain in coverage by implementing a greedy algorithm
(Ribeiro et al., [2016)). The picking algorithms aim to pick R instances that are able to globally
explain the black box models. We motivate the use of local weights by stating the following: “A set
of picked instances can only globally explain a black box model if we are able to locally interpret
these instances first”. We make this statement since users generally need a local understanding
first before achieving a global understanding. The local weights ensure that only instances are

picked where the globally important features are sufficiently highlighted.

4.3.3. Anchor

In this section, we discuss the Anchor method, which is based on if-then rules. In contrast to
LIME, rule-based models are nonlinear. The Anchor method takes an instance x and returns an
anchor A(x) containing a set of features influencing the sentiment of x regarding an aspect.

We generate the set of local instances Z with the perturbation distribution D as described
in Section and we denote D(- | A) as the conditional distribution when a (combination of)
word(s) A applies to a certain local instance. A(x) is an anchor for instance x if the set of words
in the anchor is contained in x and the anchor has a precision for b(x) with at least a probability

7 (Ribeiro et al., [2018]). The latter condition is defined as follows:

prec(A(z)) = Ep(zja) [Lo@)=b(z)] = T (9)

where the precision of A(z) is defined as the average number of local instances z which contain
A(z) and have the same black box prediction as x.

We construct potential anchors according to the Beam-Search method (Ribeiro et al., 2018).
This method uses the KL-LUCB algorithm with multiple arms (Kaufmann and Kalyanakrishnan,
2013)). The algorithm works by constructing confidence regions (Barron and Cover, 1991) and
selects the B best anchors in an iteration, and the anchor with the highest upper bound (A’),
provided it is not one of the B best. In the algorithm, anchors are selected while keeping the preci-

sion as high as possible. However, it is intractable to compute the precision given in Equation @
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directly (Ribeiro et al., [2018). Instead, the algorithm searches for anchors satisfying the precision

constraint with a high probability 1 — §:
Pr(prec(A(z)) > 1) > 1 -9, (10)

where 9§ is the width.
We draw local instances from the perturbation distribution until there is statistical confidence

about the precision of our anchors. Statistical confidence is gained when the following holds:
precy, (A(z)) > precy, (A'(z)) — ¢, VA € Ap, (11)

where € is the tolerance and Apg is the set of the B best anchors.

Multiple anchors could meet the criterion given in Equation . If this is the case, we choose
the anchor with the largest coverage. If there are no anchors that fulfill this constraint, we construct
a new set of anchors and find the new B best anchors. Coverage for rule-based models is calculated
differently than for linear models, such as SS-LIME. Specifically, the coverage for anchor A(x) is

equal to the average number of local instances that contain this anchor:

cov?(A(2)) = Ep(z|a) [A(2)]- (12)

We make two adjustments compared to the method described by |Ribeiro et al. (2018). The
original algorithm has trouble gaining statistical confidence and can take up to 400 iterations
to select the B best anchors. This results in a very large computational load. To make the
computational load smaller, we adjust the method for selecting the B best anchors by including a
maximum number of iterations J that are allowed to be run. If the algorithm reaches J, our version
of the algorithm returns the B best anchors up to that point. This may influence the validity of
selecting the B best anchors with statistical confidence, but it greatly lowers the computational
load for instances that contain a lot of features. The second adjustment is the initialization of
a minimal coverage for every anchor to fulfill. This way, fewer candidate anchors need to be

evaluated, reducing the computational load.

4.3.4. SS-LORE

In contrast to the LORE method (Guidotti et al., |2018a)), SS-LORE uses the SS method to create a

set of local instances to train the decision tree classifier C. We construct the decision tree by using
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the C4.5 algorithm (Quinlan, |1992) for ternary classification (negative, neutral, positive), whereas
tabular data is used by (Guidotti et al. (2018a). From the constructed decision tree, we are able to
obtain decision rules r = (v — y), where v is the root-leaf path consisting of the split decisions sd
at each decision node to reach the leaf node with label y. We specify a maximum depth d for the
decision tree to keep the resulting root-leaf paths concise.

