
An LSH-Based Model-Words-Driven Product
Duplicate Detection Method

Aron Hartveld, Max van Keulen, Diederik Mathol, Thomas van Noort
Thomas Plaatsman, Flavius Frasincar, and Kim Schouten

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

{344544ah, 360314mk, 361103dm, 346877tn, 342789tp}@student.eur.nl
{frasincar, schouten}@ese.eur.nl

Abstract. The online shopping market is growing rapidly in the 21st

century, leading to a huge amount of duplicate products being sold online.
An important component for aggregating online products is duplicate
detection, although this is a time consuming process. In this paper, we
focus on reducing the amount of possible duplicates that can be used as
an input for the Multi-component Similarity Method (MSM), a state-of-
the-art duplicate detection solution. To find the candidate pairs, Locality
Sensitive Hashing (LSH) is employed. A previously proposed LSH-based
algorithm makes use of binary vectors based on the model words in the
product titles. This paper proposes several extensions to this, by per-
forming advanced data cleaning and additionally using information from
the key-value pairs. Compared to MSM, the MSMP+ method proposed
in this paper leads to a minor reduction by 6% in the F1-measure whilst
reducing the number of needed computations by 95%.

Keywords: Duplicate detection, min-hashing, locality sensitive hashing, Web
shop products, Multi-component Similarity Method

1 Introduction

The amount of Web shops has rapidly grown over the last years and, along with
the Web shops, the range of products available online increased drastically. Un-
fortunately, these Web shops might use different descriptions and representations
for the same products. It is possible that a Web shop provides additional infor-
mation on a certain product, while another Web shop does not. For example,
MediaMarkt can provide information about the weight of a certain laptop, while
Bol.com might give information about the operating system, but not the other
way around. Furthermore, the price of the same product can differ between Web
shops. Therefore, product information often varies across different Web shops.
Getting the best price or finding a comprehensive description of the specifica-
tions of a product is very time consuming for customers, especially when they



have to search among different Web shops in order to find the same product. It
is manually even impossible to find a complete overview of the product specifi-
cations and the prices among all available Web shops.

Different state-of-the-art duplicate detection methods exist, such as the Multi-
component Similarity Method (MSM) used in [2]. However, these methods are
very time consuming [2]. Especially when performing duplicate detection on a
large amount of data, the running time can easily explode. Therefore, it is conve-
nient to apply a pre-selection that provides candidate pairs and to only perform a
duplicate detection method on this set of candidate pairs. One way of finding the
candidate pairs is by using Locality-Sensitive Hashing (LSH) [10]. By applying
the pre-selection with LSH, the amount of products that will be compared by the
complex and time consuming duplicate detection method is reduced. Therefore,
the time needed to find duplicates is also decreased.

The research proposed in this paper extends the one from [6]. In [6] the
authors only use model words from the product title for duplicate detection. We
propose to add information from the key-value pairs in the product descriptions
in order to reduce the sparsity of the considered data and to lower the number of
false negatives. Furthermore, we use data cleaning by detecting inconsistencies
and improving the quality of our data. Lastly, in [6] the signature matrix is
built by explicitly performing permutation over the rows. However, in practice,
this is a very time-consuming approach. Therefore, in this paper, we use random
hash functions to simulate involved permutations. The proposed method is called
the Multi-component Similarity Method with Pre-selection+ (MSMP+), as the
original method from [6] is called Multi-Component Similarity Method with Pre-
selection (MSMP), stressing thus the link to the old method.

The structure of the paper is as follows, in Sect. 2, we describe related work
in the fields of data cleaning, key-value pairs, model words, LSH, and duplicate
detection methods. Next, in Sect. 3, a description of the duplicate detection
method we propose in this paper is given. In Sect. 4, we evaluate our method
and last, in Sect. 5 we give our conclusions and suggestions for possible further
research.

2 Related Work

The number of Web shops increased enormously over the last years, which is ac-
companied by a large growth in online data. In order to integrate these data from
different heterogeneous sources, it is crucial to use an efficient duplicate detection
method. Duplicate detection methods for online data are discussed widely in pre-
vious literature. Fetterly et al. proposed an algorithm that detects duplicate Web
pages by using Web crawlers, and tracked how clusters of duplicate documents
evolve over time [8]. Furthermore, Henzinger did a study on different algorithms
that identify duplicate Web pages [9]. She compared Broder et al.’s shingling
algorithm, in which the similarity of a subset of shingles is computed based on
the Jaccard similarity between two documents [3], and Charikar’s random pro-
jection algorithm [4], and identified the shortages of these two approaches. She



proposed an algorithm that combines the quality of both algorithms and that
improved the precision compared to the performances of the algorithms of [3]
and [4], individually.

