Incremental Cosine Computations for Search
and Exploration of Tag Spaces

Raymond Vermaas, Damir Vandic, and Flavius Frasincar

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR, Rotterdam, the Netherlands
info@raymondvermaas.nl, {vandic, frasincar }@ese.eur.nl

Abstract. Tags are often used to describe user-generated content on the
Web. However, the available Web applications are not incrementally deal-
ing with new tag information, which negatively influences their scalabil-
ity. Since the cosine similarity between tags represented as co-occurrence
vectors is an important aspect of these frameworks, we propose two ap-
proaches for an incremental computation of cosine similarities. The first
approach recalculates the cosine similarity for new tag pairs and existing
tag pairs of which the co-occurrences has changed. The second approach
computes the cosine similarity between two tags by reusing, if available,
the previous cosine similarity between these tags. Both approaches com-
pute the same cosine values that would have been obtained when a com-
plete recalculation of the cosine similarities is performed. The performed
experiments show that our proposed approaches are between 1.2 and 23
times faster than a complete recalculation, depending on the number of
co-occurrence changes and new tags.

1 Introduction

User-based content is becoming increasingly available on the Web. This content
is often annotated using tags and then uploaded on social sites, like the photo
sharing service Flickr. Because users can choose any tag they like, there is a large
amount of unstructured tag data available on the Web. The unstructured nature
of these tags makes it hard to find content using current search methods, which
are based on lexical matching. For example, if a user searches for “Apple”, (s)he
could be looking for the fruit or for the company that makes the iPod.

There are several approaches available that aim to solve the previously iden-
tified problem [2,4,9-11]. In this paper, we focus on the Semantic Tag Clustering
Search (STCS) framework [4,9,11]. The STCS framework utilizes two types of
clustering techniques that allow for easier search and exploration of tag spaces.
First, syntactic clustering is performed by using a graph clustering algorithm
that employs the Levenstein distance measure in order to compute the dissimi-
larity between tags. As result of syntactic clustering, e.g., terms like “waterfal”,
“waterfall”, and “waterfalls” are clustered. This means that when a user searches
for one of these terms, all the terms that are syntactically associated will show
up in the results. Second, semantic tag clustering is performed, where the aim is

2 Incremental Cosine Computations for Search and Exploration of Tag Spaces

to cluster tags that are semantically related to each other, e.g., “tree”, “plant”,
and “bush”. The STCS semantic clustering algorithm makes use of the cosine
similarity measure, applied on tag co-occurrence vectors. Due to the similarities
between the STCS framework and the other clustering approaches that rely on
the cosine similarity, the results presented in this paper can be easily applied on
these approaches as well.

An important issue with the STCS framework is that it cannot be applied in
an incremental way. This negatively influences the scalability of the approach.
In other words, if new pictures are added, all steps in the framework have to be
executed again, which can take a significant amount of time when handling large
amounts of data. Another reason for updating the cosines incrementally is that
when a small number of new tags are added, most of the new calculations will
yield the same result as the previous computations. This is a natural consequence
of the fact that the tag co-occurrence matrix remains the same for a large number
of tags.

In this paper, we investigate how the cosine similarity computation can be
done incrementally, for the purpose of scaling semantic clustering algorithms
in tag spaces. We consider two approaches for incrementally computing the co-
sine similarity. The first approach only recalculates the cosine similarities of tag
pairs that are affected by a change in the tag co-occurrence matrix. The second
approach computes the cosine similarities by reusing the previously computed
cosines. The second approach refines the first approach as only the cosine simi-
larities of the tags affected by the changes in the tag co-occurrence matrix are
computed. For the evaluation of the proposed approaches, we use a reference
approach that computes all cosine similarities in a given data set. The evalua-
tion is based on a simulated process in a photo sharing Web application (e.g.,
Flickr.com), where the system receives a set of new pictures that need to be
processed. These new pictures can be annotated using existing (known) tags but
also with new (unknown) tags. For the evaluation, we measure the execution
time of each approach and compare that to the approach that performs a com-
plete recalculation of all cosines. We use a data set from the photo sharing site
Flickr.com to perform the evaluation. The data set has been collected by Li [8]
and contains 3.5 million pictures and 580,000 tags, uploaded in the period 2005-
2008. We use a subset of 50,000 pictures for the initial data set and between
2,500 and 75,000 pictures as the sets of new pictures that are pushed through
the hypothetical photo sharing Web application. The reason for using a subset
of the complete data set of 3.5 million pictures is that the computation of all
cosines for the baseline takes too long for large data sets.

