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ABSTRACT
The Aspect-Based Sentiment Classification (ABSC) models
often suffer from a lack of training data in some domains.
To exploit the abundant data from another domain, this
work extends the original state-of-the-art LCR-Rot-hop++
model that uses a neural network with a rotatory atten-
tion mechanism for a cross-domain setting. More specif-
ically, we propose a Domain-Independent Word Selector
(DIWS) model that is used in combination with the LCR-
Rot-hop++ model (DIWS-LCR-Rot-hop++). DIWS-LCR-
Rot-hop++ uses attention weights from the domain classifi-
cation task to determine whether a word is domain-specific
or domain-independent, and discards domain-specific words
when training and testing the LCR-Rot-hop++ model
for cross-domain ABSC. Overall, our results confirm that
DIWS-LCR-Rot-hop++ outperforms the original LCR-Rot-
hop++ model under a cross-domain setting in case we
impose an optimal domain-dependent attention threshold
value for deciding whether a word is domain-specific or
domain-independent. For a target domain that is highly
similar to the source domain, we find that imposing mod-
erate restrictions on classifying domain-independent words
yields the best performance. Differently, a dissimilar target
domain requires a strict restriction that classifies a small
proportion of words as domain-independent. Also, we ob-
serve information loss which deteriorates the performance
of DIWS-LCR-Rot-hop++ when we categorize an excessive
amount of words as domain-specific and discard them.

CCS Concepts
•Information systems → Sentiment analysis; Information ex-
traction; Web mining;

Keywords
ABSC, cross-domain ABSC, domain-specific word masking,
attention threshold, DIWS-LCR-Rot-hop++

1. INTRODUCTION
The evolution of the Web has changed how people think
and make decisions. Furthermore, the recent development
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of social media and e-commerce platforms has opened the
forum for people to exchange their opinions on social events
or products and services on the market. As a result, the
number of opinionated texts on the Web is rapidly growing,
and understanding the voice of the customer is becoming
crucial for business success [22]. However, it is difficult to
summarize this public opinion because an enormous number
of opinionated texts and reviews are available [8]. To solve
this issue, the current research has proposed a Natural Lan-
guage Processing (NLP) task so-called Sentiment Analysis
(SA) that identifies the overall sentiment of a given text [19].

One of the branches of SA is Aspect-Based Sentiment Anal-
ysis (ABSA) [27]. It consists of two tasks: Aspect Detec-
tion (AD), which identifies the aspect in the text [30], and
Aspect-Based Sentiment Classification (ABSC) which deter-
mines the sentiment about the previously found aspect [2].
Unlike ordinary SA, ABSA can separately detect multiple
sentiments in a given text. This feature is especially use-
ful for analyzing customer reviews [12]. On the Web, there
exists an excessive amount of positive reviews compared to
negative reviews because people with high valuations on a
product are more likely to make a purchase and write a re-
view [15]. However, people may partially express negative
opinions about a specific aspect of a product even though
they are generally satisfied. For instance, one may write a
positive review on a new cell phone but complain about its
camera quality. ABSA can capture a negative sentiment of a
specific aspect in a generally positive review, while ordinary
SA ignores it. Figure 1 illustrates an example of ABSA.

Figure 1: Illustration of ABSA in the hotel domain [23].

This research focuses on ABSC. In practical applications, it
is difficult to train ABSC models to a sufficient extent be-



cause of the limited number of input sentence data. This
issue is prominent in certain domains while other domains
have a sufficient amount of data. To exploit this data im-
balance, a number of approaches have been proposed by
various studies. For example, [32] fine-tunes the upper lay-
ers of LCR-Rot-hop++ to increase cross-domain adaptabil-
ity. Also, [34] introduces the BERTMasker algorithm that
transforms the input sentences into domain-invariant sen-
tences by masking the domain-related words and training
the model using domain-agnostic words. Additionally, [16]
extends the LCR-Rot-hop++ model with Domain Adver-
sarial Training (DAT) method to construct a cross-domain
DAT-LCR-Rot-hop++ model.

Nevertheless, the first fine-tuning approach partially re-
quires the sentiment-labeled target domain data. Similarly,
the BERTMasker model performs the best when it utilizes
part of the sentiment-labeled target domain data. Also,
BERTMasker cannot process the ABSC task. Thus, these
models are not suitable for a cross-domain ABSC where
sentiment-labeled data are not available in a domain of
our interest. To solve this issue, we propose a Domain-
Independent Word Selector (DIWS) model and apply it
to the LCR-Rot-hop++ model (DIWS-LCR-Rot-hop++).
This model utilizes attention weights from a domain clas-
sification task to decide whether a word is domain-specific
or domain-independent. It only uses domain-independent
words to train and test the LCR-Rot-hop++ model. Unlike
fine-tuned LCR-Rot-hop++ [32] and BERTMasker [34], we
can train the model using only data from other domains
with sufficient sentiment-labeled texts. As DAT-LCR-Rot-
hop++ shares the same advantage, we use it as a benchmark
model to assess the performance of the proposed DIWS-
LCR-Rot-hop++ model.

In this paper, we apply the DIWS model to the LCR-Rot-
hop++ model yielding the DIWS-LCR-Rot-hop++ model.
To this end, we aim to verify whether the combination of
DIWS and LCR-Rot-hop++ outperforms the naive cross-
domain ABSC performance of LCR-Rot-hop++, where we
train and test the model with a completely different domain
data without any adjustment to LCR-Rot-hop++. Further-
more, to verify the degree of effectiveness of discarding the
domain-specific words, we compare the accuracy level un-
der different strictness levels of deciding whether a word is
domain-specific or domain-agnostic. More specifically, we
incrementally increase the proportion of discarded words by
relaxing the discarding threshold and verifying the trade-off
between domain adaptability and information loss. Addi-
tionally, we compare the accuracy of the DAT-LCR-Rot-
hop++ model under a cross-domain setting to assess the
performance of our proposed model.

