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Abstract. Since the increase of Web reviews of products and services,
Aspect-Based Sentiment Classification (ABSC) has become more impor-
tant to determine the sentiment of online opinions. Useful information
extracted from these reviews can then be used by companies themselves,
but can also be applicable by consumers. In the recent literature on
ABSC, hybrid methods, which combine knowledge-based and machine
learning approaches, are becoming more popular as well. However, in
this work, instead of following a two-step procedure, we attempt to im-
prove the model accuracy by proposing to directly inject the information
from a domain ontology in a state-of-the-art neural network model, more
precisely LCR-Rot-hop++. Furthermore, by using soft-positioning and
visible matrices we aim to prevent that the injected knowledge hinders
the semantics of the original sentences. To evaluate the accuracy of our
model, LCR-Rot-hop-ont++, we use the standard SemEval 2015 and Se-
mEval 2016 datasets for ABSC. We conclude that knowledge injection
in the neural network is effective for sentiment classification, especially
if the amount of labeled data is limited.
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1 Introduction

In an era where life seems to be moving more and more towards the online
dimension, information has as well moved to the online domain. Taking form in
Web reviews of products and services, enormous amounts of useful information
are up for grabs. When the size of this information gets enormously large, the
sheer size of data requires automatic approaches in order to retrieve people’s
opinion from their reviews. One proposal for an automatic approach for gathering
these opinions is called sentiment analysis [6], which determines the sentiment
expressed in a text.

A discipline within sentiment analysis is Aspect-Based Sentiment Analysis
(ABSA) [15]. Here, the overall sentiment of an entity is determined by identifying
the sentiment of the aspects of that entity. ABSA usually consists of two steps:



finding the aspects present in the sentences and determining the sentiments as-
sociated to these aspects. The sentiments are often defined as positive, neutral,
or negative. For example, in the sentence “I was very disappointed with this
restaurant.” the aspect is “restaurant” and the sentiment is classified as nega-
tive. In this research, we assume the aspect to be given and therefore focus only
on the sentiment classification part of the ABSA, also known as Aspect-Based
Sentiment Classification (ABSC) [3]. To efficiently and accurately predict the
sentiment of the given aspects, knowledge-based methods and machine learn-
ing approaches are generally used. Because a combination of both techniques
outperforms the models that only use one technique [16], a hybrid approach is
considered [2].

One hybrid approach is HAABSA++ [17] which increased the accuracy of
sentiment classification w.r.t. its predecessor the Hybrid Approach for Aspect-
Based Sentiment Analysis (HAABSA) [19] by introducing two extensions. First,
in HAABSA++ the non-contextual GloVe [11] word embeddings are replaced
by deep contextual word embeddings like BERT [4]. Furthermore, a hierarchical
attention is implemented ensuring that the high-level input sentence represen-
tations are tuned to each other. HAABSA++ is a two-step model which first
uses a domain ontology to estimate the sentiment. When this turns out to be
inconclusive, a back-up algorithm is used taking form as the state-of-the-art neu-
ral network LCR-Rot-hop++ which has a rotatory attention mechanism based
on LCR-Rot [23] and a hopping (repetition) mechanism defined by its successor
LCR-Rot-hop [19].

Different than in [17] where the ontology is used before the back-up neural
network, in this work we plan to inject the knowledge of the domain ontology in
the neural network itself. We call the new model LCR-Rot-hop-ont++, referring
to the ontology now being incorporated in the neural network LCR-Rot-hop++.
We know that such an approach has been used for contextual word embeddings,
i.e., K-BERT [8], for language representation, but very little is known about
applying this method to the neural models (in our case LCR-Rot-hop++) in the
context of ABSC. We approach our knowledge injection inspired by K-BERT,
where the target text is first augmented with domain knowledge before being
passed on to the neural network, providing for a richer context. Furthermore, our
research contributes to the previous work in the following way. We make use of a
domain ontology instead of a knowledge graph to inject knowledge. Furthermore,
we follow a multi-hop approach where different concepts, which are semantically
close to the original words, from the domain ontology are injected into the sen-
tences. The Python source code of our model has been made publicly available
at https://github.com/DanaeGielisse/LCR-Rot-hop-ont-plus-plus.