2 Related work

There are a small number of approaches available in the literature that address
the incremental (exact) computation of cosine similarities. One such approach
is proposed by Jung and Kim [7]. The authors develop several methods for the
incremental computation of similarity measures, including the cosine similarity,

Incremental Cosine Computations for Search and Exploration of Tag Spaces 3

in the context of merging clusters. The aim is to merge two clusters without
calculating all similarities between the new cluster and all the other clusters.
To achieve this, the geometrical properties of the cosine similarity are used to
calculate the similarity of the new merged cluster using the previously computed
similarities. The results of this approach showed the usefulness of this solution
with respect to achieving a significant speed-up and also a good accuracy. Un-
fortunately, we cannot use this approach for our purposes as we consider the
incremental computation of cosines irrespective of the clustering method that is
being used.

Another approach to incremental cosine computation is proposed by Fried-
man et al [5]. The authors develop three techniques for incremental cosines: crisp,
fuzzy, and local fuzzy. In the crisp cosine computation, the cosines are calculated
using only the dot-product. Every time a new vector is added, the cosine sim-
ilarities with all cluster centroids are calculated. In the fuzzy cosine clustering
technique, a degree of cluster membership is assigned to each new vector. This
process takes the size of the new vector into account. The last technique that
is proposed by the authors is the local fuzzy-based cosine, which is a modified
version of the fuzzy cosine computation. This technique takes the difference be-
tween small vectors and a large centroid into account when assigning multiple
degrees of membership. We do not consider this approach as it is focused on
clustering scalability issues and not on the incremental computation of cosine
similarities in general.

Literature in the field of incremental clustering shows more approaches that
might be related to our work. The evolutionary clustering technique proposed
in [3] considers a trade-off between low history cost (similarity with a previ-
ous clustering iteration) and high quality of each iteration. This is achieved by
considering the similarity between the old clusters and new clusters (history
cost), and the cosine similarity between the newly added elements into account.
The authors only tried their technique on k-means clustering and agglomerative
clustering, but suggest that their approach should also work for other cluster-
ing techniques. We do not consider this approach as it also does not distinguish
between the cluster-based computations and the cosine similarity computations.

Locality sensitive hashing (LSH), as proposed by Giones et al [6], can also
be used to perform incremental cosine computations. The idea behind LSH is
that elements that are close to each other in a high dimensional space have
a high probability of having a similar hash. The process of locality sensitive
hashing consists two parts: a pre-processing part and a querying part. In the
pre-processing part, the hashes are calculated for all the elements in the data
set. Next, all the hashes are transformed to their bitwise representation and
the similarity between the hashes is measured using the Hamming distance.
Subsequently, all the elements with a similar hash are clustered in buckets using
the k-nearest neighbour method. In the querying part, the hash for the query is
calculated and a bucket containing similar elements is returned. LSH has proven
to have sub-linear query time and a small error compared to other approaches
that aim to solve similarity problems. We do not consider LSH in our work as it

4 Incremental Cosine Computations for Search and Exploration of Tag Spaces

is an approximate technique and we aim to develop an exact technique for the
incremental computation of cosines.

3 Incremental cosine computation design

In this section, we describe the different approaches that we propose for the
incremental computation of cosine similarities. First, we discuss the details of
the cosine similarity and the operations that should be taken into account when
calculating the cosine similarity incrementally. Then, we describe two approaches
for incremental cosine computations, the recalculation approach and the delta
cosine approach.