Differently than in our previous work [17], for which this
work is an extension, we provide additional examples to il-
lustrate the addressed problem and its solution, elaborate
the hyperparameter optimization process, compare the pro-
posed approach to an additional baseline, and explain our
methodology and evaluation in more detail.

This research contributes to the current literature by propos-
ing a method named Domain-Independent Word Selector
(DIWS) to better train an existing state-of-the-art ABSC
model (LCR-Rot-hop++) for cross-domain sentiment anal-

ysis tasks. Moreover, this proposed model is not only appli-
cable to ABSC but also to other types of SA, which implies
its wide applicability in the field of sentiment analysis. To
the best of our knowledge, the idea of discarding domain-
specific words while training a deep learning method for the
ABSC task is new. The Python source code and data are
available on the GitHub repository1.

The structure of the rest of the paper is as follows. In Sec-
tion 2, we introduce the methodologies for ABSC and cross-
domain SA in the current literature in detail and discuss
their relevance to our research. In Section 3, we introduce
the used datasets and the cleansing process. In Section 4,
we elaborate on the theoretical framework, structure, and
mathematical formulations of the models that this paper in-
vestigates. In Section 5, we give the results and make com-
parisons between competing methods to answer the research
question. Last, Section 6 provides a summary of the find-
ings, discusses the limitations of our research, and proposes
future research ideas.

2. RELATED WORK
In this section, we present work related to our research.
First, in Subsection 2.1, we present approaches for ABSC.
After that, in Subsection 2.2, we describe solutions for cross-
domain sentiment classification.

2.1 Aspect-Based Sentiment Classification
There exist two major approaches to ABSC: knowledge-
based and machine learning-based. Knowledge-based algo-
rithms, also known as rule-based algorithms use pre-defined
sentiment dictionaries such as SenticNet [3] and WordNet
[21] to assess the sentiment score of a specific expression
corresponding to an aspect in a given sentence. Afterward,
this sentiment score is used to define the sentiment polar-
ity of the aspect. Also, [28] argues that a domain-specific
ontology can significantly improve the performance of con-
ventional machine learning methods when they are utilized
together. An ontology is a set of domain-specific concepts,
features, and their semantic inter-relationships [10].

This paper focuses on the second approach which uses ma-
chine learning algorithms. In detail, the neural network
models and attention models are widely used. For example,
[6] introduces Recursive Neural Networks (RecNNs) to this
field by proposing an Adaptive Recursive Neural Network
(AdaRNN). Also, Recurrent Neural Network (RNN) is one
of the popular methods in SA [26; 35]. However, the main
drawback of an ordinary RNN methodology is the long-term
dependency problem, which refers to the tendency that the
prior information to be dissolved when the input sequence
is too long [13]. To address this issue, [13] suggests a spe-
cial type of RNN model called Long Short-Term Memory
(LSTM). Unlike traditional RNN models, LSTM employs
additional gate nodes to control the information transfer
between hidden layers. This structure allows LSTM to ef-
ficiently learn long-term relationships of data. Nonetheless,
LSTM processes the information sequentially, which leads to
a tendency that LSTM output converges to the latest input
pattern. To address this concern, [9] suggests a bidirectional

1https://github.com/ejoone/DIWS-ABSC



LSTM (bi-LSTM). It adds a reverse direction LSTM layer
to the original LSTM network and uses both forward and
backward LSTM layers to obtain a final result.

Furthermore, [39] proposes a Left-Center-Right separated
neural network with Rotatory attention (LCR-Rot) that
demonstrates high performance when an aspect contains
multiple words by capturing the contextual information
around the aspect. LCR-Rot is an extension of bi-LSTM
and it utilizes three separate bi-LSTM networks, which cor-
respond to the left context, target words, and right context,
respectively. Also, rotatory attention helps to better model
the relationship between the target words and left/right con-
text, which allows the model to capture the most impor-
tant words. [39] has confirmed that LCR-Rot outperforms
other LSTM-based models. Additionally, LCR-Rot-hop is
an extension of LCR-Rot proposed by [33]. It iterates the
rotatory attention mechanism multiple times as it better
exploits the interactions between the target words and the
right/left context. To even better represent the contextual
information, [31] proposes LCR-Rot-hop++ which replaces
non-contextual word embeddings of LCR-Rot-hop (GloVe)
with contextual word embeddings (BERT). Also, it adds an
extra attention layer to obtain hierarchical attention. [31]
has shown that LCR-Rot-hop++ in combination with a do-
main ontology (HAABSA++) outperforms other models on
ABSC. In this research, we focus on LCR-Rot-hop++ and
aim to incorporate the DIWS model inspired by the BERT-
Masker network of [34] to extend LCR-Rot-hop++ to the
cross-domain setting.

2.2 Cross-Domain Sentiment Classification
Cross-domain sentiment classification aims to solve the in-
sufficient training data problem in one domain by leveraging
the data from other domains. It is important to note that
cross-domain sentiment classification and multi-domain sen-
timent classification are different while sharing a similar pur-
pose. Multi-domain sentiment classification aims to train
the sentiment classification model using both the source do-
main (the domain with a sufficient number of training data)
and the target domain (the domain that we want to per-
form sentiment classification for). Hence, it requires the
target domain to have training data with sentiment labels
although the amount of the data is limited. Instead, cross-
domain sentiment classification trains the sentiment classi-
fication model by only exploiting the original domain data.
Therefore, it can perform sentiment classification tasks on
the target domain without any sentiment labels. However,
this advantage comes at the cost of accuracy. [34] has ver-
ified that its suggested model experiences an accuracy loss
of 1.63% when they are applied for cross-domain sentiment
analysis, compared to the multi-domain setting. This paper
focuses on extending a high-performing ABSC model, i.e.,
LCR-Rot-hop++ to the cross-domain setting instead of the
multi-domain setting.

