
Incremental Cosine
Computations for Search and

Exploration of Tag Spaces
Raymond Vermaas, Damir Vandic, Flavius Frasincar

vandic@ese.eur.nl
http://damirvandic.com

mailto:vandic@ese.eur.nl
mailto:vandic@ese.eur.nl
http://damirvandic.com
http://damirvandic.com

Agenda

• Introduction and problem statement

• Two approaches

1. the incremental recalculation approach

2. the delta cosine approach

• Evaluation

• Discussion

Introduction

Introduction

Introduction

•Canon
•30D
•Sigma
•10-20
•Vienna
•St. Charles’s
Church
•Karlskirche

Source: http://www.flickr.com/photos/krister462/2544707032/

http://www.flickr.com/photos/krister462/2544707032/
http://www.flickr.com/photos/krister462/2544707032/

Introduction

• Improving browsing and searching in tag
spaces

• clustering syntactic tag variations

• clustering semantically related tags

Introduction

• Improving browsing and searching in tag
spaces

• clustering syntactic tag variations

• clustering semantically related tags

• Employed similarity measure:

• cosine similarity on tag co-occurrence
vectors

Introduction

4 Incremental Cosine Computations for Search and Exploration of Tag Spaces

is an approximate technique and we aim to develop an exact technique for the
incremental computation of cosines.

3 Incremental cosine computation design

In this section, we describe the di↵erent approaches that we propose for the
incremental computation of cosine similarities. First, we discuss the details of
the cosine similarity and the operations that should be taken into account when
calculating the cosine similarity incrementally. Then, we describe two approaches
for incremental cosine computations, the recalculation approach and the delta
cosine approach.

3.1 Cosine similarity

The cosine similarity measure is used to measure the similarity between two
vectors. This done by measuring the cosine of the angle between the two vectors.
The cosine similarity ranges between 0 and 1 if the values in the vectors are
positive. A cosine similarity of 1 represents complete similarity between the
two vectors (i.e., the vectors point in the same direction) and a cosine of 0
represents complete dissimilarity (i.e., the vectors point in orthogonal directions).
The cosine similarity is defined as:

cos(a,b) =
a · b

||a||⇥ ||b|| (1)

where ||a|| and ||b|| are the Euclidean norm of vectors a and b, respectively, and
a · b is the dot product between the vectors a and b. The cosine similarity is
calculated by dividing the dot product between the two vectors by the product
of the Euclidean norm for both vectors, as shown in Equation 1. The dot product
calculates the similarity between the vectors and the product of the Euclidean
norms is used as a normalization factor.

In the STCS framework [4, 9, 11], the tag co-occurrence matrix is a central
concept. This matrix contains for every tag pair the co-occurrence (i.e., how
often two tags co-occur on pictures in the data set). A tag is represented as
a vector of its co-occurrences with all other tags. This vector also includes a
tag’s co-occurrence with itself, which is by convention set to zero. The number
of cosine computations that have to be computed between tag vectors grows
quadratically with the number of tags in the data set. For n tags we have:

Number of cosines to be calculated =
n2 � n

2
(2)

This quadratic growth is a large bottleneck for the scalability of approaches that
utilize the cosine similarity. Incremental cosine similarity computations are a
possible solution to this problem, since there is no need to calculate the cosine
similarity for every tag pair when new tags are added.

Introduction

vienna karlskirche city wiener
schnitzel

rotterdam

vienna - 2 3 2 0
karlskirche 2 - 0 0 0

city 3 0 - 0 4
wiener schnitzel 2 0 0 - 0

rotterdam 0 0 4 0 -

4 Incremental Cosine Computations for Search and Exploration of Tag Spaces

is an approximate technique and we aim to develop an exact technique for the
incremental computation of cosines.

3 Incremental cosine computation design

In this section, we describe the di↵erent approaches that we propose for the
incremental computation of cosine similarities. First, we discuss the details of
the cosine similarity and the operations that should be taken into account when
calculating the cosine similarity incrementally. Then, we describe two approaches
for incremental cosine computations, the recalculation approach and the delta
cosine approach.

