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Abstract

The aim of this paper is to optimize the allocation of multiple advertise-
ments on a Web banner, where the price of an advertisement depends
on the location at the banner. This problem can be defined as a two-
dimensional single orthogonal knapsack problem with a location-based
pixel-price model. A formulation is proposed in which the problem
is specified as a 0-1 integer programming problem. As this problem
is NP-complete, we mainly focus on a heuristic approach to solve
the problem. We propose two new heuristic algorithms: the reactive
GRASP algorithm and the partitioning left-justified algorithm. Next
to that, we present an exact algorithm that is able to solve small
problem instances in a reasonable time. These newly presented algo-
rithms are compared with respect to efficiency and effectiveness to
existing algorithms that solve the problem without a location-based
pixel-price model. To test the quality of the algorithms, we have exe-
cuted two experiments. The results of these experiments show that
overall the reactive GRASP algorithm is the most effective algo-
rithm, whereas the greedy stripping algorithm is the most efficient.

Keywords: Revenue management, Pixel advertisement, Heuristics,
Two-dimensional knapsack problem, Location-based price model
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1 Introduction

Worldwide, digital ad spending has dominated total media ad spending over
the last few years and continues to grow at increasingly higher rates compared
to non-digital ad spending [1]. The main reason for this remarkable difference
is the difference in the cost of targeting between online and offline advertis-
ing [2]. The Internet is a medium that is particularly well-suited for reaching
a large number of (potential) customers. There are different types of online
advertising, one of them being pixel advertisement.

Pixel advertisement originates from the Million Dollar Homepage!. The
website was developed in 2005 by an English student Alex Tew. His goal was
to earn a million dollars by selling advertising space at the Million Dollar
Homepage, an empty grid of 1000 by 1000 pixels. Advertisers could buy blocks
of 10 by 10 pixels for 1 dollar per pixel, place an advertisement, and link it to
their website. The website became a viral hit and sold out in 138 days. The
last 1000 of pixels were sold at the Ebay auction. Overall, the most widely
used auction system is one where various advertisers compete for a place on a
banner each time a different user loads a Web page (see, e.g., [3] and [4]). Such
auctions are designed to happen within seconds as the sooner the ad is shown,
the more impact it can provide. This is beneficial for advertising companies
as they can get more sales, but also for advertisers as when their customers
are satisfied with the service, they will order more ads. Additionally, having
multiple advertisements on a banner, despite not being an industry standard
at the moment, is interesting as it can provide a significant business value
for the advertisers. Hence, the idea of pixel advertisement, displaying several
advertisements on a larger two-dimensional area, has been further investigated.

In the work of [5] the researchers aimed to incorporate pixel advertisements
in the design of Web banners. Small advertisements are presented by adver-
tisers to place on a banner. Each advertisement has a different length, height,
and price per pixel. In the work of [5], several algorithms are presented to solve
the ‘Multiple Advertisement Allocation problem’ (MAA-problem): how to allo-
cate these advertisements such that the revenue for the owner of the banner
is maximized. Note that not every advertisement can be placed, which leads
to concurrency and a higher price per pixel. As described by [5] the multiple
advertisement allocation problem can be defined as a two-dimensional, single,
orthogonal knapsack problem. The starting point in a knapsack problem is a
set of small items (the advertisements) and a set of empty containers (the Web
banner). The goal is to find a feasible allocation of a subset of these items to
the containers, such that the total value of the items packed is maximized.
We are dealing with a single knapsack because there is only one banner to fill.
Finally, the advertisements and the banner are both two-dimensional and the
sides of the advertisements must be parallel to the sides of the banner, which
makes the problem orthogonal.

Yhttp://www.milliondollarhomepage.com
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The problem addressed in this paper is a modification of the MA A-problem.
In the paper of [5] an advertiser needs to pay a certain price per pixel, inde-
pendent of the location of the advertisement on the banner. It would be more
realistic to charge a higher price per pixel for locations that are more frequently
viewed. We define this new problem as the ‘Multiple Advertisement Alloca-
tion problem with a Location-based Pizel-Price model’ (MAALP-problem). To
create a realistic price model, we use results from eye-tracking studies. Techni-
cally, we model this difference in prices with respect to location as discounting
the highest price per pixel (which corresponds to the most-viewed part of the
screen).

[5] formulate the MAA-problem, which is in fact the same as the two-
dimensional knapsack problem, as a 0-1 integer programming problem. This
problem is one of the Karp’s 21 NP-complete problems [6], which means that
the computation time of any currently known algorithm to solve these problems
exactly, increases very quickly if the size of the problem increases. As the
location-based price model only changes the way the total revenue is calculated,
the MAALP-problem is also NP-complete (each solution for the MA A-problem
is also feasible for the MAALP-problem). This is the reason why we mainly
focus on a heuristic approach to solve the problem.

The two new heuristics are the partitioning left-justified algorithm and
the reactive Greedy Randomized Adaptive Search Procedure (GRASP) algo-
rithm. The effectiveness and efficiency of these algorithms are compared to
three heuristics presented by [5] that solve the MA A-problem: the left-justified
algorithm, the orthogonal algorithm, and the greedy stripping algorithm. For
this comparison, several simulation experiments are executed. Moreover, an
exact algorithm that is able to solve small problems is also executed.

The two main contributions of this paper are as follows:

® The formulation of the MAA-problem has been extended to account for
prices that are dependent on the pixel locations on a banner (MAALP-
problem). This phenomenon is being modelled through discounting the
highest price possible based on eye-tracking attention studies;

® Two new heuristics are proposed to solve the MAALP-problem: the reac-
tive GRASP algorithm which is an extension of the GRASP algorithm,
and the partitioning left-justified algorithm which is an extension of the
left-justified algorithm.

The remainder of this paper is structured as follows. Existing related lit-
erature is discussed in Section 2. In Section 3, the multiple advertisement
allocation problem with a location-based price model is formally defined and
two formulations of this problem are presented. Section 4 presents an exact
algorithm and two heuristics to solve this problem. The set-up and results
of the simulations we run to compare the algorithms are given in Section 5.
In Section 6, we draw conclusions from the results we obtained and provide
suggestions for future work.
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2 Related work

Advertisement optimization problems can be seen from two angles. The first
one is the perspective of advertising companies that aim to maximize their
revenues [7-9], and the second one is that of customers trying to maximize the
efficiency of their ad placements between platforms, ad types, etc. [10-12]. In
this paper, we will look at the perspective of the advertising companies looking
to increase their revenues.

The MAA-problem has not been thoroughly investigated in the literature
until now. In [13], the authors propose a heuristic to solve this problem. This
algorithm is tested for several problem instances. [5] propose 4 different heuris-
tic algorithms to solve the MA A-problem. Moreover, a brute force algorithm
that generates an exact solution is described. The efficiency and effectiveness
of the algorithms are compared by running two simulations. One simulation
compares the heuristics and the exact algorithm for several small instances.
The other simulation is a comparison between the heuristics for several large
instances. [14] reformulate the model based only on the start location of an
advertisement. Using this representation, the authors manage to improve the
execution time.

On the contrary, cutting and packing problems are studied extensively in
the literature. So, [15] gives a typology for different cutting and packing prob-
lems. This typology is further improved by [16]. According to this typology,
the problem addressed in our paper is defined as a two-dimensional single
orthogonal knapsack problem.

There is a lot of literature available in which variants of the two-dimensional
knapsack problem are analyzed. In these previous studies, both exact algo-
rithms and heuristic algorithms are described. Below we will shortly describe
these works.

[17] present 4 exact algorithms to solve the two-dimensional single orthog-
onal constrained knapsack problem, which are based on enumeration schemes.
The basis of these enumeration schemes is a natural relaxation of the two-
dimensional knapsack: the one-dimensional knapsack problem, with item
weights equal to the size of the item. Moreover, a (1-¢)-approximation algo-
rithm is presented, which creates a feasible solution with a value of at least
1/3 of the optimal solution, with polynomial computation time.

[18] propose an exact tree-search procedure to solve the two-dimensional
single orthogonal constrained knapsack problem. The problem is formulated
as a 0-1 integer programming problem. Such problems can be solved by tree-
search algorithms. The speed of these algorithms depends on the goodness
of the upper bound on the optimal solution of the problem. The tighter this
upper bound, the faster the algorithm. In the paper, a Lagrangian relaxation
of the formulation of the problem is used to obtain an upper bound. This upper
bound is further reduced by a subgradient optimization procedure.

The 2-staged two-dimensional knapsack problem is analyzed by [19]. This
variant of the problem requires that the maximum number of cut directions
allowed to obtain each item is fixed to 2, there is no rotation allowed and
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the number of copies is constrained. In the paper, two integer linear program-
ming models are presented and tested by solving them by a branch-and-bound
method of the integer linear programming solver of CPLEX. Finally, several
upper bound procedures for the two-dimensional knapsack problem are pre-
sented. The first upper bound is obtained by a linear relaxation of the proposed
models, so the binary variables can be any value between 0 and 1. The next
upper bound is found by column generation. With column generation, only
the subset of the variables that are relevant is considered. Last, dual-feasible
functions are used to generate an upper bound. A dual-feasible function is a
function that maps a problem instance into a new problem instance such that
any feasible solution for the original problem is feasible for the new problem.

In the work of [20], an exact non-guillotine cutting tree-search algorithm to
solve the two-dimensional cutting problem is analyzed. This problem is defined
as cutting a number of rectangular pieces from a single large rectangle, with
the objective to maximize the value of the pieces cut. [18] use Lagrangian relax-
ation and a subgradient procedure to obtain a good upper bound; however,
the models used in the papers are completely different.