The rest of the paper is organized as follows. In Sect. 2 relevant related
works regarding sentiment analysis and knowledge injection are discussed. Next,
Sect. 3 presents the used data for experiments and Sect. 4 provides a detailed
description of the proposed method. Furthermore, in Sect. 5 the results are
presented and discussed. Last, Sect. 6 gives the conclusions of our research and
provides suggestions for future work.
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2 Related Work

In this section we discuss the research that is relevant to our work. First, Sect. 2.1
presents hybrid methods for ABSC. Second, in Sect. 2.2 the literature regarding
knowledge injection in neural models is outlined.

2.1 Hybrid Models for ABSC

Hybrid models [2] combine the symbolic with sub-symbolic approaches in classi-
fying sentiment. The former makes use of ontologies and lexicons to determine if
words are positive, neutral, or negative, and the latter includes machine learning
techniques that perform sentiment classification [5]. Several researches concluded
that the use of hybrid models for ABSC leads to an increase in the performance
of sentiment prediction [9], [10], [16], [19].

ALDONA [9] and its extension ALDONAr [10] are among those researches
which use a hybrid approach of ABSC on a sentence-level. Both models deter-
mine the polarity of the aspect by using a lexicalized domain ontology and the
statistical relations captured by a regularized neural attention model. ALDONAr
improves the results of ALDONA by using BERT word embeddings among other
things. Furthermore, these models also outperform state-of-the-art models such
as CABASC [7].

[17] introduced the HAABSA++ model which is a two-step hybrid model for
ABSC. In the first step, a domain sentiment ontology is employed in order to pre-
dict the target polarities. If this ontology leads to inconclusive results (e.g., due
to conflicting sentiments), the neural network LCR-Rot-hop++ is used. LCR-
Rot-hop++ extends the neural network LCR-Rot-hop of HAABSA [19] in two
ways. First, deep contextual word embeddings are taken into account, namely
ELMo [12] and BERT [4] (better results are obtained with BERT), in order to
better deal with word semantics in text. Second, hierarchical attention is used
by adding an extra attention layer to the HAABSA high-level representations.
Therefore, the method is more flexible to model the input data. It was proved
that the fourth method, out of three other methods, gives the highest accuracy,
where for each iteration the rotatory attention weighting was applied separately
on the intermediate context and target vectors pairs.

In this work, we directly include the information from the domain ontology
in the neural network, which results in the model LCR-Rot-hop-ont++. Hence,
the ontology is now part of the neural network and thus our model does not
follow a two-step approach. More precisely, we account for our whole domain
knowledge by replacing the BERT word embeddings with the word embeddings
from K-BERT [8]. We also devise a novel multi-hop approach for embedding
domain knowledge using K-BERT into the neural network. Last, we compare
the performance of our model with HAABSA++ and LCR-Rot-hop++.

2.2 Knowledge Injection in Neural Networks

One of the first works to inject knowledge in a deep neural network is the
knowledge-enhanced language representation model K-BERT [8]. This is an ex-
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tension of the BERT model which is a language representation model that takes
contextual information into account [4]. Both the architectures of BERT and
K-BERT are based on the Transformer [18]. However, K-BERT outperforms
BERT on domain-specific tasks by injecting knowledge obtained from a Knowl-
edge Graph (KG), which could be described as a graph structure modeling a
domain, into sentences. Although, this has to be done with care as too much
knowledge could be injected which could change the meaning of the original
input sentence. This undesired information is called Knowledge Noise (KN). K-
BERT could be made more robust to KN in two ways. First, soft-positioning
retains the sequential structure of the original sentence. Second, visible matrices
control the visible area of each word in the sentence by blocking the words from
the injected knowledge except from the corresponding subject.

