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Abstract

One of the problems that e-commerce users face is that the desired products are sometimes not

available and Web shops fail to provide similar products due to their exclusive reliance on Boolean

faceted search. User preferences are also often not taken into account. In order to address these

problems, we present a novel framework specifically geared towards approximate faceted search

within the product catalog of a Web shop. It is based on adaptations to the p-norm extended

Boolean model, to account for the domain-specific characteristics of faceted search in an e-commerce

environment. These e-commerce specific characteristics are, for example, the use of quantitative

properties and the presence of user preferences. Our approach explores the concept of facet sim-

ilarity functions in order to better match products to queries. In addition, the user preferences

are used to assign importance weights to the query terms. Using a large-scale experimental setup

based on real-world data, we conclude that the proposed algorithm outperforms the considered

benchmark algorithms. Last, we have performed a user-based study in which we found that users

who use our approach find more relevant products with less effort.

Keywords: approximate product search, faceted navigation, user preferences

1. Introduction

E-commerce has nowadays become very popular among consumers. However, there are many

Web shops with very large product catalogs, which makes it difficult for users to find their desired

product. It has been shown that many users encounter this difficulty while shopping online [1, 2],
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which can negatively impact the turnover for Web shop owners. Studies from the past have shown

that factors other than the price play a crucial role when a consumer decides to choose where

to buy a product online [3]. This emphasizes the need for better search interfaces for browsing

through product catalogs on the Web.

Throughout the years various interaction paradigms have been proposed to deal with the above

problem. Faceted search is one of the most popular paradigms for browsing structured data in

information systems [4, 5], especially product catalogs in e-commerce stores [6, 7]. One of the

reasons why faceted search is popular among Web shops is that users find it intuitive [8, 9]. This

paradigm is useful for exploratory search, as users can iteratively select facets that they find

important to constantly refine their query and enhance the result set [10, 9, 11]. Furthermore,

it has been shown that faceted search is perceived as easy to understand and effective at guiding

people to relevant documents within catalogs [11].

Despite the advantages of faceted search, there are also some serious drawbacks. Traditionally,

faceted search imposes a rather strict Boolean model on whether a document matches the query

terms: either it matches the query or it does not. While this model allows for a quick drill-down into

the catalog, it also means that a user might miss some potentially desired products if they do not

completely match the query. This results in a user having to change the query afterwards to include

more documents, which increases search time and makes exploratory search more error-prone. Such

strict faceted search is not desired in e-commerce, as users usually do not have completely strict

requirements.

Most of the currently proposed approaches that aim to tackle this problem are not specifically

geared towards the domain of e-commerce. In particular, the existence of quantitative facets,

such as price, might pose a problem to these algorithms, as they do not consider nearly identical

numerical values as being similar to a certain degree. Furthermore, past approaches for e-commerce

also do not allow the user to explicitly specify which requirements are important and which ones

are not. To our knowledge, a faceted search method that unifies the ranking of products and the

ranking of user requirements has not yet been proposed.

In this paper, we propose a novel algorithm specifically geared towards approximate faceted

search within a product catalog of a Web shop. The main focus is on improving the retrieval of

relevant products, taking into account the importance of the specified user requirements. We adapt
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the p-norm extended Boolean model [12] to cope with the domain-specific characteristics of faceted

product search. The adaptations consist of a facet similarity function, both for quantitative and

qualitative product properties. We also propose a term weighting method that takes in account

user preferences. The main advantage of the proposed method is that it is purely data-driven and

does not rely on external knowledge. The algorithm is implemented as part of a Web application,

with real-life data obtained from Tweakers.net Pricewatch [13], which is a Dutch Web shop price

aggregation service. An extensive evaluation is performed by means of simulations and a battery

of quality and performance metrics.

The contributions of this paper are threefold. First, we propose an approximate search approach

that is specifically geared towards e-commerce, where faceted navigation is a commonly used user

interface paradigm. Second, our approach extends the functionality of approximate search by

allowing users to specify the importance of the selected product facets. Third and last, the approach

that we propose introduces minimal changes to the classical faceted navigation systems present in

current Web shops, making our solution a contribution to practice as well.

2. Related Work

In the literature, we can find some proposed approaches that aim to improve exploratory search

within a product catalog using recommender systems [14, 15].

The author of [15] proposes a recommender system based on case-based reasoning. This system

matches a user’s need with a product based on previously solved user needs that are similar to the

current user’s needs. The authors augment this approach by combining it with example critiquing,

which shows a product to the user and then allows the user express his/her dissatisfaction with

a particular facet of that product. This information can then be used to find another product

that has a better value for this facet, possibly at the cost of having a worse value for other facets,

thereby facilitating trade-off-based navigation.

Similarly, in [16] an approach is proposed that uses example critiquing techniques. They propose

an interaction paradigm in which users first declare their initial preferences, after which some

matching example documents are displayed. The user subsequently examines these examples and

either accepts one document or performs critiquing on one of the examples. This process consists

of improving some of the attribute values by allowing a compromise on one or more other attribute
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values. Afterwards, the system applies a decision strategy called the weighted additive sum rule,

which multiplies each attribute value of a document with the corresponding importance weight

in the query, followed by adding up these values to obtain an overall score. The documents with

the highest scores are displayed to the user, after which the user can either continue to perform

exploratory search or accept one of the presented documents. The authors show that users were

able to improve their decision accuracy by using the trade-off support provided by this system.

In [17], the authors examine an approach that employs concepts from the field of utility theory.

They argue that buying a product is different from finding relevant products, therefore it is possible

to calculate the expected utility of products and rank them based on the largest utility surplus.

The utility surplus is defined as the difference between two components, namely the utility of the

product and the utility of money. The utility of the product is defined as the sum of expected

utilities for each of its characteristics, whereas the utility of money is defined as an increasing

concave function. In order to obtain the expected utilities, they collect aggregated data about

market shares and demand, from which they derive an estimated utility. They show that users tend

to prefer their surplus-based ranking when searching for hotels in comparison to other considered

rankings.

Although faceted search is regarded as a useful means to explore a catalogue, care needs to

be taken that the interface does not become too cluttered and obscured, which could result in a

diminished user performance due to information overload [18]. General concepts from the literature

for implementing faceted navigation are explained and reviewed in [19]. One of the ideas discussed

for reducing the overload of information is to either filter or order the facets according to their

importance.

Displaying all facets may be a solution when a small number of facets is involved, but it can

overwhelm the user for larger sets of facets [18, 20]. Studies such as [21, 22, 23, 24, 25, 26, 27, 28, 29]

focus primarily on optimizing the decision of which facets to show in the user interface. These

algorithms aim to reduce user effort by ordering the facets in such a way that the most important

ones are listed first.

