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Abstract

The literature that tests for U-shaped relationships using panel data, such

as those between pollution and income or inequality and growth, reports

widely divergent (parametric and non-parametric) empirical findings. We

explain why lack of identification lies at the root of these differences. To

deal with this lack of identification, we propose an identification strategy that

explicitly distinguishes between what can be identified on the basis of the

data and what is a consequence of subjective choices due to a lack of identi-

fication. We apply our methodology to the pollution-income relationship of

both CO2 and SO2 emissions. Interestingly, our approach yields estimates

of both income (scale) and time (composition and/or technology) effects for

these reduced-form relationships that are insensitive to the required subjective

choices and consistent with theoretical predictions.
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I Introduction

The possible existence of inverted-U shaped relationships has been investigated in

the economics literature for a number of important topics. Well-known examples

include Kuznets’ (1955) estimate of the link between inequality and growth, Gross-

man and Kruegers’ (1995) estimation of the link between environmental quality

and economic growth, and, recently, Aghion et al.’s (2005) inverted-U estimation of

the relationship between innovation and competition. The existence of an inverted

U is particularly attractive because it suggests that trade-offs may disappear, for

instance, if a country experiences enough growth over time.

Such inverted U-shaped links between a dependent and independent variable

are typically estimated using panel data. It is crucial to proper inference to im-

pose (identifying) assumptions that separate the effect of the independent variable

from the unobserved effects [Heckman, 2000]. Panel data are particularly useful

here as they offer the advantage of allowing for controls at the individual or cross-

sectional level and for time controls to capture these unobserved effects. It would

be rather unfortunate, however, if the imposition of such identifying assumptions on

the controls also affected estimation results such as acceptance or rejection of the

existence of the postulated reduced-form relationship. Nevertheless, this is precisely

the problem that hinders estimation in the type of reduced-form models studied in

this paper.

The fundamental underlying problem is lack of identification. Both cross-sectional

and time controls can be specified at different degrees of heterogeneity, raising the

fundamental dilemma of how much flexibility to allow.1 With too much flexibility,

as with an individually specific and fully flexible time trend, no variation will be left

for the independent variable. With too little flexibility, too much variation might be

captured by the independent variable. In other words, the choice over flexibility in

terms of heterogeneity at the individual level as well as in terms of the time trends

might determine to a large extent the possible shape of the relationship between

dependent and independent variables.

To illustrate, suppose one allowed sufficiently flexible individual-specific time

trends alongside more restrictive versions. Then, clearly, models in which sufficiently

flexible time trends capture all variations in the dependent variables cannot (or can

1Note that this dilemma exists irrespective of the estimation technique applied. Both parametric
and non-parametric estimation techniques require identifying assumptions on the controls to enable
estimation. Parametric estimations require in addition a choice to be made about how much
flexibility to allow in specifying the independent variable. See also section II
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hardly) be distinguished from models where the time trends are limited a priori

and the link function captures the remaining variation between the dependent and

independent variable. By restricting attention to models where at least the time

trend is somehow limited in its flexibility, one essentially ignores this identification

problem. Moreover, since different a priori restrictive choices are likely to result in

different inferences, one’s inference might become subjectively based instead of data

driven, possibly even to a large extent. This raises the fundamental concern that

different ex ante subjective choices of flexibility might explain the sometimes widely

divergent empirical findings based on the same data.2

The identification strategy we propose in this paper is to make this lack of

identification explicit from the very beginning. We achieve this by using a framework

for making inferences based on a distinction between what can be identified and,

thus, estimated on the basis of the data, and what is the consequence of a subjective

choice related to identification assumptions. As a starting point for our analysis,

we choose the minimal requirement of a common (flexible) time trend between two

cross-sectional units. Time trends that are fully flexible at the individual level cannot

be distinguished from individual- and time-specific idiosyncratic error terms since no

variation is left for the independent variable even in a non-parametric setting, and for

that reason they will be excluded. The requirement of a common and flexible time

trend suffices to (exactly) identify the parameter of interest, namely the individual-

specific link functions between dependent and independent variables, but only for a

given pair of cross-sectional units. For this given pair of cross-sectional units we can

estimate the link function by allowing full flexibility, both in the common time trend

and in terms of the individual-specific link between the dependent and independent

variables.

