
Hierarchical Deep Learning for Multi-label Imbalanced Text Classification
of Economic Literature

Sanne Lina, Flavius Frasincara,∗, Jasmijn Klinkhamera

aErasmus University Rotterdam, PO Box 1738, 3000 DR, Rotterdam, the Netherlands

Abstract

With the vast amount of economic literature available in this day and age, efficient and accurate

text classification becomes increasingly important. We propose an extended version of the Hierar-

chical Deep Learning for Text Classification (HDLTex) approach, called HDLTex++. HDLTex++

applies hierarchical learning using neural networks to classify documents and is adapted for the

multi-label classification of class imbalanced data. We use HDLTex++ to assign to economic pub-

lications category labels from the Journal of Economic Literature classification system, which has

a hierarchical tree structure with three levels. The performance of HDLTex++ is compared to two

methods based on Support Vector Machines (SVMs), one where the class hierarchy is fully incor-

porated, and one where only the tertiary subcategories are taken into consideration. Performance

is evaluated using the standard F1-score and a novel hierarchical F1-score that accounts for both

class imbalance and class hierarchy. Our findings show that HDLTex++ is more effective in the

prediction of primary category labels, compared to both SVM models, and in the prediction of

secondary category labels, compared to the hierarchical SVM model.

Keywords: Class Imbalance, Hierarchical Learning, Multi-Label Classification, Neural Networks,

Support Vector Machines

1. Introduction

Much academic research has been conducted in the field of economics. Many of these research

papers, journal articles, dissertations, and other forms of publications can be found in repositories.

Their topics can be determined using the Journal of Economic Literature (JEL) classification codes

∗Corresponding author; tel: +31 (0)10 408 1262
Email addresses: sanne.lin33@gmail.com (Sanne Lin), frasincar@ese.eur.nl (Flavius Frasincar),

584059jk@eur.nl (Jasmijn Klinkhamer)

Preprint submitted to Applied Soft Computing March 14, 2025

assigned to them, which are part of the JEL classification system. This system is based on a set

of categories structured in a class hierarchy with three levels. Whereas browsing and filtering

publications is more convenient using JEL codes, assigning classification codes to publications is

still a time-consuming process, if done manually. The aim of this paper is to propose an automatic

classifier that is able to categorize the publications according to their content and assign the

appropriate JEL codes.

The development of methods aimed at solving classification problems and training classifiers

has formed a large part of the academic literature in machine learning. Such classification problems

can have many different applications, such as diagnosing cancer, e.g., [1], classifying environmental

conditions, e.g., [2], detecting fraud, e.g., [3], predicting bankruptcy, e.g., [4], and recognizing music

genres, e.g., [5]. A common type of classification is text classification, where text is analysed and

assigned labels based on its content. Applications of text classification can be found for instance

in email spam filtering, e.g., [6], intent classification, e.g., [7], and sentiment analysis, e.g., [8].

Classification problems can have distinctive characteristics [9]. One such characteristic is the

number of categories to which an instance can be classified. In binary classification problems, an

instance is classified to one of two categories, such as positive or negative sentiment [10]. Problems

where instances can be sorted into one (or more) of multiple categories are called multi-class

classification problems, for which classification algorithms can often be a natural extension to

binary classification techniques [11]. Another characteristic is the number of labels that can be

assigned to an instance, which is exactly one in single-label classification but can be any number

of labels in multi-label classification [12]. Inherently, multi-label classification problems are also

multi-class problems.

In the context of assigning JEL codes to economic publications, the classification problem is

one that is multi-label, since a publication can fit multiple categories. For instance, papers about

market structure can be classified under subcategories of both ‘Microeconomics’ and ‘Industrial

Organisation’. Due to the tree structure of the JEL classification system, we are also facing a

hierarchical classification problem, where we focus on predicting categories from the leaf nodes of

the classification hierarchy. [13] approaches a general multi-label hierarchical classification problem.

In contrast, we focus on developing a text classifier to assign one or multiple labels to publications.

To this end, we use the content of a publication’s title and abstract, as well as the pre-defined

2

hierarchical structure of the JEL classification system.

A complication that can occur in classification problems is class imbalance [14], which has been

addressed in various domains [15, 16]. The JEL classification system has categories that vary in

specificity. For instance, a child category ‘General’ exists which captures the general instances of

the parent category, such as textbooks and surveys, while the remaining child categories capture

more specific topics within the parent category. It is even possible for some overlap to occur, e.g.,

some (but not all) publications are classified to both the ‘General’ category and one or multiple

specific categories, while some other publications belong to multiple specific topics, but not to the

‘General’ category. Since the ‘General’ category covers a broader range of publications (including

some from sibling categories) and some subcategories are more niche than others, class imbalance

arises, with some categories containing more instances of publications than others. Class imbalance

can present an issue in training a classifier, since a natural tendency of the classifier will be to assign

the more common JEL codes to publications, as this classification will achieve a relatively high

accuracy. However, this will also result in the misclassification of publications with more niche

topics. Hence, to build a classifier that is able to categorise publications with common and niche

topics alike, this class imbalance needs to be addressed.

In this paper, we introduce an extended version of the Hierarchical Deep Learning for Text

Classification (HDLTex) approach, a hierarchical multi-class classifier which takes a local classifier

approach to text classification by training deep learning classifiers [17] at each parent node of a

two-layer class hierarchy [18]. The first level classifier is used to classify documents to primary

categories of the classification system. At each primary category, subclassifiers are built which are

trained on the subset of documents belonging to the corresponding primary category only. The

authors find that their approach outperforms the more traditional classifiers such as Naive Bayes

(NB) and Support Vector Machines (SVMs). Our classifier, which we call HDLTex++, extends

HDLTex in several ways. First, since the JEL classification system contains three layers, we

append an additional layer of deep learning classifiers to the original algorithm. Second, we apply

an alternative loss function that allows for multi-label learning. Third, we apply cost-sensitive

learning to counter class imbalance, such that a higher cost is attached to the misclassification of

documents from smaller categories. To evaluate the results, we use the standard macro-averaged

F1-score, which does not account for the hierarchy. We also propose a novel performance measure,

3

the macro-averaged hierarchical F1-score, which takes into account both the class imbalance and

the class hierarchy.

The remainder of this paper is structured as follows. Section 2 gives an overview of related

work in multi-label and hierarchical text classification. Section 3 introduces the data used. Section

4 describes our methodology. The results are presented in Section 5. In Section 6, conclusions are

provided and future research possibilities are discussed.

2. Related Work

Text classification, also called text categorization and topic spotting, is the task of organizing

natural language texts into pre-defined thematic categories [9]. Before a classification algorithm can

be applied to assign category labels to a document, its content needs to be converted into a format

that the algorithm can interpret. Transforming the raw text data into a structured dataset is done

in two steps. First, in the text pre-processing step, the data is cleaned, for example by discarding

capitalisation and punctuation marks. Following the data pre-processing, relevant features can be

extracted from the cleaned document and mapped to a numerical representation suitable to be

used as input data for classification algorithms.

A common approach to extracting features is through weighted words, e.g., [19], where a vector

is created in which each word in the document is represented by a weight, commonly the Term

Frequency-Inverse Document Frequency (TF-IDF). TF-IDF is calculated by taking the product

of, as the name suggests, the term frequency (TF) and the inverse document frequency (IDF).

The term frequency refers to the number of occurrences of the word in the document, while the

document frequency is the fraction of documents in which that word occurs. The inverse document

frequency is then calculated by taking the logarithm of the inverse fraction. While easy to calculate,

a limitation of TF-IDF is its inability to capture semantic similarity between words, since each

word is considered independently [20].

An alternative to weighted words is word embedding, which uses distributed vector space

models to learn distributed word representations that capture the semantic and syntactic relations

between words. Two popular models that provide pre-trained word embeddings are word2vec

and Global Vectors (GloVe). Word2vec uses either the Continuous Bag-of-Words (CBOW) model,

which tries to predict the target word using its surrounding words (context), or the continuous

4

skip-gram model, which tries to predict the context using the current word, e.g., [21]. GloVe

incorporates elements from both global matrix factorisation and local context window methods

into a weighted least squares problem applied on co-occurrence counts of word pairs [22]. The

learned word embeddings can be aggregated (for instance, by taking the (weighted) average or the

maximum) to find a text representation for the entire document [23].