Before applying a duplicate detection method it is crucial to define the in-
put of the algorithm as binary vectors that represent the different products.
In academic literature, there are several papers that introduce model words,
for example [1,6]. Model words are defined as words that contain both numeric
and alphabetic/punctuation tokens e.g. 12”. These types of tokens often give
valuable information for the duplicate detection, as they usually represent some
unique aspects of a product. The model words are the input for an algorithm
that creates a binary vector representation. In [6] only model words from the
title are used to create binary vectors representing the products. These binary
vectors are employed to find the candidate pairs by the LSH method. [6] does not
use any form of data cleaning. However, data cleaning by removing errors and
inconsistencies will increase the correctness of the data and avoid wrong conclu-
sions, as argued in [12]. Another limitation of the work proposed in [6] is that
this method does not use any information provided by the key-value pairs, while
de Bakker et al. [1] show that the key-value pairs contain relevant information
that can be used for the duplicate detection.

De Bakker et al. [1] introduce the Hybrid Similarity Method (HSM) for du-
plicate detection and extract model words from title and model words from the
key-value pairs, which leads to superior duplicate detection results. An example
of a key-value pair is: (‘Weight’, ‘20.5 lbs’). It is suggested that one should only
use the product attribute values (‘20.5lbs’) and disregards the keys (‘Weight’).
For model words in the key-value pairs, de Bakker et al. [1] use a broader def-
inition of model words. This definition also includes purely numeric tokens in
addition to the mixed numeric/non-numeric tokens, e.g., ‘41.7’ from ‘41.7 inches’.
De Bakker et al. [1] show that model words of the key-value pairs can be useful
when applying duplicate detection. Therefore, in our work we extend the binary
vectors by also taking the information of the key-value pairs into account, and
thus reducing the sparsity of the vectors.

After obtaining the binary vectors, LSH is a useful tool to reduce the dimen-
sionality of the binary vectors [10]. This technique reduces the dimensionality of
the data sets by mapping similar items of the signature matrix, constructed by
minhashing, into the same buckets with a high probability. The LSH technique
maximizes the probability of finding similar items in the same bucket and can
be compared to the nearest neighbour search clustering algorithm [6].

LSH uses minhashing, in which the probability of a duplicate detection is
maximized given a certain desired Jaccard similarity of two different sets. Cohen
et al. [5] propose a minhashing function that defines a signature matrix that is
constructed by randomly permuting the rows of the characteristic matrix and
selecting for each column the first row index in which the column has a 1.
Documents with similar signatures can be considered as similar and therefore
become duplicate candidates. A disadvantage of using random permutations is
that it is computationally intensive and the space that is required to store the



permutations is large [5]. The same approach is used by van Dam et al. [6], in
which the same minhashing algorithm is used to define the signature matrix.

By combining the LSH algorithm with minhashing, duplicate detection be-
comes quick without losing a lot on recall and precision, because it retains the
high Jaccard similarity items. Duan et al. [7] propose various LSH methods to
improve the scalability of matching, in order to handle both large numbers of
instances or match a large number of pairs efficiently. They propose to estimate
the item similarity based on a small number of random hash functions and make
use of the banding technique to avoid the quadratic complexity when comparing
all the pairs. In this paper we plan a similar approach based on hash functions
to simulate permutations and thus decrease the computation time and required
space.

In order to find the final duplicates, after a pre-selection by LSH, the state-
of-the-art product duplicate detection method MSM can be used. This method
is described and employed in [2,6]. MSM uses a hierarchical clustering which
leads to a relatively high F1-measure, but simultaneously a large computation
time.

3 Method Overview

Figure 1 gives a general overview of the approach used in our paper. We refer to
our approach as MSMP+, as the approach of [6] is called the MSMP method. We
start with data cleaning followed by extracting the model words from the product
titles and key-value pairs. Thereafter, we create a binary product representation
for each product. The next phase is to apply Locality Sensitive Hashing (LSH) to
get candidate pairs and eventually MSM is used to get the final set of duplicates
from the candidate pairs.