3.1 Cosine similarity

The cosine similarity measure is used to measure the similarity between two
vectors. This done by measuring the cosine of the angle between the two vectors.
The cosine similarity ranges between 0 and 1 if the values in the vectors are
positive. A cosine similarity of 1 represents complete similarity between the
two vectors (i.e., the vectors point in the same direction) and a cosine of 0
represents complete dissimilarity (i.e., the vectors point in orthogonal directions).
The cosine similarity is defined as:
a-b

cos(a,b) = Tall < [b]] (1)

where ||a|| and ||b]|| are the Euclidean norm of vectors a and b, respectively, and
a - b is the dot product between the vectors a and b. The cosine similarity is
calculated by dividing the dot product between the two vectors by the product
of the Euclidean norm for both vectors, as shown in Equation 1. The dot product
calculates the similarity between the vectors and the product of the Euclidean
norms is used as a normalization factor.

In the STCS framework [4,9,11], the tag co-occurrence matrix is a central
concept. This matrix contains for every tag pair the co-occurrence (i.e., how
often two tags co-occur on pictures in the data set). A tag is represented as
a vector of its co-occurrences with all other tags. This vector also includes a
tag’s co-occurrence with itself, which is by convention set to zero. The number
of cosine computations that have to be computed between tag vectors grows
quadratically with the number of tags in the data set. For n tags we have:

Number of cosines to be calculated =

This quadratic growth is a large bottleneck for the scalability of approaches that
utilize the cosine similarity. Incremental cosine similarity computations are a
possible solution to this problem, since there is no need to calculate the cosine
similarity for every tag pair when new tags are added.

Incremental Cosine Computations for Search and Exploration of Tag Spaces 5

3.2 Approach 1: Incremental recalculation approach

The first approach is based on the incremental recalculation of cosines. By con-
sidering the changed tag co-occurrences, this method determines which cosines
need to be recalculated. Incremental cosines are based on two types of update
operations: an update of existing tag co-occurrences or the addition of new tags.

The update operation of already existing tags is quite simple. For every tag
pair (i,7) that is updated (every tag has an index assigned), all the cosines for tag
pairs of which tag i or tag j are part, need to recalculated. This is due to the fact
that the cosine similarity uses the whole tag co-occurrence vector, rather than
individual co-occurrences. As result of this, for every tag co-occurrence update
of already existing tags, 2 x n — 2 cosines need to be updated (as 2 vectors
have changed). Let us consider the co-occurrence matrix presented in Table 1.
An example of an update on this matrix is shown in Table 2. In this example,
the co-occurrence for the tag pair (3,4) is changed (from 2 to 3). This change
causes the cosine similarities for tag pairs of which tag 3 or 4 are part to be
recalculated. The “-” in Table 1 and 2 are co-occurrences of a tag with itself,
which we consider to be zero by default.

Table 1. The original co- Table 2. The gray cells are the cosines of tag com-
occurrence matrix, which binations that need to be recalculated after the co-

contains 5 tags. occurrence between tag 3 and 4 changes.
Tagl123456 Tagl123456
1 [-21520 1 [-21520
2 12-7110 2 2-7110
3 |17-202 3 |17-302
4 |512-10 4 |513-10
5 12101-6 5 12101-6
6 (00206 - 6 (00206 -

The addition of new tags is slightly more complicated, since it consists of
two sub-operations. First, all cosine similarities between the new tag and all the
other tags need to be calculated. An example is shown in Table 3, where tag
7 is being added as a new tag. Second, all combinations between existing tags
that have a non-zero co-occurrence with the new tag need to recalculated. This
has to be done in order to ensure that also the new tags are considered in the
cosine similarities of vectors involving old tags. For example, it could happen
that a certain existing tag pair had a similarity of 0 before the new tag was
added, but now has a similarity larger than 0, because of the newly introduced
co-occurrences (from the new tag). A visual example of this operation is shown
in Table 4. Note that although many cells are gray, which indicates where re-
calculation is needed, only half of the cosines are recalculated on account of the
symmetrical properties of the tag co-occurrence matrix. After both operations
are performed, we have a list of unique tag combinations for which the cosine
similarity needs to be recalculated.