While word vectors trained using word2vec and GloVe model the semantic and syntactic charac-

teristics of the words, each word representation is context-independent and thus does not allow for

the incorporation of concepts such as polysemy [24]. In response to this shortcoming, several mod-

els have been proposed for learning contextual word embeddings, including context2vec [25], CoVe

[26], and ELMo [24]. Recently, the Bidirectional Encoder Representations Transformers (BERT)

model was proposed by [27], which uses a deep bidirectional architecture using transformers to

learn context-dependent word representations. BERT was shown to obtain state-of-the-art results

in the General Language Understanding Evaluation (GLUE) benchmark.

2.1. Multi-Label Classification

Classification problems can be divided into single-label problems, where each data instance is

assigned exactly one label, and multi-label problems, where each instance can receive any number

of labels. Within single-label classification, problems can be considered binary-class (i.e., having

two classes) or multi-class (i.e., having more than two classes).

A commonly used classification method is the Support Vector Machine (SVM), e.g., [28]. Devel-

oped by [29], the (binary-class) support vector machine is used to find a hyperplane that maximizes

the margin between two classes. Though originally intended to find linear boundaries, SVMs can

be easily adapted to find non-linear boundaries by using different kernel functions. In addition,

SVMs can be used to find such functions irrespective of the dimensionality of the problem, making

it quite suitable for text classification, for which input vectors can be large [30]. SVM classifiers

can be applied in a J-class multi-label setting using the One-vs-Rest (OVR) approach, where a

binary-class SVM is trained for each class. Alternatively, the One-vs-One (OVO) approach can be

used, where an SVM is trained for each pair of classes, resulting in J(J − 1)/2 classifiers. A ma-

jority voting scheme is used to classify instances to categories. A third option is an SVM classifier

that considers all classes using a single optimization problem [31]. A multi-class classifier like this

may be adapted for multi-label use by selecting the classes for which the margins surpass a certain

5

threshold, instead of only the class that classifies the test instance with the greatest margin.

In recent years, the use of deep learning techniques in text classification has become increasingly

common. [32] propose the Backpropagation for Multi-Label Learning (BP-MLL) algorithm , a

neural network approach that minimizes a pairwise ranking loss function. The BP-MLL algorithm

is adapted in [33] by replacing the loss function with the cross-entropy loss and a sigmoid activation

function for the output layer. This loss function was later also used in [34], where a Convolutional

Neural Network (CNN) approach is proposed for extreme multi-label text classification.

Other classification techniques that can be applied to multi-label problems include k-Nearest

Neighbours (kNN) [35], Multi-Label kNN (ML-KNN) [36], an extension to kNN that uses the max-

imum a posteriori (MAP) principle to predict label sets, FastXML [37], a tree-based classifier for

extreme multi-label learning, and BoosTexter [38], a boosting algorithm derived from the AdaBoost

algorithm.

2.2. Hierarchical Classification

Hierarchical classification problems describe a subset of classification problems where the cat-

egories are arranged in a class hierarchy. There are three approaches to hierarchical classification:

flat, local, and global classification [39]. In flat classification methods, the hierarchical structure

of the categories is ignored, and only the leaf categories are incorporated, such that classification

methods intended for non-hierarchical classification problems can be easily applied. However, flat

classifiers have to be able to discriminate between all leaf categories, of which there may be many.

Furthermore, potentially valuable information derived from the parent-child relations between the

categories is neglected.

Alternatively, global or local classifiers can be used, which do incorporate the hierarchical

structure of the categories. A global classifier is used to build a single model that is able to classify

instances to all categories in the hierarchy. This approach was taken in [40], where the label set of

each instance is appended with the corresponding ancestors of the labels and a boosting procedure

is applied on the whole category space. As this approach flattens the hierarchy during the training

phase, inconsistencies can occur, where an instance is placed into a category, but not (one of) its

corresponding ancestors.

Local classification methods use the hierarchical structure to train flat classifiers for subsets of

the categories. Multiple types of local classification approaches exist [39]. The Local Classifier per

6

Node (LCN) approach is used when training a binary classifier at each node of the hierarchy to

predict whether an instance belongs to the class associated with the classifier. [41] propose an LCN

approach for classifying hierarchical Web content, using a binary-class SVM at each node of the

hierarchy. The authors report that their hierarchical method outperforms the flat baseline SVM

model in terms of F1-score.

The Local Classifier per Parent Node (LCPN) approach is used when training a multi-class

classifier at every parent node to predict which of the child categories the instance belongs to.

Each classifier is trained only on the instances belonging to its descendent nodes. By training one

classifier for a set of child nodes, this approach can take into account correlations between the

nodes, which is an advantage over the LCN approach. An example of an LCPN approach is the

Hierarchical Deep Learning for Text Classification (HDLTex) model [18] . This model consists of

a combination of neural networks at each parent node in the classification hierarchy, creating a

stacked deep learning architecture. Using this structure, the HDLTex model outperforms more

traditional classifiers like NB and SVM.

The last and least common type is the Local Classifier per Level (LCL) approach, where a

flat classifier is trained at each level of the hierarchy, e.g., [42]. Compared to the other local

classification approaches, the LCL approach trains the fewest classifiers. However, at deeper levels

of the hierarchy, this requires the classifiers to discriminate between a larger number of categories.

Furthermore, inconsistencies can easily arise, when predicted leaf categories do not belong to the

predicted internal node categories.

2.3. Class Imbalance

One issue that can arise in classification problems is class imbalance which occurs when the

data are not equally distributed among the categories, resulting in some categories being more

well-represented than others. In [43], three measures are introduced for determining the level of

imbalance in a multi-label dataset. The first is the imbalance ratio per label (IRLbl, see (1), where

yi is the label set of observation i). For each class j, this measure divides the class frequency of

the most common class by the class frequency of class j. The imbalance ratio will equal one for

the largest class, and increase as the imbalance increases.

7

IRLbl(j) =
maxJj′=1(

∑N
i=1 h(j

′, yi))∑N
i=1 h(j, yi)

, (1)

h(j, yi) =


1, j ∈ yi,

0, j /∈ yi.

The mean imbalance ratio (MeanIR) calculates the average imbalance ratio over all labels and

represents the overall level of imbalance in the data (see (2)).

MeanIR =
1

J

J∑
j=1

IRLbl(j). (2)

Finally, the coefficient of variation of IRLbl (CVIR) is introduced, calculated as the standard

deviation of the imbalance ratios per label, divided by the mean imbalance (see (3)). This indicator

shows the level of variation between the various imbalance ratios.

CV IR =
IRLblσ
MeanIR

, (3)

IRLblσ =

√√√√ J∑
j=1

(IRLbl(j)−MeanIR)2

J − 1
.

One approach to handle class imbalance is through cost-sensitive learning, where the cost func-

tion is adapted such that misclassifying instances from the minority class(es) result in a higher cost

than misclassifying instances from the majority class(es). This forces the classification algorithm to

place more weight to correctly classifying minority class instances. An instance of a cost-sensitive

learning approach in hierarchical text classification can be found in [44], in which a hierarchical

SVM approach is taken, followed by cost-sensitive neural network classifiers on the output scores

of the SVM model. The study finds that the hierarchical SVM approach outperforms the non-

hierarchical SVM classifier. Furthermore, the cost-sensitive approach is successful in decreasing

the number of severe misclassifications. In [16], a cost ratio C+/C− (where C+ and C− are the

cost given to a majority and a minority class, respectively) set to the inverse imbalance ratio is

found to yield good performance in SVM models.

Another way to deal with class imbalance is through the under- or oversampling of data. The

former refers to the random removal of instances from the majority class(es), e.g., [45], whereas the

8

latter is the opposite: instances from the minority class(es) are randomly sampled with replacement,

e.g., [46]. Instead of sampling with replacement, one can also create synthetic examples from the

minority class, for instance using the Synthetic Minority Oversampling Technique (SMOTE) [47].

[48] propose the Multi-Label SMOTE (MLSMOTE) algorithm for generating synthetic observations

for minority classes, suitable for multi-label data. This algorithm is adapted from SMOTE, but

involves an additional step: the generation of a synthetic label set for the generated instance.

Using the MLSMOTE algorithm, Charte et al. are able to achieve better results compared to

other oversampling techniques and imbalance-aware classifiers. However, the use of resampling

methods, whether synthetic or not, presents one drawback. For hierarchical (local) classification,

a set of classifiers is used, each trained on a different subsample of the data. The algorithm would

need to be applied to each subsample, which could be costly, especially as the number of classifiers

increases.