SS-LORE uses the decision tree to extract counterfactual explanations. These consist of a
decision rule r = (v — y) explaining the reasons for a decision, and a set ® of counterfactual rules
¢ = (¢ — y) with ¢ the root-leaf path consisting of the split decisions sd to reach the leaf node with
a label § # y. These counterfactual rules suggest the changes in the features of an instance leading
to a different prediction (Guidotti et al., |2018a)). A condition for a counterfactual rule is that it
should describe the smallest change in the features of an instance leading to a different prediction
(Molnar, 2019). We find the counterfactual rules satisfying this condition with the same procedure
as described by (Guidotti et al.| (2018a). The local explanation of SS-LORE for an instance = can
then be given by £ LORE — (1 @),

As extra output, we compute, just as LORE, a set X, of counterfactual instances z, from the
counterfactual rules. These counterfactual instances correspond to the instance x with the smallest
changes in the features of x leading to another prediction according to the counterfactual rules.
We create counterfactual instances for each counterfactual rule by minimally changing the features
of z, such that it satisfies the split decisions in the path q. The goal of the counterfactual instances
is to determine whether the original prediction made by the black box actually changes when we

modify an instance according to the counterfactual rules.

4.4. Performance Evaluation
4.4.1. Performance Measures

An interpretation model performs well globally if it is able to mimic the black box model with high
certainty for all instances. To measure global interpretation, we use the following performance

measures (Hedstrom et al., 2023):

e Hit rate: Compares the prediction made by the black box model b and the interpretation
model m on the instances x € X. If these are equal, return 1, otherwise, return 0. To

calculate the hit rate, we divide the number of equal predictions by the number of instances
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in X. This determines how well an interpretation model is suited to be used for a black box
model. The higher the hit rate, the more suitable the interpretation model (Guidotti et al.,
2018al).

e Fidelity: Compares the prediction of the black box model b and the interpretation models
m, on the local instances in the set Z, used to train m, for all instances z € X. If these are
equal, return 1, otherwise, return 0. The fidelity is then calculated by dividing the number of
equal predictions by the number of local instances in the set Z,. This measures how faithful
an interpretation model m is to the black box model b. A higher fidelity implies that the
interpretation model is more faithful (Guidotti et al., 2018a).

The hit rate and fidelity are used to measure the global performance of the interpretation
models. A high value for both measures is needed before an interpretation model is able to mimic
the black box model with high certainty.

The local explanation for SS-LORE consists of two rules: the decision rule and the counterfac-
tual rule. We therefore calculate the hit rate and fidelity for both rules. However, per definition,
the predictions of counterfactual rules do not correspond to the predictions of the black box model.
Hence, we compare the predictions on the counterfactual instances z, € X, instead of the instances
x € X, such that we are able to compute the hit rate for counterfactual rules. Furthermore, the
Anchor method (Ribeiro et al., 2018)) constructs rules that always have the same prediction as the

black box model for instances x € X. Hence, the hit rate of these rules will be perfect.

4.4.2. User Interpretability

Interpretation models have good user interpretability if users are able to interpret them well for
the prediction of an instance. According to Molnar| (2019)), there is no real consensus about what
interpretability is in machine learning. However, Molnar{(2019)) still attempts to define some criteria
that should be satisfied for a good local explanation: (1) the explanation should be concise, (2) the
explanation should be understandable for users, and (3) the features highlighting the explanation
should be consistent with prior beliefs of the user. Below, some measures are described that help

satisfy these criteria.

e Marginal effects: For the linear interpretation model, SS-LIME, we measure the relative

importance of the features in an instance with the marginal effects obtained by the log-
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linear model, as described in Section [4.3.1] These marginal effects are able to highlight
the features in an instance with the highest local importance (Ribeiro et al., |2016). The
highlighted features contribute the most towards the predicted sentiment of the black box

model according to the linear interpretation model.

Prediction difference: For the rule-based interpretation models, Anchor and SS-LORE, we
measure the relative importance of the features in an instance with the prediction difference
(Pastor and Baralis, 2019). The prediction difference compares features in an instance by
estimating the influence of a set of features on the prediction of an instance.

In particular, the prediction difference describes how much the probability of the senti-
ment prediction made by b(z) changes when one feature is omitted. However, features are
able to jointly influence a prediction. Thus, we estimate the omission of the set ( consisting of
the features in a rule and extend our definition of the prediction difference similar to [Pastor

and Baralis| (2019)):
A’E(az) = Prib(z) = k|x] — Prb(z\ {) =k | z], (13)

where the first term denotes the probability that the sentiment of instance x is classified as
k and the second term denotes the probability that x is classified as & when ( is omitted.
These probabilities are calculated with the softmax layer (Wallaart and Frasincar) [2019) of
the used deep learning model.