3.1 Data cleaning

To increase the correctness of the data and therefore the results, we use a data
cleaning approach. The importance of data cleaning is mentioned for example
in [12]. In the Web shop data, used for evaluation in this paper, some incon-
sistencies exist. These inconsistencies will lead to fewer found candidate pairs
and therefore a higher number of false negatives. To efficiently correct for in-
consistencies in the data, we used a frequency count of the model words. The
most frequently occurring units are transformed into a standardized format. This
transformation consists of three steps. First, all different representations of the
units are transformed into one. E.g., the ‘”’ sign for inch is normalized to ‘inch’.
In the second step, all upper-case characters are replaced by lower-case char-
acters. Lastly, all spaces and non-alphanumeric tokens in front of the units are
removed. The two main inconsistencies found are the representations of ‘hertz’
and ‘inch’. Frequent variations of hertz and inch are transformed according to
the steps described above. The results of these transformations of inch and hz
are shown in Table 1. For example ‘23 Inch’ becomes ‘23inch’.



Data cleaningInput documents

Extract model words of
titles and key-value pairs

Create signature ma-
trix with minhashing

Apply LSH to sig-
nature matrix

Apply Multi-component
Similarity Method

Duplicate products

Cleaned data

Binary product vectors

Signature matrix

Nearest neighbors

Fig. 1. General overview of MSMP+

Table 1. Transformation of frequent representations

Data value Normalized value
‘Inch’, ‘inches’, ‘”’, ‘-inch’, ‘ inch’, ‘inch’ ‘inch’
‘Hertz’, ‘hertz’, ‘Hz’, ‘HZ’, ‘ hz’, ‘-hz’, ‘hz’ ‘hz’

3.2 Signature matrix

In this paper, model words from the title and the key-value pairs as proposed
in [2] are used to create binary vectors representing the product. The binary
vectors obtained from these model words are used to create a signature matrix
with minhashing.

Properties of products are often represented as key-value pairs. The titles in
product data are relatively uniformly defined, whereas in the representation of
the properties there seems to be more variation across Web shops. The weight
of a television, for example, will in one Web shop have value ‘20.8 lbs’ whereas
in the other Web shop it will be represented as ‘20.8lbs’. Simply using the same
definition for model words in the key-value pairs as in the title therefore does not
seem logical since only the ‘20.8lbs’ would be added, creating more dissimilarity
between the binary vector representations of the products. To account for this
we only add decimal numbers, that either stand alone like ‘20.8’ or that have



a numerical part and a qualitative part like, ‘20.8lbs’ where the ‘lbs’ part will
be deleted so that in both cases the modelwords will only contain a numeri-
cal part. Decimal numbers are used since these numbers often show a certain
measurement, which contains specific information about the products.

Some product titles, however, contain more information than others. There-
fore we use the model words from the title and search for these in the key-value
pairs. In the key-value pairs, information from the title is often repeated, thus if
one duplicate contains some information in the title and another does not, this
information can possibly be extracted from the key-value pairs.

For the model words we use the definitions from [2] and an extended defi-
nition. Model words as defined by [2] have the property that they contain both
numeric and alphabetic/punctuation tokens. The model words are defined by
the following regular expression:

ModelWordtitle = ([a-zA-Z0-9]*(([0-9]+[ˆ0-9, ]+)|([ˆ0-9, ]+[0-9]+))[a-zA-Z0-9]*)

This regular expression consists of several sub-patterns. The pattern [a-zA-
Z0-9] recognises alphanumerical tokens, [0-9] numerical tokens, and [ˆ0-9, ] spe-
cial characters. Model words consist of at least two of these three types.

The extended definition of the model words includes decimal numbers and
allow these decimal numbers to have an optional non-numeric part. These model
words are defined by regular expression:

ModelWordkey−valuepairs = (ˆ\d+(\.\d+)?[a-zA-Z]+$|ˆ\d+(\.\d+)?$)

This regular expression contains of two parts split by the or sign “|”. The
part ˆ\d+(\.\d+)?[a-zA-Z]+$ finds decimal numbers followed by an alphabetic
characters. The second pattern ˆ\d+(\.\d+)?$ finds all the decimal numbers
without alphabetic characters.