3. Data

The data used in this paper originates from Research Papers in Economics (RePEc), a repos-

itory containing a large volume of working papers, journal articles, books, and other forms of

economic publications. We extracted the title and abstract of the publications to use as input to

our classifiers, restricting the sample to only the publications that have at least one JEL classifica-

tion code and are written in English. The JEL classification codes belong to a system developed

by the Journal of Economic Literature, and is used for the classification of economic publications.

The classification system forms a hierarchy with three layers. It consists of twenty primary cate-

gories, labelled with letters ranging from A-R and Y-Z. The subcategories at the second level are

the secondary categories. They are denoted by the letter corresponding to their parent category,

followed by a single digit denoting the subcategory, starting from zero. An example of a more

specific category is ‘Asset Markets and Pricing’, which is denoted by the JEL code G1. This is the

second subcategory of category G, ‘Financial Economics’. In the same way, the subcategories of

the secondary categories, i.e., tertiary categories, are denoted by their parent category code plus an

additional digit. For instance, category G11 ‘Portfolio Choice; Investment Decisions’ is the second

category within category G1. Figure 1 shows part of the JEL categorisation system: the subtree

rooted at primary category G.

9

G

G0

G00 G01

G1

G10 G11 . . .

. . . G5

G50 . . .

Figure 1: Primary category G and its descendant category nodes.

We exclude a small number of JEL classification codes, namely the category with code ‘Y’

(‘Miscellaneous Categories’), which is used for unclassified documents and contain subcategories

that are not topic-bound such as ‘Excerpts’ and ‘No Author General Discussions’. We disregard

this category and documents belonging exclusively to this category. For the same reason, we

exclude the category with code ‘A3’ (‘Collective Works’), and its corresponding subcategories.

In total, there are 19 primary categories. Each primary category has between three and ten

subcategories, with a median of six. Furthermore, there are 129 secondary categories and 834

tertiary categories. The secondary categories have between two and ten tertiary categories as

children, with a median of seven.

Our dataset contains 428,827 observations and their tertiary category labels. Within this

dataset, approximately 20% of the data (83,445 observations) is reserved as the test dataset for

reporting the final results of our models. The dataset is split using an iterative stratification

approach developed for multi-label data proposed in [49]. This approach is aimed at maintaining,

within each subset of the data, the proportion of positive examples for each category in the complete

dataset. The remaining 80% of the data is then split once more using the same procedure, resulting

in a training dataset (278,510 observations) and a validation dataset (66,872 observations), which

are used for hyperparameter optimization. Table 1 shows the frequency table of the number of

(tertiary) labels per observation for each split dataset as well as the complete dataset. Observations

with three labels are the most common, representing almost one third of each dataset, followed by

observations with two labels. Less than 5% of the data instances have more than five labels.

Table 2 displays descriptive statistics regarding the size of the JEL categories. For the primary

and secondary JEL categories, we define the size of a category as the number of instances belonging

10

Table 1: Frequency table of the number of labels per observation in percentages.

No. of labels 1 2 3 4 5 6+

Train 21.74 22.84 29.59 15.04 6.36 4.44

Validation 12.73 27.12 32.75 16.23 6.54 4.63

Test 9.14 29.86 33.66 15.97 6.72 4.65

All 17.88 24.87 30.87 15.40 6.46 4.51

to the subtree rooted at that category. The table shows that some imbalance already occurs in

the primary JEL categories, with the largest category being more than ten times the size of the

smallest category. The mean imbalance ratio lies around 4.5, indicating that the majority class is on

average 4.5 times larger than the other classes. Moving from the primary categories to the secondary

categories show the same pattern as moving from secondary categories to tertiary categories. The

average size per label decreases. The smallest group and the largest group both shrink. This is

due to the observations being spread out to more categories. This increase in spread affects the

imbalance ratios. The mean imbalance ratios increase to about 25 for the secondary categories,

and then increases to over 70 for the tertiary categories. This suggests that a secondary/tertiary

category is on average 25/70 times smaller than the largest category respectively. The imbalance

ratios vary more, as evidenced by the larger CVIR values.

The text data is cleaned as follows. First, we remove the HTML tags, the JEL codes, and

the numbers from the text. Then, we remove some specific phrases like “no abstract, this is a

discussion paper”, “abstract in English is missing”, and “abstract missing - contribution appeared

in the programme”. Last, non-English text is also removed.

11

Table 2: Descriptive statistics on the number of observations per JEL category.

Primary

Train Validation Test All

Mean 27416.74 6918.32 8785.47 43120.53

Min 4907 1217 1562 7686

Max 63742 16157 20547 100446

MeanIR 4.48 4.51 4.49 4.49

CVIR 4.02 4.07 4.02 4.03

Secondary

Train Validation Test All

Mean 5108.33 1297.45 1648.14 8053.92

Min 28 6 11 45

Max 23961 5996 7462 37419

MeanIR 25.84 26.42 23.08 25.26

CVIR 82.77 93.31 66.76 80.17

Tertiary

Train Validation Test All

Mean 933.14 236.93 300.46 1470.53

Min 7 1 1 12

Max 10402 2601 3251 16254

MeanIR 71.3 75.17 74.43 70.62

CVIR 138.26 173.69 210.92 140.3

4. Methodology

In this section, we describe the methods that we use to classify publications and evaluate said

classifications. We start by describing our use of SVMs and our extension of the HDLTex model,

HDLTex++ (including its constituent neural networks), before considering the feature extraction

approaches we utilize, the loss functions that we use for each classification model, as well as our

approach to model evaluation. We then describe the hyperparameter optimization involved in each

12

classification approach as well as the hardware and software used to perform our analysis.

4.1. Support Vector Machines (SVMs)

In a binary-class SVM, introduced in [29], the objective function is formulated as

min
v,b

1

2
∥v∥2 + C

∑
i

ξi, (4)

s.t. yi[v
′xi + b] ≥ 1− ξi, ∀i

ξi ≥ 0, ∀i

where v is the weight vector, b the bias term, ξi the slack variables, C the regularization parameter,

xi the input vector, and yi ∈ {−1, 1} the class label. Using the Lagrangian primal function and

its first order conditions, the optimization problem is given by

max
αi

∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj), (5)

s.t.
∑
i

αiyi = 0 and 0 ≤ αi ≤ C, ∀i,

where K(·, ·) is the kernel function. Solving the optimization problem yields the decision function

f(x) = v′x+ b =
∑
i

αiyiK(xi,x) + b. (6)

In this paper, we use the linear kernel, where K(xi,xj) is simply the inner product of the two

vectors. SVMs with linear kernels are faster to train, yet have been shown to achieve similar, if

not better, performance in text classification than SVMs with non-linear kernels [35, 41, 28].

To adapt the binary-class SVM for multi-label classification with J classes, we take the OVR ap-

proach, and train a binary-class SVM for each class, yielding J decision functions fc1(x), . . . , fcJ (x).

We pass the decision function values through the sigmoid function such that the output range is

bounded between zero and one. The classes for which the output is above a certain threshold are

assigned to the instance. Both the regularization parameter and the threshold values are selected

using cross-validation. Training a binary-class SVM for each class against J − 1 other classes can

introduce class imbalance to the classification problem, since the number of instances with the

class label tends to be much lower than the number of instances without. This can result in a

skewed class boundary, such that new instances are more likely not to be classified to the class [50].

13

To account for the class imbalance, we use separate cost parameters for the positive and negative

examples of each SVM submodel by multiplying the cost C by a class-dependent weight. The

class weights are inversely proportional to the class frequency, with classes containing few positive

examples receiving a larger weight.

We train a flat and a hierarchical SVM classifier. The flat classifier ignores the hierarchical

structure of the classification system and learns an OVR classifier for each of the leaf categories of

the class hierarchy, using the entire dataset for each classifier. For the hierarchical SVM, we take

the LCN approach, as has been tried with good results in previous literature [41], and train an OVR

classifier at each node of the class hierarchy. All instances belonging to descendant categories of the

category node are considered positive examples, whereas all instances belonging to the categories

descending from the node’s sibling categories are used as negative examples.

4.2. HDLTex++

The proposed HDLTex++ model, extended from the HDLTex model [18], uses an LCPN ap-

proach to text classification. At each parent node of the class hierarchy, a deep learning architecture

is used, either a Convolutional Neural Network (CNN) or a Recurrent Neural Network (RNN). In

other words, the highest-level classifier at the root of the classification hierarchy uses the entire

training dataset to train, since all categories are descendants of the root, whereas subsequent

classifiers only use a subset of the data, using only those training instances assigned labels from

categories belonging to the subtree rooted at the classifier node. By training just one model for

each set of sibling categories, interdependencies between these categories can be taken into ac-

count, an advantage over LCN approaches. Furthermore, inconsistencies (where a document is

categorised into a child category but not the corresponding parent category) that might occur in

LCL approaches are avoided.