[22] proposed to use a knowledge-enhanced BERT model for ABSC. The
authors utilize a Sentiment Knowledge Graph (SKG) as an external source to
increase the accuracy of sentiment detection by injecting domain knowledge into
BERT. Like our research, [22] employs the BERT component and injects the in-
formation from the SKG into the input sentences and then uses these knowledge
enhanced embeddings for ABSC. However, in [22] the knowledge is injected in
the same way as in the K-BERT model, namely, in the form of candidate triples
which are pairs of concepts and their associated relation. Differently, in our ap-
proach we inject the lexical representations obtained from a domain ontology. Af-
ter comparing the model BERT+SKG to another external knowledge-enhanced
model and several self-attention based models, the authors concluded that the
BERT+SKG is effective for the ABSC task.

[21] also makes use of a KG to enhance the language representation model.
The authors use the model SAKG-BERT, which utilizes the information from
Sentiment Analysis Knowledge Graph (SAKG) and the language model BERT.
Contrary to our research, the authors focus on the extraction of knowledge triples
from the SAKG. Then, the triples are injected as domain knowledge into the
input sentences. Also different to our research, the authors have constructed
their own KG that is related to online reviews. It was found that the use of a KG
shows promising results for sentiment analysis tasks and sentence completion.

In our research, we use an approach based on K-BERT to inject knowl-
edge into a neural network for ABSC instead of a general language model. We,
however, inject the information from a domain ontology in the form of lexical
representations (words) associated to ontology concepts. Furthermore, compared
to previous work, we follow a multi-hop approach for knowledge injection. We
only opt to perform knowledge injection at test time. This is because employing
such an approach at training time might result in semantic loss, i.e., the model
not capturing the meaning conveyed in the original sentences.

3 Data

To evaluate the performance of our model, we have used the SemEval 2015 Task
12 [14] and SemEval 2016 Task 5 [13] datasets. These datasets are often used
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in research relating to ABSC which makes them convenient for comparing the
performance of our model to that of other models. The data contains customers
reviews about restaurants which can consist of multiple sentences. Furthermore,
the sentences express one or more opinions about the provided aspects. Each
aspect is assigned to a predefined category that is labeled as positive, neutral,
or negative. In Fig. 1 an example of a customer review from the SemEval 2016
dataset is presented. It is shown that a sentence can have multiple targets, here
“food”, “drinks”, and “atmosphere”. Furthermore, the polarities and categories
for each target are listed. For training we have used 1278 and 1880 reviews and

<sentence id="1609375:1">

<text>We love the food, drinks, and atmosphere!</text>

<Opinions>

<Opinion from="12" to="16" polarity="positive"

category="FOOD#QUALITY" target="food"/>

<Opinion from="18" to="24" polarity="positive"

category="DRINKS#QUALITY" target="drinks"/>

<Opinion from="30" to="40" polarity="positive"

category="AMBIENCE#GENERAL" target="atmosphere"/>

</Opinions>

</sentence>

Fig. 1: Example of a sentence from the SemEval 2016 dataset.

for testing 597 and 650 reviews of the SemEval 2015 and SemEval 2016 dataset,
respectively. Table 1 shows the frequencies of the positive, neutral, and negative
targets of the SemEval 2015 Task 12 and SemEval 2016 Task 5 datasets. For
both datasets it holds that the targets are valued the most as positive, followed
by negative, and neutral.

Table 1: Polarity frequencies of the training and test data of the SemEval 2015
and SemEval 2016 datasets for ABSC.

Training Data Test Data

Positive Neutral Negative Positive Neutral Negative
SemEval 2015 75.3% 2.8% 21.9% 59.1% 6.1% 34.8%
SemEval 2016 70.2% 3.8% 26.0% 74.3% 4.9% 20.8%

To inject knowledge into our input sentences we have used the information
obtained from a restaurant domain ontology [16]. An ontology describes a set
of concepts and the relations between these concepts. This ontology is divided
in multiple classes and subclasses regarding the sentiments and targets. The
subclasses of the targets are, for example, service, restaurant, and ambience. The
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sentiment class only consists of the subclasses positive, neutral, and negative.
We have especially focused on the synonyms or different spellings of a certain
concept (called concept lexical representations) that the ontology provides. For
instance, for the concept “Outside” the ontology gives the lexical representations
“outdoor”, “outside”, and “outdoors”. However, related concepts could also be
found in the ontology, such as “chef” being a direct subclass of “staff”.

