
AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

DEPARTMENT: AFFECTIVE COMPUTING AND SENTIMENT ANALYSIS

EDITOR: Erik Cambria, Nanyang Technological University

Intent Classification for
Dialogue Utterances

Jetze Schuurmans
Flavius Frasincar
Erasmus University Rotterdam

In this work we investigate several machine learning

methods to tackle the problem of intent classification

for dialogue utterances. We start with Bag-of-Words

(BoW) in combination with Naïve Bayes (NB). After

that, we employ Continuous Bag-of-Words (CBoW)

coupled with Support Vector Machines (SVM). Then follow Long Short-Term Memory (LSTM)

networks, which are made bidirectional. The best performing model is hierarchical, such that it can

take advantage of the natural taxonomy within classes. The main experiments are a comparison

between these methods on an open sourced academic dataset. In the first experiment we consider

the full dataset. We also consider the given subsets of data separately, in order to compare our results

with state-of-the-art vendor solutions. In general we find that the SVM models outperform the LSTM

models. The former models achieve the highest macro-F1 for the full dataset, and in most of the

individual datasets. We also found out that the incorporation of the hierarchical structure in the intents

improves the performance.

Customer interaction is at the center of many organizations. In order to help customers efficiently,
one could automate the interaction between the organization’s representative and a customer.
Customers usually contact the organization with a specific request or query. In order to help
a customer, the intention of the customer needs to be classified. 1 Intent classification tries to
answer the question why the customer contacted the organization and what the customer wants
to achieve. The interaction can partly or fully be automated using a dialogue system 2, which
uses intent classification. The classification can also be used to help the human representatives,
namely, by using intent classification to direct the incoming messages to the representative that
has the right expertise. Due to its importance for dialogue handling 3, intent classification needs
to be done properly. Therefore, this research focuses on improving the existing practice of intent
classification for dialogue utterances.
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In order to classify intents of customers, a dialogue system needs to analyze the incoming mes-
sages. The messages are called utterances, or acts-of-speech. In our case they are typed messages
in English, roughly the length of a sentence. The classification of the intent is made per utterance.
We analyze the case where possible intents are disjoint. In other words, each incoming message
belongs to only one class. However, some intents might be very similar and belong to a com-
mon category, or in other words to a group of intents. We explore the possibility of extending the
classifier with knowledge about the inherent hierarchy of intents.

RELATED WORK AND SCIENTIFIC RELEVANCE
Previous studies have proposed several classification algorithms for short texts, starting with par-
simonious text classifiers, such as BoW with NB and CBoW with SVM. 4 The performance of
NB is limited by the vocabulary in the training set. SVM can circumvent this by using word em-
beddings, trained on an external corpus. However, with both approaches, word order is lost. To
account for complex dependencies between words in the representation of an utterance Recurrent
Neural Networks were introduced. 5 Most recently, LSTMs and their simplification Gated Recur-
rent Unit (GRU) have been used for intent classification 6 and emotion detection 7, respectively, in
dialogues. Attentive LSTMs 8 are less useful here as the classified text is rather short in nature.

Flat classifiers need to distinguish between all classes at once. When there is a large number of
classes, this can become difficult. Instead, hierarchical classification can be used. A hierarchical
classifier tries to incorporate the hierarchical structure of the class taxonomy. Hierarchical classi-
fication was first used for text classification by Koller and Sahami. 9 They used a local classifier
per parent node for training, at each node selecting a subset of features relevant for that step in
the classification process. A similar hierarchical structure with an SVM at every node was used
for speech-act classification. 10 Ono et al. used a form of local classifier per level, where they tried
the lowest level (leaf nodes) first. 11 If the uncertainty is too high, they move up in the hierarchical
level. Hierarchical classifiers have been used for intent classification in Web 12 and platform 13

searches. For chatbots multi-intent classification was researched by Rychalska et al. 14

We contribute to the existing literature in two ways. First, we apply hierarchical intent classifi-
cation on dialogue utterances (in multi-class classification as apposed to multi-label). Secondly,
we present performances of machine learning classifiers, alongside the black box models used by
Braun et al. 15

METHODOLOGY
In this section we discuss the methods used to classify intents. Each method is a combination of
an utterance representation and a classification algorithm. We start with a formalization of the
problem. Then follow the flat classifiers. Finally, we discuss the hierarchical classifier.