Whereas [18] consider all combinations of three models in both layers of their architecture,

specifically the basic fully connected (i.e., dense), feedforward neural networks they call Deep Neu-

ral Networks (DNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks

(RNNs), thereby training nine (32) models in total, we only use the latter two, since these archi-

tectures present advantages over the basic DNNs. For instance, CNNs are able to extract local

features from the input data, while RNNs are useful for handling sequential data. Furthermore,

both models contain a fully connected output layer, essentially still incorporating the key feature

14

of DNNs. By leaving out the DNNs, we train a total of eight (23) models (i.e., three levels, with

either CNNs or RNNs at each level). In the following subsections, each type of neural network is

described, both CNNs and RNNs, as well as the hyperparameters present in each.

4.2.1. Convolutional Neural Network (CNN)

CNNs make use of convolution layers that connect to a subset of the input. Originally developed

for visual pattern recognition, CNNs are used to pick up local features within the larger input,

such as visual objects present at varying locations in different images [51], but have also been

used in natural language processing [52] and text classification [34]. The main idea is to pass

over the input data using a sliding window approach and apply a non-linear transformation (also

called the convolution filter or kernel) that returns a scalar value for each window. The result is a

convolution layer or feature map containing local features. In CNNs using text input, temporal (i.e.,

one-dimensional) convolutions can be used as follows. Let X = (x1, . . . ,xnin) be a T × nin input

matrix, for example a document consisting of nin word embeddings of size T . Moving a sliding

window with width k over the data results in m = nin − k + 1 windows of size T × k. Applying

a filter U typically consists of performing element-wise matrix multiplication of the window and

a weight matrix, adding a bias to each resulting element, taking the sum the results, and passing

the sum through an activation function such as the sigmoid and ReLU functions. The elements of

the resulting convolution layer z = (z1, . . . zm) are given by

zi = g(X̃i ⊙W +B), ∀i = {1, . . . ,m}, (7)

where X̃i = (xi, . . . ,xi+k−1) is the ith window, W and B are the weight and the bias matrices of

the filter, respectively, ⊙ specifies the element-wise multiplication and g(·) is a non-linear function

(e.g., the sum of all elements followed by an activation function).

When multiple filters U1, . . . ,Us are applied on the input data, a set of s convolution layers with

size m× 1 is created. In the same way, a new set of feature maps can be created using the output

from the previous set. Before passing the output from one set of layers to the next, the dimension

is reduced using pooling layers, with the intent to extract the most important feature from the

feature maps. A common pooling technique that we apply is max pooling. Using max pooling

with a pooling size p, a sliding approach is used once more to pass over the elements within each

convolution layer, this time using a window of width p. For each window, the maximum element is

15

selected. The final layers of a CNN are typically fully connected and use the final flattened pooled

layer as input. Figure 2 shows a diagram containing two convolution filters with width 2 and 3,

followed by a pooling layer with filter width 3. The result of the pooling layer is then flattened

into a single vector.

Figure 2: Example of 1D convolution and pooling layers.

4.2.2. Recurrent Neural Network (RNN)

In RNNs, the output from a layer in the network can be reused (with a delay) as the input to

the same layer, giving RNNs the ability to handle sequential data. RNNs are characterized by the

following recursive operation:

ht = Wrecσ(ht−1) +Winxt + b, (8)

where ht and xt are the hidden state and input vectors at time t, respectively, Wrec and Win are

the recurrent and input weight matrices, respectively, b is a bias vector, and σ(·) is an element-wise

non-linear function (for which we use the sigmoid function).

The conventional back-propagation through time method of fitting an RNN can lead to explod-

ing or vanishing gradients [53]. To solve this problem, the long short-term memory (LSTM) model

was proposed, which uses gating functions for preserving long-term dependencies [54]. These gates

help regulate the flow of information by controlling when information is passed along or forgotten.

16

A simplified variant of the LSTM model that is less computationally expensive but has compa-

rable performance is the gated recurrent unit (GRU) [55]. Each GRU cell contains two gates, the

reset gate and the update gate, which at time t are calculated as

rt = σ(Wr[xt,ht−1] + br), (9)

ut = σ(Wu[xt,ht−1] + bu), (10)

where br and bu are bias vectors, Wr and Wu are a weight matrices, and σ(·) is an element-wise

sigmoid function. The hidden units ht are then calculated as

ht = ut ⊙ ht−1 + (1− ut)⊙ h̃t, (11)

where h̃t is the candidate value given by

h̃t = tanh(Wh̃[xt, r ⊙ ht−1] + bh̃). (12)

The reset gate, each element of which can take on a value between zero and one, thus determines

to what extent the previous hidden state is used to calculate the candidate cell values. The update

gate determines to what extent the previous hidden state values are retained and, at the same

time, what proportion of the candidate values is used to calculate the new cell values.

4.3. Feature Extraction

To extract the relevant features from each document, we use word embeddings through (1)

GloVe, which provides context-independent word representations, and (2) BERT, for which the

word vectors are context-dependent, both of which are among the best performing word embeddings

in their category. Both GloVe and BERT provide pre-trained models. For the baseline SVMmodels,

we use the pre-trained GloVe embeddings with length 100, as well as the word embeddings derived

from the BERT-Base model, which provides embeddings with length 768. Before converting the

text to word vectors, all words are converted to lower case. Furthermore, before vectorising words

using GloVe embeddings, we remove punctuation marks from the text, since they by themselves

do not carry semantic meaning. However, for the BERT word embeddings, punctuation marks are

preserved, since they can provide contextual meaning. Using GloVe and BERT word embedding

techniques, we obtain a word vector for each word in the document. A document Xi can be

represented as

Xi = (xi,1, . . . ,xi,ni) ∈ RT×ni , (13)

17

where T is the dimension of each word vector xi,m, and ni is the number of words in document

Xi. We aggregate the word vectors using the coordinate-wise average or maximum to obtain the

input vectors for the SVMs. This results in vectors x
(avg)
i and x

(max)
i , such that

x
(avg)
i,j =

∑
m xi,m,j

ni
, (14)

x
(max)
i,j = max

m
xi,m,j . (15)

For HDLTex++, we use only pre-trained GloVe embeddings as input. Since the pre-trained GloVe

embeddings are context-independent, there are only a fixed number of GloVe embeddings, i.e., the

size of the vocabulary on which it was trained. These embeddings form a matrix that can be used

as a layer in the deep learning models.

4.4. Loss Functions

In SVMs, the loss function is defined as the average hinge loss over the observations, where the

hinge loss for any observation i is given by

lhinge(xi;v, b) = max{0, 1− yi(v
′xi + b)}. (16)

To account for class imbalance, we use the weighted average to calculate the loss function. The

loss function for an SVM submodel for category c is given by

J hinge
c (vc, bc) =

1∑
iwi,c

∑
i

wi,cl
hinge
c (xi;vc, bc), (17)

where wi,c is a class-dependent weight defined as the inverse class frequency divided by the number

of classes. In other words, wi,c is defined as

wi,c =


Nc

Jc∗N+
c
, if yi,c = 1,

Nc

Jc∗N−
c

otherwise,

(18)

where Nc is the total number of training examples, N+
c and N−

c are the number of positive and

negative examples, respectively, and Jc refers to the number of classes.

In [18], HDLTex was applied on a multi-class single-label text classification problem with the

use of a categorical cross-entropy loss function. However, we train the model to classify multi-class

multi-label data, for which this loss function is unsuitable. Hence, we make use of the binary cross-

entropy (BCE) loss function, and use a sigmoid activation function for the output layer, similar to

18

the approach taken by [33] and [34], such that each output node returns a value between zero and

one.

We also add weights to the function to correct for class imbalance, using the same calculation as

the weights in the SVM models, such that misclassification of observations from classes with fewer

instances are penalized more heavily. The weighted binary cross-entropy (WBCE) loss function at

each parent node p then looks as follows:

JWBCE
p (θ) =

∑
i

∑
c∈child(p)

JWBCE
c (θ)

= −
∑
i

∑
c∈child(p)

[wi,c(yi,c log(ŷi,c(θ))

+ (1− yi,c) log(1− ŷi,c(θ)))], (19)

where yi,c is an indicator for whether instance i belongs to category c, ŷi,c(·) is the predicted

probability of instance i belonging to category c, and θ are the parameters.