Unsupervised domain adaptation is one of the approaches
to address the training data shortage problem. [40] pro-
poses a representation learning model that selects impor-
tant domain-independent pivot words. Also, [18] identifies
pivots using a hierarchical attention transfer mechanism.
Moreover, [11] and [37] extend the domain adaptation to

the multi-domain setting.

Another approach to cross-domain sentiment classification
is the shared-private framework [4]. This approach is based
on the reasoning that removing the domain-specific tokens
would improve the domain-invariance of the input sentence.
Hence, the gradient reversal layer is included before the do-
main classification step and it helps to select the tokens that
reduce the performance of the domain classification task and
consider corresponding words as domain-agnostic words.

On the other hand, [38] uses an attention mechanism to
select the domain-specific information from the shared sen-
tence representation of the input text. This framework is
called shared encoder with domain-aware aggregation [34].
To take advantage of the shared-private and shared encoder
with domain-aware aggregation paradigms, [34] proposes the
BERTMasker model that combines these two frameworks.
[34] has demonstrated that the BERTMasker outperforms
existing models in both cross-domain and multi-domain set-
tings.

Nevertheless, it is not possible to fully utilize the BERT-
Masker network in a cross-domain setting. The BERT-
Masker model consists of two parts: shared and private. The
shared part masks the domain-specific tokens and uses the
unmasked words to train the sentiment classification model.
On the other hand, the private part uses the masked to-
kens to learn the domain-specific sentiment via an attention
mechanism using training data of the target domain. The
private part may effectively enhance the performance in the
multi-domain setting because it is possible to use the labeled
target domain data to train the private part of the model.
However, in the cross-domain setting, BERTMasker cannot
utilize its private part since the target sentiment labels are
unavailable.

Several attempts have been made to perform ABSC under
the multi-domain and cross-domain settings. For example,
[32] applies cross-domain fine-tuning to LCR-Rot-hop++,
which is an ABSC model. More specifically, the authors
fine-tune the upper layers of LCR-Rot-hop++ because the
upper layers contain more domain-specific information while
the lower layers represent general language characteristics
[32]. However, the fine-tuning procedure requires the train-
ing data with sentiment labels from a target domain. Thus,
it is a multi-domain ABSC model and we cannot directly
compare this model to the cross-domain DIWS-LCR-Rot-
hop++ model.

Additionally, [16] suggests the DAT-LCR-Rot-hop++model
that combines Domain Adversarial Training (DAT) [7]
with LCR-Rot-hop++ so that it can perform cross-domain
ABSC. Unlike [32], it does not require training data from a
target domain. It replaces the final Multi-Layer Perceptron
(MLP) layer with a domain adversarial component, which
consists of two feed-forward MLPs. One is a domain dis-
criminator with a gradient reversal layer. It allocates higher
importance to the domain-agnostic words that cannot clas-
sify the domain well. The other one is a class discriminator
that aims to predict the sentiment label of an aspect in the
sentence.

To continue exploring cross-domain aspect-based sentiment
classification, this research exploits the attention mechanism



to select the domain-independent words from the input se-
quence. The DIWS-LCR-Rot-hop++ and DAT-LCR-Rot-
hop++ models are based on the same reasoning that paying
less or even no attention to the domain-specific words that
are crucial for a domain classification task would improve
the cross-domain performance of ABSC. However, there are
some differences between the two models. First, the DIWS-
LCR-Rot-hop++ model sequentially trains the DIWS com-
ponent and LCR-Rot-hop++ component while DAT-LCR-
Rot-hop++ jointly optimize the LCR-Rot-hop++ compo-
nent and domain class discriminator by letting parameters
from LCR-Rot-hop++ affect the discriminator loss. Unlike
DAT-LCR-Rot-hop++, in DIWS-LCR-Rot-hop++, DIWS
parameters and LCR-Rot-hop++ parameters do not affect
each other. Second, DIWS-LCR-Rot-hop++ discretely ex-
cludes domain-specific words that pass a certain attention
threshold but DAT-LCR-Rot-hop++ allocates less impor-
tance to the domain-specific words rather than discarding
them.

3. DATA
This research uses review data in five different domains to
execute our proposed sentiment analysis. We summarize the
used domains, datasets, sample size, and the distribution of
sentiments in Table 1.

Table 1: Distribution of sentiment polarities.

Data Size
Negative Neutral Positive

Freq. % Freq. % Freq. %

Hotel [23] 264 55 21 10 4 199 75

DVD Player [14] 313 172 55 0 0 141 45

Digital Camera [14] 395 74 19 0 0 321 81

MP3 Player [14] 676 262 39 0 0 414 61

Cell Phone [14] 284 70 25 0 0 214 75

Note that the MP3 player review data has the maximum
sample size while other domain data such as hotel, DVD
player, digital camera, and cell phone contain a relatively
small amount of samples. Hence, we use MP3 player review
data to train our proposed cross-domain DIWS-LCR-Rot-
hop++ model. Such a domain is called the source domain.
On the other hand, data in other domains are used to test
the performance of trained cross-domain DIWS-LCR-Rot-
hop++. Such domains are called target domains. Note that
DIWS-LCR-Rot-hop++ requires a pair of one source do-
main and one target domain to train the model and assess
its performance. We fix the MP3 player as a source domain
for every pair. Hence, this research examines the perfor-
mance of DIWS-LCR-Rot-hop++ for the following domain
combinations: MP3 Player-Hotel, MP3 Player-DVD Player,
MP3 Player-Digital Camera, and MP3 Player-Cell Phone.