Examples of metaheuristic algorithms described in the existing literature
are genetic algorithms [21], simulated annealing [22] and tabu search [23]. In
all these works, the algorithms are tested on several instances. We will present
below some of the metaheuristics.

The genetic algorithm presented by [21] addresses several variants of the
two-dimensional orthogonal knapsack problem. A genetic algorithm is very
similar to natural selection. It works with ‘generations’ of a fixed number of
solutions. Each solution is created with a layer structure. The next generation
of solutions is obtained by saving the best solution of the previous generation
and adding new solutions by adapting solutions from the previous generation.
After this, a post-optimization procedure of the previously best-found solution
is executed. This procedure tries to reduce area losses and layer borders in the
solution.

In the research paper of [22], a heuristic for the two-dimensional knapsack
problem of subtype 4 is presented, where the items may be rotated by 90°
and guillotine cutting is not required. This work is based on a local search
neighbourhood controlled by simulated annealing. In this heuristic, a sequence
pair representation of a solution is used. This means that a solution is presented
as a pair of sequences. In the simulated annealing part of the algorithm, a small
modification is iteratively made to the sequence pair. This sequence pair is
translated into a packing solution and the value of this solution is determined.

The tabu search algorithm, described by [23], is created for the two-
dimensional non-guillotine cutting problem. The algorithm consists of a
constructive algorithm that creates iteratively an initial solution. This solu-
tion is improved by a tabu search algorithm. The initial solution is adjusted
by searching for improving moves in the same neighbourhood as the solution.
This is done by removing pieces from the solution or adding pieces to the solu-
tion. A move is tabu if the combination of the value of the objective function
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and the smallest empty rectangle on the banner for the new solution is already
included in the tabu list.

The effectiveness of the discussed metaheuristic algorithms in comparison
to GRASP has been studied extensively in previous works. For example, [24]
compared tabu search to GRASP for the switch allocation problem and finds
that GRASP obtains better results than tabu search. Additionally, for the
flexible job-shop scheduling problem with various constraints, [25] and [26]
found that GRASP is able to provide better solutions than a genetic algorithm.

Because of the demonstrated effectiveness of the GRASP algorithm for
optimization problems, we contribute to the literature by proposing a reac-
tive GRASP algorithm as an extension thereof. For our second approach, we
extend the left-justified algorithm to the partitioning left-justified algorithm.
We propose these approaches to solve the MAALP-problem, an extension of
the MAA-problem that additionally accounts for prices that depend on the
pixel locations on a banner, modelled through discounting the highest price
possible based on eye-tracking attention studies.

3 Problem definition

In this section, we define the MAALP-problem formally and give two 0-1 inte-
ger linear programming formulations for this problem. First, we provide a
formal definition of the problem in Section 3.1. In Section 3.2 a model based on
a formulation for the two-dimensional cutting problem is modified such that
it is applicable for the MAALP-problem. A second formulation, by adjusting
the model given in Section 3.2 for a popular tool, is presented in Section 3.3.

3.1 Formal definition

The formal definition of the MAALP-problem is very similar to the definition
of the MA A-problem, as described by [5]. To this end, we will first give the def-
inition of the MAA-problem and afterwards point out the differences between
the MAA- and MAALP-problem.

In the MAA-problem, there is a banner B with a width W and height H
in which we need to allocate advertisements from the set A. The properties of
an advertisement a; € A are its width (w;), its height (h;) (both measured in
pixels), and the price per pixel the advertiser is willing to pay (pp;), for each
i € {1,...,]A]}. The ‘starting point’ of an ad is defined as (p,q). This means
that the left top of the advertisement is at the p*™® row and the ¢* column of the
banner if we start counting banner pixels from the left top of the banner. The
objective of the problem is formulated as maximizing the value of all allocated
ads in the banner, such that the ads do not overlap and fit in the banner.

The difference between the MAA-problem and the MAALP-problem is
the price model. The price per pixel an advertiser needs to pay depends on
the location of the advertisement in the banner. We capture this dependence
by giving a location-based discount on pp;. We reformulate pp; as mpp;, the
maximum price per pixel an advertiser is willing to pay because the real price
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per pixel might be lower, which is caused by the discount. For this reason,
we can define the MAALP-problem as a two-dimensional single orthogonal
knapsack problem with a location-based price model.

3.2 Formulation

As stated in Section 1, we can formulate the MAALP-problem as a 0-1 integer
linear programming problem. The formulation given in this section is based
on the models described by [5, 20]. [5] consider the MAA-problem for which
they give a formulation, although the constraints in their model are non-linear.
Using the decision variables of [20], the model can be linearized. Moreover, the
function to calculate the total price of a banner (the objective function that
needs to be maximized) must be changed, to take into account the location
of the ad. Next to the sets and parameters as defined in Section 3.1, we need
to define extra sets, parameters, and decision variables to formulate the 0-1
integer programming problem. These will first be given, and afterwards the
full model is presented.

3.2.1 Sets

We have already defined one set in the formal definition: A, the set of all
advertisements. Let us define the new sets X and Y as the set of the columns
and rows of the banner. Mathematically, we can display this as follows:

X={z|1<z<W}

Y={y|1<y<H}

Let X; (Y;) be the set of all possible starting columuns (rows) of a;. X; and
Y, are subsets of X and Y because a; cannot start at each point in the banner,
without violating the boundaries of the banner, which is visualized in Figure
1 below. This can be stated as:

Xi={z]|1<z<W-w;+1}

Vi={y|[l1<y<H-h+1}

A I W)
Y

Banner
hy

Fig. 1. Visualization of the sets X, Y, X; and Yj;, for advertisement a; on Banner.
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3.2.2 Parameters and decision variables

In the model, the value of the parameters v;,q, the price of placing advertise-
ment 7 on location (p, q) is calculated using Equation (1).

p+hi—1q+w;—1

Vipg = Z Z mpp; - (1 — discount,s) (1)
r=p  s=q

Here, discount,; is a parameter that denotes the amount of discount you
get on the maximum price at location (r,s). So, for each location occupied
in the banner by a;, if starting at (p,q), we discount the maximum price.
Finally, we take the sum over all these discounted prices. In Section 5, we will
further specify how we determine the discount (which is problem-dependent).
Additionally, let

1 ifp<r<p+4+h—landg<s<qg4+w;—1
@ _
pars 0 otherwise.

In other words, apqrs is equal to 1 if a; cuts through point (r,s) when
it starts at point (p, ¢), and equals 0 otherwise. These parameters exist Vp €
Y;, Vg€ X;,Vr €Y, Vs € X and Vi € A.

We furthermore define our decision variables as:

1 if the left top of a; is allocated on position (p,q) of the banner
Tipg =
P 0 otherwise.

Similarly, these variables exist Vp € Y;, Vq € X;, and Vi € A.

3.2.3 Model

The 0-1 integer programming problem can be modelled as follows

Max. Z Z Z VipgTipg (2)

i€A peY; q€X;

St D Y Y GipgreTipg < 1 VreY,VseX  (3)

i€ A peY; qeX;

peEY; q€X;
Tipg €B Vie A, VpeY;, Vg e X; (5)

The objective function (2) maximizes the value of all the allocated adver-
tisements. The set of constraints (3) ensure that each location (r,s) on the
banner is occupied by at most one advertisement, so overlapping ads are not
allowed. Constraint set (4) ensures that each ad is allocated at most once on the
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banner. Finally, the decision variables are required to be binary by constraint
set (5).

3.3 Formulation adapted to the MATLAB solver

Various programming languages such as MATLAB?, AIMMS? or Excel* have
built-in solvers to solve an integer linear programming problem. Some of these
solvers are very flexible (e.g., AIMMS) and allow you to enter complex con-
straints as in the first formulation. However, other built-in solvers are more
restrictive, and can only solve (mixed) integer linear programming problems
in a standard form.

The second formulation of the MAALP-problem we present here does not
differ in essence from the first formulation. However, it adds practicality by
providing an alternative specification for the MATLAB community. It is a
rewritten version of the first formulation to this standard form, as MATLAB
can only solve problems in this form. To be able to do this, we define new
sets, parameters, and decision variables. Note that we will not use the sec-
ond formulation in our implementation of the exact algorithm due to speed
limitations in the MATLAB environment.

3.4 Sets
We define two new sets

J:{j |]:(Z,p7Q)vleAap€)/uq€Xz}
K={k|k=(rs),reY,seX}.

The set J consist of all possible starting points for all advertisements, so the
cardinality of J is ) 7, ,|Yi[-|X;|. The set K contains all points in the banner,
so |[K|=H- -W.

3.5 Parameters and decision variables

Using the new set .J, we can vectorize the parameters v;,, and variables z;pq
to v; and x;, with j € J. We can define parameter a;pqrs as a;;. Moreover, we
define a new parameter

{1 if index j belongs to a;
aaﬂ =

0 otherwise.

Zhttp://nl.mathworks.com/help/optim/ug/mixed- integer-linear- programming- algorithms.
html

Shttp://www.aimms.com/aimms/overview/

4http://www.solver.com/excel-solver-help
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3.6 Model

We can rewrite Formulation 1 as the 0-1 integer programming problem like so.