4.5. Evaluation Measures

To evaluate the performance of the models, we use two performance measures. The first is the

macro-averaged “flat” F1-score, calculated as the arithmetic mean of the F1-scores of each category,

where the F1-score is the harmonic mean of the precision and recall. This F1-score thus gives equal

weight to each category, regardless of category size. However, it does not take into account the class

hierarchy. Each misclassification is weighted equally, even though misclassification at a lower level

in the hierarchy might be considered less severe than a misclassification at the top level. Therefore,

we propose a second evaluation metric, the macro-averaged hierarchical F1-score, based on the

hierarchical performance measures proposed in [40]. The macro-averaged hierarchical F1-score not

only incorporates the predicted and target label sets, but also their respective ancestor category

label sets. Let ℓi and ℓ̂i denote the target and predicted label sets of instance i, respectively. The

extended label sets, shown in (20) and (21), append to each label set the ancestor categories of

each leaf category (excluding the root R).

Ancℓi = {∪ck∈ℓiAncestors(ck) \ R}, (20)

Ancℓ̂i = {∪ck∈ℓ̂iAncestors(ck) \ R}. (21)

19

Using this notation, we can define the hierarchical precision, recall, and F1-score per category as

hPck =

∑
i:ck∈ℓi

∣∣∣Ancℓi ∩Ancℓ̂i

∣∣∣∑
i:ck∈ℓi

∣∣∣Ancℓ̂i∣∣∣ , (22)

hRck =

∑
i:ck∈ℓi

∣∣∣Ancℓi ∩Ancℓ̂i

∣∣∣∑
i:ck∈ℓi |Ancℓi |

, (23)

hF1ck =
2hPckhRck

hPck + hRck

. (24)

The macro-averaged hierarchical F1-score is calculated, similar to the macro-averaged flat F1-score,

as the arithmetic mean of each category’s hierarchical F1-score.

Using hierarchical F1-score instead of the flat F1-score has the advantage of penalizing less the

mistakes made for nodes in the same branch of the classification tree. With respect to Figure 1,

for example, misclassifying a document under the label G11 instead of using the correct label G10

incurs a smaller penalty than misclassifying under the label G50. The reason is that the node

labeled G50 is in a different branch than the nodes labeled G10 and G11 in the classification tree.

In the considered JEL classification hierarchy, misclassifying for nodes that are in the same branch

with the correct node is less often an issue as the global context of the document is still accurately

captured. This ensures the usability and the reliability of the JEL taxonomy.

4.6. Hyperparameter Optimization

To find the optimal hyperparameters of each model, we use the holdout method and select

the hyperparameters that maximize performance on the validation set. However, the relative

performance depends on the performance measures used. Hyperparameters that maximize the

flat F1-score focus only on the correct prediction of samples into the tertiary categories, without

minimizing the severity of misclassifications. On the other hand, hyperparameters maximizing the

hierarchical F1-score focus on minimizing the severity of misclassifications, possibly at the cost of

fewer predicted paths that are completely correct. In other words, there is a trade-off between

maximizing correct predictions and minimizing the severity of misclassifications. Since we are

ultimately interested in the correct prediction of economic publications to the tertiary categories,

we optimize the hyperparameters with respect to the flat F1-score. The performance of the final

model is evaluated on the test set.

20

For the SVM models, we optimise two hyperparameters: the regularisation parameter C and

the threshold value(s). The regularisation parameter determines the strength of regularisation. A

large C penalises misclassifications more heavily, resulting in a hyperplane with a smaller margin

which will correctly classify more training examples, but may also overfit. A small C allows for a

higher number of misclassified training examples. The threshold value acts as a cut-off point for

the output of the SVM, i.e., the decision function values after being passed through the sigmoid

function. By adjusting the threshold value, making positive predictions (i.e., classifying an instance

to a particular category) can be made easier (when the threshold value is decreased) or harder

(when the threshold value is increased). For the flat SVM model, we use a global threshold value

that is used for all classifiers. On the other hand, the hierarchical SVM model contains three

threshold values, one for each level, and find the combination of threshold values that yields the

best performance.

21

Table 3: Hyperparameters used in the SVM and HDLTex++ models.

Hyperparameter Meaning Value

Flat SVM

Kernel Kernel function Linear

C Regularisation parameter To be optimised

Threshold value Threshold value for the SVM output To be optimised

Hierarchical SVM

Kernel Kernel function. Linear

C Regularisation parameter To be optimised

Threshold value (level 1) Threshold value for the primary level SVM output To be optimised

Threshold value (level 2) Threshold value for the secondary level SVM output To be optimised

Threshold value (level 3) Threshold value for the tertiary level SVM ouput To be optimised

HDLTex++

Max sequence length Maximum number of word embeddings per sample. 500

Batch size Number of samples per computation 128

Epochs Number of epochs 1

Optimiser Algorithm for optimising the model Adam

Learning rate Learning rate of the optimiser 0.001

Decay rates Decay rates of the optimiser {0.9, 0.999}

Dropout rate Fraction of nodes to drop 0.25

GRU units Number of GRU units 100

Convolution filter width (first set) Window width of the first set of convolution layers, connected

to the input layer

{3,4,5,6,7}

Convolution filters (first set) Number of convolution filters per layer, for the first set {128, 128, 128, 128, 128}

Max pooling filter width (first set) Window width of the first set of pooling layers, following each

convolution layer in the first set

{5, 5, 5, 5, 5}

Convolution filter width (second set) Window width of the second set of convolution layers, con-

nected to the concatenated result of the first set of convolu-

tion and pooling layers

{5, 5, 5}

Convolution filters (second set) Number of convolution filters per layer, for the second set {128, 128, 128}

Max pooling filter width (second set) Window width of the second set of pooling layers, following

each convolution layer in the second set

{5, 5, 30}

Threshold value (level 1) Threshold value for the primary level output To be optimised

Threshold value (level 2) Threshold value for the secondary level output To be optimised

Threshold value (level 3) Threshold value for the tertiary level output To be optimised

For the HDLTex++ models, there are a great number of hyperparameters than can be varied,

such as the batch size, learning rate, and the number and sizes of the convolution filters. To

limit computations, however, we fix these hyperparameters to the values used in the original

paper, and optimise only C and the threshold values at each level of the models. For C we have

considered values in the set {10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104} and for the thresholds we

have considered values between 0 and 1 with a step of 0.01 for the SVM models and 0.001 for the

HDLTex++ models. For the hyperparameter optimization we have used a grid search approach.

Table 3 lists the hyperparameters used per classifier.

22

4.7. Hardware and Implementation

Training for the flat and hierarchical SVM models was done using an Intel® CoreTM i7-8565U

CPU (1.8 GHz) with 4 cores and 8 GB RAM. The HDLTex++ models were trained using an

NVIDIA Tesla T4 GPU provided by Google Colaboratory. The models were implemented in

Python, with help from the Sci-Kit Learn, TensorFlow, and Keras libraries. Our code and data

are made available at: https://github.com/SanneLin/HDLTex_plus_plus.

5. Results

In this section, we present the results of the various classification methods discussed in Section

4. We begin with a discussion of each approach’s efficiency before continuing with the results of

the SVM models and HDLTex++ models.

5.1. Efficiency

Table 4 shows the training times of each level of the SVM and HDLTex++ models. For each

classifier, the left column (“Total”) reports the average total time to train all subclassifiers within

one hierarchical level. The right column (“Average”) reports the average total time divided by

the number of subclassifiers within each level of the hierarchy. In terms of both total and average

training time, the hierachical SVM models rank first. Nevertheless, the average training time per

HDLTex++ subclassifier decreases significantly down the hierarchy, which may be attributed to

the subclassifiers using a subset of data to train, instead of the entire dataset.

Table 4: Training times for all models in seconds.

Flat SVM Hierarchical SVM HDLTex++

Level Total Average Total Average Total Average

1 85 4.8 77 4.1 6180 6180

2 683 5.3 44 <1 11940 628.4

3 5337 6.4 50 <1 4770 37.0

23

https://github.com/SanneLin/HDLTex_plus_plus

5.2. Baseline SVM

Table 5 shows the results of the baseline SVM models as well as the optimal parameters of each

SVM approach found through the holdout method for each type of word embedding. Note that

the flat SVM approach treats each level in the class hierarchy separately, such that the models at

each level are trained independently from one another, on the entire training dataset. On the other

hand, the hierarchical SVM models incorporate the class hierarchy. While the submodels are still

trained independently using subsets of data belonging to the same parent category, predictions at

the lower levels depend on the predictions made by the top level classifiers. For the primary level

models, the flat and hierarchical F1-scores are equal, as there is no hierarchy to take into account.