In summary, Equation calculates the influence of a rule on class k. The prediction
differences range from -1 to 1. The larger the prediction difference, the more the feature(s)
influence(s) the prediction. If the prediction difference is positive, it means that the omission
of the set of features decreases the probability that b(x) = k. Consequently, including the set

of features increases the probability of b(x) = k.

We satisfy the first mentioned criterion for SS-LIME and SS-LORE by setting a maximum

of S features to be considered and a depth d to keep the extracted rules concise for the local

explanation. However, the Anchor method does not satisfy this criterion. The second and third

criteria are harder to satisfy since the understanding and prior beliefs of local explanations differ

for different users. It is easier to satisfy the second criterion for the rule-based interpretation

models, since these models, Anchor and SS-LORE, consist of the construction of sets of features
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indicating a prediction and are thus intuitive to understand (Ribeiro et al. 2018]). SS-LIME does
not have this convenient structure. Therefore, we use the marginal effect of the features to make
the explanation understandable for users. The third criterion cannot be preliminarily satisfied for
our interpretation models (Molnar, 2019). However, we aim to check this criterion by using the
marginal effects and the prediction differences. Both measures give a relative comparison of feature
importance. The third criterion can then be checked by analyzing whether the highlighted features
by the marginal effects for SS-LIME, or the prediction differences for Anchor and SS-LORE, are
consistent with our prior beliefs.

We determine user interpretability by explaining several instances with our interpretation mod-
els, with the objective of giving a global explanation (Ribeiro et al., 2016)). It is impractical to pick
all instances, thus we pick R instances according to a picking algorithm. We first choose the best
picking algorithm by comparing the following picking algorithms: Random Pick (RP), SP, and
WSP. The RP algorithm randomly picks an instance, and we use it as a benchmark to compare the
picking algorithms. We compare RP, SP, and WSP for the LCR-Rot-hop and LCR-Rot-hop++
models separately, and choose the algorithm that picks the instances with the most highlighted
features consistent with the prior beliefs of users. To try and generalize prior beliefs for textual
data, we consider them as the most opinionated features towards the target in an instance. Opin-
ionated features are the most important features for sentiment classification since they provide the
best description of the target. We compute Fleiss’ kappa x (Fleiss and Cohenl, (1973]) for our prior

beliefs in order to reflect their degree of reliability.

5. Evaluation

In this section, we evaluate the performance of the proposed interpretation models. First, in
Section [5.1] we discuss the performance of the hybrid models. Next, Section provides the
characteristics of the sampled local instances from the SS method. Then, Section compares
and provides the results of our local interpretation models. The code, used for the implementation
of the proposed interpretation models, is written in Python 3.7 and is publicly available at https:

//github.com/StefanlLam99/Explaining ABSA.
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5.1. State-of-the-Art Hybrid Models

In order to evaluate the performance of the proposed interpretation models, we first train the deep
learning models on the SemEval 2016 training data. Next, ontology reasoning takes place on the
test data, resulting in a test accuracy of 85.7%. The remaining test data, which the ontology is
unable to classify, corresponds to 45.4% of the original test data. The deep learning models obtain
a test accuracy of 83.4% and 84.2% on the remaining test data for LCR-Rot-hop and LCR-Rot-
hop++, respectively. Thus, based on the test accuracy, LCR-Rot-hop++ performs better than
LCR-Rot-hop. The counts and frequencies of the predicted sentiment are given in Table

Table 3: Polarity counts and frequencies of the test data after the ontology reasoning and the corresponding predicted

sentiment by the deep learning models.

Polarity counts and frequencies

Positive Neutral Negative Total
Test data after ontology 218 (73.9%) 19 (6.4%) 58 (19.7%) 295 (100.0%)
Predictions: LCR-Rot-hop 220 (74.6%) 1 (0.3%) 74 (25.1%) 295 (100.0%)

Predictions: LCR-Rot-hop++ 240 (81.4%) 1 (0.3%) 54 (18.3%) 295 (100.0%)

In Table 3] we observe that both deep learning models have the same number of predictions to-
wards the neutral sentiment. However, the LCR-Rot-hop model predicts more negative sentiments

(74 vs. 54) and less positive sentiments (220 vs. 240) than the LCR-Rot-hop++ model.