In the training process, only the source domain data con-
tains both domain and sentiment labels. On the other hand,
target domain data only contain the domain label. In the
testing phase, we use DIWS-LCR-Rot-hop++, trained by
the source domain (MP3 player), to determine the polar-
ity label of the aspects in the target domain data. Then,

we compare this predicted aspect sentiment to the actual
sentiment to measure the test accuracy.

For the robustness of the experiment, we remove some sam-
ples in case of the presence of implicit aspects. An implicit
aspect refers to a situation where the aspects appear as non-
noun words and are implied in the sentence. We removed
the samples with such characteristics as the machine learn-
ing algorithm cannot process such data [32]. Table 2 shows
the results of the cleansing process.

Table 2: Cleansed datasets.
Domain Removed: implicit aspects (%)

Hotel 22.1
DVD Player 27.4
Digital Camera 19.2
MP3 Player 20.3
Cell Phone 15.9

4. FRAMEWORK
Our proposed DIWS-LCR-Rot-hop++ model uses the
DIWS module to identify and discard domain-dependent
words from the original input text and process the trans-
formed text using LCR-Rot-hop++. First, in Subsection
4.1, we explain the overall structure of the DIWS-LCR-Rot-
hop++. Second, in Subsection 4.2, we elaborate on the
DIWS model for the cross-domain sentiment analysis task.
Last, in Subsection 4.3, we introduce the LCR-Rot-hop++
model.

4.1 DIWS-LCR-Rot-hop++ Structure
The overall structure of DIWS-LCR-Rot-hop++ is as fol-
lows. First, DIWS models the input sentence using pre-
trained BERT and obtains corresponding word embeddings.
Second, it processes domain classification tasks for both
source and target domains via the feed-forward attention
layer. In this process, attention weights are computed by
a softmax function and we take a linear combination of
the attention weights and hidden representation of sentence
words as sentence representation. This linear combination
is fed into the sigmoid activation function and we obtain
the model’s prediction for the domain of the input sentence.
Note that the optimal attention weights of each word in an
input sentence are determined by gradient descent and back-
propagation algorithm. Afterward, we select the domain-
independent words by discarding the words that have atten-
tion weights higher than a certain attention threshold. We
classify such words as domain-specific words. This step is
based on the reasoning that the word with high attention
weight has a high contribution to the domain classification
task, and such words are domain-specific words that specif-
ically appear in a certain domain. For example, the word
sound specifically appears in the MP3 player domain while
the word nice may appear in various domains such as MP3
player, hotel, and camera. It is likely that the word sound

plays an important role in domain classification than nice

and DIWS masks it to construct domain-agnostic data.

After we identify domain-independent and domain-related
words, we move on to the LCR-Rot-hop++ part of the



Figure 2: Overall representation of the DIWS-LCR-Rot-hop++ method.

Figure 3: Detailed representation of the DIWS-LCR-Rot-hop++ method.

model. We transform the original input sentence represen-
tation into a domain-agnostic input sentence representation
by discarding the domain-specific words that we detect us-
ing DIWS. Then we split the input representation into three
components: left context, target words, and right context.
We process them using a rotatory attention mechanism to
obtain target-aware left/right context representations and
left/right context-aware target representations. Afterward,
we process these representations by a hierarchical attention
mechanism to update them so that they encode the global
information of the input sentence and calculate the final
sentiment prediction probabilities. Figure 2 visualizes the
method of the model and Figure 3 displays the graphical
overview.

4.2 Domain-Independent Word Selector
This section explains the mathematical formulations of
Domain-Independent Word Selector (DIWS). An input sen-
tence that we aim to analyze consists of multiple words.
Therefore, we denote it as a sequence of words X =
{x1, x2, ..., xN}, where N corresponds to the number of
words in a given input sentence. To let neural network layers
recognize and process the input text, we first need to tok-
enize the sentence as X = {[CLS], x1, x2, ..., xN , [SEP]} and

change the character representation of the words to the real-
valued vector representation which encodes the meaning of
the corresponding word. Here, [CLS] is a class token that en-
codes overall information about the corresponding sequence
X, and [SEP] is a separator token that is used to distinguish
multiple input sentences. For example, the closer the mean-
ing of the words, the closer the corresponding vectors are in
the vector space. This representation allows a computer to
execute vector calculations between words. This procedure
is called word embedding. It can be performed using lan-
guage models such as Word2Vec [20], ELMo [24], and BERT
[5].

This research uses BERT word embedding because it is a
contextual word embedding that considers the context of
the word in the sentence when it encodes a word. There-
fore, BERT can deal with polysemy, unlike non-contextual
word embedding. We use a pre-trained BERT base model
with 768 hidden layers and 12 layers to transform the text
representation of the input sentence X into a vector repre-
sentation that the model can process.