For the secondary and tertiary level models, the hierarchical F1-score always appears to be higher

than the flat F1-score.

Table 5: Optimal parameters and results of the baseline SVM models.

Flat SVM Hierarchical SVM

Embedding Level C Threshold Flat F1 Hier. F1 C Threshold Flat F1 Hier. F1

GloVe (Average)

1 1 0.57 0.470 0.470

10−1

0.50 0.425 0.425

2 10−1 0.67 0.252 0.366 0.50 0.210 0.329

3 10−4 0.75 0.112 0.233 0.56 0.109 0.245

GloVe (Max)

1 10−2 0.55 0.339 0.339

10−2

0.50 0.313 0.313

2 10−3 0.62 0.159 0.261 0.50 0.122 0.217

3 10−3 0.69 0.066 0.166 0.56 0.053 0.169

BERT (Average)

1 1 0.60 0.504 0.504

10−2

0.50 0.448 0.448

2 10−4 0.67 0.277 0.400 0.50 0.226 0.350

3 10−4 0.75 0.130 0.266 0.62 0.119 0.262

BERT (Max)

1 10−2 0.60 0.453 0.453

10−2

0.50 0.400 0.400

2 10−4 0.67 0.238 0.355 0.50 0.184 0.301

3 10−4 0.75 0.103 0.227 0.62 0.086 0.214

We see that the optimal regularisation parameter for the flat SVM models is largest for the

primary level models (i.e., 1 for the models using averaged embeddings, and 10−2 for the models

using max-aggregated models), and smaller for the secondary and tertiary level models, indicating

that the primary level models are the least regularised. In contrast, the optimal threshold level

24

is lowest for the primary level models and largest for the tertiary level models. Additionally, for

hierarchical SVM models, each model has an optimal threshold for the first two levels of 0.5, while

the optimal decision threshold for the third level is slightly higher at 0.62 for models using BERT

embeddings and 0.56 for models using GloVe.

Comparing model performance across different levels, we find that both F1-scores are highest

when predicting the primary level category labels, with performance decreasing with each subse-

quent level. Overall, the models using averaged BERT embeddings perform best. The results also

indicate that the BERT models using the averaged embeddings and the max-aggregated embed-

dings both outperform their GloVe counterparts. Furthermore, models using averaged embeddings

perform better than using max-aggregated embeddings.

5.3. HDLTex++

Table 6 shows the results of the eight HDLTex++ models, where each level of the model consists

of either a CNN architecture or a RNN architecture. For each model, the optimal threshold levels

are shown, which indicate the minimum probability an observation needs to have of belonging to

a category before the model will classify the observation to that category. For each model, we find

that the optimal threshold value is highest for the first level and decreases for each subsequent

level (except for model 7, where the primary and secondary levels have the same threshold value).

This shows that with each subsequent level, it becomes easier to classify an observation to a class.

At the primary level, the models using CNNs perform slightly better, achieving an F1-score of

54.3%, whereas the models using RNNs reach an F1-score of 52.5%. Furthermore, models using

at least one RNN architecture at the primary and secondary level perform worse than the models

with two CNN architectures, in terms of both flat and hierarchical F1-score. When looking at the

tertiary level performance, model 2 performs best in terms of flat F1-score, while model 1 performs

best in terms of hierarchical F1-score, though the differences are small (less than 1%). Excluding

the tertiary level, models 1 and 2 outperform all SVM models except the flat SVM model using

averaged BERT embeddings, in terms of both F1-scores.

25

Table 6: Results of the HDLTex++ models.

F1

Model Level Architecture Threshold Flat Hierarchical

1

1 CNN 0.750 0.543 0.543

2 CNN 0.675 0.254 0.407

3 CNN 0.525 0.065 0.254

2

1 CNN 0.750 0.543 0.543

2 CNN 0.650 0.259 0.412

3 RNN 0.550 0.067 0.253

3

1 CNN 0.750 0.543 0.543

2 RNN 0.700 0.223 0.376

3 CNN 0.525 0.057 0.236

4

1 CNN 0.750 0.543 0.543

2 RNN 0.675 0.232 0.386

3 RNN 0.550 0.061 0.236

5

1 RNN 0.750 0.525 0.525

2 CNN 0.675 0.245 0.397

3 CNN 0.525 0.063 0.248

6

1 RNN 0.750 0.525 0.525

2 CNN 0.650 0.251 0.402

3 RNN 0.550 0.065 0.249

7

1 RNN 0.725 0.524 0.524

2 RNN 0.725 0.208 0.360

3 CNN 0.525 0.053 0.227

8

1 RNN 0.725 0.524 0.524

2 RNN 0.700 0.217 0.371

3 RNN 0.550 0.057 0.229

Including the tertiary level models, the HDLTex++ models perform worse in terms of flat F1-

score, except compared to the GloVe (Max) SVM models. However, comparing the hierarchical

F1-scores, differences between the SVM models and the HDLTex++ models 1 and 2 are much

26

smaller, and only the flat and hierarchical SVM models using averaged BERT embeddings perform

better.

All in all, while the HDLTex++ models tend to produce better predictions for the primary and

secondary levels, they do not perform as well in the tertiary level, which is why the flat performance

measures of the tertiary level are quite low compared to the flat and hierarchical SVM models.

Nevertheless, since the primary and secondary level submodels perform relatively well and each

classifier within the tertiary level submodel can only classify observations to child categories of

one class, observations that are misclassified tend to end up in sibling categories of the correct

categories. Since sibling categories share the same path in the hierarchical tree structure, this can

explain why the hierarchical performance remains comparatively high.

5.4. Comparison to Models Using Unweighted Loss

We also take a look at the performance of the flat SVM, hierarchical SVM, and HDLTex++

models, trained using unweighted loss functions. These models, similar to the weighted models,

use the hyperparameters that maximize the flat F1-score.

5.4.1. Baseline SVM

Examining the optimal parameters of the unweighted flat and hierarchical SVM models, we

see from Table 7 that, compared to the weighted models, the unweighted secondary and tertiary

level models of the flat SVM as well as the hierarchical SVM on the whole consistently show

higher optimal values for the regularisation parameter, indicating a lower level of regularisation.

Furthermore, the optimal threshold value is lower across the board, making it easier to classify

instances to categories.

Table 7 further displays the results of the unweighted SVM models. The flat SVM models

using averaged BERT embeddings perform best in terms of both the flat and the hierarchical F1-

score. On the other hand, the models using averaged GloVe embeddings perform poorest out of

all unweighted flat SVM models, even though the weighted counterparts performed second-best.

In terms of flat F1-score, each unweighted model performs worse than its weighted counterpart,

whereas, in terms of hierarchical F1-score, the unweighted secondary and tertiary models using

BERT embeddings perform slightly better.

For the hierarchical SVM models, we find that most models except those using max-aggregated

GloVe embeddings show an improvement in both flat and hierarchical F1-score compared to the

27

weighted models. As this improvement occurs in all three levels, it is possible it stems from

increased predictive performance of the primary and secondary levels, which are not as heavily

impacted by class imbalance as the tertiary level categories.

Table 7: Optimal parameters and results of the unweighted SVM models.

Flat SVM Hierarchical SVM

Embedding Level C Threshold Flat F1 Hier. F1 C Threshold Flat F1 Hier. F1

GloVe (Average)

1 10−4 0.29 0.168 0.168

101

0.38 0.432 0.432

2 102 0.27 0.042 0.086 0.38 0.217 0.374

3 10−1 0.29 0.025 0.039 0.44 0.099 0.287

GloVe (Max)

1 10−4 0.29 0.211 0.211

103

0.32 0.133 0.133

2 10−1 0.29 0.120 0.234 0.32 0.031 0.117

3 101 0.29 0.037 0.141 0.32 0.006 0.045

BERT (Average)

1 1 0.38 0.498 0.498

1

0.38 0.497 0.497

2 1 0.33 0.261 0.429 0.38 0.257 0.413

3 101 0.31 0.124 0.280 0.44 0.123 0.322

BERT (Max)

1 10−1 0.38 0.441 0.441

10−1

0.38 0.440 0.440

2 101 0.31 0.204 0.359 0.38 0.207 0.366

3 102 0.29 0.086 0.251 0.44 0.086 0.276

Values that are larger compared to the weighted models are emphasized in bold.