Furthermore, in our research we make use of the pre-trained BERT word
embeddings [4]. In particular, we use the uncased BERT base model which has
12 transformer layers, 768 as hidden size, and 12 self-attention heads and was
pre-trained on BookCorpus and English Wikipedia.

4 Methodology

In this section we explain our model. As an extension of the LCR-Rot-hop++
model we propose to use the information from a domain ontology to enrich
the word embeddings. We call this model LCR-Rot-hop-ont++. First, in Sect.
4.1 we describe how the LCR-Rot-hop++ model works. Furthermore, in Sect.
4.2 we explain how we inject the knowledge from the domain ontology in the
test sentences using K-BERT. The methodology was implemented in Python
(version 3.7) with the HuggingFace’s Transformer [20] and Google’s TensorFlow
[1] packages.

4.1 LCR-Rot-hop++

LCR-Rot-hop++ builds further on the model proposed in [17] which uses con-
textual word embeddings as input for three bidirectional Long Short-Term Mem-
ory (Bi-LSTM) models. Bi-LSTMs are a particular Recurrent Neural Network
(RNN) that are able to incorporate long-term dependencies in their learning. In
Fig. 2 a visualization of the LCR-Rot-hop-ont++ model is presented. This figure
is split into two parts. The lower part of this figure is inspired by K-BERT. On
the left side the training process is displayed and on the right side the testing.
For training we just use the input sentence. However, for testing we also use
the input sentence and the information from the domain ontology to create a
sentence tree and contextualized word embeddings. We describe this step more
extensively in Sect. 4.2.

The procedure described in the upper part of Fig. 2 goes as follows. First
the sentence s = [w1, w2, ..., wN ] is split into three parts: the left context sl =
[wl

1, w
l
2, ..., w

l
L], the target phrase st = [wt

1, w
t
2, ..., w

t
T ], and the right context

sr = [wr
1, w

r
2, ..., w

r
R]. Hereby, N is the number of words in sentence s, and L,

T , and R are the number of tokens in each part of the sentence, respectively.
These three parts are then embedded together using BERT for training data
and K-BERT for test data.

The embeddings are then used as input for three separate Bi-LSTMs and give
three hidden states h for each part, namely: [hl

1, h
l
2, ..., h

l
L] for the left context,

[ht
1, h

t
2, ..., h

t
T ] for the target phrase, and [hr

1, h
r
2, ..., h

r
R] for the right context.
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Next, the three Bi-LSTMs hidden states are used in a two-step rotatory mecha-
nism which creates in the first step the new context representations using target
information. In the first iteration, we use an average pooling mechanism to ob-
tain the target representation rtp = pooling[ht

1, h
t
2, ..., h

t
T ].

Furthermore, we calculate the attention scores for each word using a softmax
function in order to compute the new context and target representations. We
compute the representation of the left context for i = 1, ..., L as follows:

f(hl
i, r

tp) = tanh(hl′

i ×W l
c × rtp + blc) , (1)

where W l
c is a weight matrix and blc is the bias for the left context l.

Fig. 2: Visualization of LCR-Rot-hop-ont++.
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Next, we normalize the attention scores by using a softmax function, where
i = 1, ..., L:

αl
i =

exp(f(hl
i, r

tp))∑L
j=1 exp(f(h

l
j , r

tp))
. (2)

Furthermore, we calculate the representation of the left context as:

rl =

L∑
i=1

αl
i × hl

i . (3)

In a similar way, we obtain the representation of the right context. In the second
step of this rotary mechanism, we determine the target representations w.r.t the
left and right context. Here, the target representation w.r.t. the left context is
given by:

rtl =

T∑
i=1

αtl
i × ht

i , (4)

where the attention scores are computed between target words and previously
computed representations of the left and right context. In the first iteration of
the multi-hop method we use the pooled target vector. However, in the iterations
thereafter we use the left and right target representations to compute the left and
right context representations, respectively. We then use a hierarchical attention
model to further improve the representations by including the information on
sentence-level as well.