3.1 Cosine similarity

The cosine similarity measure is used to measure the similarity between two
vectors. This done by measuring the cosine of the angle between the two vectors.
The cosine similarity ranges between 0 and 1 if the values in the vectors are
positive. A cosine similarity of 1 represents complete similarity between the
two vectors (i.e., the vectors point in the same direction) and a cosine of 0
represents complete dissimilarity (i.e., the vectors point in orthogonal directions).
The cosine similarity is defined as:

cos(a,b) =
a · b

||a||⇥ ||b|| (1)

where ||a|| and ||b|| are the Euclidean norm of vectors a and b, respectively, and
a · b is the dot product between the vectors a and b. The cosine similarity is
calculated by dividing the dot product between the two vectors by the product
of the Euclidean norm for both vectors, as shown in Equation 1. The dot product
calculates the similarity between the vectors and the product of the Euclidean
norms is used as a normalization factor.

In the STCS framework [4, 9, 11], the tag co-occurrence matrix is a central
concept. This matrix contains for every tag pair the co-occurrence (i.e., how
often two tags co-occur on pictures in the data set). A tag is represented as
a vector of its co-occurrences with all other tags. This vector also includes a
tag’s co-occurrence with itself, which is by convention set to zero. The number
of cosine computations that have to be computed between tag vectors grows
quadratically with the number of tags in the data set. For n tags we have:

Number of cosines to be calculated =
n2 � n

2
(2)

This quadratic growth is a large bottleneck for the scalability of approaches that
utilize the cosine similarity. Incremental cosine similarity computations are a
possible solution to this problem, since there is no need to calculate the cosine
similarity for every tag pair when new tags are added.

Problem

• Quadratic growth in number of cosines to
compute

Problem

• Quadratic growth in number of cosines to
compute

• Scalability problem when adding new
images

• new tags are introduced

• co-occurrence update of existing tags

Problem

• How can we solve this?

• an approach to ‘incrementally’ compute
the cosines when new pictures are added

Problem

• How can we solve this?

• an approach to ‘incrementally’ compute
the cosines when new pictures are added

• Two approaches

1. Incremental recalculation approach

2. Delta cosine approach

Incremental Recalculation:
co-occurrence update

Incremental Recalculation:
co-occurrence update

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Incremental Recalculation:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Incremental Recalculation:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Incremental Recalculation:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Incremental Recalculation:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

In total 9 cosine similarities to update

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Incremental Recalculation:
adding a new tag

Incremental Recalculation:
adding a new tag

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

Incremental Recalculation:
adding a new tag

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

Incremental Recalculation:
adding a new tag

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

Incremental Recalculation:
adding a new tag

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

Incremental Recalculation:
adding a new tag

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

In total 12 cosine similarities to update

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

tag 1 2 3 4 5 6 7

1 - 2 1 5 2 0 1

2 2 - 7 1 1 0 0

3 1 7 - 3 0 2 6

4 5 1 3 - 1 0 1

5 2 1 0 1 - 6 0

6 0 0 2 0 6 - 0

7 1 0 6 1 0 0 -

Delta cosine approach:
co-occurrence update

Delta cosine approach:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Delta cosine approach:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

6 Incremental Cosine Computations for Search and Exploration of Tag Spaces

Table 3. Tag 7 is added to the tag co-
occurrence matrix, new tag combina-
tions are shown in gray.

Tag 1 2 3 4 5 6 7
1 - 2 1 5 2 0 1
2 2 - 7 1 1 0 0
3 1 7 - 3 0 2 6
4 5 1 3 - 1 0 1
5 2 1 0 1 - 6 0
6 0 0 2 0 6 - 0
7 1 0 6 1 0 0 -

Table 4. Gray indicates the existing
combinations that need to be recalcu-
lated because tag 7 is added.

Tag 1 2 3 4 5 6 7
1 - 2 1 5 2 0 1
2 2 - 7 1 1 0 0
3 1 7 - 3 0 2 6
4 5 1 3 - 1 0 1
5 2 1 0 1 - 6 0
6 0 0 2 0 6 - 0
7 1 0 6 1 0 0 -

3.3 Approach 2: Delta cosine approach

The second approach first calculates the dot-product and the Euclidean distance
for each incremental operation and then, when all the incremental operations are
done, calculates the final cosine similarity. It uses both the changed and new co-
occurrences in an iteration to determine for which tag pairs the cosine similarity
needs to be recalculated, similar to the first proposed approach.