The study in [27] is based on earlier work of the authors which coined a basic idea for selecting

more descriptive facets using an entropy-based measure [30]. The approach focuses on Semantic

Web and Linked Data data sets, similar to the approaches in [31, 32, 33, 34] The reduction in user
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effort is achieved by calculating gain ratios for each facet, which is based on conditional entropy.

The conditional entropy indicates how much the value for a facet can be predicted by the value

for another facet. By summing up all the gain ratios of the facets belonging to each property, the

total gain ratio per property is computed. Last, the properties are ranked in decreasing order of

total gain ratio and presented to the user. This process is repeated after each interaction between

the user and the search engine.

Even though the previously discussed approaches are specifically geared towards e-commerce,

they have various shortcomings. Approaches such as [17], which rely on well-estimated user statis-

tics, are not usable in practice. The reason for this is that some Web shops do not have the

infrastructure to collect the user data or that the product catalogs are relatively large and chang-

ing rapidly. Other methods, such as [15, 16], do not rely on previously collected user statistics,

but they suffer from other issues. One of the main arguments against these example critiquing ap-

proaches is that they deviate too much from the currently used interaction paradigms (i.e., regular

faceted navigation). We argue that an approach that lies closer to what users use on a daily basis

will be more successful when deployed in practice. Therefore, our focus is to have an approach

that introduces minimal changes to the classical faceted navigation interface present in current Web

shops, while supporting approximate search and explicit user preferences. The only user interface

adaption we make is that users can specify importance weights for the selected facets, which can

be achieved in many different, non-intrusive ways.
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Figure 1: Overview of the framework.

3. Approximate Product Search

Before diving into the details of the framework, we first discuss facets in more detail and give

an overview of all the framework components. Product information in Web shops is usually stored
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in the form of tabular data, consisting of key-value pairs, where the key denotes the property to

which the value belongs. Each distinct combination of a key and value occurring in the product

catalog is considered to be a facet. For example, a key-value pair, or facet, of a product might

be [‘Colour’, ‘Black’]. Later on, if there is no ambiguity, we use the term ‘value’ to refer to

a facet, in order to shorten the explanations. There are various property types, which need to be

treated differently, both in the front-end as well as in the back-end. There are two main types of

properties, namely qualitative and quantitative properties.

Qualitative properties are further discerned based on whether they allow one or multiple values

per product. Typically these two types are presented differently to the user, either in the form

of radio buttons, which only allow one selection, or a list of check boxes that allows multiple

selections. An example of the first type of qualitative property is a qualitative Boolean property,

e.g., the key-value pair [‘WiFi’, ‘True’]. In contrast, a key-value pair like [‘Supported Audio

Formats’, ‘MP3, FLAC, AAC’] allows multiple values for a product. In this case, each element

in the list of values should be treated as a separate facet. There is an important exception to how

single-valued qualitative properties other than Boolean qualitative properties are treated. These

are namely still treated as a multi-valued property in user interfaces. One example of this would be

the ‘Brand’ property. The reason for this is that users may wish to include products from multiple

brands in the query (e.g., in order to compare them). Therefore, we treat multiple selections of

facets from a property like ‘Brand’ as a generalized disjunctive query. This is consistent with

the interpretation that many major Web shops employ, such as Amazon.com and BestBuy.com.

Quantitative properties have a single numerical value, where every distinct numerical value is

considered to be a facet. Different from boolean properties, a user can select multiple values for

a quantitative property by selecting a range of values. For example, the user could search for a

product with a price between e100 and e200, which encompasses multiple facets. Then, all the

products which have a price within this range will receive a weight of 1 for that facet (meaning the

facet is present).

Queries submitted to a faceted search engine consist of a selection of facets, from which a

Boolean expression is constructed. Traditionally the ‘Standard Boolean Model’ is used to evaluate

the expression, which means that a product is only included in the result set if the Boolean expres-

sion evaluates to true for the product. Our proposed algorithm replaces this strict model with an
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‘Extended Boolean Model’ that computes a similarity score for each product, thus enabling approx-

imate search. The constructed query expression is usually made disjunctive for facets belonging to

the same property, and conjunctive for facets belonging to different properties. Large Web shops,

such as Amazon.com, employ this principle, as it is considered to be intuitive to the users to form

the query in this way. For example, choosing [‘WiFi’, ‘True’] and [‘Camera Flash Type’,

‘Single LED, Dual LED, Xenon’] would search for all products that have WiFi and a Camera

Flash Type of either ‘Single LED’, ‘Dual LED’, or ‘Xenon’.

3.1. Framework Overview

The proposed algorithm employs a similarity score between the query and each product in the

catalog, which indicates how closely a product matches the query. In order to be able to compute

this score, it is necessary to convert both products and query to vectors first. Note that each

distinct numerical value of a quantitative property is treated as a separate facet, and is therefore

assigned to an element in the vector representation.

Figure 1 illustrates all the framework processes involved to compute the product-query similar-

ities. In this figure, rectangles represent processes and ovals represent input/output of a processes.

Furthermore, darker-gray ovals are dependent on the query, while light-gray ovals are not. This

means that the light-gray processes can be computed in advance to improve the computational

time.

First, let us discuss the process of converting product facets to product vectors and inverse

document frequency vectors (i.e., the first row of the figure). The facets associated with a product

are first converted to a binary weight vector, which is called the raw term frequency vector. A

weight of zero at index i indicates that the product does not contain the corresponding facet,

whereas a weight of one means that it does. Afterwards, a facet similarity function is applied to

each element in the raw term frequency vector that has a value of zero. This function converts the

binary weights to weights that range from zero to one. This can be interpreted as to how similar

the product is to the considered missing facet (based on all available product data). A different

weighting approach is used for the various facets in the vector, depending on whether the facet

corresponds to a qualitative or quantitative property. We will discuss this process in more detail in

Section 3.2. The last step in this part of the flow is to convert the product vector to the classical

inverse document frequency vectors [35].
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TABULAR PRODUCT DATA FACETS VECTOR
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Figure 2: Three example products and their facets.

On the second row of Figure 1 we see the processes that encompass the query flow, converting

query facets to a weighted query vector. All of these processes are dependent on the query and

have to be computed each time a query is submitted to the search engine. Every time a query

is submitted to the search engine, the algorithm first converts it to a vector, which has the same

dimensions as the previously created vectors for products. Similar to the raw term frequency

vectors, a weight of zero at index i indicates that the query does not contain the corresponding

facet, whereas a weight of one means that it does. A quantitative facet is contained in the query

if its associated numerical value is within the query range for the associated property.