Accordingly, the data allow proper inference on the existence of inverted U-

shaped links of two cross-sectional units sharing the same time trend, just by an-

alyzing the time series of the pairwise difference of these two given cross-sectional

units. But in a panel with N cross-sectional units we have potentially N(N − 1)/2
possible common time trends, and for each country there are N − 1 possible link
functions.3 Here, we reach the limits of what the data can tell us: on the basis of

the data alone, we cannot infer which pairs of cross-sectional units share the same

2Since lack of identification is the source of the problem, specification tests do not help to solve
the problem.

3Phrased positively: the data allow full flexibility by allowing N − 1 possible link functions per
cross-sectional unit, cf. Pesaran [2007].
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time trend. In other words, given that a particular pair of cross-sectional units share

a common time trend, we are able to (exactly) identify the individual-specific link

functions between dependent and independent variables, but which pairs of cross-

sectional units share a common time trend is not identified.4 To proceed we need

a method to select cross-sectional units sharing the same time trend that is not

data driven, but will be subjectively based [Manski, 2000]. We model this subjective

selection by using priors over pairs of cross-sectional units. By means of a robust-

ness analysis in terms of different but reasonable prior choices, we investigate the

sensitivity of the outcomes to the subjective choices.

We apply our approach to the search for an inverted U-shaped relationship be-

tween environmental quality and economic growth, first elaborated by Grossman

and Krueger’s [1995]. We focus on two often-studied and important examples of

reduced-form estimation in this so called Environmental Kuznets Curve (EKC) lit-

erature, i.e., the possible existence of an inverted U for CO2 and SO2 emissions

and income (growth) at the country level.5 We choose this application, since the

literature demonstrates substantial uncertainty as to whether an inverted-U rela-

tionship exists or not.6 The results for CO2 vary from an estimated within-sample

turning point in the spline-based approach applied by Schmalensee et al. [1998]

to the non-existence of an inverted U-shape for the more flexible non-parametric

panel data estimations as recently reported by Azomahou et al. [2006]. Also, the

debate on the robustness of estimations across specifications for the heavily reg-

ulated SO2-emissions continues, as in Stern and Common [2001] and Millimet et

al. [2003]. Furthermore, Harbaugh et al. [2002] have demonstrated the sensitivity

of the existence of an inverted U-shaped relationship, in particular in ambient air

pollution, to the specification of functional (parametric) forms, the inclusion of addi-

tional covariates and the use of different data-sets. By using two balanced panels of

OECD countries between 1960 and 2000, we avoid issues of unbalancedness or other

potential data measurement problems altogether. Moreover, the time dimension is

4We only have two observations per time period to estimate the common time trend. Consistent
estimation of a fully flexible time trend is then impossible.

5Ideally, one would like to estimate an inverted U between environmental quality and income
or economic growth [Grossman and Krueger, 1995]. Emissions are, at best, indirect measures of
environmental quality. However, balanced panel data on air quality (relevant for SO2) are not
available, neither are data on climate change due to the uniformly mixing pollutant CO2 given the

long time delay between emission and effect.
6Notice that this uncertainty is not restricted to the typical reduced-form EKC estimation. See,

for instance, Huang [2004] for a recent reduced-form analysis of the traditional Kuznets’ analysis.
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sufficiently large to apply time-series estimation and testing techniques.

Our benchmark empirical findings confirm the existing non-robustness in the

literature for both our applications, when comparing different model specifications.