6 Incremental Cosine Computations for Search and Exploration of Tag Spaces

Table 3. Tag 7 is added to the tag co- Table 4. Gray indicates the existing
occurrence matrix, new tag combina- combinations that need to be recalcu-

tions are shown in gray. lated because tag 7 is added.
Tag[1234567 Tag[1234567
1 [-2152001 1 [-215201
2 [2-71100 2 2-71100
3 [17-3026 3 [17-3026
4 [513-101 4 [513-101
5 [2101-6/0 5 12101-60
6 [00206-10 6 100206-0
7 1106100- 7 1106100-

3.3 Approach 2: Delta cosine approach

The second approach first calculates the dot-product and the Euclidean distance
for each incremental operation and then, when all the incremental operations are
done, calculates the final cosine similarity. It uses both the changed and new co-
occurrences in an iteration to determine for which tag pairs the cosine similarity
needs to be recalculated, similar to the first proposed approach.

In contrast to the first approach, the two incremental operations are split in
the second approach. First, the update operation for the existing tags is executed.
During this operation the change to the dot-product for all affected cosines is
considered for each update to the co-occurrences of the existing tags. In this step
we consider the change to the n x n tag co-occurrence matrix A. The changes to
the tag co-occurrences and the new co-occurrences are defined in a m X m matrix
AA. The sizes of these matrices are such that n < m and m — n is the number
of new tags. The set U, contains indices of tag vector a for which the values are
updated. Equation 3 is used to calculate the change to the dot-product of tag a
and every other unchanged tag b (a # b).

(Atg +ty) -ty =t, -ty + Z Atgi X ty; 3)
i€U,

Tags t, and t, are both existing tag vectors of matrix A. This approach lets us
update only effected elements of the dot-product of the cosine rather than the
whole dot-product, which addresses the scalability of this method. In case both
tags t, and t; change, the updated dot product formula becomes:

(Atg +tg) - (Aty +tp) =t -ty + (Z Atgi X ty;) + (Z ta; X Aty;)
€U, €Uy

+ () Atai x Aty) (4)

1€Uqp

where U, contains indices of tag a and tag b for which the values are simulta-
neously updated, and U, and U, represent the indices of tag a or tag b for which
the values are updated, but not for the other tag (i.e., b and a, respectively).

Incremental Cosine Computations for Search and Exploration of Tag Spaces 7

The Euclidean norm is updated with the following equation for each changed
co-occurrence:

At + tal = \/||ta||2 3 Btu a2 - 3 €, (5)

i€Uq i€Uq

In case new tags are added, the dot-product of the new tag with the existing
tags is calculated using the normal dot-product formula, shown in Equation 6,
since there is no previous information available to calculate this using the dif-
ference with respect to previous iterations.

n
tath = tai X by (6)
=0

The changes of the dot-products between existing tags as result of addition of
a new tag can be calculated using the difference (or delta) between the new
and old vectors. For this purpose we use Equations 3 or 4 with vectors that
have increased with one dimension due to the new tag. Also in this case only
the new part is calculated and later added to the existing dot-product of the
two tags. Equation 5 should be used to update the Euclidean norm for already
existing tags in case a new tag is added, where vectors have increased with one
dimension due to the new tag. The original equation for the Euclidean norm,
given in Equation 7, should be used to calculate the Euclidean norm for new
tags.

||ta|| =

After all the changes are processed, the cosines for the changed tag combinations
are recalculated using the updated dot-product and the updated Euclidean norm.

4 Implementation

In this section we discuss the implementation of our proposed approaches. First,
we describe the data cleaning process, after which we present the incremental
recalculation approach and the delta cosine approach for computing cosines.
The implementation of the incremental cosine approaches is done in Java and
we make use of MySQL for data storage. The data processing is done in PHP.