In addition to the query facets, the user also submits a user property preference list to the

search engine. This preference list consists of all the involved properties in the facet selections and

is ranked descending on the importance (determined by the user). The user preference function

takes the query vector and the user preference list as input to determine the weighted query vector.

The weight query vector is computed by multiplying each value in the query vector with a property

importance weight. The details of this procedure are discussed in Section 3.3.

After both the products and the query have been converted to a vector, it is possible to

compute the similarity between them. This is depicted on the third row of Figure 1. The similarity

score is calculated using the p-norm extended Boolean model [12], and is a two-staged process.

First, the similarity of each property in the query is computed for every product using the p-
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norm extended Boolean formula for disjunctive queries. Second, the overall similarity between the

query and each product is computed. This step uses the similarity scores for each property from

the previous step and weights them again according to their associated weights in the weighted

query vector. Afterwards, these weights are plugged into the p-norm extended Boolean formula for

conjunctive queries, which results in an overall similarity score. These steps are described in detail

in Section 3.4. The end result of the process is a similarity score between zero and one for each

product, which indicates how closely a product matches the query. Last, the products are sorted

on their similarity scores in descending order and are presented to the user.

We move on now with the discussion of each of the processes depicted in Figure 1 in more

detail. Table 1 provides an overview of the notations that are used throughout the rest of this

paper.

3.2. Product IDF Vectors

We start with the detailed explanation of the process of converting Product Facets to Product

Vectors and Inverse document frequency vectors, i.e., the first row of Figure 1. The first step

in converting product data to vectors consists of extracting the facets from the available tabular

product data. Figure 2 depicts an example of the facet extraction process with three products.

Each distinct key-value pair is converted to a facet and is assigned a vector index. The vector

index of every facet corresponds to an element within the vector. Using the extracted facets for

every product, we construct raw term frequency vectors. These vectors are straightforward binary

vectors indicating if a facet is present or not. For example, for product 1 in Figure 2 the raw term

frequency vector would be (1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0).

After the raw term frequency vectors have been created, the facet similarity function is applied

to each weight in the vector. This conversion is needed as binary weights are too strict for the

purpose of approximate product search.

Ideally we want the search engine to rank and not filter the products using the submitted query.

For example, consider a user who is searching for a product with a price between e100 and e200.

Now suppose that a product exists with a price of e99.95. As the price of the product does not fall

within the specified range, the product does not match the query and thus gets a low similarity score

or is even not included in the results at all. Intuitively this could be considered as an incorrect

decision, as the price nearly matches the lower bound of the range, thus the product might be
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interesting to the user as well. Besides being too strict, using binary weights also gives another

problem: any quantitative value that lie within the specified range is considered equally dissimilar

from the query. This means that, for a query where the target price is e100, a product with a

price of e500 would achieve the same similarity score as the product with a price of e99.95 (all

other aspects being equal), which is clearly undesirable, as the latter product should be considered

as being more similar to the query.

The same problems also arise when searching for products with a qualitative property. If a

product does not contain the same qualitative facets as the query, it gets excluded. Furthermore,

qualitative facets that are not included in the query are treated as equally dissimilar from those in

the query. This does not always make sense, as some facets are conceptually quite similar, whereas

others are not. For example, consider some of the audio file formats that exist, such as ‘MP3’,

‘Ogg Vorbis’, and ‘WAV’. Whereas ‘WAV’ is an uncompressed and lossless format, both ‘MP3’ and

‘Ogg Vorbis’ are examples of a compressed and lossy format. Thus it can be argued that the latter

two audio formats are more similar to each other than ‘WAV’ and either one of these formats.

The facet similarity function aims to address the issues outlined above by converting the weights

in the raw term frequency vector to a weight in the range of zero to one, which can be interpreted

as the degree of similarity between a product and each facet. The result of applying the function on

the raw term frequency vector is called the product vector. Depending on whether a facet belongs

to a quantitative or quantitative property, a different approach is used to compute its weight in

the product vector. This similarity function is defined as:

facetSim(fp, d) =



0 if Fp,d = ∅

1− min
fp,d∈Fp,d

|fp − fp,d|
max(Fp)−min(Fp)

if p ∈ Pquan.

max
fp,d∈Fp,d

|Dfp ∩Dfp,d |
|Dfp,d |

if p ∈ Pqual.

(1)

Evidently, if a product does not have any of facets associated with the property p, the similarity

score remains zero, as it is not possible to compute the degree of similarity in that case.

The score for quantitative properties is based on the linear distance between the numerical

value of the facet fp and the numerical value of the product. Note that, although Fp,d is defined

as a set, there is often only one element in the set for quantitative properties, as a product usually

does not have multiple numerical values for the same property. The distance between the numerical
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values is normalized by dividing it by the range of the values for the property, thus obtaining a

relative dissimilarity. By subtracting the dissimilarity from one, the similarity score between two

quantitative facets is obtained.

The facet similarity score for qualitative properties computes a similarity score between the

facet fp and each facet of property p that is also associated with product d, i.e., each facet fp,d

in Fp,d. The similarity score is based on the fraction of products with facet fp,d that are also

associated with facet fp. After computing all the similarity scores, the highest score is selected and

is used as the weight for facet fp in the product vector.

The rationale behind this score is that facets that occur frequently together within product

data are likely to be conceptually similar. For instance, consider the different versions of the WiFi

standard, such as ‘WiFi B’, ‘WiFi G’, and ‘WiFi N’. Each consecutive version of the standard

enhances the previous version and is backwards compatible, thus products adhering to a particular

version also adhere to the previous versions. Suppose that the user is searching for a product

with ‘WiFi N’. Then products which do not have ‘WiFi N’, but do have ‘WiFi G’, are a better

alternative than products that only have ‘WiFi B’, as the versions are conceptually more similar.

For example, suppose that there are 20, 10, and 5 products associated with ‘WiFi B’, ‘WiFi G’,

and ‘WiFi N’, respectively, and each product with ‘WiFi N’ also has ‘WiFi B’ and ‘WiFi G’. Then

the similarity score for the facet ‘WiFi N’ would be 5
20 (= 1

4) for products with only ‘WiFi B’, and

5
10(=

1
2) for products with ‘WiFi G’.