We find that the lack of robustness between parametric and non-parametric mod-

eling and estimation approaches is mainly due to differences in the econometric

specification, including, in particular, the time component (compare, for example,

Millimet et al. [2003] and Azomahou et al. [2006]). Next, we use our alternative

approach allowing for inference on the existence of an inverted U-shaped relation

between CO2 and SO2 emissions and income (growth) by considering the pairwise

equality of the time effect between any two cross-sections within the panel. To test

the inference sensitivity of the relationship between the dependent and independent

variables for our approach, we introduce and compare three explicit priors. Inter-

estingly, we find remarkably robust results across a simple uniform Bayesian prior,

a prior based on expert opinion, and a prior that models loss aversion (minimizing

the likelihood of accepting the hypothesis one tries to reject). Our two case studies

suggest that for both SO2 and CO2 emissions the income effect is driving emissions

upward, whereas plausible estimates of the time effect have a clear U-shaped trend

for SO2-emissions and only slightly so for CO2-emissions. Together, these effects

seem to provide overwhelming evidence for an inverted-U for SO2-emissions, but

not for CO2-emissions. Accordingly, our results not only nicely corroborate theo-

retical models that explicitly distinguish between scale, composition and technique

effects (for example, Brock and Taylor [2005]), but also re-establish the search for

inverted-U relationships on solid ground.

The remainder of the paper is organized as follows. Section II explains the identi-

fication problem in panel based reduced-form estimation in more detail. Section III

illustrates the model assumption sensitivity in the empirical literature of inverted-U

relationships for both our samples, i.e., for both CO2 and SO2 emissions. Next,

section IV shows our results based on imposing the very weak condition of similar

time effects between pairs of cross-sections. In this section we also quantify the de-

pendence of the empirical inference on one’s prior for both CO2 and SO2emissions.

Finally, section V concludes.

II A new identification and estimation procedure

The typical reduced-form approach towards testing for a particular shape, such as an

inverted U, starts from a panel data-set. Assume that as (panel) data one observes
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(yrt, xrt), with r ∈ R, where R denotes a set of cross-sections (in our case regions),

and t ∈ T , with typically T = {1, 2, ..., T}. Let X stand for the set of possible

values of xrt. The typical inverted-U search is interested in econometric models of

the type

yrt = f(xrt, r) + λ(r, t) + �rt. (1)

The goal is to find out which part of the variation in the variable yrt (such as

income inequality, emissions, or innovation) can be attributed to changes in an

independent variable xrt (such as economic growth or competition) via the function

f : X×T → R (the systematic part), which part can be attributed to a deterministic
time effect via the function λ : R×T → R, and which part is idiosyncratic, captured
by the region- and time-specific remainder or error term �rt. Given appropriate

distributional assumptions the aim is to estimate the functions f and λ, with the

function f the parameter of interest.

The fundamental problem one faces in trying to estimate such a model is that

for each t one only has one observation (yrt, xrt), with r ∈ R. This creates lack of
identification or underidentification. For instance, for each f one might choose λ

satisfying λ(r, t) = yrt− f(xrt, r). This results in an exact fit yrt = f(xrt, r)+λ(r, t)

corresponding to a zero idiosyncratic remainder term �rt = 0. Because the available

data do not permit distinctions between different (f, λ)-combinations, the lack of

identification is subsistent.

The standard solution to avoid underidentification is to restrict the possible

functions λ and/or f . Typically, the choices for λ and f are restricted to some classes

Λ and Φ of functions, respectively, such as time- or region-specific polynomials up

to some order. In this way (f, λ) becomes identifiable. The typical parametric

approach postulates the function f as

f(x, r) = g(x, β) +
X
r0

αr0drr0 , (2a)

with β = (β0, β1, β2, β3)
0 such that

g(x, β) = β0 + β1x+ β2x
2 + β3x

3 (2b)

and with drr being a dummy for cross-section r, and postulates the function λ as

λ(r, t) =
X
t0

λt0dtt0 (2c)

with dtt a dummy for year t. Thus, by assumption, homogeneity is imposed with

respect to both the independent variable and the time effect: both functions f and

6



λ are assumed to be homogeneous over cross-sections, with the only exception being

the region-specific constant terms of the function f . Obviously, these are very strong

ex ante assumptions.