After identifying these value-based model words, the non-numerical part of
these model words is deleted as mentioned earlier. By doing so, we make sure
that more similarity is created between products that have the same value for a
property, but have a different representation of that value.

We formalize the procedure of obtaining binary vectors in a similar way as
[6], but with the additional use of the models words of the key-value pairs. Let P
be the set of product descriptions corresponding to the N products we consider
in our data. Furthermore, let title(p) denote the title of product p ∈ P and
values(p) denote the set value attributes of the key-value pairs of a product
p ∈ P . The procedure of obtaining binary vectors is shown in Algorithm 1. In
the first part we initialize MWtitle as the set containing all model words from
titles and MWvalue as the set containing all the model words from the value
attributes of all product descriptions. Secondly, for every product p we define a
binary vector bp by setting element i equal to 1 if the title or a value attribute
of product p contains model word i ∈ MWtitle, or if a value attribute contains
a model word i ∈MWvalue, and 0 otherwise.



Algorithm 1 Obtaining Binary Vectors

1: MW = ∅
2: for all products p ∈ P do
3: for all model words mwtitle ∈ title(p) do
4: MW = MW ∪ {mwtitle}
5: end for
6: for all model words mwvalue ∈ values(p) do
7: MW = MW ∪ {mwvalue}
8: end for
9: end for

10: for all products p in P do
11: for all model words mw ∈MW do
12: if mwtitle ∈ title(p)∨mwtitle ∈ values(p)∨mwvalue ∈ values(p) then
13: bpmw = 1
14: else
15: bpmw = 0
16: end if
17: end for
18: end for
19: return bp for all p ∈ P

3.3 Defining Duplicate Candidates

After the extraction of the model words and the conversion into binary vectors,
we can apply LSH. By applying LSH one can reduce the high dimensionality of
the original data set. In addition, the number of computations is reduced. The
LSH algorithm maps possible similar items from the original data set into the
same bucket. Items within the same bucket can therefore be seen as duplicate
candidates. The number of duplicate candidates is much smaller than the original
number of input items and therefore the number of computations done by MSM
is reduced, which is important because of the previous large running time.

Minhash Signatures. In order to apply the LSH technique efficiently, one can
replace the large set of binary codes with a smaller set. These representations
are called signatures. The final goal of these signatures is to compare them and
to give an accurate and fast estimation of the Jaccard similarity of two sets.
An effective way to reduce the large set is by applying minhash signatures.
This technique computes a signature for each set, so that similar documents
have similar signatures and dissimilar documents are not likely to have similar
signatures. It picks a list of permutations and computes a minhash signature for
each set in the data. The permutations are generated randomly using random
hash functions. The hash functions are of the following form:

ha,b(x) = (a + bx)mod(p) (1)



in which a and b are random integers and p a random prime number (p > k),
where k is the dimension of the new vectors [11].

The number of instances in the reduced set (signature matrix) is therefore
equal to the number of instances in the characteristic matrix, but the number of
rows r is reduced to k. A high number of min-hashes gives more stable results.
Since computing similarity with MSMP+ takes up most of the computation time
we set the amount of min-hashes to be equal to 50% of the total size of the binary
signature vector. We reduce the number of rows by 50% and therefore, k is half
of the value of r.

Locality-Sensitive Hashing. In order to find pairs with large similarity effi-
ciently, LSH can be used [13]. LSH divides the signature matrix M into b bands
with r rows for each band. The b and r must be chosen in such a way, that the
following equation holds:

n = r ∗ b, (2)

with n the length of the columns of signature matrix M . In each band, the
columns are hashed and divided into buckets. Items are hashed several times,
because of the usage of multiple bands. The products that are hashed to the
same bucket at least one time are now categorized as candidate pairs, which will
be later checked by the MSM algorithm. The LSH algorithm reduces the number
of candidate pairs that has to be compared by the MSM algorithm.

The relation between the false positives and the false negatives can be rep-
resented by the threshold t. An approximation of this threshold is:

t ' (1/b)1/r. (3)

A higher threshold reduces the false positives and increase the false nega-
tives, while a lower threshold reduces the false negatives and increases the false
positives.