By applying (1) to each weight in the raw term frequency vector, a new vector, called the

product vector, is created with weights ranging from zero to one. Using the example products

from Figure 2 again, we obtain the following product vectors:

productV ector1 =

(
1, 0, 0, 1,

1

2
, 0, 0, 1, 1,

2

3
,
1

3

)
productV ector2 =

(
0, 1, 0,

1

2
, 1,

1

2
, 1, 0, 1, 1,

1

2

)
productV ector3 =

(
0, 0, 1, 0,

1

2
, 1, 1, 0, 1, 1, 1

)

After the product vectors have been created, the inverse document frequency vectors are com-

puted [36]. Inverse document frequency vectors are useful for faceted search, as it provides the

means to weight facets in the query, based on how often they occur within the product catalog.
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D Product catalog

P Properties

Pqual. ⊆ P Qualitative properties

Pquant. ⊆ P Quantitative properties

Fp ⊆ F, p ∈ P Facets for property p

fp ∈ Fp Facet for property p

Fd ⊆ F, d ∈ D Facets for product d

fd ∈ Fd Facet for product d

Fp,d = Fp ∩ Fd Property p facets for product d

fp,d ∈ Fp,d Property p facet for product d

Df , ∀d ∈ Df : f ∈ Fd Products d associated with facet f

q ⊆ F Query

Dq ⊆ D Result set returned for query q

Table 1: Summary of used notations.

Products that have the more uncommon facets in the query will therefore receive a higher score

than products which do not have those facets. For example, if a user searches for a product that

has Bluetooth and is dust resistant, it is more likely that products with dust resistance are more

important to the user than products that only have Bluetooth, as this facet occurs less frequently

in the catalog.

Even though the idea of using the inverse document frequency can be useful in our context, we

propose some adaptations to make it fit better. We define the inverse document frequency of item

i (a facet) as following:

idf(i) =

log

(
N/

N∑
n=1

wn,i

)
logN

(2)

where wn,i corresponds to the value for item i for product n and N is the number of products in

the catalog.

First, the p-norm extended Boolean model that is used by the framework requires weights to be

in the range of zero to one. However, this is currently not the case, as weights can be any positive

number. Therefore, the weights are normalized through dividing by logN .

In addition, the term n in the original idf formula is exchanged for a slightly different term.
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w2

w3

w4

w5

w6

w9

w10

w11

w7
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QUERY FACETS VECTOR

Figure 3: A query and the corresponding facets.

Rather than being equal to the number of products that are associated with a facet, the new term

is defined as the sum of facet similarities of all products. In other words, it is a summation of the

facet weights in all product vectors. This is done in order to prevent a bias towards facets associated

with few products, i.e., the size of the set Df is quite small, while many products do have a high

facet similarity score for such a facet. In this way, we obtain inverse document frequency weights

for these facets that better reflect how often they occur within the catalog, as facet similarities

are now taken into account. The inverse document frequency vector for the first example product

vector from Figure 2 is:(
log 3/1

log 3
,
log 3/1

log 3
,
log 3/1

log 3
,
log 3/1 1

2

log 3
,
log 3/2

log 3
,
log 3/1 1

2

log 3
,
log 3/2

log 3
,
log 3/1

log 3
,
log 3/3

log 3
,
log 3/2 2

3

log 3
,
log 3/1 5

6

log 3

)
(3)

As it becomes clear from the previous example, a facet weight is equal to zero when all the

products in the catalog have a score of one for the facet in their product vector, whereas a facet

weight is equal to one when only a single product has a non-zero score for the facet in the product

vector. This is logical, because including a facet in the query that every product has does not

provide any extra information to the search engine. Conversely, when only one product is associated

with a facet, it provides the maximum amount of information gain to the search engine.

3.3. Weighted Query Vectors

The process of converting a query to a vector is very similar to the process used to convert a

product to a vector. Similar to product data, we extract facets from a submitted query. There is

a small difference in how quantitative key-value pairs are handled though. Rather than having a
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single numerical value, queries have a numerical range as value for a quantitative property. Figure 3

illustrates how this process works with an example. The dark-gray facets are not included in the

query, whereas the light-gray facets are included. For example, the price range [200, 325] is mapped

to the facets ‘200’ and ‘300’, but not to ‘400’, as that value is out of range. The obtained query

vector consists of binary weights, where a weight of zero means that the corresponding facet is not

included in the query, and a weight of one means that it is included. For example, the query vector

for the query in Figure 3 is defined as (0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1).

With the (binary) query vectors, every facet is regarded as being equally important to the

user. However, it can be argued that this is often not the case, as the user has both hard and soft

requirements for a desired product. Therefore, the weights in the query vector should be adjusted

according to the user preferences, in such a way that it becomes possible to make a distinction

between hard and soft requirements.

Assigning correct weights to the facets can partially be accomplished by using the inverse

document frequency vector, as previously discussed. However, as these weights are solely based

on the product data available in the catalog, the result is a vector that is the same for every

user. It is therefore unsuitable for taking the user preferences into account, as not every user who

submits a query has the same requirements. That is why instead we propose to extend the query

by including a ranked list of properties, the user property preference list, which ranks the properties

in descending order of importance to the user.

Every property p that occurs within the query, i.e., there is at least one facet fp in query q,

is included in the list. The reason for aggregating the preferences on a property level rather than

on an individual facet level is twofold. First, queries submitted to a faceted search engine are

typically quite large in size and therefore rather complex. Having to manage a list of preferences

should not be too obtrusive for the user during the querying process. This is why the list should

ideally contain only a few elements, even when the query contains many facets. Aggregating on a

property level ensures that the preference list stays concise and manageable while the user gradually

refines his query. Second, the query itself is also structured in a similar way, as it is disjunctive

for facets belonging to the same property, and conjunctive between properties. This suggests that

facets belonging to the same property are of equal relative importance to the user, whereas facets

belonging to different properties are not. This usually reflects the user intentions better than a
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fully conjunctive or disjunctive query. It therefore makes sense to structure the user preferences in

the same way.

The equation for converting a facet weight from the query vector to a weight that takes user

preferences into account is given by:

weight(wi, p) =
1

rank(p)
· wi (4)

where wi is the facet weight in the query vector, p is the property to which the facet belongs, and

rank(p) is a function that returns the rank of property p in the user property preference list. The

old weight wi in the query vector is multiplied with the simplest form of Zipf’s law, which was

first proposed in [37], in order to obtain a new weight that takes the user preferences into account.

Suppose that the user preference list of the user, who submitted the example query in Figure 3, is

equal to [‘Colour’, ‘Bluetooth’, ‘Price’, ‘WiFi Version’], then applying the user prefer-

ence function to the query vector yields the weighted query vector
(
0, 0, 1, 13 ,

1
3 , 0,

1
2 , 0,

1
4 , 0,

1
4

)
.