Max. Z VT (6)

jeJ
sty ajrr; <1 Vk e K (7)
jeJ
Zaajixj <1 Vie A (8)
jeJ

z; €B VjielJ 9)

The order of the objective function and restrictions (6) - (9) is the same
as that of (2) - (5). Restrictions (7) - (8) ensure that the ads do not overlap
and that each ad can only be placed once, respectively. Restrictions (9) set a
binary domain for all decision variables. This formulation can easily be written
in the standard matrix notation. We create two vectors f and x, with elements
vj, respectively x;, with j € J. Let the restriction matrix A,s consist of two
sub-matrices Al and A2. Then the elements of Al are a;j, and the elements
of A2 are aaj;. Finally, we create a column vector b with all elements equal to
one, with a length of | K| + |A|. This gives us the following formulation.

Min. — f'z (10)

S.b. Arest - @ < b with Apest = {Al] (11)
A2

0<z<1 (12)

T €L (13)

4 Algorithms

This section describes the different algorithms which have the purpose to give
an efficient and effective solution for this problem—a solution is efficient when
it is fast to compute; a solution is effective when its quality is high (the
generated revenue is high in our context). We have implemented an exact algo-
rithm and two heuristic algorithms to solve the MA ALP-problem: the reactive
GRASP algorithm and the partitioning left-justified algorithm. The algorithms
will be compared to the heuristics that solve the MAA-problem, as described

by [5].

4.1 Exact algorithm

The exact algorithm that solves the MAALP-problem is implemented in the
programming language Java and makes use of the IBM CPLEX Optimizer. We
have used a Java wrapper for CPLEX as we would like the code to be usable
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by Web applications which are often developed in Java. This optimization tool
is able to solve the problem formulated in (2) - (5).

To solve the MAALP-problem exactly, first the parameters need to be
generated. With the set of advertisements A, the empty banner B, and the
matrix discount, the parameters are generated according to the formulas in
Section 3.2.2. Now, we perform the so-called exact algorithm which entails
going through all the possible pixels and ad sets.

With these parameters, the objective function from (2) and the constraints
from (3) and (4) are added to the model, such that the CPLEX Optimizer
is able to find the exact solution. Finally, the solution found by the CPLEX
Optimizer is translated to a representation of the banner in matrix form.

As said before in Section 1, the MAALP-problem is NP-complete. This
means that the computation time of an exact algorithm, as presented in this
section, increases exponentially with the size of the problem, unless P=NP.
As a result of this fact, this exact algorithm is impractical for real MAALP-
problems in our online context.

Research by [27] has shown that majority of the people on the Web break
their sessions after 15 seconds of waiting for a result. Hence, taking into account
the desired use of the algorithm on the Web similar to the one of [28], the
computation time of an algorithm should not be long. However, since the
problem is, as described by [5], very specific, and due to the experiments
performed, we set the maximum computation time to 30 seconds.

For these reasons, we only solve relatively small instances exactly. These
instances are described in detail in Section 5.2.1. To solve more realistic
instances, we only use heuristics.

4.2 Reactive GRASP algorithm

The reactive GRASP algorithm we present is based on the algorithm described
by [29]. The authors of this paper propose a Greedy Randomized Adaptive
Search Procedure (GRASP) algorithm for the constrained two-dimensional
non-guillotine cutting problem. This algorithm has been modified slightly and
we added some extra options to make it suitable for solving the MAALP-
problem. We start by giving an overview of a generic GRASP algorithm
in Section 4.2.1. Subsequently, we describe the specific construction phase
(Section 4.2.2), and the improvement phase (Section 4.2.3) used in the reac-
tive GRASP algorithm. Finally, we give an overview of the complete reactive
GRASP algorithm in Section 4.2.4.

4.2.1 GRASP

The GRASP algorithm was first described by [30] as an iterative random-
ized sampling technique for solving combinatorial optimization problems. The
generic structure is displayed in Algorithm 1. A GRASP is an iterative algo-
rithm that executes two phases in each iteration: a construction phase, which
creates an initial solution, and an improvement phase, in which this solution is
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possibly improved using a local search algorithm. If the found solution improves
on the best solution found in the previous iterations, this solution is saved.

Algorithm 1 Pseudo-code of the generic GRASP algorithm

for iteration = 1: maximum iterations do
Run construction phase
Run improvement phase
if solution better than best found solution then
Update best found solution
end if
end for
return: Best found solution

The construction phase of a GRASP algorithm is iterative as well. In each
iteration of the construction phase, one element is added to the solution created
thus far. The determination of this element to add is done by ordering the set of
all possible elements according to a greedy function. The adaptive component
of the heuristic is that in each iteration, this ordering is done again, and might
be adjusted because of the addition of the previous element. The element
chosen to be added does not need to be the best option from this ordered list.
The element is chosen randomly from the best options.

The initial solution, created in the construction phase, is not necessarily
locally optimal. During the improvement phase, a local search algorithm tries
to find a better solution in the neighbourhood of the found solution.

4.2.2 Construction phase

The pseudo-code of the specific construction phase we use to build an initial
solution is displayed in Algorithm 2. This construction phase is an iterative
process as well and considers the (partly filled) banner as a set of empty
rectangles that need to be filled (L). Before the iterations, the algorithm sorts
the set of advertisements A.

We sort the ads in decreasing order according to the maximum price per
pizel (mp) or the mazimum total price of the ad (w x h x mp). We think these
are the most effective sorting criteria because allocating advertisements with
a high maximum (total) price will lead to a large increase in the total value of
the banner. Ties for one criterion will be broken by a second sorting criterion.
For this second sorting criterion, we use one proposed by [5]: the width (w),
height (h), size (w x h), flatness (w/h) and proportionality (|log(w/h)|) of
an ad. So for each primary sorting criterion, we have 10 different secondary
sorting criteria (5 different criteria ascending and descending). Hence, there
are in total 20 different orderings for each set of advertisements A.

After this ordering, we try to fill the banner with advertisements, by allocat-
ing ads from the set A to empty rectangles in the banner. The set of all empty
rectangles in the banner L first needs to be sorted. We use three options for
this, of which only the first option was used in the original GRASP algorithm:

1. Sort the set L ascending according to size;
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2. Sort the set L ascending according to the average discount per pixel in
the rectangle;
3. ‘Sort’ the set L randomly.

The reason why only option one was considered by [29] is that if a large
rectangle is filled with a small piece at the beginning, the resulting rectangles
might be useless for large pieces that still need to be cut. We added the second
option because we think it might be profitable to allocate the advertisement
with the highest (total) price to rectangles with a low discount percentage.
The last option is added to see whether the ordering of the rectangles has
indeed an influence on the total price of the banner. After sorting A and L,
the iterative process starts. In each iteration, we iterate through the sorted
list L, until we find a rectangle in which an advertisement from A fits. If there
is no such rectangle left, we stop and return the initial solution. If there is an
advertisement a; that does fit in a rectangle, we add a; and all the other ads
which fit in the same rectangle to the set Agting-

We determine the ad to place from this set Agtting in three ways:

1. Select the ad at random from the set S = {j | v; > d X Umaz };
2. Select the ad at random from the 100(1 — d)% ‘best’ ads;
3. Select the ‘best’ ad.

Algorithm 2 Pseudo-code of the construction phase

1: function CONSTRUCTION PHASE(A, B,d, L, C, S, discount)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H, W), which represents the banner
Require: d € [0.1,0.2,...,0.9]
Require: L = Set of empty rectangles in the banner and their properties
Require: C = Set of advertisements already allocated and their properties
Require: S = Price of banner B
Require: discount = Matrix of size (H, W), which represents the discount for each
pixel of the banner

2: Order set of advertisements A

3: done = false;

4: while done == false do

5: Order set of empty rectangles L %% Option 1 %%
6: fitting_piece_ found = false; Agiting =[5 7 = 13
7 while fitting piece found == false && j < |L| do
8: if rect; € L is not marked as unusable then

9: for all a; € A do

10: if a; fits in rect; then

11: rectangle = rect;;

12: add a; to Agtting;

13: fitting _piece_ found = true;

14: end if

15: end for

16: if fitting piece  found == false then

17: mark rect; as unusable; %% no ad fits in rectangle %%
18: end if

19: end if
20: if fitting piece found == false then
21: j = j+1; %% check next rectangle %%
22: end if

23: end while




Springer Nature 2021 IMTEX template

14 Revenue Maximization for Advertisements Using a Pizel-Price Model

24: if fitting piece  found == false then

25: done = true;

26: break; %% stop if there is no usable empty rectangle left %%

27: end if

28: Select ad from Agiting to add to the rectangle and calculate the
discounted price of ad %% Option 2 %%

29: Place ad in banner B %% Option 8 %%

30: S = S + price;

31: Remove ad from A; remove rectangle from L

32: Add ad to set of allocated ads C

33: Check if there are new rectangles created for L, by placing the ad

34: if new rectangles for L then

35: try to merge them with existing rectangles in L

36: end if

37: Add new rectangles to L

38: end while
39: return: A B,C,L,S;
40: end function

In the first option, v,,4, is the value of the primary sorting criterion of the
first ad placed in Aggting, SO We choose ads from a set in which the value of the
primary sorting criterion deviates at most 100(1 — d)% from the highest value
of the primary sorting criteria. In options two and three, the ‘best’ ads, are the
ones placed first in the set Agtting. Options one and two are the probabilistic
factor of the GRASP algorithm, whereas option three leads to a deterministic
constructive phase. Therefore, option three is only used in the improvement
phase, which will be explained in Section 4.2.3. The parameter d is a value
between 0.1 and 0.9, and is chosen randomly before the construction phase.
How the parameter d is chosen, will be elaborated on in Section 4.2.4.

If the rectangle that will be filled, and the ad that will be allocated are
chosen, this ad will be placed on the banner, and removed from A. The cho-
sen rectangle is removed from L. The advertisement will always be placed in a
corner because this results in the largest new empty rectangles. We use two dif-
ferent approaches to decide in which corner of the rectangle the advertisement
is placed:

1. Place the ad in the corner which is nearest to a corner of the banner;
2. Place the ad in the corner which yields the highest price for the ad.