First, we calculate the normalized attention scores using the attention func-
tion in (1) for i = 1, ..., 4:

f(vi) = tanh(vi
′
×W + b) , (5)

where vi ∈ {rl, rtl , rtr , rr}, W is a weight matrix, and b is a bias. Next, we
compute the normalized attention scores as follows:

αi =
exp(f(vi))∑2
j=1 exp(f(v

j))
. (6)

This is done separately for the context vectors (rl and rr) and target vectors
(rtl and rrl). Furthermore, we determine the new representations:

vinew = viold × αi . (7)

We use n = 3 hops for the multi-hop approach as this was found optimal in [17].
The final representations are then concatenated, linearized, and squashed to
compute the vector of probabilities of length |C|, where |C| is the amount of
sentiment categories. For this we use the vector v obtained by concatenation of
four vectors:

v = [rl; rtl ; rtr ; rr] , (8)
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Then, after applying a linear layer this is sent into the softmax function in order
to predict the sentiment probability:

p = softmax(Wc × v + bc) , (9)

where p is the conditional probability distribution, Wc is a weight matrix, and
bc is the bias for class c.

To obtain the model parameters that best capture the semantics in the train-
ing data, we minimize the cross-entropy loss function which measures the differ-
ence in the estimated probability and the true value of the sentiment classifica-
tion.

In addition, we penalize the complexity of the system by using L2-regularization.
The loss formula is:

Loss = −
∑
j

yj · log(p̂j) + λ||θ||22 , (10)

where yj is a |C| × 1 vector of the true sentiment classification values, p̂j is the
|C| × 1 vector of sentiment classification predictions, λ is the L2-regularization
term that penalizes the squared values of the model parameters, and θ is the
vector containing all the model parameters, these are the LSTM parameters and
{W l

c , b
l
c,W

r
c , b

r
c ,W

l
t , b

l
t,W

r
t , b

r
t ,Wc, bc,W, b}. The squaring of the model parame-

ters ensures that we penalize the large model parameters more than the small
model parameters.

4.2 Knowledge Injection

We inject knowledge from a domain ontology which represents concepts and re-
lations between these concepts. Furthermore, a concept has one or more lexical
representations attached which denote synonyms. We define a k-hop as navigat-
ing k classes from the current class in the ontology in order to extract lexical
representations, for k = 0, ..., N − 1 with N being the total number of classes.
In this case, performing a 0-hop points to synonyms which are then injected
into the test input sentence, because we do not have to navigate through the
ontology.

We inject the information from the ontology according to the following pro-
cedure. First in the K-Query step, we determine for each k-hop all the lexical
representations. Furthermore, wi,k denotes the word i in the sentence for which
the lexical representations of the subclasses were obtained by navigating k-hops
from the current class in ontology O (domain-specific relations from the ontology
are ignored in this study due to the possibility of divergent semantics w.r.t. the
current concept). Second, the words corresponding to the concepts are added to
sentence s. For sentence s, the selection of these words could then be written as:

E = K-Query(s,O, k) . (11)

The collection of a k-hop is then:

E = ∪wi∈s[(wi ∪ {wi,0} ∪ ...{wi,k})] , (12)
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whereby {wi,n} represents the set of all words obtained from word i using n hops
in the ontology.

The second step is called K-Inject, where we create a sentence tree t by
injecting the queried concepts of the k-hops to the corresponding positions. Next,
we enter the embedding layer where we input the new sentence tree and get as
output an embedding representation. Since the sentence tree is incompatible with
the embedding layer of BERT, we first have to create a new sentence tree. We
inject the words, obtained through the concepts by navigating k-hops, directly
after the corresponding words in the sentence. Note that if a word from the
original sentence is also listed in the ontology, we do not inject this word again
in the sentence. We consider injecting synonyms by adding “soft branches” to
our sentence tree. We define “hard branches” for the words obtained through
the concepts of the other k-hops. Hereby, we only add branches of length one. In
Fig. 3 an example of a sentence tree is shown. The original word in the sentence
“staff” has a synonym, namely “crew”. Furthermore, the words attached to the
“hard branches” which represents the 1-hops, are “Chef”, “Waiter”, and “Host”.
Also, the words obtained by performing a 1-hop could have synonyms themselves
given by corresponding “soft branches”.