5.2. Characteristics Local Instances

The trained deep-learning models are used to generate the local instances that we use for our
interpretation models. Table {4] presents the average proportions of the positively, neutrally, and
negatively labeled generated local instances with the SS method for the LCR-Rot-hop and LCR-
Rot-hop++ models, where we set M = 5000 for each instance.
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Table 4: The average proportion of the labels for the generated local instances with the Similarity-based Sampling

method.

Positive Neutral Negative
LCR-Rot-hop 71.8% 0.8% 27.4%
LCR-Rot-hop++ 88.1% 0.8% 11.1%

Table 4] shows that the SS method is not able to make a sample of local instances with an
equal proportion of positive, neutral, and negative labels. Rather, we notice that the neutral-
labeled local instances are in a big minority. A reason for the lack of diversity could be the used
perturbation distribution since this distribution replaces features only according to the similarity.
This might generate different local instances in the vicinity of the original instance. However, the
local instances are then still fairly similar to the original instance and thus the black box model is

not able to change its prediction often enough for the local instance to generate a diverse sample.

5.3. Local Interpretation Models

This section evaluates the performance of the local interpretation models SS-LIME, Anchor, and
the decision and counterfactual rules from SS-LORE. We set M = 5000 and use the following
hyperparameters: for SS-LIME: ¢ = 1.0 (Ribeiro et al. 2016), for Anchor: B = 3, ¢ = 0.25,
9 =0.05 and 7 = 0.75 (Ribeiro et al., 2018), and for SS-LORE: d = 5 (Guidotti et al., 2018a)).

5.3.1. Performance Measures

Table [5| reports the hit rate and fidelity measures for SS-LIME, Anchor, and the decision and
counterfactual rules from SS-LORE.

We observe that Anchor, as previously mentioned, achieves a perfect hit rate for both deep
learning models. However, both the Anchor method and the counterfactual rules from SS-LORE
have a lower fidelity compared to the other interpretation models for both deep learning models,
indicating that both Anchor and the counterfactuals from SS-LORE are not suited to mimic LCR-
Rot-hop and LCR-Rot-hop+—+.

Furthermore, the counterfactual rules obtain relatively low measures for the hit rate compared

to the other interpretation models. This is due to a lack of significant changes in the features of
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Table 5: Performance measures for the interpretation models. For all models except SS-LIME, the 5% significance
level, denoted by *, is given for the z-test assessing the null hypothesis of a performance measure of a method being

equal to the respective performance measure of SS-LIME.

LCR-Rot-hop LCR-Rot-hop++
Hit rate Fidelity Hit rate Fidelity

SS-LIME 96.6% 95.6%  94.0% 97.6%
Anchor 100%* 88.0%" 100%" 88.4%*
Decision rules 85.4%*  93.4%* 97.8%* 98.5%"

Counterfactual rules 33.7%" 72.6%" 49.0%" 76.3%"

the original instance when constructing the counterfactual instance according to these rules. This
results in the black box models not changing their predictions. Thus, the low hit rate indicates
that the black box models have trouble changing their predictions according to counterfactual rules.
However, the LCR-Rot-hop++ model still performs better for the counterfactual rules than the
LCR-Rot-hop model, indicating that SS-LORE is more suited to be used for LCR-Rot-hop++.

We observe that SS-LIME obtains the highest fidelity out of the interpretation models for
the LCR-~Rot-hop model, while the decision rules from SS-LORE have the highest fidelity for the
LCR-Rot-hop++ model. In addition, the difference with other models is statically significant at a
5% significance level. Combining this with the relatively high hit rates with values of 96.6% and
97.8% respectively, which are also significantly better than all models except Anchor, we conclude
that in terms of global performance measures SS-LIME and SS-LORE are best suited to mimic
LCR-Rot-hop and LCR-Rot-hop++, respectively.