Under option one, once the ad has been placed in the corner of a rectangle,
the ad is then moved as close as possible to the corresponding corner of the
banner (in order to maximize the empty space in the center of the large rect-
angle). Only option one is used by [29], and is expected to result in a higher
fill rate of the banner. L.e., the new empty rectangles are centered in the mid-
dle of the banner and can thus be more easily merged with existing ones, so
more ads can be allocated. On the contrary, the reason for adding the second
option is that it leads to a higher price of the ad. If the ad is placed on the
banner, the total price of the banner S is updated, by adding the discounted
price of the placed ad.
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An advertisement can fill a rectangle totally or partially. If the width
(height) of the ad is equal to that of the rectangle, but the height (width) is
smaller, there arises only one new rectangle, see Figure 2.

alueiaay man

(a) One new rectangle. (b) Two new rectangles give two options.

Fig. 2. Examples of partially filled rectangles.

If both the size and the width of the ad are smaller than the rectangle,
there are two new rectangles. There are two possibilities to choose the rectan-
gles. We use the option where the next ad of the sorted set A fits in the largest
rectangle, i.e., the rectangle with the largest size. For the newly created rect-
angles, we check whether it is beneficial to merge one of them with existing
empty rectangles in L. Again, the option where the first ad of the sorted set A
fits in the biggest rectangle is chosen. These new rectangles are added to the
set L and the original rectangles are deleted.

The different options we use to sort L, select an ad to place, and place an
ad, are displayed in Table 1. We added some new options that are not used
in the research paper of [29], which take the location-based price model into
account (for example Option 1.2 and Option 3.2).

Table 1. Summary of the different options in the construction phase.

Identifier | Description Possibilities
Option 1 Sorting L 1. Sort L ascending w.r.t. size
2. Sort L ascending w.r.t. average discount
per pixel

3. ‘Sort’ L randomly

Option 2 Selecting ad to place | 1. Select ad from S = {j | v; > d X Vimaaz}
2
1

. Select ad from 100(1 — d)% ‘best’ ads
. Place in corner nearest to a corner of
the banner
2. Place in the corner which yields the
highest price for the ad

Option 8 Placing ad

4.2.3 Improvement phase

The improvement phase of the GRASP algorithm takes as input the output
of the construction phase. The pseudo-code of the improvement phase is dis-
played in Algorithm 3. The initial solution created in the construction phase
is adapted by removing several advertisements from the banner.

The removed ads will be put back into the set A, and this set is ordered
again using the same sorting criteria employed in the construction phase.
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Algorithm 3 Pseudo-code of the improvement phase

1: function IMPROVEMENT _PHASE(A, B, L,C, S)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H,W), which represents the empty banner; all
elements are equal to zero
Require: L = Set of empty rectangles in the banner and their properties
Require: C = Set of advertisements already allocated and their properties
Require: S = Price of banner B
Remove (% of the allocated ads from banner B and set C}
%% Option improve %%
Add removed ads to set A; add empty rectangles to L;
4 Update S;
5: Order set of advertisements A;
6: Try to merge rectangles in L;
T %% execute deterministic construction phase (d has no influence) %%
8

»

: d=0;
9: [~, B2,C2,~,S52] = construction phase(A, B,d, L, C, S1, discount);
10: if S2 < S then %% if not improved, return values from constr. phase %%
11: S2=5;,B2=B;(C2=C;
12: end if
13: filled = sum of the sizes of all ads in C'2;
14: alloc_count = |C2];
15: return: B2, 52, filled, alloc__count;
16: end function

Removing the ads results in new empty rectangles, which are added to L. We
try to merge each rectangle in L with another rectangle in L, according to the
method described in Section 4.2.2. If we succeed in merging, we iterate through
L again. We stop until it is not beneficial to merge any of the rectangles in L
anymore. This partial solution is extended by executing a deterministic con-
struction phase. In this phase, the selection of the ad is done deterministically,
as described in Section 4.2.2. Only if the price of the solution is improved, the
solution is updated. The method of how to remove the ads from the banner
is one of those displayed in Table 2. Under the method which removes 8% of
the ads at random from the banner, we first remove ads that are adjacent to
empty spaces thus enabling to create bigger empty spaces.

Table 2. Summary of the different options in the improvement phase.

Identifier Description Possibilities

Option tmprove | Removing ads | 1. Remove the 8% last added ads from
the banner

2. Remove 3% of the ads at random from
the banner

B 5, 10, 15

4.2.4 The main reactive GRASP

The reactive GRASP algorithm (Algorithm 4) is a specific version of the
GRASP algorithm. During the reactive GRASP, the probability of choosing d
from a set D (for selecting an ad to place) is updated after a certain amount of
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iterations. We define the set D as [0.1, 0.2, ... , 0.9]. At first the probability of
choosing d is equal for all values of this set. The total price of the best-found
solution (Sbest) and the total price of the worst found solution (Sworst) over
all iterations are updated if necessary. Moreover, we keep track of the sum of
the total price of all the solutions obtained by using the chosen d by the param-
eter sumSy. Each time the number of iterations is a multiple of maxIter/5,
we update the probability for each possible d, py. So, if for a certain d good
results are obtained, the probability to choose this d will increase.

We propose another method to update the parameter p; compared to the
one used by [29], which is shown in Equations (14) - (16). As we use the mean
price per pixel for a given d (meanpps = 77 ), the price per pixel in the
%,” ‘;Tflt) and the price per pixel in the best solution

(Sbestpp = V%bi‘}t[), the evaluation of the banners does not depend on the size of
the banner as was the case in the original method. Moreover, because we take
into account the previous value of pg;, we can never generate a probability of
0, which could be the case in the method of [29]. In case Sbestpp = Sworstpp,

evaly is not possible to compute and, hence, eval2; will not be updated.

worst solution (Sworstpp =

eval meanppg — Sworstpp (14)
valg =
d Sbestpp — Sworstpp

evaly

> dep €valg
eval2y

- > dep €val2q

eval2q = pq + (15)

Pa (16)

If the maximum number of iterations is reached, the banner with the high-
est price found over all iterations is returned. A big advantage of the reactive
GRASP algorithm is that you can choose the maximum number of iterations
yourself. For a more effective solution, a higher maximum number of iterations
may be desired; for a more efficient, but probably less accurate solution, one
could decrease the maximum. Moreover, because of the randomness in the con-
struction phase, there is a smaller risk of getting stuck in a local optimum. The
iterations are independent, so in each iteration the algorithm starts from the
beginning. Due to its superior flexibility compared to the GRASP algorithm,
we will consider in the evaluation only the reactive GRASP algorithm.

Algorithm 4 Pseudo-code of the reactive GRASP algorithm

1: function REACTIVE GRASP(A, B, discount, maxIter, options)

Require: A = Set of advertisements to allocate and their properties

Require: B = Matrix of size (H,W), which represents the empty banner; all
elements are equal to zero

Require: discount = Matrix of size (H, W), which represents the discount for each
pixel of the banner

Require: maxlter = Maximum number of iterations in the reactive GRASP

Require: options = Set of options according to which to sort L, select the ad, place
the ad and improve the solution.
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2: %% initialisation %%
3: D =10.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9];
4: Sbest = 0;
5: Sworst = inf;
6: ng = 0; sumSy = 0; pg = 1/|D| Vd € D;
7 iter = 0;
8: while iter < maxlter do
9: %% initialisation of an iteration %%
10: Choose d* from D, with probability pg« %% d* is the current d %%
11: ngx = g + 1;
12: L = B;
13: C =1l
14: S1 = 0;
15: [Anew, Bnew, Cnew, Lnew, S1] =
construction_phase(4, B,d*, L, C, S1);
16: [B2, 52, filled, alloc_count] =
improvement _phase(Anew, Bnew, Cnew, S1, L);
17: if 52 > Sbhest then
18: Sbest = S2;
19: bannerbest = B2;
20: fillrate = filled/size(B);
21: alloc__countbest = alloc__count;
22: end if
23: if S2 < Sworst then
24: Sworst = 52;
25: end if
26: sumSg« = sumSg« + S2;
27: if mod(iter,maziter/5) == 0 then
28: meang = sumSy/ng ¥d € D;
29: mean_temp = sum(sumSy)/iter;
30: for all d € |D| do
31: if isnan(meang) then %% if d is not used before %%
32: meang = mean__temp;
33: end if
34: end for
35: meanppg = meang/size(B) Vd € D;
36: Sworstpp = Sworst/size(B);
37: Sbestpp = Sbest/size(B);
38: evalg = (meanppy — Sworstpp) /(Sbestpp — Sworstpp) Vd € D;
39: eval2g = pg + evaly/sum(evaly) Vd € D;
40: pg = eval2y/sum(eval2y) Vd € D;
41: end if
42: end while
43: return: bannerbest, Sbest, fillrate, alloc_countbest;

44: end function

4.3 Partitioning left-justified algorithm

The partitioning left-justified algorithm is a modification of the left-justified
algorithm from the research of [5]. The left-justified algorithm iterates for each
advertisement through all the places in the banner, until there is a free location
found in which the advertisement fits. The algorithm starts scanning in the
left top of the banner and checks all rows before scanning the next column.
The pseudo-code of the partitioning left-justified algorithm is displayed in
Algorithm 5. In the partitioning left-justified algorithm the same approach as
in the original left-justified algorithm is used, however, the algorithm starts
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Algorithm 5 Pseudo-code of the partitioning left-justified algorithm