3.4. Query-Product Similarity Score

Now that both the products and the query are converted to vectors, we compute a similarity

score between each product and the query. The similarity score is calculated using the p-norm

extended Boolean model. The framework first computes the similarity scores for each property,

followed by the overall similarity score.

The standard Boolean model is the usual method for querying faceted product data. Each

submitted query is converted to a Boolean expression and only products that completely match

the expression are returned. This method has several drawbacks that are mostly related to the

strictness of the model. Because products are only returned if they fully match the query, it is

highly error-prone and unsuitable for exploratory search, as the user has to constantly correct the

query when no products are returned. As is evident from the example product data in Figure 2,

none of the products match the query. However, there are some products that nearly match the

query, but have the wrong color or their price is too high. Ideally, these trade-off possibilities

should be presented to the user without the user having to make his query less specific first.

In addition, the strictness of the model also does not allow for user preferences to be taken

into account. The user might have both soft and hard requirements for desired facets, but the

standard Boolean model only returns products that completely match the query. It is therefore
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not possible to indicate that a particular term in the query is more important than another, as

they are inherently all equally important.

Another deficiency of the standard Boolean model is the implicit lack of ranking within the

result set. As each product in the result set matches the query, it is not possible to distinguish

between them. This means that a product, which has both ‘WiFi B’ and ‘WiFi N’, is not ranked

higher than a product with only ‘WiFi B’ or ‘WiFi N’ for the example query in Figure 3, while,

using generalized disjunction, it could be argued that it would preferable to do so.

It is clear that the standard Boolean model is not suitable for approximate product search,

which means that an alternative model has to be used. One of the alternatives is the vector space

model [38]. Although this model does allow term weighting, the query is interpreted as a fully

conjunctive query. This is obviously not ideal for faceted product search, as usually queries consist

of conjunctive and disjunctive terms.

Therefore, the p-norm extended Boolean model [12] is used by the framework, which offers both

the advantages of the vector space model and supports conjunctive queries. It essentially softens

the strict AND and OR Boolean logic operators of the standard Boolean model by calculating a

distance between the desired values, i.e., the values in the query, and the values within a product

vector. This distance is based on the p-norm distance, a generalization of the Euclidean and

Manhattan distance measures, which includes a parameter p to vary the degree of strictness of the

operator. In our approach, we use a value of two for the p parameter, which is a well-known and

frequently used norm called the Euclidean norm. The results in [12] indicate that a value between

two and five is optimal, whereas larger values decrease the performance improvements over the

standard Boolean model. For disjunctive queries, the similarity for an n-dimensional vector using

the p-norm extended Boolean model is given by:

sim(q,d) =
p

√
qp
1 · d

p
1 + qp

2 · d
p
2 + · · ·+ qp

n · dp
n

qp
1 + qp

2 + · · ·+ qp
n

(5)

where p is the p-norm parameter, q is the query vector, and d is the document vector. The similarity

for a conjunctive query and an n-dimensional vector is given by:

sim(q,d) = 1−
p

√
qp
1 · (1− d1)p + qp

2 · (1− d2)p + · · ·+ qp
n · (1− dn)p

qp
1 + qp

2 + · · ·+ qp
n

(6)

where p is the p-norm parameter, q is the query vector, and d is the document vector.
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The first step in calculating the query-product similarity scores is calculating the similarity

score per property. As it is assumed that queries between facets from the same property are

disjunctive, Equation (5) is used for this step. Because the score is calculated for each property p,

a sub-vector d is created from the product vector including only facets associated with property

p. The same process is applied to the weighted query vector and the inverse document frequency

vector, resulting in sub-vectors q and idf , respectively. Last, the similarity score between d and q

is computed, resulting in a score between zero and one.

Note that the weights for each facet in the query vector q are all equal, as they belong to the

same property and the preference weighting is performed on a property-level. However, it can be

argued that the facets should be weighted, as some facets are more unique than others, thus a

product having that facet should be regarded as being more similar to the query. The reason for

this distinction is that the user included an uncommon facet in the query, which could indicate that

it is an important facet to him. For example, suppose that a query contains the facets ‘WiFi G’ and

‘WiFi N’ associated with the property ‘WiFi Version’. As the versions are backwards compatible,

there are relatively many products with ‘WiFi G’ compared to products with ‘WiFi N’. In this

situation it is more likely that the user would prefer products which have ‘WiFi N’ rather than

products with only ‘WiFi G’. Therefore, the query vector weights are multiplied by the inverse

document frequency weights, in order to assign different weights to the facets in the query. The

equation is therefore given by:

propSim(qi,di) =
p

√
(idf i

1 · qi1)p · di1
p
+ · · ·+ (idf i

n · qin)p · din
p

(idf i
1 · qi1)p + · · ·+ (idf i

n · qin)p
(7)

where p is the p-norm parameter and qij , idf
i
j , and dij are the query, the inverse document frequency,

and the product vector values for property i and vector index j (the vector corresponding only to

property i), respectively.

Note that the query weights in the denominator are also multiplied by the inverse document

frequency. This is done in order to keep the score normalized to a maximum value of one. Oth-

erwise, even when the document would have all the facets in the query, i.e., d consists only of

values of one, the resulting score might not be equal to one, which is counter-intuitive. In this

case, the numerator can only be equal to the denominator, thus resulting in a score of one, if

the inverse document frequency vector also consists only of values of one, which would mean that

all the facets may only occur once in the product catalog. We therefore normalize the score by
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also multiplying the query vector weights in the denominator with the inverse document frequency

weights. Consider the example weighted query vector(
0, 0, 1,

1

3
,
1

3
, 0,

1

2
, 0,

1

4
, 0,

1

4

)
,

and the first example product vector(
1, 0, 0, 1,

1

2
, 0, 0, 1, 1,

2

3
,
1

3

)
,

and the inverse document frequency vector in Equation (3). After decomposing each vector into the

sub-vectors for each property, as previously discussed, the property similarity scores are computed

as follows:

propSim(qp,dp) ≈ 0.90

propSim(qw,dw) ≈ 0.33

propSim(qc,dc) = propSim(qb,db) = 0

where c, p, b, and w are the properties ‘Colour’, ‘Price (e)’, ‘Bluetooth’, and ‘WiFi Version’, re-

spectively.