In contrast to the first approach, the two incremental operations are split in
the second approach. First, the update operation for the existing tags is executed.
During this operation the change to the dot-product for all a↵ected cosines is
considered for each update to the co-occurrences of the existing tags. In this step
we consider the change to the n⇥n tag co-occurrence matrix A. The changes to
the tag co-occurrences and the new co-occurrences are defined in a m⇥m matrix
�A. The sizes of these matrices are such that n  m and m� n is the number
of new tags. The set Ua contains indices of tag vector a for which the values are
updated. Equation 3 is used to calculate the change to the dot-product of tag a
and every other unchanged tag b (a 6= b).

(�ta + ta) · tb = ta · tb +
X

i2Ua

�tai ⇥ tbi (3)

Tags ta and tb are both existing tag vectors of matrix A. This approach lets us
update only e↵ected elements of the dot-product of the cosine rather than the
whole dot-product, which addresses the scalability of this method. In case both
tags ta and tb change, the updated dot product formula becomes:

(�ta + ta) · (�tb + tb) = ta · tb + (
X

i2Ua

�tai ⇥ tbi) + (
X

i2Ub

tai ⇥�tbi)

+ (
X

i2Uab

�tai ⇥�tbi) (4)

where Uab contains indices of tag a and tag b for which the values are simulta-
neously updated, and Ua and Ub represent the indices of tag a or tag b for which
the values are updated, but not for the other tag (i.e., b and a, respectively).

Delta cosine approach:
co-occurrence update

Delta cosine approach:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 9 1 1 0

3 1 9 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

Delta cosine approach:
co-occurrence update
tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 2 0 2

4 5 1 2 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 7 1 1 0

3 1 7 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

tag 1 2 3 4 5 6

1 - 2 1 5 2 0

2 2 - 9 1 1 0

3 1 9 - 3 0 2

4 5 1 3 - 1 0

5 2 1 0 1 - 6

6 0 0 2 0 6 -

6 Incremental Cosine Computations for Search and Exploration of Tag Spaces

Table 3. Tag 7 is added to the tag co-
occurrence matrix, new tag combina-
tions are shown in gray.

Tag 1 2 3 4 5 6 7
1 - 2 1 5 2 0 1
2 2 - 7 1 1 0 0
3 1 7 - 3 0 2 6
4 5 1 3 - 1 0 1
5 2 1 0 1 - 6 0
6 0 0 2 0 6 - 0
7 1 0 6 1 0 0 -

Table 4. Gray indicates the existing
combinations that need to be recalcu-
lated because tag 7 is added.

Tag 1 2 3 4 5 6 7
1 - 2 1 5 2 0 1
2 2 - 7 1 1 0 0
3 1 7 - 3 0 2 6
4 5 1 3 - 1 0 1
5 2 1 0 1 - 6 0
6 0 0 2 0 6 - 0
7 1 0 6 1 0 0 -

3.3 Approach 2: Delta cosine approach

The second approach first calculates the dot-product and the Euclidean distance
for each incremental operation and then, when all the incremental operations are
done, calculates the final cosine similarity. It uses both the changed and new co-
occurrences in an iteration to determine for which tag pairs the cosine similarity
needs to be recalculated, similar to the first proposed approach.

In contrast to the first approach, the two incremental operations are split in
the second approach. First, the update operation for the existing tags is executed.
During this operation the change to the dot-product for all a↵ected cosines is
considered for each update to the co-occurrences of the existing tags. In this step
we consider the change to the n⇥n tag co-occurrence matrix A. The changes to
the tag co-occurrences and the new co-occurrences are defined in a m⇥m matrix
�A. The sizes of these matrices are such that n  m and m� n is the number
of new tags. The set Ua contains indices of tag vector a for which the values are
updated. Equation 3 is used to calculate the change to the dot-product of tag a
and every other unchanged tag b (a 6= b).