Intent Classification

The classification of an intent is answering the question: What is the customer trying to accom-
plish? In intent classification, the utterance d ∈ X of a dialogue is given, where X is the utter-
ance space; a fixed set of predefined intents C = {c1, . . . , cJ}; and a training set D of labeled
dialogue utterances {di, ci}Ni=1, where (d, c) ∈ X × C. We consider the one-off problem or
in other words single label classification, where each d corresponds to one element of C. For
example,

(d, c) = (‘What software can I use to view epub documents?’, ‘Software Recommendation’).
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Flat Classifiers

BOW-NB. The first model we discuss is the BoW representation with multinomial NB. This
model is the baseline in our experiments. Each utterance is represented by the set of word counts
that occur in the utterance. Therefore, word order is neglected. The way we implement NB is as
follows. First, we start by removing the stop words. Secondly, we use lemmatization. Although
the combination of uni-gram and bi-gram is advised 4, we do not have enough bi-gram counts.
Therefore, we only use uni-grams. We handle zero counts with Laplace smoothing.

An advantage of NB is its efficiency during training time, as it only needs to pass through the
data once. However, the downside of NB is the conditional independence assumption, stating that
terms and the signal they carry are independent of each other given the class. Furthermore, the
model uses the positional independence assumption, stating the position of a word does not matter.
Most importantly NB cannot handle unseen words.

CBOW-SVM. Secondly, we discuss CBoW as an input for SVM. CBoW uses continuous word
representations called word embeddings. This gives the SVM classifier the advantage to pick up
signals from similar in meaning, yet unseen, words. We use three word embeddings: Word2Vec 16,
GloVe 17, and FastText 18.

The CBoW representation is comparable to the conventional bag-of-words representation, since
both lose the information of the order of terms. However, using word embeddings gives CBoW an
advantage over traditional bag-of words. Namely, CBoW can pick up signals from previously un-
seen words. CBoW gives us the additional advantage that the input for the classification algorithm
is a fixed dimensional vector, independent of the length of the utterance or vocabulary. This is a
desirable feature for SVMs. There are two forms of CBoW we consider. One takes the sum of the
embedding vectors of the respective terms, while the other takes the average:

CBoWsum(t1, . . . , tk) =

k∑
i=1

v(ti), CBoWave(t1, . . . , tk) =
1

k

k∑
i=1

v(ti), (1)

where each feature ti corresponds to a word and has an associated vector v(ti).

The intuition behind CBoW is as follows. The summation of word vectors creates a path in the
word embedding space. The resulting vector (from the origin to the end of the path) should cap-
ture a mathematical representation of the overall meaning of the utterance. Adding more words
with the same meaning might spread the cluster of the representations of a given intent, possi-
bly making the classification harder. When the average is taken, the overall length of this path is
normalized with respect to the number of words in the utterance.

SVMs are a classification method that uses a kernel function to find decision boundary between
two classes that has a maximum margin in a latent space. We consider both the Linear and Radial
Basis Function kernels. Since we allow for misclassifications in the training set, a cost parameter
C is added to give a penalty to these violations. In order to determine which kernel and hyperpa-
rameters to use, we use 2-fold cross validation with stratified sampling.

Inherently, SVMs are binary classifiers. Several attempts have been made to create a multiclass
SVM scheme. 19 We use the one-against-one 20 scheme, as it performed as one of the best in the
comparison of Hsu and Lin. 19 During testing we use Max Wins voting 21, where the class with the
highest number of votes is chosen as final prediction. Since we are dealing with unbalanced class
distributions, we use class weights in the SVM.

LSTM. The key feature of recurrent neural networks (RNN) is that they can process sequential
data, giving them the possibility to model word dependencies. Parameter sharing enables the
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recurrent network to pick up signals from longer sequences than dense neural networks, and to
take inputs of arbitrary length and learn general patterns across them. There are several types
of RNN architectures 22, we consider the tail model. The tail model constructs a hidden state
by passing the complete sequence and using the last hidden state as input for the classification
layer. Alternatives such as the pooling or hybrid pooling do not consistently outperform the more
parsimonious tail model. 22

Gated RNNs are the most compelling sequence models used in practice. These include networks
based on the LSTM 23 and GRU 24. Gated RNNs are based on the idea of creating paths through
time that have derivatives that neither vanish nor explode. This is done by learning connection
weights, and the ability to forget the old state, from the data. We choose to use LSTMs over
GRUs due to the extra flexibility offered by the controls for the update and output of the state.