5.4.2. HDLTex++

Table 8 shows the results of the unweighted HDLTex++ models. We find once more that the

optimal threshold levels are lower compared to the weighted models. Comparing the performance

of the different HDLTex++ models, we see that, at each level, the models using CNN submodels

perform better than the models using RNN submodels, such that the model using CNNs at every

level performs best in terms of the flat and hierarchical F1-score. Moreover, the models using

CNNs as the tertiary level submodels achieve higher flat F1-scores than their weighted counterpart

models, which suggests that the cost-sensitive learning approach taken when training the weighted

HDLTex++ does not result in noticeable improvement in the prediction of the minority classes.

In terms of hierarchical F1-scores, the secondary and tertiary level models surpass not only the

weighted HDLTex++ counterparts, but also the weighted SVM models.

28

Table 8: Results of the unweighted HDLTex++ models.

F1

Model Level Architecture Threshold Flat Hierarchical

1

1 CNN 0.325 0.532 0.532

2 CNN 0.350 0.259 0.445

3 CNN 0.250 0.072 0.324

2

1 CNN 0.325 0.532 0.532

2 CNN 0.350 0.259 0.445

3 RNN 0.250 0.052 0.309

3

1 CNN 0.325 0.532 0.532

2 RNN 0.325 0.223 0.431

3 CNN 0.250 0.066 0.315

4

1 CNN 0.325 0.532 0.532

2 RNN 0.325 0.223 0.431

3 RNN 0.250 0.046 0.300

5

1 RNN 0.300 0.528 0.528

2 CNN 0.350 0.255 0.446

3 CNN 0.250 0.070 0.324

6

1 RNN 0.300 0.528 0.528

2 CNN 0.350 0.255 0.446

3 RNN 0.250 0.050 0.311

7

1 RNN 0.325 0.523 0.523

2 RNN 0.325 0.219 0.429

3 CNN 0.250 0.064 0.312

8

1 RNN 0.325 0.523 0.523

2 RNN 0.325 0.219 0.429

3 RNN 0.250 0.045 0.299

Values that are larger compared to the weighted models are emphasized in bold.

29

6. Conclusion

In an age where the body of academic literature grows ever larger, efficient and accurate clas-

sification of scientific publications becomes increasingly important. We explore different classifiers

that can be used to categorize economic publications. These classifiers can be used to categorize

also publications outside the economics domain, as they are domain agnostic. The classification

problem has three main characteristics. First, the classification problem is multi-label: each publi-

cation can be classified to one or more categories. Second, the categories to which the publications

can be assigned are part of a classification system that contains a tree structure. Third, not all

categories contain an equal number of publications, causing a class imbalance problem that, if

ignored, can cause classifiers to favour assigning publications to majority classes.

In this paper, we present the HDLTex++ approach, consisting of a neural network architecture

at each of the three levels of the class hierarchy and extending the original HDLTex classifier by

adapting the algorithm to be suitable for hierarchies consisting of three levels, rather than two.

Furthermore, HDLTex++ uses the weighted binary cross-entropy loss function, to take into account

both multi-label classification and class imbalance. We compare the HDLTex++ models to one flat

and one hierarchical SVM classifier. Looking at the effectiveness of the models, we find that, while

not as effective in the prediction of the tertiary category labels, the HDLTex++ models are more

effective in predicting primary category labels, compared to the flat and hierarchical SVM models,

and outperform the hierarchical SVM models in the prediction of secondary category labels. By

exploiting the hierarchy when training the HDLTex++ models, it was possible to compensate for

the inferior performance of the tertiary level submodels using the superior performance in the first

two levels, allowing the HDLTex++ models to surpass six out of eight flat and hierarchical SVM

models in terms of hierarchical performance. In terms of efficiency, the HDLTex++ models take

more time to be trained, while the hierarchical SVM models can be trained the fastest.

Performance of the classifiers in this paper may be improved by training models using a wider

range of hyperparameters and (deep learning) architectures, in order to learn which factors improve

predictive capability. In the case of the SVM models, prediction may be improved using the

Binarization with Boosting and Oversampling (BBO) framework, which is based on the OVR

framework and applies boosting to classify hard-to-learn instances and oversampling to combat class

imbalance [56]. Other solutions for class imbalance include (synthetic) under- and oversampling,

30

through methods such as MLSMOTE [48], and the use of focal loss [57], which may improve

prediction of instances to minority classes. Also, we would like to fine-tune the BERT model for

the economic domain, as we expect that this will further improve the performance of HDLTex++ for

the JEL taxonomy classification. Last, we would like to experiment with hierarchical transformers

for classification [58], which are particularly well-suited for large documents.

References

[1] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, S. Levy, A comprehensive evaluation of multicategory

classification methods for microarray gene expression cancer diagnosis, Bioinformatics 21 (5) (2005) 631–643.

[2] M. Pérez-Ortiz, S. Jiménez-Fernández, P. A. Gutiérrez, E. Alexandre, C. Hervás-Mart́ınez, S. Salcedo-Sanz, A

review of classification problems and algorithms in renewable energy applications, Energies 9 (8) (2016) 607.

[3] A. Shen, R. Tong, Y. Deng, Application of classification models on credit card fraud detection, in: Proceedings

of the 2007 International Conference on Service Systems and Service Management (ICSSSM 2007), IEEE, 2007,

pp. 1–4.

[4] P. C. Pendharkar, A threshold-varying artificial neural network approach for classification and its application

to bankruptcy prediction problem, Computers & Operations Research 32 (10) (2005) 2561–2582.

[5] Y. M. Costa, L. S. Oliveira, A. L. Koericb, F. Gouyon, Music genre recognition using spectrograms, in: Pro-

ceedings of the 18th International Conference on Systems, Signals and Image Processing (IWSSIP 2011), IEEE,

2011, pp. 1–4.

[6] E. Blanzieri, A. Bryl, A survey of learning-based techniques of email spam filtering, Artificial Intelligence Review

29 (1) (2008) 63–92.

[7] H. Purohit, G. Dong, V. Shalin, K. Thirunarayan, A. Sheth, Intent classification of short-text on social media,

in: Proceedings of the 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity

2015), IEEE, 2015, pp. 222–228.

[8] K. Mouthami, K. N. Devi, V. M. Bhaskaran, Sentiment analysis and classification based on textual reviews,

in: Proceedings of the 2013 International Conference on Information Communication and Embedded Systems

(ICICES 2013), IEEE, 2013, pp. 271–276.

[9] F. Sebastiani, Machine learning in automated text categorization, ACM Computing Surveys 34 (1) (2002) 1–47.

[10] P. Melville, W. Gryc, R. D. Lawrence, Sentiment analysis of blogs by combining lexical knowledge with text

classification, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD 2009), ACM, 2009, pp. 1275–1284.

[11] M. Aly, Survey on multiclass classification methods, Tech. rep., Caltech (2005).

[12] G. Tsoumakas, I. Katakis, Multi-label classification: An overview, International Journal of Data Warehousing

and Mining 3 (3) (2007) 1–13.

[13] J. Duan, X. Yang, S. Gao, H. Yu, A partition-based problem transformation algorithm for classifying imbalanced

multi-label data, Engineering Applications of Artificial Intelligence 128 (2024) 107506.

31

[14] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, N. Seliya, A survey on addressing high-class imbalance in big

data, Journal of Big Data 5 (1) (2018) 1–30.

[15] Y. Qian, M. Aghaabbasi, M. Ali, M. Alqurashi, B. Salah, R. Zainol, M. Moeinaddini, E. E. Hussein, Classification

of imbalanced travel mode choice to work data using adjustable SVM model, Applied Sciences 11 (24) (2021)

11916.

[16] R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in: European

Conference on Machine Learning (ECML 2004), Vol. 3201 of LNCS, Springer, 2004, pp. 39–50.

[17] Q. Li, H. Peng, J. Li, C. Xia, R. Yang, L. Sun, P. S. Yu, L. He, A survey on text classification: From traditional

to deep learning, ACM Transactions on Intelligent Systems and Technology 13 (2) (2022).