Such a model has been estimated, for instance, for many emission-income combi-

nations, using standard panel data techniques, since Grossman and Krueger [1995]

in the EKC literature. After imposing appropriate additional distributional as-

sumptions7 the typical inverted-U pattern is expected to follow from the gradient

∂g(x, β)/∂x first being positive and then, after the turning point (if present), be-

coming negative. Note that this approach assumes that every region reacts similarly

to shifts in the causal variable, according to the same third-order polynomial, even if

the cross-sectional units are allowed to differ in their intercepts. A similar approach

is followed in the recent analysis of Aghion et al. [2005], who postulate an expo-

nential specification of equation (2a). Clearly, these restrictions are much stronger

than would be needed to identify f and λ in (2).

The typical semi-parametric framework allows a more flexible specification in

the case of (2b). Instead of imposing prespecified polynomial patterns, several semi-

parametric models have been applied to identify the effect of the independent vari-

able, such as the spline method applied by Schmalensee et al. [1998] and again

Aghion et al. [2005]. Even more general semi-parametric alternatives leave g(.)

completely unspecified, although homogeneity across cross-sectional units is usually

imposed. Such a model has been estimated by Millimet et al. [2003], following

the estimation techniques proposed by Robinson [1988] or Stock [1989]. They ap-

ply the semi-parametric partially linear regression (PLR) model to analyze inverted

emission-income patterns for a panel of SO2 and NOx emissions in the USA and also

report that this non-parametric estimator is clearly preferred over its parametric al-

ternative for the panels they study.

Although g is made fully flexible in the semi-parametric framework, potential

misspecification (due to too restrictive functional forms or overidentification) re-

mains a problem due to the homogeneity assumption that this fully flexible func-

tion g is the same for all cross-sectional units. Indeed, doubts with respect to the

(parametric) homogeneous specification (2b) have already been raised in the EKC

literature by allowing for heterogeneous slope parameters (see section III.2). Instead

7In addition to (2a)-(2c) over cross-sectional units and time, we need an appropriate distribu-
tional assumption in terms of the idiosyncratic error terms �rt, as well as assumptions concerning
the possible correlations over individuals and time.
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of via (2b), more flexibility can be obtained by specifying cross-section specific βs:

f(x, r) = g(x, βr) +
X
r

αrdrr. (3)

This specification allows one to test whether or not the homogeneity assumption

is too restrictive. If tested explicitly, the null hypothesis of homogeneity is indeed

often rejected, in particular within the parametric framework. However, rejection of

the null hypothesis βr = β does not necessarily imply non-homogeneity, but might

also indicate parametric model misspecification.8

To allow for heterogeneity in the time effect, a typical choice would be to model

λ(r, t) by means of a region-specific linear time trend, as Millimet et al. [2003]

actually do, or to allow for region-specific higher-order terms, such as λ(r, t) =

λr,1× t+λr,2× t2..., etc. Such a specification fits in the PLR framework of Robinson

[1988] and Stock [1989]. However, by allowing too much heterogeneous flexibility,

for instance by including higher order terms in the time effect, λ(r, t) will capture all

time variation. This leaves no variation for f(x, r), and this link function essentially

becomes underidentified.

These developments in the EKC literature can be used to illustrate the seri-

ous dilemma one faces when using panel data to model and estimate a particular

reduced-form relation. The regression-based estimation techniques typically em-

ployed try to fit the conditional expectation E (yrt|xrt = x, r, t) as well as possible.

Suppose E (yrt|xrt = x, r, t) = f0(x, r) + λ0(r, t), where a subindex 0 indicates the

“true” values of the functions f and λ. Then a regression-based method will try to

select (f, λ), with (f, λ) ∈ Φ×Λ, such that f(x, r)+λ(r, t) is close to f0(x, r)+λ0(r, t).
If one makes Λ too restrictive, however, the estimated λ might be far away from λ0

which, in turn, might imply that the estimated f is quite distinct from f0. If for

example f0 = 0, the estimated f will be such that f(x, r) is close to λ0(r, t)−λ(r, t).
This might correspond to an estimated f being quite different from zero when the

estimated λ is far away from λ0. Choosing Λ to be too flexible does not work either,

since one would be back in the situation of underidentification. Accordingly, the

standard approach faces a serious dilemma: only when Λ is large enough, might one

expect some λ ∈ Λ to be able to fit λ0, and the estimated f to fit the “true” f0, while

at the same time one has to make Λ restrictive enough to avoid underidentification

with possibly no λ ∈ Λ being able to fit the “true” λ0 and, as a consequence, the