For SS-LIME and the decision and counterfactual rules from SS-LORE, we further investigate
how the hit rate, fidelity, and training times per instance depend on the local neighborhood size.
Specifically, we plot these performance measures against M = 100, 200, 500, 1K, 2K, 5K, and 10K
in Figure [2 (note the different scales of the y-axes). Due to resource constraints, these measures
were calculated over a subset of 50 out of the 295 instances. Therefore, they do not necessarily
match the results in Table [l

For SS-LIME, we see a positive relation between local neighborhood size and the performance

of the model’s fidelity. Not only does the fidelity steadily improve, but it becomes more consistent
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across the instances as well (reflected by the shorter error bars, which represent the standard devi-
ation of the model’s fidelity). The reverse is true for the decision rules from SS-LORE, suggesting
that it benefits from a smaller neighborhood size. For the hit rate, we observe a steady performance
across all neighborhood sizes for both SS-LIME and the decision rules from SS-LORE.

Moving onto the counterfactual rules, the trend is less obvious, although the relation between
fidelity and M is more negative than positive, especially for M > 2K . The hit rate seems to develop
more or less randomly. A straightforward explanation is that the counterfactual rules describe
changes in the features of an instance that should lead to a different prediction. As a consequence,
there are multiple outcomes from the interpretation model and the black box model that, although
technically “correct”, do not match (and hence do not result in a hit). For example, consider an
instance where the correct label is 1 and the counterfactual rule leads to the interpretation model
predicting label 0, while the black box model predicts label -1. Evidently, the hit rate of the
counterfactual rules from SS-LORE depends less on M, but more on the rules themselves.

Last, it is worth noting that the training times per instance increase approximately linearly in
M, which, for SS-LIME, leads to a trade-off between training time and performance. For SS-LORE,
this trade-off is less relevant, as we observe that performance generally decreases with increasing
M. Additionally, training times per instance increase at a noticeably greater rate for SS-LORE

compared to SS-LIME.
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Figure 2: Performance measures fidelity (left y-axis with error bars denoting standard deviations) and hit

rate (right y-axis) (a-f), and average training time per instance (g), for varying M, which controls the local

neighborhood size (x-axis).
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5.3.2. Comparison of Picking Algorithms

In this section, we compare the three picking algorithms to determine which algorithm is best
suited to pick instances for our interpretation models. These picking algorithms are implemented
using SS-LIME. We set S = 4 features to be considered for the explanation and each deep learning
model picks R = 5 instances for each picking algorithm. Furthermore, the degree of reliability x

of our prior beliefs is 84.1% based on four test participants with a background in econometrics.

Table 6: Average number of features consistent with our prior beliefs for the picked instances.

Picking algorithm LCR-Rot-hop LCR-Rot-hop++

RP 1.15 0.75
SP 1.10 1.05
WSP 1.35 1.55

We compare five instances selected by each picking algorithm for each deep learning model.
Results show that WSP picks instances that, on average, highlight the most opinionated features
that are consistent with our prior beliefs. The results are displayed in Table [6] In Tables [7] and
we present the results of a single RP-picked instance and the first picked instances by SP and WSP
for the LCR-Rot-hop and LCR-Rot-hop++, respectively. Based on our prior beliefs we decide
which features in the instances are the most opinionated towards the target. The target is given

in bold for the instances: RP-1, RP-2, SP-1, SP-2, WSP-1, and WSP-2.

Table 7: Highlighted features, prior beliefs, true label, predicted label, and the number of consistent features of the
picked instances for the LCR-Rot-hop model according to SS-LIME.

LCR-Rot-hop
Instance Highlighted features Prior beliefs True Predicted # consistent
RP-1 (“thing”, “the”, “nice”, “location”) (“positive”, “nice”) -1 1 1
SP-1 (“every”, “the”, “perfect”, “fantastic”) (“fantastic”) 1 1 1
WSP-1 (“creme”, “interesting”, “delicious”, “very”) (“very”, “savory”, “delicious”) 1 1 2

- RP-1: “The only positive thing about Misoposto is the nice location.”
- SP-1: “The food is fantastic, and the waiting staff has been perfect every single time we’ve been there.”

- WSP-1: “The appetizer was interesting, but the creme brulee was very savory and delicious.”
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Table 8: Highlighted features, prior beliefs, true label, predicted label, and the number of consistent features of the
picked instances for the LCR-Rot-hop++ model according to SS-LIME.