(�ta + ta) · tb = ta · tb +
X

i2Ua

�tai ⇥ tbi (3)

Tags ta and tb are both existing tag vectors of matrix A. This approach lets us
update only e↵ected elements of the dot-product of the cosine rather than the
whole dot-product, which addresses the scalability of this method. In case both
tags ta and tb change, the updated dot product formula becomes:

(�ta + ta) · (�tb + tb) = ta · tb + (
X

i2Ua

�tai ⇥ tbi) + (
X

i2Ub

tai ⇥�tbi)

+ (
X

i2Uab

�tai ⇥�tbi) (4)

where Uab contains indices of tag a and tag b for which the values are simulta-
neously updated, and Ua and Ub represent the indices of tag a or tag b for which
the values are updated, but not for the other tag (i.e., b and a, respectively).

• For the new tag:

• use regular dot product

Delta cosine approach:
adding a new tag

• For the new tag:

• use regular dot product

• The resulting changes to the existing tags:

• use the previously proposed formula’s
(where the ‘old’ value is set to be 0)

Delta cosine approach:
adding a new tag

• For changes to existing tags:

(both due to updates to co-occ. and newly
added tags)

Delta cosine approach:
Euclidean norm

Incremental Cosine Computations for Search and Exploration of Tag Spaces 7

The Euclidean norm is updated with the following equation for each changed
co-occurrence:

||�ta + ta|| =
s

||ta||2 +
X

i2Ua

(�tai + tai)2 �
X

i2Ua

t

2
ai (5)

In case new tags are added, the dot-product of the new tag with the existing
tags is calculated using the normal dot-product formula, shown in Equation 6,
since there is no previous information available to calculate this using the dif-
ference with respect to previous iterations.

ta · tb =
nX

i=0

tai ⇥ tbi (6)

The changes of the dot-products between existing tags as result of addition of
a new tag can be calculated using the di↵erence (or delta) between the new
and old vectors. For this purpose we use Equations 3 or 4 with vectors that
have increased with one dimension due to the new tag. Also in this case only
the new part is calculated and later added to the existing dot-product of the
two tags. Equation 5 should be used to update the Euclidean norm for already
existing tags in case a new tag is added, where vectors have increased with one
dimension due to the new tag. The original equation for the Euclidean norm,
given in Equation 7, should be used to calculate the Euclidean norm for new
tags.

||ta|| =

vuut
nX

i=0

t

2
ai (7)

After all the changes are processed, the cosines for the changed tag combinations
are recalculated using the updated dot-product and the updated Euclidean norm.

4 Implementation

In this section we discuss the implementation of our proposed approaches. First,
we describe the data cleaning process, after which we present the incremental
recalculation approach and the delta cosine approach for computing cosines.
The implementation of the incremental cosine approaches is done in Java and
we make use of MySQL for data storage. The data processing is done in PHP.

4.1 Data cleaning

The data we used was made available by Li [8]. It contains 3.5 million unique
pictures and 570,000 tags, gathered from the photo sharing site Flickr.com. Since
this data set contained some noise, we had to perform data cleaning. The fol-
lowing steps were performed:

• For changes to existing tags:

(both due to updates to co-occ. and newly
added tags)

• For newly added tags:

Delta cosine approach:
Euclidean norm

Incremental Cosine Computations for Search and Exploration of Tag Spaces 7

The Euclidean norm is updated with the following equation for each changed
co-occurrence:

||�ta + ta|| =
s

||ta||2 +
X

i2Ua

(�tai + tai)2 �
X

i2Ua

t

2
ai (5)

In case new tags are added, the dot-product of the new tag with the existing
tags is calculated using the normal dot-product formula, shown in Equation 6,
since there is no previous information available to calculate this using the dif-
ference with respect to previous iterations.

ta · tb =
nX

i=0

tai ⇥ tbi (6)

The changes of the dot-products between existing tags as result of addition of
a new tag can be calculated using the di↵erence (or delta) between the new
and old vectors. For this purpose we use Equations 3 or 4 with vectors that
have increased with one dimension due to the new tag. Also in this case only
the new part is calculated and later added to the existing dot-product of the
two tags. Equation 5 should be used to update the Euclidean norm for already
existing tags in case a new tag is added, where vectors have increased with one
dimension due to the new tag. The original equation for the Euclidean norm,
given in Equation 7, should be used to calculate the Euclidean norm for new
tags.

||ta|| =

vuut
nX

i=0

t

2
ai (7)

After all the changes are processed, the cosines for the changed tag combinations
are recalculated using the updated dot-product and the updated Euclidean norm.