Fig. 3: Example of a sentence tree.

The embedding representation is a sum of three parts: the token embedding,
soft-position embedding, and the segment embedding. The token and segment
embeddings are the same as in BERT. However, the main difference is in the
soft-position embedding, because we cannot input the new sentence tree into the
embedding layer. As mentioned, we have to place the words obtained through the
concepts of performing k-hops in the original sentence at specific places which
ruins the structure of the original sentence. This problem could be solved by
using soft-positioning in which the lexical representations are given the same soft-
position as the original word in the sentence, displayed by the red numbers (below
text numbers for black and white printing) in Fig. 3. This way the structural
information of the sentence is retained, however, this might also lead to false
semantic information.
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To solve the previously identified problem, we use the visible matrix M . This
makes sure that the k-hop of the original word does not affect the hidden state
value of this word that is not in the same branch of the sentence tree. We create a
visible matrix by using the hard-position indexes, displayed by the gray numbers
(above text numbers for black and white printing) in Fig. 3. We define the visible
matrix as:

Mij =

{
0, if wi ⊕ wj

−∞, if wi ⊗ wj

, (13)

where ⊕ means that the words are in the same branch and thus are visible to
each other and ⊗ means the words are not visible to each other. Furthermore, i
and j are the hard-position indexes. Thus, it holds that all words in the original
sentence are visible to each other. Furthermore, the synonyms are only visible
to the words they belong to and the words obtained from performing the k-hops
are not able to see each other unless they are in the same branch. In Fig. 4 an
example of a visible matrix is shown which has as input the sentence tree of Fig.
3. The numbers on the sides are the hard-position indexes, the red dots (gray dots
for black and white printing) indicate that the words are visible to each other
and the white dots indicate that they are invisible. For example, the word “staff”
of the original sentence with hard-position 2, is visible to the words obtained by
performing k-hops and the other words of the original sentence. It is, however,
unable to see the synonyms “Waitress” and “Hostess” with hard-positions 5 and
7, respectively.

Fig. 4: Example of a visible matrix.

Next, we apply the BERT-encoder where we change the multi-head attention
block by adding the visible matrix M in (15). The input of the first multi-head
attention block of the first layer is h0 = sum(Et, Es, Eseg), where E are the
embeddings of the tokens, soft-positions, and segments, respectively. The input
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plus output of this block is then the input for the first normalization layer in
the BERT-encoder. Furthermore, the output of this first normalization layer is
then the input of the feed-forward layer. Then, the input plus output of the
feed-forward layer is used as the input of the second normalization layer. The
output of the second normalization layer is then used as the input for the next
encoder layer. This process is repeated until we arrive at the last encoder layer
and set that output as hidden states for all tokens. These steps are repeated for
all twelve encoder layers. In the next three equations the multi-head attention
block is given where we add the visible matrix M (13).

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv , (14)

Si+1 = softmax

(
Qi+1Ki+1⊤ +M√

dk

)
, (15)

hi+1 = Si+1V i+1 , (16)

where Q, K, and V are matrices of queries, keys, and values, respectively. Fur-
thermore, hi and hi+1 denote the input and output of the multi-head attention
block, respectively. In addition, Wq, Wk, and Wv are trainable model parameters
and dk is a scaling factor. Now, we are able to identify that if the words k and
j are not in the same branch, Si+1

kj is set to zero. This means that word k does
not make a contribution to the hidden state of word j. This process is repeated
for the whole sentence. Next, the sum of the outputs of the last four encoder
layers are split into the three parts that correspond to the left context, target,
and right context of the sentence. These are then each used as input for the
Bi-LSTMs as was showed in Fig. 2.