1: function LEFT- JUSTIFIED _PARTITIONING(A, B, discount)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H,W), which represents the empty banner; all
elements are equal to zero
Require: discount = Matrix of size (H, W), which represents the discount for each
pixel of the banner

2: Order parts of the banner rectangles; Order set of advertisements A;
3: S = 0; filled = 0; alloc_count = 0;
4: for all a; € A do
5: j=1
6: finished = false; %% Boolean which indicates whether checking a; is
finished %%
T finished rectangle = false; %% Boolean which indicates whether
checking rectangle; is finished %%
8: while (j < |rectangles|) && (finished == false) do
9: row = upper_row(rectangle;); %% start at left top of rectangle %%
10: col = left_col(rectangle;);
11: while (finished rectangle == false) && (finished == false) do
12: if B is empty on (row, col) then
13: if a; fits on B on (row, col) then
14: Allocate a; on (row, col)
15: alloc__count = alloc__count + 1;
16: filled = filled + size(a;);
17: S =S+ price;
18: finished = true; %% check next ad %%
19: else if no space for a; on (row, col) (not out of bounds) then
%% ad would fit in the empty banner on this location%%
20: if there is a next row in rectangle; then
21: row = row-+1;
22: else
23: if there is a next column in rectangle; then
24: row = upper_row(rectangle;);
25: col = col+1;
26: else
27: finished rectangle = true;
28: end if
29: end if
30: else if a; goes vertically out of bounds then
31: if row == upper _row(rectangle;) then
32: finished rectangle = true;
33: else
34: if there is a next column in rectangle; then
35: row = upper_row(rectangle;);
36: col = col+1;
37: else
38: finished rectangle = true;
39: end if
40: end if
41: else if a; goes horizontally out of bounds then
42: finished rectangle = true;
43: end if
44: else %% B is not empty on (row, col) (line 13) %%
45: if there is a next row in rectangle; then
46: row = row+1;

47: else
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48: if there is a next column in rectangle; then
49: row = upper _row(rectangle;);

50: col = col+1;

51: else

52: finished rectangle = true;

53: end if

54: end if

55: end if

56: if finished rectangle == true then

57: 7 =7+1; %% check next rectangle %%

58: end if

59: end while

60: end while

61: end for

62: fillrate = filled/size(B);

63: return: B, Sbest, fillrate, alloc_ count;
64: end function

at the left top of the best (least discounted) rectangle of the banner. So we
sort the parts of the banner rectangles ascending with respect to the discount
factor, breaking ties by choosing the largest one first (not all parts have to be
a square). Figure 3 gives an example of such an ordering.

After that, the set advertisements A is sorted in the same way as in the
initialization of the heuristics by [5], where the authors use 6 different sorting
criteria (ascending and descending): the mazimum price per pizel (mp) and
the width (w), height (h), size (w x h), flatness (w/h) and proportionality
([log(w/h)|) of an ad. As in the reactive GRASP algorithm, we add a sev-
enth sorting criteria: the mazimum total price of the ad (w x h x mp). We
want to choose 2 sorting criteria from a set of 14 (all 7 criteria ascending and
descending). The number of different orderings can be defined as P}4, i.e., 2-
permutations of 14. However, we do not use the permutations where the first
and second criteria are the same but ascending and descending. The number
of such permutations is 14 (for each of the 7 sorting criteria twice). This gives
a total number of %‘i — 14 = 168 different orderings of A in the partitioning
left-justified algorithm.

If the rectangles of the banner are sorted, the algorithm checks for each ad
if it can be placed on a location of the banner, starting at the pixel in the left
top of the first rectangle in the ordered set rectangles. Each column in each
rectangle is checked from top to bottom. This is done for all locations in the
banner until the ad is placed, or all rectangles are checked.

5 Simulations

In this section, we present a realistic location-based price model for the adver-
tisements. Moreover, the set-up of the different types of simulations we run
is also described. The experiments regarding the exact algorithm are imple-
mented in Java SE 8 using CPLEX Optimization Studio v12.8 (without
modifying any default option), and all other experiments are implemented in
MATLAB R2017a. All experiments are run on an Intel(R) Core (TM) i7-6500U
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(a) The discount per part of (b) The order of the parts of
the banner. the banner.

Fig. 3. Example of ordering the parts in the banner for the partitioning left-justified
algorithm.

CPU at 2.50 GHz with 12 GB RAM. The results of the simulations are ana-
lyzed from multiple perspectives. Last, we mention some concluding remarks
regarding the results of the experiments.

5.1 Price model

One part of the location-based price model is already presented in Section 3,
where we defined the price of an advertisement ¢ on location (p, ¢) in Equation
(1). We did not yet specify how to calculate discount,, the discount an adver-
tiser gets if the ad fills location (r, s) on the banner. To calculate the discount
percentages on the banner, we use Equation (17). With this equation, we com-
pute the discount for a block of 100 by 100 pixels. The value of perc;; for a
block, is the percentage of viewing time of people on an average Web page,
according to the eye-tracking research works [31, 32]. These articles present
the results from researches about the horizontal and vertical distribution of
attention of people on an average Web page per strips of 100 pixels. From
these results, it is possible to make a heatmap with respect to the attention of
people on a Web page per blocks of 100 by 100 pixels, as shown in Figure 4.
The value of the discount of a block is assigned to each pixel in the block.
The values used for max(perc) and min(perc) are the highest and lowest per-
centages inside the banner. This results in a 0% discount on the maximum
price per pixel in the block which is viewed the most inside the banner, and
a 20% discount on the maximum price per pixel in the block which is viewed
the least. The pixels in the other blocks have a discount between 0 and 20%.

max(perc) — perc;;

disc_per_100;; = 0.2 (17)

max(perc) — min(perc)

5.2 Experiment set-up

We test the algorithms using the two experiment set-ups described by [5].
The first one compares the heuristics to the exact algorithm for a small-sized
problem. The second one solves a more realistic problem using the existing
and newly proposed heuristics. Existing heuristics are taken from [5]: the
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Vertical stripes |Horizontal stripes of 100 pixels

of 100 pixels 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 500-1000 1000-1100
0-100 1.00% 1.24% 1.43% 147% 1.33% 0.90% 0.67% 0.67% 0.33% 0.24% 0.24%
100-200 1.16% 1.43% 1.65% 1.71% 1.54% 1.05% 0.77% 0.77% 0.39% 0.28% 0.28%
200-300 1.63% 2.02% 2.33% 240% 2.17% 147% 1.09% 1.09% 0.54% 0.39% 0.39%
300-400 1.42% 1.76% 2.03% 2.09% 1.8%% 1.28% 0.95% 0.95% 0.47% 0.34% 0.34%
400-500 1.16% 1.43% 1.65% 1.71% 1.54% 1.05% 0.77% 0.77% 0.39% 0.28% 0.28%
500-600 0.84% 1.04% 1.20% 1.24% 1.12% 0.76% 0.56% 0.56% 0.28% 0.20% 0.20%
600-700 0.63% 0.78% 0.90% 0.93% 0.84% 057% 0.42% 0.42% 0.21% 0.15% 0.15%
700-800 0.68% 0.85% 0.98% 1.01% 0.91% 0.62% 0.46% 0.46% 0.23% 0.16% 0.16%
800-900 0.32% 0.39% 0.45% 047% 042% 0.29% 0.21% 0.21% 0.11% 0.08% 0.08%
9500-1000 0.26% 0.33% 0.38% 0.39% 0.35% 0.24% 0.18% 0.18% 0.09% 0.06% 0.06%
1000-1100 0.16% 0.20% 0.23% 0.23% 0.21% 0.14% 0.11% 0.11% 0.05% 0.04% 0.04%
1100-1200 0.16% 0.20% 0.23% 0.23% 0.21% 0.14% 0.11% 0.11% 0.05% 0.04% 0.04%
1200-1300 0.11% 0.13% 0.15% 0.16% 0.14% 0.10% 0.07% 0.07% 0.04% 0.03% 0.03%
1300-1400 0.11% 0.13% 0.15% 0.16% 0.14% 0.10% 0.07% 0.07% 0.04% 0.03% 0.03%
1400-1500 0.11% 0.13% 0.15% 0.16% 0.14% 0.10% 0.07% 0.07% 0.04% 0.03% 0.03%
1500-1600 0.05% 0.07% 0.08% 0.08% 0.07% 0.05% 0.04% 0.04% 0.02% 0.01% 0.01%
1600-1700 0.05% 0.07% 0.08% 0.08% 0.07% 0.05% 0.04% 0.04% 0.02% 0.01% 0.01%
1700-1800 0.05% 0.07% 0.08% 0.08% 0.07% 0.05% 0.04% 0.04% 0.02% 0.01% 0.01%
1800-1900 0.05% 0.07% 0.08% 0.08% 0.07% 0.05% 0.04% 0.04% 0.02% 0.01% 0.01%
1900-end 0.58% 0.72% 0.83% 0.85% 0.77% 0.52% 0.39% 0.39% 0.19% 0.14% 0.14%

Fig. 4. Heatmap of an average Web page, with the percentage of viewing time of
blocks of 100 by 100 pixels.

orthogonal algorithm, the left-justified algorithm, and the greedy stripping
algorithm.