8This can easily be illustrated by considering the case of two countries whose x-values do not
overlap (for example, Luxemburg and Turkey). In the case of rejection of βLuxemburg = βTurkey,

homogeneity might still be present.
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estimated f being far away from the “true” f0.

Our way out of the dilemma is an approach that allows full flexibility in the link

function f and only imposes restrictions on the function λ, but without restricting

its flexibility, based on a “most reasonable” decomposition. We start by interpreting

equation (1) as a decomposition of yrt into three effects a systematic part, captured

by f(xrt, r), a deterministic time trend, captured by λ(r, t), and a remainder term �rt

that captures the region- and time-specific idiosyncratic effects. A “most reasonable”

decomposition should satisfy two requirements that − we believe − any specific

restriction should satisfy anyway. First of all, λ should not be region-specific, i.e.,

for a “reasonable” decomposition we require that λ is such that for each r ∈ R
there exists at least one s ∈ R, with s 6= r, such that for all t ∈ T we have

λ(r, t) = λ(s, t). Note that if λ does not satisfy this requirement, λ cannot really be

distinguished from possible idiosyncratic effects. Second, given the first requirement,

a “reasonable” decomposition should avoid restricting λ too much. This requires

λ to be as flexible as possible because any additional structure imposed on λ (on

top of the first requirement) will immediately affect the possible shape of f in the

decomposition. As has been explained before, measurement of the systematic effect

would otherwise be influenced in an “unreasonable” way.

Using the assumption λ(r, t) = λ(s, t) for all t ∈ T for a given pair (r, s) we can
identify and estimate f(x, r) (and f(x, s)) by taking differences according to

yrt − yst = f(xrt, r)− f(xst, s) + (�rt − �st) , t = 1, 2, ..., T, (4)

together with assuming E (�rt − �st|xrt, xst) = 0. This approach allows full flexi-

bility in f and λ, while the assumption E (�rt − �st|xrt, xst) = 0 guarantees that

it is reasonable to classify the effects captured by �rt as idiosyncratic. The un-

known regression functions f(x, r) and f(x, s) of equation (4) are identified and can

be estimated by imposing, for example, Linton and Nielsen’s [1995] method and

imposing their regularity conditions and (additional) distributional assumptions.9

Note that this procedure is the ultimate reduced-form estimation of the inverted-U

curve, because identifying the inverted-U relation between independent and depen-

dent variables no longer depends on the effects of the time variables. Assuming that

two regions have the same time effect does not impose a priori a specific structure

on this time effect: it still allows any structure, as long as this structure applies

to both regions under consideration. So, the only remaining choice is to select the

9Note that this specification also implicitly accounts for potential endogeneity if the time trend
captures technological change which — in turn — depends on (the level of) emissions and income.
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appropriate combination of cross-sectional units (r, s) according to the assumption

λ(r, t) = λ(s, t).

However, we cannot make this choice on the basis of the data alone. To make

this clear, notice that the time effects λ(r, t) and λ(s, t) might be retrieved from

yrt − f(xrt, r) = λ(r, t) + error, (5)

yst − f(xst, s) = λ(s, t) + error,

using the estimated functions f on the left-hand sides. However, allowing full flexi-

bility for each t, we only have one observation to retrieve λ(r, t) and λ(s, t), namely

yrt− bf(xrt, r) and yst− bf(xst, s), respectively, and we only have two observations to
retrieve λ(t) = λ(r, t) = λ(s, t). Although this allows estimation of the time effects,10

it does not allow a consistent estimation of fully flexible time trends, since this would

require many cross-sectional observations, which, however, are unavailable. In other

words, λ(t), λ(r, t), and λ(s, t) are not identified and, as a consequence, we are

unable to test a hypothesis such as H0 : λ(t) = λ(r, t) = λ(s, t).