Bidirectional LSTM (BiLSTM) was created to model dependencies on the next time step in the
sequence. 25 They are a combination of a recurrent module that passes the sequence forward
through a memory block and a recurrent module that passes the sequence backwards through
a different memory block. The tail model uses a concatenation of the final two hidden states as
input for the last layer.

Following similar work the network is trained using the Adam optimizer. 6 We calculate updates
from the gradients based on batches of training utterances. We use Back-Propagation Through
Time (BPTT) 26 to update recurrent components. Gradient Clipping is used in order to deal with
exploding gradients and we found that capping the gradients at 5 works well. We use the follow-
ing regularizers: early stopping, ensembles, and weight noise. A popular way of creating weight
noise is by applying dropout. We use dropout only at the non-recurrent connections. 27 The hy-
perparameters of the LSTM model are the size of the input dimension, and the size of the state
variable. Both are determined by 2-fold cross validation using stratified sampling.

Hierarchical Classifiers

Hierarchical classification can be considered as a classification that takes the hierarchical structure
of the taxonomy of classes into account, as opposed to a flat classifier, which only takes the final
classes into account. By imposing the hierarchical structure, the model does not need to learn the
separation between a large number of classes. It can now focus on classifying subclasses within a
category. The taxonomy can be formalized as a tree or a Directed Acyclical Graph 28, we consider
the case where the taxonomy is a tree due to the nature of our data.

Our goal is to reduce the number of classes considered based on the natural taxonomy, therefore
we use a local classifier per parent node. This local hierarchical classifier has a flat classifier at
every parent node, which means that the number of classifiers that need to be constructed scales
directly with the number of parent nodes. During training of a classifier at any given parent node,
only the observations belonging to its children are considered. After training each individual clas-
sifier, the local classifier can be used for inference. During testing, the classification starts at the
root node. The outcome of the root node determines which next classifier should be considered.
The outcome of this classifier selects the next classifier to be used. This is repeated until a leaf
node is predicted, this then becomes the final prediction of the local classifier.

Performance Measure

We measure the performance with the macro-F1 score. The F1 score is a harmonic mean of the
precision and recall for each intent. We value both and do not want a linear trade-off between
them. We are interested in the performance on all classes equally, independent of the number of
test observations. Therefore, we aggregate the measures by means of the macro average.
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DATASET AND EXPERIMENTS

We use the dataset curated by Braun et al. 15, available at https://github.com/sebischair. It consists
of two corpora, distinguished by the way they were gathered. There is the Chatbot Corpus on
Travel Scheduling, and the StackExchange Corpus on Ask Ubuntu and Web Applications. In this
section we discuss the experimental setups on this dataset.

Complete Dataset. We start with the complete set that includes all training observations and all
intents. This gives us the opportunity to select the best overall model. The best model is selected
based on the macro-F1 score. The concatenation of the three subsets imposes a hierarchy in the
taxonomy of intents. This allows us to compare hierarchical classifiers with flat classifiers. The
class hierarchy and the local classifiers are depicted in Figure 1.

Figure 1. Hierarchy of the classes with a local hierarchical classifier per parent node.

Individual Datasets. In this experiment we consider the subsets of the data separately. This gives
us the possibility to compare our methods with the classifiers used by Braun et al. 15 They use the
Natural Language Understanding solutions of LUIS, Watson Conversation, API.ai, and RASA.

RESULTS

Complete Dataset. The results of the different classifiers on the complete dataset are reported
in Table 1. The best performing flat classifier is the SVM model, this is independent of the type
of word embedding or the method used to aggregate the word embeddings. We select this clas-
sifier as candidate for the hierarchical classifier. When adding hierarchy to the models, we find
varying results. The baseline model clearly improves when taking the taxonomy of classes into
account, while adding the local hierarchy to the SVMs comes with mixed results. For the FastText
embeddings it is a clear improvement, while for the GloVe embeddings it is not. Overall, the best
hierarchical SVM outperforms the best flat SVM.

Table 1. Macro-F1 for the test set on the complete dataset.