Looking at the property similarity scores, we can observe that the product has nothing in

common with the query regarding the properties ‘Colour’ and ‘Bluetooth’. This is due to the fact

that the product only has non-zero scores in its product vector for facets that are not included

in the query. In other words, it has a wrong value for ‘Colour’, namely ‘Silver’ instead of ‘Black’,

and it does not have Bluetooth. Furthermore, because there are no other products associated with

‘Silver’ or ‘False’ that are also associated with ‘Black’ or ‘True’, the weights of the product for

‘Black’ and ‘True’ remain zero in the product vector, as there is no facet similarity. In contrast,

the product achieves a high score for the property ‘Price (e)’, as its value (200) is within the range

of the query ([200,325]).

While the product does have one out of two of the facets associated with the property ‘WiFi

Version’ in the query, it only gets a score of 0.33. This is due to the fact that it only has a score of

one in its product vector for the most common ‘WiFi Version’, namely ‘WiFi B’. As all products

have a score of one for that facet, its weight in the inverse document frequency vector is zero, as it

conveys no information regarding the product that the user wants to buy. However, because some

of the products that have ‘WiFi B’ also have ‘WiFi N’ associated with them, the product has a
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weight of 1/3 associated with ‘WiFi N’ in its product vector. Therefore, the property similarity

score of this product is not equal to zero, but equal to 1/3.

After the property similarity scores have been computed, the overall similarity score can be

computed. As the query is assumed to be conjunctive between properties, the framework uses

Equation (6) for this step. Furthermore, it uses the property similarity scores for each property as

the weights for the product.

Because the facets are now aggregated on a property level, it is also necessary to aggregate the

weights in the vectors. First, the property similarity scores are combined to form the aggregated

product vector. Using the decomposed property similarities for the first product vector in Figure 2,

we determine this vector to be (0, 0.8993, 0, 0.33). Then, the similarities for each property have to

be weighted, such that products with a high similarity score for important properties are promoted

in the search results. As previously discussed, a list of properties in the query, ranked in decreasing

order of importance, is obtained from the user. Using this list, Equation (4) is applied to each

weight in the query vector in order to transform it to the weighted query vector. Subsequently, the

highest weight per property in the weighted query vector is collected and together they form the

weighted aggregated query vector. For the example weighted query vector, this vector is
(
1, 13 ,

1
2 ,

1
4

)
.

After the aggregated query and product vectors have been obtained, the overall similarity between

them can be computed as follows:

overallSim(q,d) =
p

√
qp
1 · d

p
1 + qp

2 · d
p
2 + · · ·+ qp

n · dp
n

qp
1 + qp

2 + · · ·+ qp
n

(8)

where p is the p-norm parameter and q is the query vector and d is the document vector. For the

first example product vector (0, 0.8993, 0, 0.33) and the weighted example query vector
(
1, 13 ,

1
2 ,

1
4

)
the overall similarity score is computed as following:

overallSim(q,d) =

√√√√12 · 02 + 1
3

2 · 0.89932 + 02 · 1
2

2
+ 1

4

2 · 0.332

12 + 1
3

2
+ 1

2

2
+ 1

4

2 ≈ 0.0522

As we can see, the high similarity score for one of the properties is offset by low scores for the more

important properties, thus the product receives a low overall similarity score of 0.05.

The final scores for the the three products from Figure 2 is 0.05, 0.15, and 0.79, respectively.

Note that, as none of the products has achieved a perfect overall similarity score, no products

would have been returned if the standard Boolean model was used. This would result in the user

having to adjust his query in order to find trade-off possibilities, whereas this is not needed in the

proposed framework. Clearly the third product matches the query better than the other products,
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due to having perfect similarity scores for three of the four properties in the query. It therefore

matches most of the user’s requirements, apart from the price, which is too high. However, the

user has indicated previously that the price is a relatively soft requirement for him. The user

preference function has taken this into account by assigning a weight of 1/3 to the price property,

which helps boost the overall similarity score of the third product. This assists the user in finding

the best trade-off possibilities, given his preferences, if there is no product that completely matches

his query.

4. Evaluation

For evaluating the performance of the algorithms, we use a real-life dataset from [13], which is

a commercial Web site with a large community consisting of more than half a million Dutch and

Belgian technology enthusiasts, collected in 2014 for our previous work [21]. We have chosen to

focus the research on faceted search within a product catalog consisting entirely of mobile phones.

The reason for this is that products in this category differ greatly in functionality and appearance,

introducing heterogeneity in the data. The data of 794 different mobile phones was obtained from

the Pricewatch using a combination of tools and scripts.

4.1. Experimental Setup Using Simulations

For our experiments we use the interaction model proposed in [39], where the user is presented

a list of facets and iteratively updates the query by selecting one or more facets. In our setup, a

search session is defined as an interactive process of updating the query, until the user has no desire

to further refine the query. More specifically, first, the user decides whether the query should be

updated any further, which is based on the number of user actions executed so far, and the total

number of user actions that he is willing to perform. If the user wants to update the query, the

user considers the generated property preference list first, a ranked list of properties in the query

in descending order of importance. The user compares the generated user preference list with

the actual property preference list, which reflects his or her preferences regarding the properties

associated with the target product. If the user spots an inconsistency within the ranking of the

properties in actual and generated user preference list, the generated list is updated by dragging

the first incorrectly ranked property to the desired position. Afterwards, the preference list is
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submitted to the search engine, which subsequently updates the result set by taking the new user

preferences into account.

If the user cannot perform preference reordering, either because the ranking between the actual

and generated user preference list is already consistent, or the employed algorithm does not take

user preferences into account, the query is updated by selecting an additional facet instead. It

is assumed that the user scans the list of displayed facets in a linear order, from the top to the

bottom. The ordering of the list is based on the expert-based ordering employed by [13], and

does not change during the search session. Every time a facet is examined, the user first tries to

identify it as a facet belonging to the target product. Rather than being able to identify each facet

of the target product with full accuracy, the user has only a chance of α to correctly identify it.

Conversely, the user has a chance of β to falsely identify a facet as belonging to the target product.

For our evaluation, we use α = 0.9 and β = 0.1.

In order to prevent a bias towards examining facets from properties which have many facets, we

distribute the α and β chances over all the facets per property. Otherwise, a facet from a property

with many facets, such as ‘Colour’, would be included more often in the query than a facet from a

Boolean qualitative property, such as ‘Bluetooth’. Therefore, the probability to consider selecting

a facet is αf or βf , depending on whether the facet is associated with the product.

After identifying a facet as belonging to the target product, either correctly or incorrectly, the

user will consider whether he wants to actually select the facet for inclusion in the query. After

the user has made a selection, the updated query and generated preference list are submitted to

the search engine and the number of user actions is incremented. The search engine subsequently

computes new similarity scores between all the products and the query, and returns a new ranked

result set. This process continues until the user is no longer willing to perform more user actions,

at which point the simulated search session is concluded.