3.4 Multi-component Similarity Method

The final method we use after LSH is the MSM. MSM is a hierarchical adpoted
single linkage clustering method that makes use of a specific function in order
to calculate the similarity of two products. This similarity function consists of
three parts. The first part compares matching key-value pairs. The overlapping
q-grams are used as a similarity measure. Alternatively, the cosine- and Jaro-
Winkler measure could be used, but these are sensitive to misspellings and are
token-based. The q-gram uses tokens of q characters, in this case q = 3. These
are taken from a sliding window from the left to the right of the string. This
calculated similarity is added to the final similarity of the two products with a
learned weight.

The second part consists of the key-value pairs that were not matched in the
first part. For these pairs the HSM method [1] is used. This method uses the



model words and calculates the percentage of matches. This calculated similarity
will again be added with a learned weight to the final similarity of the two
products.

The final part of the similarity function uses the Title Model Words Method
(TMWM) [14], which employs the model words from the product titles. This is
also added after using a learned weight to the final part of the similarity function
of two products.

MSM uses an adapted hierarchical single linkage clustering. This algorithm
is performed on the dissimilarity matrix, containing the dissimilarities between
products. Some of the dissimilarity values are manually set to infinity. This is
true for products of the same Web shop, products that have different brands,
using a list of television brands from the Web [15] and for products that are not
considered to be candidate pairs by the LSH method. The remaining dissimi-
larity values are computed by using the same similarity function for each pair
of products, as was mentioned before. The adapted hierarchical single linkage
clustering is performed on the dissimilarity matrix, where the distances between
clusters are defined as the shortest distance between a pair of products from
these clusters. A cluster that contains a pair of objects with distance infinity
will also have distance infinity. This iterative process will continue to merge the
two nearest clusters until the distance exceeds a certain threshold. The clusters
obtained can be seen as clusters containing duplicates.

4 Evaluation

In order to evaluate the performance of our method, a data set containing in-
formation about televisions sold in four different Web shops is used. The aim
of the method is to find duplicate televisions across these Web shops with a
high precision and as few comparisons as possible. This is done by using a pre-
selection with LSH before we apply the actual duplicate detection method MSM.
We compare the results of our method denoted as MSMP+ with the results of
the method proposed by [6] denoted as MSMP.

4.1 Data

The four Webshops in our dataset are international Web shops, namely www.

amazon.com, www.bestbuy.com, www.thenerds.net and www.newegg.com. The
data set contains information of 1629 different televisions in total. All products
are represented with a title, as well as additional information stored in key-value
pairs. The representation of the title can be seen as a summary of the product
as it contains information of several properties of the product. An example of
a television product title is: ‘Philips 4000 Series 29\” Class 2812\” Diag. LED
720p 60Hz HDTV 29PFL4508F7 - Best Buy’. This representation gives you
information of the brand, television type, resolution refresh rate, and the Web
shop that sells the television.



Furthermore, all product descriptions contain other properties in the key-
value pairs, such as: ‘shop’, ‘url’, and ‘ModelID’. If the ‘ModelID’ for two dif-
ferent products is the same, the products can be considered as duplicates. Mod-
elID’s are often not present, which makes the approach of our method useful,
but for evaluation purposes we have selected a data set where these ModelID’s
are present to have a high quality gold standard. We use the comparison made
with ModelID’s as a benchmark to evaluate our method. The number of proper-
ties, represented as keys, and the keys themselves are different across products.
For example, one product might contain information on the HDMI-input, while
another product might not have this information represented.

4.2 Evaluation Methods

To evaluate the performance of the methods, different metrics are used. In the
first part we evaluate the LSH results and in the second part the MSM results.
The LSH-method is evaluated with two metrics: Pair Quality (PQ) and Pair
Completeness (PC). These are defined as, respectively:

PQ =
Df

Nc
, (4)

where Df is the amount of duplicates found, and Nc is the number of comparisons
made.

PC =
Df

Dn
, (5)

where Df is the amount of duplicates found and Dn is the total amount of
duplicates.

To evaluate the complete method, the F1-measure is used. The F1 measure
is the harmonic mean of PQ and PC. Its optimal value is 1 and its lowest value
is 0. The corresponding formula is:

F1 =
2 ∗ PQ ∗ PC

PQ + PC
. (6)

4.3 LSH performance

In order to achieve a consistent result we make use of a procedure that is called
bootstrapping. Bootstrapping relies on random sampling with replacement. This
re-sampling method allows us to evaluate the performance of the method on ev-
ery bootstrap. In total, 100 bootstraps are performed and around 60% of the
products in the data set are used in every bootstrap. This way, each bootstrap
contains roughly 1000 products. The final performance of every measure is com-
puted as the average over all bootstraps.