Consider a sequence of BERT word embeddings
{h1, h2, ..., hN}, transformed from input sentence
X = {x1, x2, ..., xN}. Each word embedding hi is a
[1 × d] vector, where d is equal to the number of a hidden



layers of the BERT base model. Therefore, each word in
our input sentences is transformed into the 768 dimensions
numerical vector and fed into the attention layer. The
preliminary attention score for the ith word is:

αi
1×1

= hi
1×d

T V
d×1

, (1)

where the V ∈ Rd is a context vector that is used as a query
vector to find a word that is more important and informa-
tive for an accurate domain classification. We process these
attention scores with the softmax function to obtain corre-
sponding attention weights for every i = 1, ..., N :

αi
1×1

=

exp( αi
1×1

)∑N
i=1 exp(αj

1×1

).
(2)

We use this softmax operation again in LCR-Rot-hop++
and refer to it as the softmax(·) function later. Next, we
represent the input sentence with length N as a weighted
average of word embeddings hi by their corresponding at-
tention weights ai where i = 1, ..., N :

h
d×1

=

N∑
i=1

αi
1×1

× hi
d×1

. (3)

This process refers to the linear combination layer in Figure
3. Last, h is fed to the Fully Connected Layer (FCL) in
Equation 4 to produce polarity score s and it is fed into a
sigmoid function in Equation 5 to produce prediction prob-
ability p:

s
1×1

= h
1×d

T W
d×1

+ d
1×1

, (4)

p
1×1

=
1

1 + exp(− s
1×1

)
, (5)

where W ∈ Rd is a weight vector and b is a bias term.

We train the values of the parameters such as weight vector
and bias term during the training phase to minimize the
loss. The loss function is the binary cross-entropy:

LDIWS
1×1

= −
M+P∑
j=1

( yj
1×1

log(p(j)

1×1
)+ (1− yj

1×1

)log(1−p(j)

1×1
)), (6)

where yj is an actual binary domain label corresponding to
jth input sentence and p(j) refers to jth domain prediction
probability when there exists M and P (number of) sen-
tences in the source and target domain, respectively.

To verify the domain-classification performance of DIWS, we
split the total sample consisting of both source and target
domain data into an 80% training sample and 20% testing
sample. Additionally, before training the model, we tune the
hyperparameters of the DIWS model. Such hyperparame-
ters are learning rate, momentum term, number of epochs,
and batch size. As suggested by [33], we use Tree-structured
Parzen Estimators (TPE) algorithm [1] for tuning. To op-
timize the hyperparameters, we split our training sample
into 80% pure training samples and 20% validation sam-
ples. In this way, we can find the optimal hyperparameters

while maintaining our test sample unseen during the train-
ing phase.

The attention weights capture the relative importance of
words in an input sentence for predicting the correct do-
main [29]. Based on this interpretation, we assume that the
word with higher attention weights within the sentence is
more domain-related because domain-related words play a
significant role when determining the domain polarity score
compared to articles (a/an/the) or linking verbs (be/is/are)
which appear widely regardless of the domain.

In this research, we test different threshold values be-
tween domain-specific words with high attention and
domain-agnostic words with low attention. Let us
define the set of threshold percentiles as K =
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For every input sen-
tence,

di =

{
domain-specific, if αi ≥ QK ,

domain-independent, otherwise,
(7)

where di is a domain-relatedness label associated with every
xi, and QK refers to a Kth percentile value of the attention
weights for every word in an input sentence. We discard
domain-specific words to construct domain-invariant input
sentence representations for both source and target domains
so that we can perform domain-independent training and
domain-independent testing using LCR-Rot-hop++. Last,
we fed the transformed input sentences to the LCR-Rot-
hop++ model.

4.3 LCR-Rot-hop++
The LCR-Rot-hop++ model uses three bi-LSTM networks
and a rotatory, hierarchical attention mechanism to classify
the sentiment of a given aspect. This section describes the
LCR-Rot-hop++ model and its mathematical formulations.

The LCR-Rot-hop++ model uses a sentence X as its input,
where xtarget = {xt

1, ..., x
t
T } represents the set of T words

describing an aspect target of the sentence X. Then it splits
X into three separate components, namely a left context, an
aspect target, and a right context. The left context is a set
of words that appear before the target xtarget, and the right
context is a set of words that appear after the target xtarget.

Next, the corresponding word embedding representations of
the left context, the target, and the right context are sepa-
rately processed by bi-LSTM modules. The bi-LSTM model
is proposed by [9] to solve the bias issue of the LSTM model.
According to [36], LSTM is a biased model in a way that
the later input plays a dominant role in determining the fi-
nal output due to its sequential learning process. This issue
is especially significant when we train the model using long
input sentences. To solve this issue, LCR-Rot-hop++ em-
ploys bi-LSTM. It balances the importance of the beginning
input and later input in the learning process by adding a
reverse direction LSTM layer. The outputs of the three
bi-LSTMs are three hidden states with the dimension of
[2d × 1]. It has two times larger dimensions than the di-
mension of BERT word embedding due to its bidirectional
structure. The outputs of these bi-LSTMs are denoted as
follows: [hl

1, ..., h
l
L], [h

t
1, ..., h

t
T ], [h

r
1, ..., h

r
R], where L is the

number of left context words, T is the number of aspect



target words, and R is the number of right context words.
These three hidden states are then processed by the rotatory
attention mechanism.