4.1 Data cleaning

The data we used was made available by Li [8]. It contains 3.5 million unique
pictures and 570,000 tags, gathered from the photo sharing site Flickr.com. Since
this data set contained some noise, we had to perform data cleaning. The fol-
lowing steps were performed:

8 Incremental Cosine Computations for Search and Exploration of Tag Spaces

— Remove tags longer than 32 characters. This operation is necessary, since
we only want words and not complete sentences. Probability of sentences
occurring in multiple pictures is quite low and therefore it does not have any
effect on our result and therefore can be considered as noise.

— Remove tags that contain non-Latin characters. These tags are removed,
since we only focus on English text in this paper.

— Pictures with no tags. Since our approach works with tags, we cannot process
pictures without tags.

— Remove tags with low occurrence. We use the formula p— 1.5 x IQR, where
w is the average tag occurrence and IQR is the inter-quartile range of the
tag occurrences, to determine the minimum number of times a tag has to
occur. In the original STCS approach [4], this threshold was set once for the
complete data set. Here we calculate the minimum number of occurrences for
a tag for every incremental data set and the initial data set. This cleaning rule
is only applied to new tags. Already existing tags from previous iterations
with a low occurrence in a certain iteration are not affected by this rule.

In order to calculate the cosines for the initial data set and to compute all
cosines after updates for reference purposes, we implemented a separate cosine
calculator. This program can calculate the cosine similarity for all tag combi-
nations for a given co-occurrence matrix. The implementation was done in Java
and for the matrix we used our own customized version of the JAMA [1] matrix
library. This customized version uses a one-dimensional array rather than a two-
dimensional array to store matrices. Compared to the original implementation
of JAMA, our implementation offers faster matrix access with a lower memory
footprint.

4.2 Incremental recalculation approach

The incremental recalculation approach implementation consists of three steps.
The first step is the import of the new data of the current iteration, where
the new data is cleaned using the cleaning rules described in Section 4.1 and
then stored in the database. The new pictures are stored in a temporary table.
This temporary table allows us to easily create a co-occurrence matrix with
only the differences in co-occurrence of tags appearing in existing tags and the
co-occurrences of new tags.

The next step in the process is the selection of cosines that need updating.
This happens for each non-zero value in a matrix containing the co-occurrences
of tags included in the new pictures. A unique list of tag pairs for which the
cosine needs to be recalculated is the output of this step.

The last step is the recalculation of cosines from the list of tag pairs. Here
we make use of the cosine calculator from the previous section, only instead of
calculating every cosine, it uses the list of the previous step to calculate the
correct cosines.

Incremental Cosine Computations for Search and Exploration of Tag Spaces 9

4.3 Delta cosine approach

In the delta cosine approach the import of new pictures is the same as in the
previous approach. However, the initial import for the delta cosine approach
differs from the recalculation approach. The cosine calculator, the dot-product
calculator, and a script to store the Euclidean norm to database, have to be run
for the initial import of pictures.

The next step is to compute the changes to the cosines. First, we calculate
the changes to the dot-product and the changes to the Euclidean norm due
to the tag co-occurrence updates of existing tags. Then, the dot-products and
Euclidean norms for the new tags (if any) are calculated and the changes to
dot-product and Euclidean norm of the existing tags caused by the addition of
new tags are determined. After the update and new tag operations are finished,
the affected cosines are recalculated using the updated dot-products and the
Euclidean norms.

5 Evaluation and results

In this section we evaluate the two proposed incremental cosine computation
approaches. First, we discuss the evaluation set-up and the used data set. Then,
the performance of each approach is discussed and compared to the baseline
approach, which recalculates all cosines each time new pictures are added.

5.1 Evaluation set-up & data structure

The performance of the incremental approaches is measured using the execution
time. By considering the execution time, we are able to investigate if there is
any performance gain when using our proposed approaches for the incremental
computation of cosine similarities. The test is done using a subset of the data
set of Li [8]. The initial data set consists of the first 50,000 pictures (1,444 tags)
in the original data set.