It is possible to do knowledge injection at training time and at test time.
However, by injecting knowledge at training time we add lexical representations
to the sentences which could lead to sentences with a different structure and thus
a different meaning. This in turn could lead to different embeddings and thus
different predictions at test time. If the knowledge is only injected at test time
then we just have to change the embeddings and hidden states in K-BERT with
the use of soft-positioning and visible matrices. One can note that the model
training remains unchanged, the only changes are being made for testing.

5 Results

In the section we report the results of our model LCR-Rot-hop-ont++ which
makes use of soft-positioning and visible matrices. To evaluate the performance
of our model we have used the SemEval 2015 Task 12 and SemEval 2016 Task 5
datasets. Furthermore, we compare the accuracy of our model with the accuracy
of two benchmarks. These are HAABSA++ and LCR-Rot-hop++. In this paper
we adopt a conservative approach and focus on 0-hops as these affect the least
the semantics of the original sentences. By performing 0-hops, synonyms are
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injected into the input sentences. In Table 2 the test accuracies of the LCR-
Rot-hop-ont++ model and its benchmarks are presented for both the SemEval
2015 and SemEval 2016 datasets. We do not replicate the HAABSA++ and
LCR-Rot-hop++ work and thus give the results as reported in the previous
work [17].

In Table 2 is given that for the SemEval 2015 dataset LCR-Rot-hop-ont++
outperforms HAABSA++ and LCR-Rot-hop++ in terms of test accuracy by
0.2% and 0.8%, respectively. In addition, for the SemEval 2016 dataset LCR-
Rot-hop-ont++ outperforms LCR-Rot-hop++ by 0.2 percentage points, but
LCR-Rot-hop-ont++ has a lower performance than HAABSA++ (0.1 percent-
age points). As SemEval 2015 is a smaller dataset than SemEval 2016 we con-
clude that our proposed approach helps boost the performance of a neural model
where for smaller datasets knowledge injection is preferred over the hybrid ap-
proach.

Table 2: Comparison of LCR-Rot-hop-ont++ to its benchmarks using accuracy
(the bold font indicates the best results).

SemEval 2015 SemEval 2016

LCR-Rot-hop-ont++ 81.9% 86.9%
HAABSA++ 81.7% 87.0%
LCR-Rot-hop++ 81.1% 86.7%

6 Conclusion

In this research, we propose the LCR-Rot-hop-ont++ model for performing
Aspect-Based Sentiment Classification (ABSC) on a sentence-level of restau-
rant reviews. The model is formed by injecting the information from a domain
ontology into the state-of-the-art neural network model LCR-Rot-hop++ in our
test instances. This approach of knowledge injection is based on the language
representation model K-BERT which also makes use of soft-positioning and vis-
ible matrices. These are used to control the scope of the injected knowledge
and thus help to retain the meaning of the original sentences. Furthermore, the
performance of the LCR-Rot-hop-ont++ model was evaluated by using the stan-
dard SemEval 2015 and SemEval 2016 datasets for ABSC. We have compared
our model to its benchmarks, namely HAABSA++ (ont+LCR-Rot-hop++) and
LCR-Rot-hop++.

Hereby, we conclude that LCR-Rot-hop-ont++ boosts the testing accuracy
for the SemEval 2015 dataset, namely from 81.7% for HAABSA++ and 81.1%
for LCR-Rot-hop++ to 81.9%. Furthermore, for the SemEval 2016 dataset we
conclude that LCR-Rot-hop-ont++ outperforms LCR-Rot-hop++, but does not
outperform HAABSA++. Therefore, we conclude that knowledge injection is
effective for the neural network to perform sentiment classification, especially
for smaller datasets.
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For future work, we propose to further explore the amount of information
that can be injected from the ontology into the neural network. We have only
researched knowledge injection for a 0-hop, but perhaps injecting more infor-
mation could boost the performance of the neural network more for sentiment
classification. In addition, we could try different percentages of knowledge injec-
tion, e.g., 20%, 40%, 60%, 80%, and 100%. Furthermore, we could analyze the
characteristics of sentences that can benefit the most from knowledge injection.
For example, it is expected that shorter sentences could benefit the most from
knowledge injection for building additional context information.
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