A rotatory attention mechanism aims to distinguish the
most important words in the left context, aspect target, and
right context for determining the sentiment using a two-step
procedure. First, it calculates the target-aware left and right
context representations rtl and rtr by considering the infor-
mation in the target representation rt. The initial value of rt

is determined by the pooling operation of the hidden states
of the target, which is the output of the target bi-LSTM
module:

rt
2d×1

= pooling([ ht
1

2d×1
, ..., ht

T
2d×1

]). (8)

rt is then fed in the bilinear attention layer together with
[hl

1, ..., h
l
L] and [hr

1, ..., h
r
R] separately. We illustrate the

mathematical formulation for the left context, but the same
logic applies to the right context. The output of the bilinear
attention layer is obtained by multiplying the transposed hl

i,
weights (W l

c) and rt, and adding the bias term (blc), and in-
putting the result to the tanh activation function for every
i = 1, ..., L:

f(hl
i, r

t)
1×1

= tanh(hl
i
⊤

1×2d
× W l

c
2d×2d

× rt
2d×1

+ blc
1×1

). (9)

Then we process the obtained score with the softmax func-
tion to obtain the attention score αl

i, and get the target-
aware left context representation rl by computing a weighted
average of the left context hidden states in terms of the at-
tention scores:

αl
i

1×1
= softmax(f(hl

i, r
t)

1×1

), (10)

rl
2d×1

=

L∑
i=1

αl
i

1×1
× hl

i
2d×1

. (11)

Unlike the first step, the second step uses rl and rr to con-
struct the left and right context-aware target representations
rtl and rtr, respectively. The logic is the same as in the first
procedure, while we no longer need to use the pooling oper-
ation as we already have rl and rr from the first step.

We obtain four representations rl, rr, rtl , and rtr as outputs
of the rotatory attention mechanism and fed into the hier-
archical attention mechanism. It allows these four repre-
sentations to encode global information around the input
sentence, not only the local, left, target, or right contextual
information. Two context representations (rl, rr) and two
target representations (rtl , r

t
r) are separately weighted by a

hierarchical attention mechanism. We illustrate the mathe-
matical formulation for the context pair, especially the left
context, but the same logic applies to the right context and
the target pair. First, we compute an attention score at the
sentence level:

f(rl)
1×1

= tanh( rl⊤
1×2d

× W c
h

2d×1
+ bch

1×1
), (12)

where W c
h is a weight matrix, and bch is a bias term for the

context pair. Then we normalize the attention score with the

softmax function and update the context representation:

al

1×1
=

exp(f(rl)
1×1

)

exp(f(rl)
1×1

) + exp(f(rr)
1×1

)
, (13)

rl
2d×1

= αl

1×1
× rl

2d×1
. (14)

Using the same logic, we update the target pair and ob-
tain the updated representations rl, rr, rtl , and rtr. [33] ar-
gues that it is optimal to repeat this procedure three times.
We inherit this idea and repeat this mechanism for three
hops. The final four representations are concatenated and
processed by a Multi-Layer Perceptron (MLP). The mathe-
matical notation ⊕ in Equation 15 denotes vector concate-
nation. Last, we use softmax to calculate the final prediction
probability for each sentiment polarity (p), which is a three-
dimensional vector as we consider three sentiment polarities,
i.e., positive, neutral, and negative:

r
8d×1

= rl
2d×1

⊕ rr
2d×1

⊕ rtl
2d×1

⊕ rtr
2d×1

, (15)

p
3×1

= softmax(MLP (r)). (16)

We calculate the final loss function for LCR-Rot-hop++
sentiment classification by taking the cross-entropy of the
predicted sentiment and actual sentiment label of the jth

sentence denoted as aj over M input sentences:

Lsc = −
M∑
j=1

aj
3×1

log(p(j)

3×1
) + λ||θ2||2, (17)

where p(j) is the prediction probability of the jth instance,
||θ2||2 is a L2-norm regularization term, which determines
the penalty of having a certain parameter set, and λ is a
weight for this term.

Additionally, before we train the model using source do-
main data, we tune the hyperparameters of the LCR-Rot-
hop++ model. Such hyperparameters are the learning rate,
dropout rate, momentum term, and L2-norm regularization
term. We use the same TPE algorithm as the hyperparam-
eter tuning process of the DIWS model. After obtaining
optimal hyperparameter values, we use full source data to
train the model. Note that the training sample of this model
purely consists of source domain data and the testing sam-
ple purely consists of target domain data. Hence, we split
the source domain data into 80% pure training samples and
20% validation samples to perform hyperparameter tuning.

5. EVALUATION
In this section, we present the result of our evaluation. First,
in Subsection 5.1, we evaluate the performance of the do-
main classification. Then, in Subsection 5.2, we present the
performance of the aspect-based sentiment classification on
the target domain. Next, in Subsection 5.3, we compare the
results of our proposed model with the original LCR-Rot-
hop++ model and the ones of DAT-LCR-Rot-hop++. Last,
in Subsection 5.4, we give insights into the obtained results.



5.1 Domain Classification Performance
Table 3 shows the domain classification accuracy of the
DIWS model. The training sample consists of 80% of the
randomly mixed source and target domain data, and the
testing sample consists of the remaining 20% of the data.

Table 3: Domain classification accuracy of DIWS.

Source-target domain Domain classification test accuracy

MP3 Player - DVD Player 0.824
MP3 Player - Digital Camera 0.884
MP3 Player - Hotel 0.979
MP3 Player - Cell Phone 0.824

Average 0.878

On average, the DIWS model can well classify the source do-
main and target domain with an average accuracy of 0.878.
It implies the robustness of the attention weights from the
DIWS model. In particular, the accuracy for the hotel do-
main is relatively high compared to the other domains. It
signals that the difference between the target domain and
the source MP3 player domain is greater for the hotel do-
main.

5.2 Cross-Domain ABSC Performance
We measure a test accuracy for different values of percentile
threshold K = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. Here,
percentile threshold K implies that there exists K% of the
words with lower attention weight than the corresponding
attention threshold. For example, K = 80 suggests that we
only keep the 80% of the words in the input sentences that
are the most domain-independent, and use this transformed
input for the LCR-Rot-hop++ model. Figures 4 to 7 display
the change in test accuracy level for different target domains
as the threshold percentile increases. The lowest accuracy is
colored dark gray and the highest accuracy is colored light
gray.