We vary the total number of clicks per search session using 5, 10, 20, and 30 clicks. Fur-

thermore, the target product, which the user is looking for, is also varied. The combination of

algorithm, target product, and number of clicks are used as inputs to the evaluation framework.

Each combination of inputs for simulating a search session is defined as one experiment. Note that

each experiment is executed fifty times, in order to reduce the stochasticity, which is inherent in

the drill-down model that simulates a user.
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In addition to our proposed algorithm, the performance of several other algorithms is measured

and compared to each other. The first algorithm, which is used as a baseline, employs a simple

similarity function for each product, based on the number of facets in the query that the product

matches. The p-norm extended Boolean model [12] forms the basis of our proposed algorithm. It

therefore makes sense to compare the results of the proposed algorithm with those of the regular

p-norm extended Boolean model. A variation of the proposed algorithm that does not take user

preferences into account is the third algorithm against which we compare the performance of our

approach.

Last, for our experiments we needed to model the user behavior when interacting with the

faceted search engine. For this purpose, we base our assumptions on the ones previously outlined

in [25, 40, 41]: rationality, omnisciency, linearity, and practicality. For more details on these

assumptions we refer the reader to [25, 40, 41]. In our approach we relax the omnisciency and

linearity assumptions by introducing some stochasticity to the model when selecting facets to

include in the query, which is implemented differently for qualitative and quantitative facets.

4.2. Results Using Simulations

Various performance measures are collected during the experiments. In order to assess the

performance of the algorithms, it is useful to gather some measures related to the position of the

target product. First, we define the ‘last position’ as the last position of the target product after

T user actions. This function returns the rank of the target product du in the result set Dq.

Second, we define the ‘average position’ as the average position of the target product computed

after each user action. Third, we use the ‘first iteration in top-N ’ metric to measure how quickly

an algorithm manages to promote the target product to the first top N results. Similarly, the

‘any iteration in top-N percentage’ metric measures the percentage of sessions in which the target

product was promoted at least once to the top N results. Last, the ‘success percentage’ indicates

in how many search sessions the target product was in the top-N results after T user actions.

In addition to collecting performance measures related to the position of the target product in

the result set, we also collect measures regarding the user effort that is required to formulate the

query. The user effort involved can be split up into various components, related to the various

tasks a user performs while formulating the query. The first task we define is the reordering of

the user property preference list. The other two tasks are related to scanning the list of displayed
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properties P (property scan effort) and the list of displayed facets F (value scan effort). Last,

the computation time of the algorithm required for computing the ranking of the products in the

result set is also measured. The time is measured in milliseconds and consists only of the time to

compute the ranking. The time needed to simulate the user’s behavior is therefore not included in

this measure.

As previously outlined, all combinations of an algorithm, a target product, and a total number

of clicks were executed, with each experiment being conducted fifty times. This means that a

total of 635,200 search sessions were simulated (4 algorithms × 794 products × 4 total clicks × 50

repetitions). Because each search session consists of 16.25 (= 5+10+20+30
4 ) user actions on average, it

results in a total of 10,322,000 simulated user actions. Due to these vast numbers, the experiments

were run in parallel on a cluster of server nodes [42], in order to speed up the evaluation.

Table 2 shows an overview of the obtained performance measures for the four algorithms and

for T = {5, 10, 20}. We do not discuss the case of T = 30 for the sake brevity, however, we can

report that the relative results are the same as for T = 20. Only the absolute differences between

the algorithms became larger. At first sight, from Table 2 we can see that for T = 5, the algorithms

perform fairly similar. This is because the queries are relatively homogeneous when only five clicks

are used, making the effect of the ranking algorithms less clearly visible. However, we do make

some interesting observations. First, we notice that the results for the ‘simple rank’ algorithm are

relatively good. It outperforms all other algorithms for the last position metric (p < 0.00001).

With respect to the success percentage metric, it outperforms our approach with user preference

ranking but performs worse than our approach without user preference ranking (all differences are

significant with p < 0.00001). After analyzing the reason for this behavior we discovered that the

main disadvantage of the ‘simple rank’ algorithm, i.e., not distinguishing between conjunctive and

disjunctive aspect in a query, is not visible when limiting the number of clicks to 5. The reason for

this is that the facets are scanned linearly and the first five facets belong to properties for which

almost all products only have one value. These facets are ‘Price’, ‘Brand’, ‘Operating System

(OS)’, ‘OS version’, and ‘Color’. As a result, in almost all simulated sessions, a conjunctive query

was performed, therefore not allowing algorithms that support disjunctive queries to distinguish

themselves.

Second, we notice that the p-norm approach has a low success percentage, with a significant
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Simple Rank P-norm Our Algorithm Our Algorithm

without with

Preferences Preferences

For T = 5:

Last Position Mean 84.25 95.05 103.66 102.14

Avg. Position Mean 152.94 159.58 141.77 145.95

Any Iteration Top-N Percentage 44.74% 44.53% 55.47% 44.03%

First Iteration Top-N Mean 3.34 3.29 3.01 2.89

Success Percentage 40.23% 37.01% 44.86% 36.56%

Preference Reorder Count Mean − − − 1.1

Property Scan Effort Mean 0.0986 0.0988 0.0987 0.0706

Value Scan Effort Mean 0.2652 0.2635 0.2625 0.1844

Computation Time Mean (ms) 1380 2232 1207 1199

For T = 10:

Last Position Mean 75.11 93.01 122.84 79.25

Avg. Position Mean 113.10 124.44 126.75 114.05

Any Iteration Top-N Percentage 68.78% 68.99% 71.96% 66.87%

First Iteration Top-N Mean 4.76 4.71 3.97 4.47

Success Percentage 57.73% 53.30% 51.85% 53.78%

Preference Reorder Count Mean − − − 2.8

Property Scan Effort Mean 0.1287 0.1288 0.1286 0.0822

Value Scan Effort Mean 0.3521 0.3526 0.3522 0.2219

Computation Time Mean (ms) 2645 4692 2496 2442

For T = 20:

Last Position Mean 97.68 124.35 169.00 79.15

Avg. Position Mean 100.24 118.06 137.75 96.32

Any Iteration Top-N Percentage 76.58% 76.19% 76.69% 78.51%

First Iteration Top-N Mean 5.74 5.62 4.54 5.97

Success Percentage 55.77% 48.52% 44.36% 59.95%

Preference Reorder Count Mean − − − 5.8

Property Scan Effort Mean 0.1647 0.1648 0.1648 0.1045

Value Scan Effort Mean 0.4407 0.4413 0.4404 0.2836

Computation Time Mean (ms) 5259 10100 5315 5088

Table 2: Experimental results for T = {5, 10, 20}, N = 20, and α = 0.9

difference w.r.t. our approach without user preference ranking (p < 0.00001). The reason for

this is that the p-norm algorithm is not able to cope with the quantitative properties properly.