LCR-Rot-hop++

Instance Highlighted features Prior beliefs True Predicted # consistent
RP-2 (“only”, “is”, “thing”, “location”) (“positive”, “nice”) -1 1 0
SP-2 (“system”, “seat”, “hip”, “sound”) (“hip”) 1 -1 1
WSP-2 (%, “pricey”, “place”, “n’t”) (“pricey”, “n’t”, “fancy”) -1 -1 2

- RP-2: “The only positive thing about Misoposto is the nice location.”
- SP-2: “The music playing was very hip, 20-30 something pop, but the subwoofer to the sound system
was located under my seat, which became annoying midway through dinner.”

- WSP-2: “Food wise, its okay but a bit pricey for what you get considering the restaurant is n’t a fancy place.”

The tables show that the instances WSP-1 and WSP-2 contain the highest number of high-
lighted features consistent with our prior beliefs. We conclude that adding weights to the SP
algorithm improves picking instances where opinionated features are present. For this reason, we
continue our research with WSP as the picking algorithm for the comparison between the interpre-
tation models, since we consider opinionated features the most important features for sentiment

classification of textual data.

5.3.3. Comparison of Interpretation Models

In this section, we aim to determine the best interpretation model for the black box models by
explaining the instances WSP-1 and WSP-2 for the LCR-Rot-hop and LCR-Rot-hop++ models,
respectively. In Table[0] we present the generated rules from Anchor and SS-LORE for the instance
WSP-1, where label 1 stands for positive, and label -1 for negative. Figure [3] shows the marginal
effects generated by SS-LIME and the prediction differences for the rule-based approaches Anchor
and SS-LORE.

First, from Figure we observe that “delicious” provides the highest marginal effects towards
the positive sentiment for the SS-LIME model. Furthermore, “very” also contributes positively
to the positive sentiment. As mentioned in Table [7] the selection of these features is in line with
our prior beliefs and thus provides an explanation that can be interpreted by users. However, we
also notice that the remaining two features, “appetizer” and “interesting”, are not opinionated
(towards the target). This shows that SS-LIME does not perfectly capture all relevant features for

the target.
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When we consider the rules generated for WSP-1, which are displayed in Table [9] we notice
that the generated rules from SS-LORE provide a better explanation than Anchor since they
only contain opinionated features, such as “delicious”, “savory” and “very”, as opposed to some
non-opinionated features, like “was” and “but”, which are included in the anchor. However, the
associated labels of the counterfactual rules @i and o are not consistent with the prediction
differences as shown in Figure indicating that SS-LORE is not able to extract counterfactual
rules in line with the predictions of the LCR-Rot-hop model. This decreases the interpretability of
the SS-LORE rules. Since SS-LIME provides features that both reflect the sentiment towards the
target of WSP-1 and are easily interpreted, we prefer SS-LIME over SS-LORE and thus conclude
that the prediction of instance WSP-1 is best explained by the SS-LIME model.

Table 9: Generated rules for the instance WSP-1.

Instance: WSP-1

Anchor: A = (“delicious”, “very”, “was”, “but” — 1)
Decision rule: r1 = (“delicious” — 1)
Counterfactual rule(s): ®; = {p; = (“delicious”, “savory”, = “very” — -1),

w9 = (“delicious”, “very” — -1)}

Note: — indicates that the feature is not in the instance.

WSP-1: (True label: 1)

3 Effect towards: Pl 0.06 55
Neutral Sentiment Effect towards:

mmm Negative Sentiment | ;4
Positive Sentiment

Neutral Sentiment 004
0.04 - | === Negative Sentiment
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(a) Marginal effects for SS-LIME. (b) Prediction differences for rule-based models.

Figure 3: “The appetizer was interesting, but the creme brulee was very savory and delicious.”

For instance WSP-2, we observe from Figure [da] that “n’t” has the highest marginal effect

towards a negative sentiment. This is consistent with our prior beliefs and provides a valid expla-
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nation. However, this explanation is not sufficient for users as it does not explicitly capture what
words are negatively opinionated towards the target “restaurant” of the instance.

When we evaluate the rule-based models in Table we notice that Anchor provides a very
lengthy rule As, which makes the rule not interpretable for users. The decision rule r9 is able to
capture the correct relevant features with respect to the target and does not contain any irrelevant
features. Furthermore, the corresponding counterfactual rule 3 is consistent with the decision
rule, since (3 indicates a positive sentiment when “n’t” is left out of the instance. This results in
a set of rules that clearly provides users with the features leading to the decision of a black box
model and the features leading to a different decision. For these reasons, we conclude that WSP-2

is best explained by the SS-LORE model.