Note that K = 100 refers to the case that every word is clas-
sified as domain-agnostic regardless of their DIWS attention
weights. Hence, it represents the original LCR-Rot-hop++
model that is purely trained by MP3 player domain data
and tested on the DVD player data. This interpretation of
K = 100 applies to all target domains.

For the DVD player domain, the DIWS-LCR-Rot-hop++
test accuracy varies from 55% to 71%. The model attains
the lowest accuracy when K = 10 and attains the highest
accuracy when K = 70. Also, there exists a general trend
that the accuracy increases as we reduce the proportion of
domain-specific discarded words, and achieves maximum ac-
curacy when K = 70. The accuracy drops at K = 80 but
bounces again as we reduce the discarded words to the ex-
treme.

For the digital camera domain, the DIWS-LCR-Rot-hop++
test accuracy varies from 66% to 74%. The model attains
the lowest accuracy when K = 40 and attains the highest
accuracy when K = 60. Unlike the DVD player domain,
DIWS-LCR-Rot-hop++ has a relatively good performance
when we discard a large proportion of words. For instance,
the accuracy gap between the maximum accuracy at K = 60
and accuracy for the low threshold values K = 10, 20, 30 is
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Figure 4: Test accuracy of DVD player domain data under
DIWS-LCR-Rot-hop++ model trained with MP3 player do-
main data.
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Figure 5: Test accuracy of digital camera domain data under
DIWS-LCR-Rot-hop++ model trained with MP3 player do-
main data.

not as large as for the DVD player domain. Additionally,
after having the highest accuracy at K = 60, the accuracy
diminishes as K increases to the extreme.

For the hotel domain, the DIWS-LCR-Rot-hop++ test accu-
racy varies from 63% to 73%. The model attains the lowest
accuracy at K = 100 and attains the highest accuracy at
K = 20. Unlike the other target domains, DIWS-LCR-Rot-
hop++ performs the best for the small K value (K = 20),
and the accuracy decreases until the model attains the lowest
accuracy at K = 100, although there are some local peaks
at K = 60 and K = 80.

For the cell phone domain, the test accuracy varies from
64% to 77%. The model attains the minimum accuracy at
K = 80 and attains the highest accuracy at K = 90, without
a clear trend. DIWS-LCR-Rot-hop++ has a sudden dip
and spike at K = 80 and K = 90, respectively. After the
global maximum accuracy, the accuracy decreases again at
K = 100.
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Figure 6: Test accuracy of hotel domain data under DIWS-
LCR-Rot-hop++ model trained with MP3 player domain
data.
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Figure 7: Test accuracy of cell phone domain data under
DIWS-LCR-Rot-hop++ model trained with MP3 player do-
main data.

5.3 Comparison with LCR-Rot-hop++ and
DAT-LCR-Rot-hop++

To assess the overall performance of the DIWS-LCR-Rot-
hop++, we compare the results to the original LCR-Rot-
hop++ model and the DAT-LCR-Rot-hop++ model. For
each target domain, we choose the threshold value K that
attains maximum accuracy. Table 4 displays the test accu-
racy of the three models.

On average, DIWS-LCR-Rot-hop++ outperforms LCR-
Rot-hop++ and DAT-LCR-Rot-hop++ in three out of four
target domains. The hotel domain is the only target domain
in which DAT-LCR-Rot-hop++ outperforms DIWS-LCR-
Rot-hop++. In comparison to DAT-LCR-Rot-hop++, the
absolute performance difference is small for the camera, ho-
tel, and cell phone domains, as it ranges from 0.024 to 0.047.
On the other hand, the DVD player domain experiences per-
formance enhancement to a great extent (0.24). Compared
to LCR-Rot-hop++, the performance difference is marginal
for the DVD player and cell phone domains, while the digital

camera and hotel domains experience considerable perfor-
mance enhancement. Overall, we conclude that the DIWS-
LCR-Rot-hop++ model improves the cross-domain ABSC
performance compared to LCR-Rot-hop++ and DAT-LCR-
Rot-hop++ for the source and target domains that we use.

5.4 Insights
In general, DIWS-LCR-Rot-hop++ performs better than
the random guessing baseline (0.33 if there are three sen-
timent classes; 0.5 if there are two sentiment classes) in all
domains. For the DVD player and cell phone domains, it
even outperforms the majority guessing baseline (see Table
1 for the distribution of the sentiment) without having the
information about the sentiment distribution. Furthermore,
it outperforms the cross-domain performance of the original
LCR-Rot-hop++ model (K = 100) and the DAT-LCR-Rot-
hop++ model if we choose the optimal threshold K for each
target domain, besides the hotel domain.

Next, let us investigate the overall pattern of accuracy level
as K increases and the reasoning behind the results. First,
the results show that the model performs the best when
we discard 10% to 40% of the domain-specific words for
three out of the four domains (DVD player, camera, and cell
phone). If we discard too many words which correspond to
the low values ofK, the accuracy is below average for most of
the data except for the hotel domain. This is due to the ex-
cessive information loss. Accordingly, discarding most of the
domain-specific words would enhance the domain-invariance
of the input texts, but it also makes the remaining sentence
useless for ABSC. For example, Figure 8 displays one of the
review sentences in the DVD player domain.

WhenK = 10, the only remaining tokens other than the tar-
get word rewind are i, ’, ve, and had. Accordingly, they are
domain-independent, unlike the words such as fast, for-
ward, and smoothly, but it would be difficult to correctly
classify the sentiment with them.

“its fast-forward and rewind work much more

smoothly and consistently than those of other

models i’ve had”

Figure 8: A review sentence in the DVD player domain [14].