Model Flat Hierarchical Model Flat

NB .541 .614
SVM FastText average .689 .782 LSTM FastText .605
SVM FastText sum .657 .642 BiLSTM FastText .569
SVM GloVe average .752 .654 LSTM GloVe .586
SVM GloVe sum .680 .658 BiLSTM GloVe .575
SVM Word2Vec average .705 .703 LSTM Word2Vec .543
SVM Word2Vec sum .673 .706 BiLSTM Word2Vec .502

https://github.com/sebischair
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With regard to the utterance representation we find that averaging is better than summing the
word embeddings, as SVM with CBoWave performs better in the flat classification and the best
hierarchical classifier uses also averages. Furthermore we note that the bidirectional component in
the BiLSTMs does not capture more information, as the LSTM performs better than the BiLSTM.
Together with the fact that the SVM outperforms the LSTM, this indicates that taking the word
order into account is not relevant in this dataset. This is likely due to the short utterance length.

Individual Datasets. The macro-F1 scores for the individual datasets are presented in Table 2.
We note that it is hard to interpret the comparison with Braun et al. 15, as most of the methods used
are black boxes.

Table 2. Macro-F1 score for the individual subsets.

Travel Scheduling Ask Ubuntu Web Applications

NB .959 .726 .502
SVM FastText average .958 .812 .771
SVM FastText sum .968 .800 .658
SVM GloVe average .946 .805 .591
SVM GloVe sum .957 .729 .692
SVM Word2Vec average .979 .742 .698
SVM Word2Vec sum .946 .742 .680
LSTM FastText .968 .644 .465
BiLSTM FastText .979 .646 .549
LSTM GloVe .945 .665 .546
BiLSTM GloVe .979 .667 .635
LSTM Word2Vec .989 .631 .395
BiLSTM Word2Vec .989 .710 .443
LUIS .979 .743 .690
Watson .968 .819 .630
API.ai .931 .782 .628
RASA .979 .708 .494

In the Travel Scheduling dataset, the (Bi)LSTM with Word2Vec embeddings performs the best.
The SVM with Word2Vec and CBoWave and BiLSTM perform equally well as the intent clas-
sifiers of LUIS and RASA. We note that the relatively high performance of our baseline, NB,
indicates that this is a relatively easy set to classify.

The Ask Ubuntu set provides a slightly harder classification task. In this set the intent classifier
of Watson outperforms the other vendor solutions as well as all our models. From our models,
the SVM with FastText with CBoWave is the best performing model. We note that all recurrent
neural networks are performing worse than the NB baseline.

The final subset is on Web Applications. The Web Applications data proves to be more difficult,
this is likely due to the fact that it has very few training observations (an average of less than 4
training observations per intent). Here we see that our best performing model is the SVM with
FastText and CBoWave. Together with the Word2Vec CBoWave and the GloVe CBoWsum it
outperforms the vendor solutions. Furthermore, we note that the BiLSTM is the best performing
recurrent network, just as in the Travel Scheduling and Ask Ubuntu sets. One can note that on
the complete dataset the LSTM performed better than BiLSTM, as the LSTM has an edge in
differentiating between the three types of datasets.
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CONCLUSION
In general we find that the SVM models outperform the LSTM models. They achieve the high-
est macro-F1 for the full dataset, as well as the ability to handle the scenario of the individual
datasets. With regard to taking advantage of the hierarchical structure in the intents, we find that
the SVM with averaged FastText embeddings significantly benefits from the hierarchy and out-
performs all other models. Using word embeddings as utterance representation yields a better
performance than using a count based method. However, taking word order into account does
not. In general we see better results when we take the element wise average of the word embed-
dings, as apposed to the sum, indicating that correcting for the length of the utterance is useful.
Finally, we note that our models improve on the NB baseline. Furthermore, they are on par with
or improve on the performance of the black box methods used by Braun et al. 15

Future Research

There are different opportunities for future work, we discuss a few below. We start with several
options with respect to the hierarchy, followed by data augmentation and transfer learning.

The type of hierarchical model considered is a local hierarchical classifier per parent node. Al-
ternatively a global hierarchical classifier could be constructed by modifying a flat classifier to
take the taxonomy into account at once. The intermediate certainties could be exploited by the
dialogue system, with specific follow-up questions.

In order to deal with the limited number of training observations, future work could look into
data augmentation or transfer learning. Data augmentation could be used by interchanging one
or multiple random words with their synonyms. Alternatively, transfer learning can be used. One
could take a subset of intents, starting with 2 intents, training the classifier and using the inferred
weights as initialization when learning to classify with an additional intent added to the problem.
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