The number of found candidate duplicate-pairs depends on the size n of the
signature matrix and the threshold value t as described in Sect. 3. A higher



value for t will lead to fewer candidate-duplicate pairs and therefore to fewer
comparisons by MSM. However, a higher threshold value t will also lead to a
smaller amount of found candidate duplicate-pairs and a potential higher number
of false negatives. The aim of this research is to lower the number of comparisons
made by MSM, while still finding a large amount of the duplicates. Therefore
we run the algorithm for different values of t. A trade-off is made in order
to define the best value of t, such that the PQ and the PC are optimized.
The fraction of comparisons is defined as the candidate duplicate-pairs found
by LSH divided by the total number of possible comparisons. The fraction of
comparisons is therefore directly related to the threshold value t. By adding
more candidate duplicate-pairs, the PC will increase. However, by doing more
pairwise comparisons, the running time of MSM increases as well. The threshold
value t, executed for 100 bootstraps, characterizes this trade-off. We vary the
value of t from 0 to 1 with a step size of 0.05. All results are averaged over the
bootstraps.

In order to compare the performance of the LSH part of our MSMP+ method
with the MSMP method, we plot the PQ, PC and F1 measure against the frac-
tion of comparisonsof the methods in Fig. 2, 3 and 4, respectively (after LSH,
check only pairs that are in the same bucket). Moreover, these figures report the
separate results for the MSMP method with data cleaning (clean), the MSMP
method with data cleaning and model words from title and also the model words
from the key-value pairs found in the tile (values), and the MSMP+ method this
method contains all the elements from above plus the decimal model words as
explained in section Method Overview.

Fig. 2. Pair Completeness for different fractions of comparison



Fig. 3. Pair Quality for different fractions of comparisons

Fig. 4. F1-measure of MSMP+ compared to the MSMP for different fractions of com-
parisons



From Fig. 2 it can be shown that the MSMP+ method outperforms the
MSMP method. For example by performing 10% of the number of pairwise
comparisons a PC of 80% is achieved with the MSMP+ method, while with the
MSMP method there is only a PC of 70%. By calculating the area under the
curve using the trapezoid method with the midpoint rule, it can be shown that
MSMP+ method has an area under the curve improvement of 12.2% compared
to the MSMP method. Furthermore we see that cleaning the data improves
MSMP for the lower threshold values and using the key-value pair method does
this for the higher threshold values. Finally there is only a slight change adding
the decimal numbers.

In Fig. 3 an overview for the PQ against the fraction of comparisons can be
found. Although the differences between the different methods of improvement
are hard to distinguish, there is a 9.2% improvement of the area under the graph
for MSMP+ against MSMP.

Finally we make use of the so-called F1 measure to compare the results of
the LSH part in both methods in Fig. 4. There is a 9.3% improvement of the
area under the graph, in this case. Same as in Fig. 2, cleaning the data improves
MSMP for the lower threshold values and the key-value pair method does this
for the higher threshold values.

We conclude that the LSH part of the MSMP+ method proposed in this
paper significantly outperforms the MSMP method on all the evaluation metrics:
PC, PQ, and F1.

4.4 Performance of MSM

In order to evaluate the performance of the MSMP+ method compared to the
results of MSMP, the F1-measure is used again. The results are obtained by
running the MSMP+ method for different fixed threshold values t, where every
run consists of 10 bootstraps. Fig. 5, shows the results. The set of parameters
used in the MSMP+ algorithm is optimized over a grid of parameters. For every
value t, the best performing parameter is selected.

By applying the LSH pre-selection method before performing the duplicate
detection method MSM, we reduced the number of pairwise comparisons with
respect to the number of comparisons done by the MSM method. Note that
the fraction of pairwise comparisons done by MSM is equal to 1 if all compar-
isons are performed. As shown in Fig. 5, we compare the F1-measure obtained
by the MSMP+ and MSMP method to the F1-measure of the MSM method
(benchmark). The F1-measure of the benchmark is equal to 0.525 [2]. As the
graph shows, the F1-measure decreases as the fraction of comparisons decreases.
However, a large decrease in faction of comparisons leads to only a small reduc-
tion of the F1-measure. From Fig. 5 we can conclude that the MSMP+ method
outperforms the MSMP method. If we look at a reduction of 95% of pairwise
comparisons for example, the MSMP method leads to an F-1 measure of 0.46,
while the MSMP+ method for this reduction leads to a F-1 measure of 0.49.
The MSMP+ method has an improvement of the area under the curve for the
F1-measure of 7.8% compared to the MSMP method.