[18] K. Kowsari, D. E. Brown, M. Heidarysafa, K. J. Meimandi, M. S. Gerber, L. E. Barnes, HDLTex: Hierarchical

deep learning for text classification, in: Proceedings of the 16th IEEE International Conference on Machine

Learning and Applications (ICMLA 2017), IEEE, 2017, pp. 364–371.

[19] L. Chen, L. Jiang, C. Li, Using modified term frequency to improve term weighting for text classification,

Engineering Applications of Artificial Intelligence 101 (2021) 104215.

[20] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown, Text classification algorithms:

A survey, Information 10 (4) (2019) 150.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed representations of words and phrases and

their compositionality, in: C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Weinberger (Eds.), Advances

in Neural Information Processing Systems, Vol. 26, Curran Associates, Inc., 2013.

[22] J. Pennington, R. Socher, C. D. Manning, GloVe: Global vectors for word representation, in: Proceedings of

the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), ACL, 2014, pp.

1532–1543.

[23] C. De Boom, S. Van Canneyt, T. Demeester, B. Dhoedt, Representation learning for very short texts using

weighted word embedding aggregation, Pattern Recognition Letters 80 (2016) 150–156.

[24] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettlemoyer, Deep contextualized

word representations, in: Proceedings of the 2018 Annual Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018), ACL, 2018.

[25] O. Melamud, J. Goldberger, I. Dagan, context2vec: Learning generic context embedding with bidirectional

LSTM, in: Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning (CoNLL

2016), ACL, 2016, pp. 51–61.

[26] B. McCann, J. Bradbury, C. Xiong, R. Socher, Learned in translation: Contextualized word vectors, in: Proceed-

ings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Curran Associates,

Inc., 2017, pp. 6294–6305.

[27] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidirectional transformers for

language understanding, in: Proceedings of the 2019 Annual Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019), ACL, 2019,

pp. 4171–4186.

[28] W. Zhang, T. Yoshida, X. Tang, Text classification based on multi-word with support vector machine,

32

Knowledge-Based Systems 21 (8) (2008) 879–886.

[29] V. Vapnik, A. Y. Chervonenkis, A class of algorithms for pattern recognition learning, Avtomatika i Tele-

mekhanika 25 (6) (1964) 937–945.

[30] T. Joachims, Text categorization with support vector machines: Learning with many relevant features, in:

Proceedings of the 10th European Conference on Machine Learning (ECML 1998), Vol. 1398 of LNCS, Springer,

1998, pp. 137–142.

[31] J. Weston, C. Watkins, Multi-class support vector machines, Technical report CSD-TR-98-04, Royal Holloway

University of London (1998).

[32] M.-L. Zhang, Z.-H. Zhou, Multilabel neural networks with applications to functional genomics and text catego-

rization, IEEE Transactions on Knowledge and Data Engineering 18 (10) (2006) 1338–1351.

[33] J. Nam, J. Kim, E. L. Menćıa, I. Gurevych, J. Fürnkranz, Large-scale multi-label text classification—revisiting

neural networks, in: Proceedings of the Joint European Conference on Machine Learning and Knowledge Dis-

covery in Databases (ECML/PKDD 2014), Vol. 8725 of LNCS, Springer, 2014, pp. 437–452.

[34] J. Liu, W.-C. Chang, Y. Wu, Y. Yang, Deep learning for extreme multi-label text classification, in: Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR

2017), ACM, 2017, p. 115–124.

[35] Y. Yang, X. Liu, A re-examination of text categorization methods, in: Proceedings of the 22nd Annual Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 1999), ACM,

1999, pp. 42–49.

[36] M.-L. Zhang, Z.-H. Zhou, ML-KNN: A lazy learning approach to multi-label learning, Pattern Recognition

40 (7) (2007) 2038–2048.

[37] Y. Prabhu, M. Varma, FastXML: A fast, accurate and stable tree-classifier for extreme multi-label learning, in:

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD 2014), ACM, 2014, pp. 263–272.

[38] R. E. Schapire, Y. Singer, BoosTexter: A boosting-based system for text categorization, Machine Learning

39 (2-3) (2000) 135–168.

[39] C. N. Silla, A. A. Freitas, A survey of hierarchical classification across different application domains, Data

Mining and Knowledge Discovery 22 (1-2) (2011) 31–72.

[40] S. Kiritchenko, S. Matwin, R. Nock, A. F. Famili, Learning and evaluation in the presence of class hierar-

chies: Application to text categorization, in: Proceedings of the 19th Conference of the Canadian Society for

Computational Studies of Intelligence (CSCSI 2006), Vol. 4013 of LNCS, Springer, 2006, pp. 395–406.

[41] S. Dumais, H. Chen, Hierarchical classification of web content, in: Proceedings of the 23rd Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2000), ACM, 2000, pp.

256–263.

[42] B. C. Paes, A. Plastino, A. A. Freitas, Improving local per level hierarchical classification, Journal of Information

and Data Management 3 (3) (2012) 394–394.

[43] F. Charte, A. Rivera, M. J. del Jesus, F. Herrera, A first approach to deal with imbalance in multi-label datasets,

in: Proceedings of the 8th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2013), Vol.

33

8073 of LNCS, Springer, 2013, pp. 150–160.

[44] E. Seymour, R. Damle, A. Sette, B. Peters, Cost sensitive hierarchical document classification to triage pubmed

abstracts for manual curation, BMC bioinformatics 12 (1) (2011) 482.

[45] G. G. Sundarkumar, V. Ravi, A novel hybrid undersampling method for mining unbalanced datasets in banking

and insurance, Engineering Applications of Artificial Intelligence 37 (2015) 368–377.

[46] J. Dou, Z. Gao, G. Wei, Y. Song, M. Li, Switching synthesizing-incorporated and cluster-based synthetic

oversampling for imbalanced binary classification, Engineering Applications of Artificial Intelligence 123 (2023)

106193.

[47] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: synthetic minority over-sampling tech-

nique, Journal of Artificial Intelligence Research 16 (2002) 321–357.

[48] F. Charte, A. J. Rivera, M. J. del Jesus, F. Herrera, MLSMOTE: Approaching imbalanced multilabel learning

through synthetic instance generation, Knowledge-Based Systems 89 (2015) 385–397.

[49] P. Szymański, T. Kajdanowicz, A network perspective on stratification of multi-label data, in: Proceedings of

the First International Workshop on Learning with Imbalanced Domains: Theory and Applications (LIDTA

2017), PMLR, 2017, pp. 22–35.

[50] G. Wu, E. Y. Chang, Adaptive feature-space conformal transformation for imbalanced-data learning, in: Pro-

ceedings of the 20th International Conference on Machine Learning (ICML 2003), AAAI Press, 2003, pp.

816–823.

[51] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, in:

F. Pereira, C. J. C. Burges, L. Bottou, K. Q. Weinberger (Eds.), Advances in Neural Information Processing

Systems 25 (NIPS 2012), Curran Associates, Inc., 2012, pp. 1097–1105.

[52] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost)

from scratch, Journal of Machine Learning Research 12 (2011) 2493–2537.

[53] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult, IEEE

Transactions on Neural Networks 5 (2) (1994) 157–166.

[54] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8) (1997) 1735–1780.

[55] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase

representations using RNN encoder–decoder for statistical machine translation, in: Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), ACL, 2014, pp. 1724–1734.

[56] A. Sen, M. M. Islam, K. Murase, X. Yao, Binarization with boosting and oversampling for multiclass classifica-

tion, IEEE Transactions on Cybernetics 46 (5) (2015) 1078–1091.

[57] T. Lin, P. Goyal, R. B. Girshick, K. He, P. Dollár, Focal loss for dense object detection, IEEE Transactions on

Pattern Analysis and Machine Intelligence 42 (2) (2020) 318–327.

[58] R. Pappagari, P. Zelasko, J. Villalba, Y. Carmiel, N. Dehak, Hierarchical transformers for long document

classification, in: Proceedings of the 2019 IEEE Automatic Speech Recognition and Understanding workshop

(ASRU 2019), IEEE, 2019, pp. 838–844.

34

	Introduction
	Related Work
	Multi-Label Classification
	Hierarchical Classification
	Class Imbalance

	Data
	Methodology
	Support Vector Machines (SVMs)
	HDLTex++
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)

	Feature Extraction
	Loss Functions
	Evaluation Measures
	Hyperparameter Optimization
	Hardware and Implementation

	Results
	Efficiency
	Baseline SVM
	HDLTex++
	Comparison to Models Using Unweighted Loss
	Baseline SVM
	HDLTex++

	Conclusion