However, we do observe that the p-norm achieves a higher average for the success percentage than
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our approach that includes user preference ranking. The reason for this difference (even though

not significant with p = 0.39608) might be explained due to the fact that the user in our approach

spends 1.1 out of 5 clicks on average on facet re-ordering. This results in less clicks used for the

actual query refinement.

However, our approach with user preference ranking does have the best performance on property

and value scan effort (with p < 0.00001). The reason for this is similar to why the success percentage

is relatively low: some user effort is moved from scanning facets to re-ordering facets. We argue

that this effort can be more useful for search engines than selecting new facets because it adds more

information as to how to rank the products, without making the actual query more complex (i.e.,

introducing new facets). We also see that our approach (both with and without user preference

ranking) outperforms the other algorithms on the ‘first iteration top-N ’ metric (with p < 0.00001).

We can conclude from this that our approach significantly improves the ability to promote the

target product while the user is searching.

When we look at the results for T = 10, we notice that the performance of all algorithm improves

(e.g., the success percentage increases for all approaches). This is as expected because the queries

are more refined when 10 clicks are used instead of 5. We further observe that the ‘simple rank’

algorithm again outperforms the other approaches on the last position metric (p < 0.001) and that

our algorithms are again the best w.r.t. the first iteration top-N metric. Another observation that

we make is that property and value scan efforts have increased for all approaches. This is due to

the fact that the more clicks there are, the more scanning occurs because already selected facets

are skipped in subsequent iterations, as facets cannot be selected twice. However, our approach

with user preference ranking still outperforms the others (with p < 0.00001). The reason for this

is that also the number of clicks spent on property scanning is increased (i.e., 2.8 out of 10).

For T = 20 we make an interesting observation: compared to T = 10, all approaches except our

algorithm with user preference ranking perform worse for the last position metric. The reason for

this is the increased probability of including incorrect facets in the query, which obviously negatively

impact the last position metric. We conclude from this that property re-ordering by the user can

combat this issue by placing properties lower on the preference list for which the user is unsure if

the target product has them. Furthermore, we see that for the first iteration top-N metric again

our approach without the user preference ranking is the best and that similar to previous findings,
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the scanning effort for properties and values has increased. However, our approach, without the

user preference ranking, does not perform so well for the last position metric. After performing

error analysis, we found out that this is caused by the fact that our similarity for qualitative

values, which relies on co-occurrence values, does not always help. What we do observe is that our

approach that includes user preference ranking seems to resolve this issue, as it scores the best for

the last position metric with an average last position of 79.15.

4.3. Results Using an Experiment with Users

Besides the extensive experiments performed using simulation, we also performed an experiment

with real users. We had a total of 27 users who participated in the experiment, consisting of 17

males and 10 females. There were 19 users that were between 20 and 30 years old, 6 users that

were between 31 and 40 years old, and 2 users that was between 40 and 50 years old. These users

were mostly students and colleagues from our university and other universities and there was no

financial reimbursement for the participation in the experiment. When selecting these users, we

aimed to achieve a balance between males and females in order to reduce bias. Furthermore, we

decided to focus on people aged between 20 and 50 years old as these people are more likely to use

product search in real life and hence provide a more accurate representation of who would benefit

from this algorithm.

The implementation of the Webshop that implements the algorithm proposed in this paper

can be found online1. We have also implemented the ‘standard’ Webshop2, i.e., one that has no

special features other than those commonly encountered on the Web. The experiment consisted of

10 small tasks in which each user was given 7 product features and their corresponding preference

scores, indicating how important the product features are. The goal was to find the 10 products

that best match the given product features, i.e., to find the 10 products that have the highest

score according to the preference list. The assigned preference scores were computed using the

Zipfian distribution and multiplied with 100 and rounded to the nearest integer (e.g, 1/1 × 100,

1/2× 100, 1/3× 100, etc.). The users were performing the tasks using only the ‘standard’ system.

The scores for our system were simply computing by selecting the facets in the order of how they

were presented in the task, and answering with the 10 products that were returned by the system.

1http://approx-prod-search.eur.dvic.io
2http://std-prod-search.eur.dvic.io
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Event type Total Average per

occurrence user occurrence

Numeric facet change 2142 107.10

Toggle collapsed 389 19.45

List facet select 372 18.60

List facet deselect 135 6.75

Boolean facet change 129 6.45

Numeric facet remove 56 2.8

Boolean facet remove 23 1.15

Table 3: Event counts for the user experiment.

Using this scoring system, our approach achieved an average score of 13.945 while the standard

system achieved an average score of 9.170, which we found to be statistically significant using a

paired two-sample t-test (with p = 0.04149). Table 3 shows the behavior of an average user who

participated in the experiment. We can see that most users chose to filter based on numeric facets

(such as the price). This also shows us that the users selected on average at least 18 facets to come

up with their answers. Using our system this is does not need to be more than 7, i.e., the number

of presented product features.

5. Conclusion

In this paper we propose a novel framework specifically geared towards approximate faceted

search within a product catalog of a Web shop. It explores the concept of facet similarity functions

for both quantitative and qualitative facets, in order to express the degree of similarity between

various facets. We propose adaptations to the classical p-norm extended Boolean model to ac-

count for the domain-specific characteristics of faceted search in an e-commerce environment. Our

approach allows the user to specify a property preference list and takes this into account when

weighting the query terms.

In order to assess the performance of the proposed algorithm, it is compared with a simple
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baseline algorithm, based on the fraction of facets in the product data that match those in the

query, as well as the p-norm extended Boolean model. It is shown that in many cases the proposed

algorithm compares favorably to the other algorithms w.r.t. many different metrics (especially for

large number of clicks). Our approach also scores best with regards to the percentage of search

sessions in which the target product has appeared in the top-N results at least once. Also, it is

better able to exploit the quantitative facets in order to promote the target product in the result

set. Besides the experiments we performed using evaluation we have also performed an experiment

with real users. From this experiment we can conclude that our approach finds more relevant

products using less effort.

In future work we would like to explore the usage of ontologies that contain information about

similarities between qualitative entities for the purpose of computing a similarity [43]. Another

enhancement to the framework could be the inclusion of the negation operator for defining queries.

For future work we could also consider using different methods to solve the addressed problem, for

example by using the fuzzy set model or semantic search [44].
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