Fig. 5. MSMP+ compared to MSM

To summarize, the results show that LSH is an efficient method to signifi-
cantly reduce the number of pairwise comparisons and therefore the computation
time, while still finding an high number of duplicates. Also the MSMP+ method
significantly outperforms the MSMP method.

5 Conclusions

In this paper we propose a method called MSMP+ in order to reduce the num-
ber of calculations involved in product duplicate detection on the Web. This
method is an extension of the MSMP method described in paper [6]. The MSMP
method uses a LSH pre-selection method before performing the duplicate detec-
tion method MSM. Before applying the LSH pre-selection method, it is necessary
to define all products as binary vectors. In the MSMP method this is done by
only using the model words that appear in the title. In the MSMP+ method, we
first start with data cleaning followed by extracting the model words from the
product titles and key-value pairs. Then we create a binary product representa-
tion for each product, apply LSH, and lastly perform te MSM algorithm.

When we only look at the performance of LSH the MSMP+ method has
improved the area under curve compared to MSMP of pair completeness and
pair quality with 12.2% and 9.2% respectively. The area under the curve of
the F1-measure is improved by 9.3%. After performing MSM on the candidate
duplicates, the MSMP+ method has improved the area under the F1-measure
curve by 7.8%, compared to the MSMP method.



We conclude that the MSMP+ method outperforms the MSMP method on
all evaluation criteria and therefore the MSMP+ method is a valuable extension
of the MSMP method.

References

1. de Bakker, M., Frasincar, F., Vandic, D.: A hybrid model words-driven approach for
web product duplicate detection. In: 25th International Conference on Advanced
Information Systems Engineering (CAISE 2013). vol. 7908, pp. 149–161. Springer
(2013)

2. van Bezu, R., Borst, S., Rijkse, R., Verhagen, J., Frasincar, F., Vandic, D.: Multi-
component similarity method for web product duplicate detection. In: 30th Sym-
posium on Applied Computing (SAC 2015). pp. 761–768. ACM (2015)

3. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Computer Networks and ISDN Systems 29(8), 1157–1166 (1997)

4. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Thirty-Fourth Annual ACM Symposium on Theory of Computing (STOC 2002).
pp. 380–388. ACM (2002)

5. Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman,
J.D., Yang, C.: Finding interesting associations without support pruning. IEEE
Transactions on Knowledge and Data Engineering 13(1), 64–78 (2001)

6. van Dam, I., van Ginkel, G., Kuipers, W., Nijenhuis, N., Vandic, D., Frasincar, F.:
Duplicate detection in web shops using LSH to reduce the number of computations.
In: 31th ACM Symposium on of Applied Computing (SAC 2016). pp. 772–779.
ACM (2016)

7. Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward,
M.J.: Instance-based matching of large ontologies using locality-sensitive hashing.
In: 11th International Semantic Web Conference (ISWC 2012). vol. 7649, pp. 49–
64. Springer (2012)

8. Fetterly, D., Manasse, M., Najork, M.: On the evolution of clusters of near-duplicate
web pages. Journal of Web Engineering 2(4), 228–246 (2003)

9. Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algo-
rithms. In: 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 2006). pp. 284–291. ACM (2006)

10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Thirtieth Annual ACM Symposium on Theory of Com-
puting (STOC 1998). pp. 604–613. ACM (1998)

11. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of massive datasets. Cambridge
University Press (2014)

12. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. Bulletin
of the IEEE Computer Society Technical Committee on Data Engineering 23(4),
3–13 (2000)

13. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors.
IEEE Signal Processing Magazine 25(2), 128–131 (2008)

14. Vandic, D., Van Dam, J.W., Frasincar, F.: Faceted product search powered by the
Semantic Web. Decision Support Systems 53(3), 425–437 (2012)

15. Wikipedia: The free encyclopedia: http://wikipedia.org/wiki/List_of_

television_manufacturers