4 Implementation

In this section we discuss the implementation of our proposed approaches. First,
we describe the data cleaning process, after which we present the incremental
recalculation approach and the delta cosine approach for computing cosines.
The implementation of the incremental cosine approaches is done in Java and
we make use of MySQL for data storage. The data processing is done in PHP.

4.1 Data cleaning

The data we used was made available by Li [8]. It contains 3.5 million unique
pictures and 570,000 tags, gathered from the photo sharing site Flickr.com. Since
this data set contained some noise, we had to perform data cleaning. The fol-
lowing steps were performed:

Incremental Cosine Computations for Search and Exploration of Tag Spaces 7

The Euclidean norm is updated with the following equation for each changed
co-occurrence:

||�ta + ta|| =
s

||ta||2 +
X

i2Ua

(�tai + tai)2 �
X

i2Ua

t

2
ai (5)

In case new tags are added, the dot-product of the new tag with the existing
tags is calculated using the normal dot-product formula, shown in Equation 6,
since there is no previous information available to calculate this using the dif-
ference with respect to previous iterations.

ta · tb =
nX

i=0

tai ⇥ tbi (6)

The changes of the dot-products between existing tags as result of addition of
a new tag can be calculated using the di↵erence (or delta) between the new
and old vectors. For this purpose we use Equations 3 or 4 with vectors that
have increased with one dimension due to the new tag. Also in this case only
the new part is calculated and later added to the existing dot-product of the
two tags. Equation 5 should be used to update the Euclidean norm for already
existing tags in case a new tag is added, where vectors have increased with one
dimension due to the new tag. The original equation for the Euclidean norm,
given in Equation 7, should be used to calculate the Euclidean norm for new
tags.

||ta|| =

vuut
nX

i=0

t

2
ai (7)

After all the changes are processed, the cosines for the changed tag combinations
are recalculated using the updated dot-product and the updated Euclidean norm.

4 Implementation

In this section we discuss the implementation of our proposed approaches. First,
we describe the data cleaning process, after which we present the incremental
recalculation approach and the delta cosine approach for computing cosines.
The implementation of the incremental cosine approaches is done in Java and
we make use of MySQL for data storage. The data processing is done in PHP.

4.1 Data cleaning

The data we used was made available by Li [8]. It contains 3.5 million unique
pictures and 570,000 tags, gathered from the photo sharing site Flickr.com. Since
this data set contained some noise, we had to perform data cleaning. The fol-
lowing steps were performed:

Evaluation

• Consider execution time

• Recalculate everything included as
baseline approach

Evaluation

• Consider execution time

• Recalculate everything included as
baseline approach

• Initial data set contains 50,000 pictures and
1,444 tags

• 8 incremental data sets are used to
simulate pictures flowing into the system

Evaluation
New pictures 2,500 5,000 12,500 25,000 37,000 50,000 62,500 75,000

New pictures (%) 5% 10% 25% 50% 75% 100% 125% 150%

New tags 1 22 183 712 1,408 2,193 2,890 3,682

Total nr. of tags 1,445 1,466 1,627 2,156 2,852 3,637 4,334 5,126

Updated
co-occurrences

10,319 33,730 52,351 79,482 98,643 112,905 137,723 140,145

Updated
co-occurrences (%)

1.0% 3.2% 5.0% 7.6% 9.5% 10.8% 13.2% 13.5%

Evaluation
New pictures 2,500 5,000 12,500 25,000 37,000 50,000 62,500 75,000

Time (s)
complete recalculation 23 23 31 74 179 378 677 1,137

Time (s)
incremental 16 17 24 58 144 304 551 922

Time (s)
delta 1 1 8 39 120 288 538 919

Speed-up
(delta vs complete) 23 23 3.9 1.9 1.49 1.31 1.26 1.24

Speed-up
(delta vs incremental) 16 17 3 1.48 1.2 1.06 1.02 1.00

Any questions?