5.2.1 Experiment set-up with a small number of instances

In the first part of the first experiment, two banners need to be filled. Banner
B; has a height H = 4 and a width W = 4, and banner B, has a height
H = 4 and a width W = 5. There are two sets of advertisements that can be
allocated to these banners: A; and As. The width w;, height h; and maximum
price per pixel mpp; of all a; contained in these sets are displayed in Table
3 and 4. To calculate the percentages of discount, we use the percentages of
viewing time, as shown in Figure 4. We assume that the left top of the banner
starts at position (100, 100) and we use the percentages per block of 100 by
100 pixels for each location in the banner. These percentages are displayed in
Table 5 and Table 7. Using Equation (17), we calculate the discount matrices.
The resulting discount matrices for both banners are displayed in Table 6 and
Table 8. The instances we used can be accessed through https://github.com/
VladyslavMatsiiako/ PMAWB.

As mentioned before in Section 4.1, the computation time of the exact algo-
rithm increases exponentially as the size of the problem increases. In order to
examine the behaviour of the exact algorithm and see where its limits are, in
the second part of the first experiment, we try to solve the MAALP-problem
for five types of standard banners (leader board, half banner, square button,
skyscraper and large rectangle) of increasing size, using the exact algorithm.
For each banner, a set of advertisements together with their properties is sim-
ulated 100 times. The number of ads in the set is determined such that the
sum of the sizes of the ads is approximately twice as large as the size of the
banner. The width and height of an ad are obtained by applying Equation
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(18). The random number rand in this equation is drawn from the standard
normal distribution.

wi, h; = max(1, min(min(W, H), [(min(W, H) /4 X |rand|])) (18)

The maximum price per pixel an advertiser needs to pay, can differ because
of bargaining between the advertiser and the owner of the banner. This max-
imum price is determined by picking a number from a uniform distribution
between 9.0 and 11.0, with a step of 0.1. The real price per pixel an advertiser
needs to pay is calculated by subtracting the discount of the pixel from the
maximum price.

Table 3. Properties of ads in Aj. Table 4. Properties of ads in Aa.
i w; h; mpp; i w;  h;  mpp;
1 1 1 9.1 1 1 1 9.1
2 2 3 9.3 2 2 3 9.3
3 1 2 9.5 3 1 2 9.5
4 1 1 9.7 4 1 1 9.7
b) 3 2 9.9 5 3 2 9.9
6 2 1 10.1 6 2 1 10.1
7 1 1 10.3 7 1 1 10.3
8 2 2 10.5 8 2 2 10.5
9 3 1 10.7 9 3 1 10.7
10 1 3 10.9 10 1 3 10.9
11 1 1 11.0
Table 5. Percentages from Figure
4 of Bj. Table 6. Discount matrix of Bj.
1.43 | 1.65 | 1.71 | 1.54 0.20 | 0.15 | 0.14 | 0.18
2.02 | 2.33 | 240 | 2.17 0.08 | 0.02 | 0.00 | 0.05
1.76 | 2.03 | 2.09 | 1.89 0.13 | 0.08 | 0.06 | 0.11
1.43 | 1.65 | 1.71 | 1.54 0.20 | 0.15 | 0.14 | 0.18
Table 7. Percentages from Table 8. Discount matrix of
Figure 4 of Bs. Bs.
1.43 | 1.65 | 1.71 | 1.54 | 1.05 0.14 | 0.11 | 0.10 | 0.13 | 0.20
2.02 | 2.33 | 240 | 2.17 | 1.47 0.06 | 0.01 | 0.00 | 0.03 | 0.14
1.76 | 2.03 | 2.09 | 1.89 | 1.28 0.10 | 0.06 | 0.05 | 0.08 | 0.17
1.43 | 1.65 | 1.71 | 1.54 | 1.05 0.14 | 0.11 | 0.10 | 0.13 | 0.20

5.2.2 Experiment set-up with a large number of instances

The second experiment consists of rather large problems. The banners which
need to be filled are standard banners. Their names and sizes are shown in
Table 9. In this manner, we have a total of 5 banners. Once more, we assume
that the left top of the banner is placed 100 pixels from the top and 100
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pixels from the left side of the homepage so we can construct the discount
matrix using the price model outlined in Section 5.1. We conduct a sensitivity
analysis about the trade-off between effectiveness and efficiency with regard
to the reactive GRASP algorithm, obtained by varying the maximum number
of iterations. Based on this analysis, we determine the maximum number of
iterations.

Table 9. Standard banners and their sizes.

Name | W H
Leader board 728 90
Half banner 234 60
Square button 125 125
Skyscraper 120 600

Large rectangle | 336 280

For each type of banner, a set of advertisements together with their prop-
erties is simulated 10 times, in the same manner as in the second part of the
first experiment. The only difference with the second part of the first experi-
ment is that the width and height (measured in pixels) of an ad are obtained
by applying Equation (19) instead of Equation (18). The random number rand
in Equation (19) is also drawn from the standard normal distribution. Accord-
ing to [5], the distribution of the width and height of the advertisements on
the Million Dollar Homepage was approximately normally distributed, with a
minimum of 10 pixels. The values generated by Equation (19) are multiples of
10, but can not be larger than the banner dimensions. Moreover, the obtained
values are also approximately normally distributed.

wi, h; = max(10, min(min(W, H), [(min(W, H)/40 x |rand|] x 10))  (19)

The maximum price per pixel an advertiser needs to pay is determined
the same as in the second part of the first experiment. The results in Section
5.3.2 are averages over the 10 simulations for each banner type. Again, the
instances that were used for each banner can be found at https://github.com/
VladyslavMatsiiako/PMAWB.

5.3 Results

Each problem instance in the first experiment is solved by the exact algorithm,
and all different versions by the newly presented and existing heuristics. The
results of all the different versions of the algorithms are analyzed in the next
sections from different perspectives. The effectiveness of an algorithm depends
on the price of the banner, whereas the efficiency of an algorithm is measured
by the computation time. The fill rate, the percentage of the banner filled by
advertisements, is a good indication of the effectiveness. However, the different
prices per pixel for ads and the location-based discount influence the total
price of the banner as well.
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Table 10. The best results for each problem instance in experiment with a small
number of instances with respect to price.

Pl’oblmn Algorithm Prim. sort Sec. sort® Cpmp. Price banner  Fillrate ~ Options®
instance time (s)

(B1, A1) Exact - - 0.054 146.8183 1
Reactive GRASP | maxpp. desc.  price desc. 0.194454 146.8183 1 (1,2,2,1,5)
Orthogonal maxpp. desc. ¥ 0.000565 146.5373 1
Part. left just. prop. desc. maxpp. desc.  0.000601 146.5262 1
Left just. prop. desc. price desc. 0.000540 146.4427 1
Greedy str. price desc. * 0.000173 108.7585 0.75

(B1,A2) Exact - - 0.038 146.5778 1
Reactive GRASP | price desc. prop. asc. 0.0860 146.5778 1 (1, 1, 2, 2, 15)
Part. left just. prop. desc. price desc. 0.000343 146.2517 1
Left just. prop. desc. price desc. 0.000178 146.1818 1
Orthogonal prop. desc. price desc. 0.000727 146.1728 1
Greedy str. price desc. * 0.000239 108.394 0.75

(B2,A1) Exact - - 0.050 185.2725 1
Reactive GRASP | maxpp. desc.  price desc. 0.1033 185.2725 1 (2,2,2,2,5)
Part. left just. height desc. maxpp. desc.  0.000310 182.3079 1
Left just. width desc. prop. asc. 0.000201 181.2404 1
Orthogonal width desc. prop. asc. 0.000383 181.2404 1
Greedy str. height desc. price desc. 0.000289 143.7303 0.8

(B2,A2) Exact - - 0.126 184.766 1
Reactive GRASP | price desc. width desc. 0.0716 184.766 1 (3,1,1,1, 15)
Left just. width desc. maxpp. desc.  0.000187 181.1422 1
Orthogonal width desc. maxpp. desc.  0.000484 181.1422 1
Part. left just. size desc. maxpp. asc. 0.000284 178.8797 1
Greedy str. height desc. price desc. 0.000324 144.0608 0.8

5.3.1 Experiment with a small number of instances

In Table 10, for the first part of the first experiment, the best results (with
respect to the price) for each problem instance are presented. We show for
each algorithm the sorting criteria for which the solution is obtained with the
highest price of the banner. For the reactive GRASP, algorithm we also present
the options that lead to this best result (how is the set of rectangles sorted, in
which way is the ad to place selected). This is done by presenting numbers that
refer to the possibilities in Table 1 and Table 2. Next to that, the computation
time in seconds to find the solution (Comp. time (s)), the total price of the
solution ( Price banner), and the percentage of the banner which is filled in the
solution (Fillrate) are presented for each algorithm.

The best solution per problem instance provided by the exact algorithm is
displayed in Figure 5. We observe in Table 10 that the only heuristic which
finds the optimal solution for all 4 instances is the reactive GRASP algorithm.
So for each instance, the reactive GRASP algorithm is the most effective algo-
rithm. We see that the solutions rendered by the partitioning left-justified
algorithm are for all instances more effective than the greedy stripping algo-
rithm, but approximately evenly effective as the left-justified and orthogonal
algorithm. The greedy stripping algorithm performs the worst with respect to
effectiveness. It is the only algorithm which creates banners that are not fully
allocated.

On the other hand, if we compare the algorithms with respect to efficiency,
the performance of the left-justified algorithm is the best for most instances.
For the reactive GRASP algorithm it even takes more time to find the solution
than for the exact algorithm.
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Fig. 5. The exact solutions for the 4 different problem instances.

From this first part of the experiment with a small number of instances, we
can conclude that for small problem instances the reactive GRASP algorithm
is the most effective, but also the least efficient algorithm. The greedy stripping
algorithm is the least effective but a relatively efficient algorithm. The sizes
of the problem instances are too small to draw general conclusions about the
quality of the algorithms. Nevertheless, the experiment gives a useful indication
of the quality of the results, compared to the optimal solutions.