The incremental data set is composed of randomly selected pictures from the
remaining data set. We chose to use 8 incremental data sets of different sizes,
which are shown in Table 5. In this table, we give also the number of new pictures
as percentage of the total number of pictures, including the corresponding co-
occurrence update counts. The reason that we chose for relatively small data set
sizes is that we needed to compute all cosine similarities for the baseline, which
is a computationally-intensive process. Using these 8 data set sizes, we are able
to determine at which point it becomes feasible to use an incremental cosine
computation approach. The execution of the complete evaluation is done on a
computer with an Intel Core i5 480M with 4 gigabyte of RAM.

5.2 Results of the incremental cosine approaches

The execution time for each approach is measured for each set of newly added
pictures. This allows us to compare it to the complete recalculation of all cosines.

10 Incremental Cosine Computations for Search and Exploration of Tag Spaces

Table 5. Properties of the different incremental data sets.

New pictures 2,500 5,000 12,500 25,000 37,00 50,000 62,500 75,000
New pictures (%) 5% 10% 25% 50% 75% 100% 125% 150%
New tags 1 22 183 712 1,408 2,193 2,890 3,682
Total number of tags 1,445 1,466 1,627 2,156 2,852 3,637 4,334 5,126
Updated co-occurrences 10,319 33,730 52,351 79,482 98,643 112,905 137,723 140,145
Updated co-occurrences (%)| 1.0% 3.2% 5.0% 7.6% 9.5% 10.8% 13.2% 13.5%

Table 6 shows the execution times for the incremental recalculation approach and
complete recalculation approach of the cosine similarity, as well as the speed-up
that is obtained by using the incremental calculation approach. This speed-up is
used for the comparison with the other approach. The incremental recalculation
is faster for all sets. If 2,500 new pictures are added it is 1.44 times faster to
use an incremental recalculation than a complete recalculation. For 75,000 new
pictures this is 1.23 times faster.

Table 6. Comparison in performance between incremental recalculation and complete
recalculation.

Number of new pictures 2,500 5,000 12,500 25,000 37,00 50,000 62,500 75,000
Time incremental calculation (s)| 16 17 24 58 144 304 551 922
Time complete recalculation (s) 23 23 31 74 179 378 677 1137
Speed-up 144 135 129 1.27 124 124 123 1.23

Table 7 shows the execution times for the delta cosine approach and complete
recalculation approach of the cosine similarities. The delta cosine approach is
faster for all data sets of newly introduced pictures. If 2,500 new pictures are
added it is nearly 23 times faster to use incremental recalculation over complete
recalculation. For 75,000 new pictures this is 1.24 times faster.

Table 7. Comparison in performance between the delta cosine approach and complete
recalculation.

Number of new pictures 2,500 5,000 12,500 25,000 37,00 50,000 62,500 75,000
Time delta cosine (s) 1 1 8 39 120 288 538 919
Time complete recalculation (s)| 23 23 31 74 179 378 677 1137
Speed-up 23 23 3.9 1.9 149 131 126 1.24

Figure 1 shows a plot of the execution times that are shown in Tables 6 and 7.
As we can see, the delta cosine approach performs best on all data sets. However,
the execution time of the incremental recalculation approach is approaching the
execution time of the delta cosine approach for larger updates. This can be ex-
plained by the fact the delta cosines approach becomes similar to the incremental
recalculation approach when the vectors are changed in many positions. As we

Incremental Cosine Computations for Search and Exploration of Tag Spaces 11

1000 -

800 -

600 -

400-

Calculation time in seconds

200-

I I I | I I I
10000 20000 30000 40000 50000 60000 70000
Number of new images
Parameters

— 1 Original
---- 2 Incremental recalculation

--- 3 Delta cosine approach

Fig. 1. Execution times for the different approaches.

can observe in Figure 1, the delta cosine approach is more interesting if a small
part of the co-occurrences change (for a data set size of 2,500, the delta cosine
approach is faster). We can also see in Figure 1 that the delta cosine approach
and the incremental recalculation approach are showing an exponential growth
in execution time with respect to the number of pictures that are being added.
However, this happens also for the complete recalculation approach and we can
also notice that our proposed approaches grow with a smaller factor than the
complete recalculation approach.