Given that any pair of cross-sectional units (r, s) can be used, our approach leaves

N(N − 1)/2 possible relationships for a sample of N cross-sections. We are facing

model ambiguity, due to a lack of identification (compare Manski [2000]). To deal

with this ambiguity, we proceed by employing priors over the cross-sectional units.

Such priors can be used to express one’s views about which countries are more or

less likely to have common time trends. Such views are clearly subjective. However,

note that any specification of the time effect, such as fixed and homogeneous across

cross-sections also reveals someone’s prior, of course. Our approach simply makes

explicit from the very beginning that the empirical “evidence” on the presence of

a possible inverted-U relationship can no longer be inferred “automatically”, but

always depends upon one’s prior. In our empirical application, we shall examine all

possible pairs and base our inference on the combination of these possible pairs. We

use three different priors to investigate the sensitivity to the prior choice.

III Model sensitivity illustrated

In this and the next section we present our empirical analysis considering two widely

studied emission-income relationships, namely SO2 and CO2 emissions. In this sec-

tion we investigate sensitivity to different model assumptions arising from the impo-

10A simple estimator for λ (t) consists of taking the average of yrt− bf(xrt, r) and yst− bf(xst, s).
10



sition of different identifying restrictions needed to identify the underlying underi-

dentified model given by equation (1). In the next section, we present our alternative

approach. The current section does not aim to break new grounds. Instead, it pro-

vides benchmark estimations for our new approach in addition to illuminating the

role of various modeling assumptions behind the current uncertainty as to whether

inverted-U relations exist for both types of emissions.

III.1 Data

In our applications we are specifically interested in quantification of equation (1)

with y = log (E/N) and x = log (Y/N), with E either SO2 or CO2 emissions, Y

the GDP level and N the population size, and with the controls r and t referring

to country r and year t, respectively. Note that the control r is usually thought

to reflect persistent country-specific differences, such as fossil-fuel availability and

prices, regulatory differences and preferences, and that the control t picks up changes

over time, such as changing prices or technologies.

We concentrate exclusively on two balanced panels of OECD countries between

1960 and 2000.11 Specifically, the data for SO2 emissions are in metric tons of sulfur

based on estimated sulfur content and sulfur retention or removal fromwaste streams

including emissions of sulfur from burning hard coal, brown coal and petroleum, and

sulfur emissions from mining and smelting activities. Data for CO2 emissions are in

millions of metric tons of carbon and they are calculated from energy consumption.

To calculate CO2emissions, we use data for total primary energy supply (TPES)

per fuel, corrected for non-energy use of fuels such as chemical feedstocks. The

fuels incorporated in the calculations are coal, other solid fuels (for example, wood),

crude oil, petroleum products and natural gas. Total energy use and emissions per

country are corrected for exports and imports of fuels, as well as for stock changes

and international marine bunkers. Data on Y and N were taken from OECD [2000].

All figures are expressed in 1990 dollars, using purchasing power parities. The OECD

has reconstructed data on Y for Germany (including the former GDR) for the years

between 1970 and 1989. We further extrapolated GDP figures backwards to 1960

assuming that changes in GDP per capita for East Germany were similar to those

for West Germany.

[INSERT TABLE 1]

11See the appendix for a complete description of our compiled data-set.
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Table 1 shows some descriptive statistics of the raw data. Our overall data-set

contains 984 observations for all variables for each panel on SO2 and CO2 emissions,

and for each country we have 41 observations available. Our variables y and x are in

log-s. But when presenting our estimated curves, we use the original values (E/N

and Y/N). In addition, we also normalize all curves such that the average levels

equal the sample average since in the semi-parametric specifications the level of the

curves is not identified.