In Table 11, for the second part of the first experiment, the average compu-
tation times over 100 simulations of the exact algorithm are presented for five
types of standard banners. Here, we observe that the largest sizes for which
the exact algorithm can solve the MAALP-problem in less than 30 seconds are
9 x 9 pixels, 56 x 7 pixels, 28 x 7 pixels, 9 x 45 pixels, and 6 x 5 pixels for
the square button, leader board, half banner, skyscraper, and large rectangle,
respectively. These results illustrate the need for heuristics to solve realistic
instances (recall that because of the use on the Web, the computation time of
an algorithm is desired to be less than 30 seconds).

Table 11. Average computation times in seconds over 100 simulations of the exact
algorithm for different banner sizes.

Size Comp. time (s)
Square button 9%x9 16.701
(125 x 125) 10 x 10 75.612
Leader board 56 X 7 22.521
(728 x 90) 64 x 8 60.396
Half banner 28 x 7 5.848
(234 x 60) 32 x 8 45.011
Skyscraper 9 x 45 21.127
(120 x 600) 10 x 50 48.928
Large rectangle 6 X5 0.089
(336 x 280) 12 x 10 185.531

5.3.2 Experiment with a large number of instances

We analyze the results of the experiment with a large number of instances
from more perspectives than the experiment with a small number of instances,
because the larger problems are more similar to real-time MAALP-problems
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than the smaller problems in the first experiment. To be able to compare
the different sized banners, we analyze the properties per pixel of the banner,
instead of the properties of the whole banner. In this way, the results do not
depend on the size of the banner. To do this, we define the price per pixel of

the banner as Price pp = W and the computation time per pixel as

Comp. time pp = %

We first conduct a sensitivity analysis about the trade-off between effec-
tiveness and efficiency with regard to the reactive GRASP algorithm, obtained
by varying the maximum number of iterations. This analysis is done regard-
less of the sorting criteria and type of banner. We do not make a distinction
between the different options of the reactive GRASP algorithm either. In fact,
for every value of the maximum number of iterations, we aggregate all different
versions of the algorithm. For each of these values of the maximum number of
iterations we compute the mean of Price pp and the mean of Comp. time pp.
These results are displayed in Figure 6.

There is a sudden increase in the mean of Comp. time pp between a maxi-
mum number of iterations of 40 and 50. Also, as we reach a maximum number
of iterations of 40, the mean of Price pp is growing relatively slow as the max-
imum number of iterations increases. Therefore, we set the maximum number
of iterations for the reactive GRASP algorithm to 40. This means that for
the largest banner we consider (large rectangle), the total computation time
is 3.221 seconds on average, which is below 30 seconds, as desired. Note that
there is no optimal choice for the maximum number of iterations, as one may
want to have higher effectiveness (efficiency) at the expense of lower efficiency
(effectiveness).

8.9
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a7l / 15

8651 | 14
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Fig. 6. The trade-off between effectiveness and efficiency with regard to the reactive
GRASP algorithm.

As in the first analysis, the second analysis is done regardless of the sorting
criteria and type of banner. For the reactive GRASP algorithm, we again do
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not make a distinction between the different options. Here, we aggregate all
different versions of the algorithm and compare their properties by using the
five-number summary and the mean. The five-number summary is a descriptive
statistic that consists of the five most important percentiles of a data-set: the
minimum, the first quartile, the median, the third quartile, and the maximum.
The values of these descriptive statistics for the price and the computation
time per pixel are displayed in Tables 12 and 13.

On almost every point in Table 12, the reactive GRASP algorithm per-
forms the best. The least effective results are generated by the greedy stripping
algorithm and the partitioning left-justified algorithm. However, the highest
maximum value of the price per pixel is generated by the partitioning left-
justified algorithm. Apparently, if the partitioning left-justified algorithm is
used on the right banner with the right sorting criteria, it generates a very
good solution.

According to the numbers in Table 13, the greedy stripping algorithm is the
most efficient algorithm. The least efficient algorithm is the reactive GRASP
algorithm. From this we can conclude there is a trade-off between the effective-
ness and efficiency of the algorithms: in general, the more efficient an algorithm
is, the less effective its results are.

Table 12. The five-number summary and the mean of the Price pp.

Algorithm | Minimum Q1 Median Q3 Maximum Mean
Reactive GRASP | 7.5840 8.5588  9.0301 9.2296 9.6577 8.8566
Left just. 5.7739 7.6332 8.5688  8.8846 9.6839 8.2275
Orthogonal 5.7606 7.6434 8.5888  8.8821 9.6839 8.2272
Part. left just. 5.9451 7.3669 8.0585  8.7750 9.6850 7.9985
Greedy str. 5.2074 7.3541 8.2605  8.6633 9.5463 7.9901

Table 13. The five-number summary and the mean of the Comp. time pp in seconds.

Algorithm ‘ Minimum Q1 Median Q3 Maximum  Mean

Greedy str. 1.554E-08  4.266E-08 5.867E-08 8.848E-08 3.780E-07  6.529E-08
Left just. 5.874E-07  2.445E-06  3.924E-06 8.038E-06 3.661E-05  5.905E-06
Orthogonal 1.099E-06 3.206E-06 6.851E-06 1.014E-05 2.099E-05  7.459E-06
Part. left just. 1.157E-06  3.201E-06 5.551E-06 1.539E-05 3.780E-05 1.094E-05
Reactive GRASP | 5.040E-06 2.002E-05 3.123E-05 4.781E-05 0.0029 3.374E-05

In the previous analysis, there was no distinction made between the dif-
ferent types of the banners or the sorting criteria. We now do distinguish the
different sorting criteria and compare the best results per banner for each algo-
rithm. These results are displayed in Tables 14-18. In 4 of the 5 banner types,
the reactive GRASP algorithm creates a solution with the highest fillrate.
Except for the leader board and the skyscraper, the reactive GRASP algorithm
generates solutions with the highest price per pixel for all other cases. The
drawback of this algorithm is that the computation time per pixel is for almost
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each banner the highest. For each type of banner, the most efficient algorithm
is the greedy stripping algorithm.

We considered all different versions of the reactive GRASP algorithm. In
Tables 14-18, we show the best options. As in the results of the experiment
with a small number of instances, the options are represented by the numbers
stated in Table 1 and Table 2. It is notable that in almost each best solution
the algorithm selects the ad from the 100(1 — d)% ‘best’ ads (Option 2.2)
and places the selected ad in the corner of the rectangle which yields the
highest price for the ad (Option 3.2). The choice about which rectangle to
fill in the construction phase (Option 1) and the choice about which ads to
remove in the improvement phase (Option improve), do not seem to influence
the effectiveness. The different options of the reactive GRASP algorithm are
further analyzed in the next paragraphs.

Table 14. Best results leader board (728x90).

Algorithm ‘ Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options

Part. left just. maxpp. desc.  price desc.  4.48260E-06 9.6850 0.9890

Left just. maxpp. desc.  price desc.  3.8466E-06 9.6839 0.9890

Orthogonal maxpp. desc.  price desc.  6.6666E-06 9.6839 0.9890

Reactive GRASP | maxpp. desc.  price desc.  6.9035E-05 9.6577 0.9890 (1,2, 2,1, 15)
Greedy str. maxpp. desc.  size asc. 7.5998E-08 9.5463 0.9774

Table 15. Best results half banner (234x60).

Algorithm ‘ Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options
Reactive GRASP | maxpp. desc.  size desc. 5.3945E-05 9.3071 0.9829 (2,2, 2,1, 10)
Part. left just. maxpp. desc.  price desc.  1.7150E-06 9.2798 0.9829

Orthogonal maxpp. desc.  price desc.  2.7342E-06 9.2389 0.9829

Left just. maxpp. desc.  price desc.  1.1059E-06 9.2392 0.9829

Greedy str. maxpp. desc.  flatn. asc. 1.0701E-07 9.1547 0.9779

Table 16. Best results square button (125x125).

Algorithm ‘ Prim. sort Sec. sort Comp. time pp (s) Price pp  Fillrate Options
Reactive GRASP | price desc. height desc. 2.0486E-05 8.0132 1 (2,2,2,1, 10)
Part. left just. price desc. maxpp. desc.  2.1729E-06 7.6966 0.9158

Left just. price desc. maxpp. desc.  2.4424E-06 7.6909 0.9158

Orthogonal price desc. maxpp. desc.  2.7942E-06 7.6698 0.9171

Greedy str. width desc. maxpp. desc.  5.0799E-08 7.4864 0.8960

Table 17. Best results skyscraper (120x600).

Algorithm ‘ Prim. sort Sec. sort Comp. time pp (s) Price pp  Fillrate Options
Orthogonal maxpp. desc.  prop. asc. 7.1995E-06 9.3057 0.9997

Reactive GRASP | maxpp. desc.  size desc. 3.3084E-05 9.2689 0.9992 (1,2, 2,2, 15)
Left just. maxpp. desc.  price desc. 3.0352E-06 9.2364 0.9968

Greedy str. maxpp. desc.  width desc.  4.7787E-08 8.9760 0.9671

Part. left just. maxpp. desc.  prop. desc. 5.2536E-06 8.4226 0.8903
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Table 18. Best results large rectangle (336x280).