6 Conclusion

In this paper, we propose a method for the incremental calculation of the cosine
similarity measure, originating from a scalability problem for tag spaces on the
Web. We proposed two approaches for this purpose. The first approach is the
incremental recalculation approach. In this approach, we consider updating only
the cosine values that are affected by changes in the tag co-occurrences, and
cosines that needed to be calculated for the first time, because new tags were

12 Incremental Cosine Computations for Search and Exploration of Tag Spaces

added. The speed-up for the incremental recalculation was between 1.23 and
1.44 when comparing it to a complete recalculation of all cosine similarities.

The second approach is the delta cosine approach and improves on the first
approach. In this solution, we calculated the change to the cosine similarity for
each change in the co-occurrences matrix and each added tag. Compared to the
complete recalculation, the speed-up was 23 for few changes in the co-occurrences
and 1.23 for many changes to the tag co-occurrences matrix.

In future work, we would like to investigate how both approaches perform
when sequentially adding new pictures. It would also be useful to research how
one can perform the syntactic and semantic clustering techniques of the STCS
framework in an incremental fashion. Furthermore, we would like to add our
proposed approaches to the STCS framework and evaluate these techniques in
a setting with a real-time flow of new pictures.

References

1. Java matrix package, http://math.nist.gov/javanumerics/jama/

2. Begelman, G.: Automated Tag Clustering: Improving Search and Exploration in
the Tag Space. In: Collaborative Web Tagging Workshop at WWW 2006 (2006),
http://wuw2006.org/workshops/#W06

3. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary Clustering. In: 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2006). pp. 554-560. ACM (2006)

4. van Dam, J.W., Vandic, D., Hogenboom, F., Frasincar, F.: Searching and Browsing
Tag Spaces Using the Semantic Tag Clustering Search Framework. In: Fourth IEEE
International Conference on Semantic Computing (ICSC 2010). pp. 436-439. IEEE
Computer Society (2010)

5. Friedman, M., Last, M., Makover, Y., Kandel, A.: Anomaly Detection in Web Doc-
uments Using Crisp and Fuzzy-based Cosine Clustering Methodology. Information
Sciences 177(2), 467475 (2007)

6. Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions via Hash-
ing. In: 25th International Conference on Very Large Data Bases (VLDB 1999).
pp. 518-529. Morgan Kaufmann Publishers Inc. (1999)

7. Jung, S.Y., Kim, T.S.: An Agglomerative Hierarchical Clustering Using Partial
Maximum Array and Incremental Similarity Computation Method. In: IEEE Inter-
national Conference on Data Mining (ICDM 2001). pp. 265-272. IEEE Computer
Society (2001)

8. Li, X.: Flickr-3.5M Dataset (2009), http://staff.science.uva.nl/~xirong/
index.php?n=DataSet.Flickr3m

9. Radelaar, J., Boor, A.J., Vandic, D., van Dam, J.W., Hogenboom, F., Frasincar,
F.: Improving the Exploration of Tag Spaces Using Automated Tag Clustering. In:
International Conference on Web Engineering (ICWE 2011). pp. 274-288. Springer

2011

10. (Specigu7 L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: 4th
European Semantic Web Conference (ESWC 2007). Lecture Notes in Computer
Science, vol. 4519, pp. 503-517. Springer (2007)

11. Vandic, D., van Dam, J.W., Hogenboom, F., Frasincar, F.: A Semantic Clustering-
Based Approach for Searching and Browsing Tag Spaces. In: 26th ACM Symposium
on Applied Computing (SAC 2011). pp. 1693-1699. ACM (2011)