On the other hand, the hotel domain obtains its maximum
accuracy at K = 20, where we discard 80% of the words.
This difference is due to the difference in closeness between
the source domain and the target domain. Note that the ho-
tel domain is even more distinct from the source MP3 player
domain compared to the other target domains such as DVD
player, digital camera, and cell phone. The high domain-
classification accuracy for the hotel domain (0.979) in Table
3 supports this claim because it would be easier to classify
the domain if there exists a large difference between the tar-
get and source domains. Thus, for the hotel domain, the
accuracy gained from discarding the domain-specific words
outweighs the accuracy drop due to the information loss.

There are mixed results about the values of K for which
the model performs the worst. For the DVD player domain,
the minimum accuracy is measured when K = 10, the dig-
ital camera domain performs worst when K is around the



Table 4: The accuracy comparison between DIWS-LCR-Rot-hop++ (DIWS++), LCR-Rot-hop++(LCR++), and DAT-LCR-
Rot-hop++ (DAT++).

Source-target domain DIWS++ accuracy LCR++ accuracy DAT++ accuracy

MP3 Player - DVD Player 0.708 0.683 0.470
MP3 Player - Digital Camera 0.740 0.679 0.693
MP3 Player - Hotel 0.724 0.636 0.751
MP3 Player - Cell Phone 0.766 0.752 0.742

Note: We train the DAT-LCR-Rot-hop++ with our selection of datasets using its source code as the original paper does
not use our datasets.

median (K = 40), and the hotel and cell phone domains
have their worst accuracy at relatively high values of K
(K = 100 and K = 80, respectively). This observation
implies that we should first find an optimal value of K be-
fore using the DIWS-LCR-Rot-hop++ model as there is no
golden rule that the low values of K always produce worse
accuracy and high values of K are superior. This may be
due to the difference in distributions of the words between
the domains, where some domains may contain more in-
nate domain-independent words such as adverbs and linking
words than others.

To conclude, the results show that discarding domain-
specific words leads DIWS-LCR-Rot-hop++ to perform bet-
ter than the original LCR-Rot-hop++ model under the
cross-domain ABSC task, while the optimal proportion of
remaining words after the dropout depends on the degree of
closeness between the source domain and the target domain.
In general, discarding an excessive proportion of words even
further worsens the performance of DIWS-LCR-Rot-hop++
compared to the original LCR-Rot-hop++ where we do not
discard any of the words. Discarding domain-specific words
indeed improves the performance of cross-domain aspect-
based sentiment analysis when we discard 10% to 40% of
the words if the target domain and source domain are not
very different. If we drop too many words, the model ex-
periences a performance drop due to the information loss.
However, if we recognize that the source and target domains
are distinct from each other, we should discard a large per-
centage of words (80% for the hotel domain) as the accuracy
gained from discarding the domain-specific words outweighs
the information loss effect. The domain classification accu-
racy from DIWS would be a good indication of whether a
target domain is very different from a source domain or not.

6. CONCLUSION
To apply the state-of-the-art LCR-Rot-hop++ model to the
cross-domain setting, this work proposes the DIWS model
to select and discard the domain-specific words. The pro-
posed model for cross-domain ABSC is the DIWS-LCR-Rot-
hop++ model. It utilizes a domain classification architec-
ture with a feed-forward attention layer to filter out the
domain-specific words with attention weights higher than a
certain threshold. Then we analyze the performance of our
proposed model for ten different threshold values. Based on
the experiments on five datasets, we conclude that without
any sentiment label of the target domain data, our model
effectively enhances the accuracy by discarding the domain-
specific words from the source and target domain data.

Furthermore, we have found that there is a danger of infor-
mation loss and thus we should select the threshold between
domain-specific words and domain-agnostic words carefully.
In addition, the results imply that the degree of difference
between the source domain and target domain affects the
performance of the DIWS-LCR-Rot-hop++ model for dif-
ferent threshold values.

Our research has a few limitations. First, due to the lack
of computational power of the testing PC environment, we
could not apply DIWS-LCR-Rot-hop++ to the large popu-
lar datasets in the field of ABSC. For example, such data in-
cludes restaurant domain data and laptop domain data from
SemEval 2014 [25] in which DAT-LCR-Rot-hop++ demon-
strates high performance on the cross-domain ABSC task.
Second, the performance gain from DIWS-LCR-Rot-hop++
is not always positive compared to the original LCR-Rot-
hop++. If we do not use the optimal threshold value, the
accuracy of our model can be even less than the original
model. Therefore, we advise users to run the DIWS-LCR-
Rot-hop++ using different threshold values and select the
optimal one for the final prediction for every source-target
domain combination. Third, DIWS-LCR-Rot-hop++ does
not consistently outperform DAT-LCR-Rot-hop++. For the
hotel domain, the competing model performs better than the
proposed model. Last, the DIWS-LCR-Rot-hop++ model
sequentially trains the DIWS component and LCR-Rot-
hop++ component. This sequential training process may
prevent the model to find the global optimal parameter val-
ues during optimization.

Several further research directions are available on this topic.
First, the sequential training processes can be merged into
a simultaneous optimization in which the final loss func-
tion is a sum of the DIWS loss function and the LCR-Rot-
hop++ loss function. Second, it is possible to directly utilize
the optimal domain-classification attention weights by allo-
cating lower importance to words in an input sentence by
their attention weights. For example, words with high atten-
tion weights are considered less during the LCR-Rot-hop++
training because they are likely to be domain-specific. Last,
it is possible to extend the model to the multi-domain setting
where the sentiment-labeled target domain data is partially
available. In this case, one can exploit the shared-private
framework and thus expect even higher performance results.
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