Table 10: Generated rules for instance WSP-2.

Instance: WSP-2

Anchor: Ag = (“considering”, “you”, “wise”, “what”,
“place”, “Ok”, “its777 LéiS”’ “bllt”, (4fancy7’ _> _1)
Decision rule: ro = (“fancy”, — “place”, “n’t” — -1)

Counterfactual rule(s): &9 = {p3 = (“fancy”, “place”, = “n’t” — 1)}

Note: — indicates that the feature is not in the instance.

WSP-2: (True label: -1)

Effect towards: e e Effect towards:
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(a) Marginal effects for SS-LIME. (b) Prediction differences for rule-based models.

Figure 4: “Food wise, it’s okay but a bit pricey for what you get considering the restaurant is n’t a fancy place.”
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6. Conclusion

In this paper, we focused on comparing the interpretability of two state-of-the-art hybrid models
for ABSA of restaurant reviews. To compare the interpretability, we used three post-hoc local
interpretation models: SS-LIME, Anchor, and SS-LORE to interpret the deep learning models
LCR-Rot-hop and LCR-Rot-hop++. These interpretation models are compared in terms of mim-
icking performance and user interpretability. Furthermore, we extended the interpretation models
such that they could be used for ternary classification, in contrast to binary classification used in
LIME (Ribeiro et al., [2016]) or tabular data used in LORE (Guidotti et al. 2018a). Last, we also
extended the SP algorithm by adding a weighted component. This resulted in the WSP algorithm,
which picks more instances where opinionated features are present compared to the SP algorithm.

To answer our research question, we first provide an answer to our subquestion: Which lo-
cal interpretation models give the best interpretation for each of the state-of-the-art hybrid models
for ABSA? This can be answered by considering the mimicking performance and the user inter-
pretability of the interpretation models for the picked instances by the WSP algorithm. From the
results, we conclude that the LCR-Rot-hop and LCR-Rot-hop++ models can be best explained by
SS-LIME and SS-LORE, respectively.

When we compare the interpretation ability of SS-LIME and SS-LORE for the deep learning
models, we conclude that SS-LIME is less interpretable. The SS-LIME method is able to highlight
the most important features, but it is not able to give the joint effect or changes of features
leading to another prediction. In contrast, SS-LORE is more user-friendly than SS-LIME, since it
provides us with explanations consisting of the reasons for a decision, and the changes of features
leading to another decision. We answer our research question: Which state-of-the-art hybrid model
for ABSA can be best interpreted by a local interpretation model? by concluding that LCR-Rot-
hop++ can be better interpreted since it is best represented by the local interpretation model
SS-LORE (using fidelity and hit rate). Regarding decision support, these results show that the
LCR-Rot-hop+4 model has both better user trustworthiness and accuracy than the LCR-Rot-hop
model, and should thus be the preferred deep learning model for state-of-the-art hybrid models for
ABSA in the restaurant domain.

However, one limitation of this research is that in the SS method, we sample local instances that

are not necessarily generated with an equal proportion of negative, neutral, and positive labels.
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Currently, the probability of picking a feature as a replacement is proportional to the similarity.
This results in the local instances being fairly similar to the original instance. Instead, it would be
interesting to consider a perturbation distribution that is able to generate local instances with an
equal proportion of negative, neutral, and positive labels and letting the selection probability also
be proportional to the distance between the features.

Future research could investigate the effect of more refined methods to interpret the results
produced by a certain deep learning model. For example, one could use argumentation theory
(Dragoni et al., 2018) to find the relations in an argumentation graph and to find correlations
between the predictions of a deep learning model and the output of said argumentation graph, or
use the Quantus package (Hedstrom et al. 2023)) as a toolbox to further extend the quantitative
evaluation of the proposed interpretability models. Second, it could be interesting to improve the
SS method by generating balanced neighborhoods. This should further refine the local classifiers.
Furthermore, our neighborhood sampling method can be extended to other methods, such as SHAP,
to explore the performance of the proposed sampling method using different approaches. Last,
SS-LIME and SS-LORE have been applied to two state-of-the-art ABSA deep learning models.
Future work could delve into the application of SS-LIME and SS-LORE to other models, such as

the method of [Su et al| (2021) using a progressive self-supervised attention approach.
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