Algorithm Prim. sort Sec. sort Comp. time pp (s) Price pp  Fillrate Options
Reactive GRASP | price desc. flatn. desc. 5.7904E-06 9.1036 0.9778 (3,1, 2, 1, 10)
Left just. price desc. maxpp. desc.  2.8398E-06 8.9557 0.9727

Orthogonal price desc. maxpp. desc.  3.8659E-06 8.9546 0.9731

Part left just. price desc. height desc. 2.7337E-05 8.7751 0.9582

Greedy str. height desc.  price desc. 1.9339E-08 8.3776 0.9229

To analyze the different options of the reactive GRASP algorithm, we
aggregate the results for the different sorting criteria and different banners.
This is done by averaging the computation time and the price per pixel over
all different versions of a specific combination of options. The ten best and
worst results are presented in Tables 19 and 20. In Table 19, the combinations
of options are ordered descending with respect to the mean computation time,
and in Table 20 they are sorted descending with respect to the mean price per
pixel.

Table 19. The average results Table 20. The average results

of the reactive GRASP algorithm of the reactive GRASP algorithm

sorted descending on the mean sorted descending on the mean

computation time (efficiency). price per pixel (effectiveness).

Options Mean Comp. Mean Options Mean Comp. Mean

time Price pp time Price pp
(2,2, 1, 1, 15) 3.4089 8.8135 (1,2,2,2, 15) 1.5814 8.9416
(1,1, 2,1, 15) 2.8074 8.8553 (1,2,2,1, 15) 2.0775 8.9412
(1,2, 1,1, 15) 2.2127 8.9224 (1,2, 2,1, 10) 1.6667 8.9403
(3,2, 1,1, 15) 2.0902 8.8943 (1,2,2,2,10) 1.4672 8.9390
(1,2,2,1, 15) 2.0775 8.9412 (1,2,2,1,5) 1.3886 8.9359
(2,2, 2,1, 15) 2.0569 8.9300 (1,2,2,2,5) 1.3454 8.9316
(1,1, 1, 1, 15) 1.9221 8.8408 (2,2,2,2,15) 1.5677 8.9309
(3,2,2,1, 15) 1.9036 8.9251 (2,2,2,1,15) | 2.0569 8.9300
(3,1,1, 1, 15) 1.8225 8.8050 (2,2, 2,2, 10) 1.4473 8.9269
(2,1,2,1, 15) 1.7833 8.8448 (2,2,2,1, 10) 1.6666 8.9263
(1,1,2, 1, 5) 1.2649 8.8501 (3,1, 1,2, 15) 1.5544 8.8013
(2,1,1,2,5) 1.2616 8.7188 (3,1, 1,2, 10) 1.3920 8.7995
(2,1,1,1,5) 1.2480 8.7239 (3,1, 1, 1, 5) 1.2653 8.7970
(2,1,2,1,5) 1.2464 8.8359 (3,1,1,25) 1.2406 8.7962
(1,1, 1,2, 5) 1.2454 8.8282 (2,1, 1,1, 15) 1.5260 8.7278
(3,1,1,2,5) 1.2406 8.7962 (2,1, 1, 1, 10) 1.3840 8.7273
(1,1,2,2,5) 1.2296 8.8502 (2,1,1, 1, 5) 1.2480 8.7239
(2,1,2,2,5) 1.2132 8.8373 (2,1, 1, 2, 10) 1.3937 8.7231
(3,1,2,1,5) 1.1756 8.8275 (2,1, 1,2, 15) 1.5120 8.7220
(3,1,2,2,5) 1.1644 8.8213 (2,1, 1,2, 5) 1.2616 8.7188

We see that most of the versions of the reactive GRASP algorithm which
have the highest computation time, use the improvement phase where the last
added 8% of the ads are removed (Option improve.1). The higher this value
for B, the higher the computation time is. This is because a larger number of
ads are removed when [ increases, and thus partially filled banner can be filled
with more ads, which takes longer. As can be seen in Table 20, this increase in
computation time does not necessarily lead to more effective results. However,
it is observable that a combination of selecting an ad from the 100(1—d)% ‘best’
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ads (Option 2.2) and placing the selected ad in the corner which yields the
highest price (Option 3.2) leads to effective results, whereas the combination
of selecting an ad from the set of ads with a value which deviates at most d%
from the best value (Option 2.1) and placing the selected ad in the corner
which is nearest to a corner of the banner (Option 3.1) leads to the least
effective results.

Option 2 determines the number of ads from which one is selected. The set
of the 100(1 — d)% ‘best’ ads is apparently better to choose from. This can be
explained by the fact that relatively more ‘best’ ads are contained in this set,
than in the set of ads with a value that deviates at most 100(1 — d)% from the
best value. So a ‘better’ ad (an ad that generates more revenue) will be chosen.
The difference in the results caused by the placement strategy can be explained
by the following. Placing ads in the corner of the rectangle which is nearest
to a corner of the banner should lead to larger empty rectangles in the middle
of the banner which should be easier to fill. Placing an ad in the corner which
yields the highest price, will scatter the ads more over the banner, leading to
smaller empty rectangles. According to the results, a higher price for an ad is
more important than larger empty rectangles. How to choose the rectangle in
which an ad will be placed, seems to influence neither the effectiveness, nor
the efficiency of an algorithm.

6 Conclusion and future work

In this paper we addressed the MAALP-problem, an extension of the multiple
advertisement allocation problem where a pixel-price model is used to deter-
mine the price of an advertisement on a banner. In Section 3, we presented
a formal definition of the problem and gave two 0-1 integer programming
formulations that specify the problem.

Using simulation experiments, we found that for each type of banner, the
greedy stripping algorithm is the most efficient algorithm. The most effective
algorithms with their properties are displayed in Table 21 for each type of
banner. The newly proposed reactive GRASP algorithm is the most effective
algorithm for three of the five banners. Overall, the newly proposed parti-
tioning left-justified algorithm performs worse than the existing left-justified
algorithm and orthogonal algorithm qua effectiveness, but for some specific
problem instances it does perform better.

A natural phenomenon that is visible in the experiments is the trade-off
between efficiency and effectiveness of an algorithm. The algorithms compared
in this paper all render an acceptable solution in a reasonable time span. Which
algorithm to choose, depends on your preferences with respect to efficiency and
effectiveness. If you care more about the effectiveness of a solution than about
the efficiency, it is possible to improve the solution of the reactive GRASP
algorithm even further. We defined the maximum number of iterations as 40,
but by increasing this number, the algorithm will render more solutions and is
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possible to find an even better solution. The disadvantage of this is the increase
in computation time.

Table 21. The most effective algorithms and their properties for each type of banner.

Banner Algorithm Prim. sort Sec. sort Options
Leader board Part. Teft just. maxpp. desc. price desc.

(728 % 90)

Half banner Reactive GRASP  maxpp. desc.  size desc. (2,2, 2,1, 10)
(234 x 60)

Square button Reactive GRASP  price desc. height desc. (2, 2, 2, 1, 10)
(125 x 125)

Skyscraper Orthogonal maxpp. desc.  prop. asc.

(120 x 600)

Large rectangle | Reactive GRASP  price desc. flatn. desc. (3,1, 2,1, 10)
(336 x 280)

Overall, the adaptation of the multiple advertisement allocation problem to
account for the location differences is making this problem more real and useful
for industry practitioners. The newly presented algorithms (reactive GRASP
and partitioning left-justified algorithm) are able to find solutions with better
price per pixel outcomes under similar time constraints, when compared to
the orthogonal algorithm, the left-justified algorithm, and the greedy stripping
algorithm. This would be quite beneficial for companies like Google, Facebook,
Snapchat, etc. Here, on the one side are the advertising companies and their
ads with corresponding bids. On the other side are the advertisers that need to
select which ads to show and how to allocate them optimally. The goal is that
both the revenues are optimised and the customers are satisfied with the ad
performance. Our work can be used in existing revenue management models
[33] by taking pixel advertisement into account.

Despite the extension of the multiple advertisement allocation problem
we discussed in this paper, there are still unexplored directions which are
interesting to investigate. One of these could be adding a time component to
the problem. A simplified variant of this is the ad placement problem. In this
problem, a banner needs to be filled with multiple advertisements for different
time slots. The banner can have a different allocation in each time slot, but
it is also possible to allocate ads in more than one time slot. The simplifying
factor is the assumption that each advertisement has the same height as the
banner, which makes it a one-dimensional knapsack problem. In the existing
literature, there are several algorithms that solve this problem, for example via
column generation [34] and Lagrangian decomposition [35] or with a hybrid
genetic approach [36]. It would be interesting to extend these algorithms or
even create new ones to solve the ad placement problem in the two-dimensional
case, as there is no known literature about it thus far.

Another limitation of our paper is that in the real world, there may be cases
of ads with non-rectangular shapes. In fact, every such advertisement consists
of pixels which are essentially squares. Considering the rectangles together to
combine them into certain shapes is another point for possible further research.
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The methods in our problems can also be improved. The price model we
use is based on the eye-tracking research done by [31, 32]. These researches
focus on the gazing time of people on an average website. This is the most
useful data now available on where people spend most attention on a Web
page. However, the researchers do not mention anything about advertisement
banners. To obtain a more realistic price model for the MAALP-problem, it
should be investigated where people pay attention to with respect to banners
specifically. Moreover, the improvement phase used in the reactive GRASP
algorithm could be refined. We remove a couple of ads from the banner and
use the deterministic construction phase to place new ads. In this construction
phase, the ‘best’ advertisement which fits, according to the sorting criteria,
is placed. If multiple placement strategies are considered (so not only placing
the ‘best’ ads) and the best solution with the highest price of the banner is
saved, the improvement can be higher. However, this can lead to an increase
in computation time.
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