III.2 Benchmark estimations

We now turn to the sensitivity to employed modeling assumptions corresponding

to models such as (2) or (3). For ease of comparison, Figures 1.a and 1.b summa-

rize our main findings for the most important reduced-form econometric specifica-

tions applied in the literature for SO2 and CO2, respectively. The three curves in

each figure represent estimated f -functions for the parametric cubic specification,

based on the earliest estimations of an inverted U, including Grossman and Krueger

[1995] and Holtz-Eakin and Selden [1995], for the (linear) spline method, applied

by Schmalensee et al. [1998], and for the standard semi-parametric PLR estima-

tion (including a 95% confidence band) as used in Millimet et al. [2003].12 Vertical

lines (together with the upper and lower limits of the corresponding 95% confidence

intervals) are added at the predicted peak of the parametric EKC. Note that all

estimation techniques are based on homogeneous cross-section and time effects as

given in (2a) and (2c).

[INSERT FIGURE 1.a and 1.b]

Our estimations for SO2 in the cases of the parametric and spline approaches

are more or less in line with the existing literature. For instance, Selden and Song

[1994] were the first to provide evidence for the existence of this relation, and their

findings have been basically confirmed, for instance, recently by Stern and Common

[2001] for 73 countries as well as by our OECD limited balanced panel data-set.

Whereas the early parametric estimations for CO2 emissions could only report a

turning point (TP) far out of sample (for example, Holtz-Eakin and Selden [1995]),

our parametric estimations using OECD restricted data as well as additional data

for the 1990s yield a clear estimated within-sample TP at $14,355. This is at 43%

12See the appendix for details.
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of the maximum panel observation.13 The results for the spline method more or

less follow the results reported by Schmalensee et al. [1998] and also yield a within-

sample TP, though now at 64% of the maximum value and significant at p<0.01.14

When using the flexible semi-parametric PLR method for the SO2 case, we find that

at lower levels of income the estimated pattern follows the patterns found by the

parametric and spline method quite closely, but it also shows a large, inconclusive

boundary for higher-income observations (mainly USA and Luxemburg data). For

the CO2-case, the estimated curve using the PLR technique more or less follows the

EKC pattern produced by the (parametric) cubic specification, but only for income

levels up to $18,000 or 54% of the maximum income level.

To investigate the consequence of the homogeneity assumption, we simply re-

estimate the curves without the Luxemburg data. Figure 2 contains the results. If

the homogeneity assumption makes sense, eliminating a single country should not

change the results dramatically.15 However, looking at the PLR estimates in the

case of SO2 without the data for Luxemburg still produces a peak, but now also a

trough, with emissions rising again after some income level (though within a large

uncertainty bound). In the case of CO2 we even no longer find an inverted U, but

basically confirm Azomahou et al. [2006]. They concluded that the overall pattern

more or less follows a monotonic increasing pattern of CO2 emissions per capita,

with rising (per-capita) income levels, and therefore would not have a TP at all.

13Indeed, the different result for the parametric specification of Holtz-Eakin and Selden [1995] is
explained partly by the additional data points we included (the TP for the same years considered
by them is located at 81% of the maximum of the panel). Even more important, however, is that
we now restrict our analysis to OECD data, which start from higher initial income levels. This
largely affects parametric specifications but has much less effect on splines because these follow
the data more closely.
14For the 24-spline estimation, only the first two and the last splines are significant. This finding

is robust for the 20-, 16- and 12-spline specifications. Note that we only show significant splines in

our figures.
15We focus on the PLR and spline-based specifications, since, applying the same specification

test as in Millimet et al. [2003], i.e., using the semi-parametric PLR method as the alternative
(see Zheng [1996] and Li and Wang [1998]), we reject the parametric but not the spline-based
specification both in the case of CO2 and in the case of SO2. For a reasonable range of smoothness
parameters, we find, in the case of the parametric cubic specification, values of the test statistic
larger than 1.64. Taking into account that in finite samples the test statistic might be skewed to
the left (see also Millimet et al. [2003]), this clearly indicates rejection of the null hypothesis. In
the case of the spline specification, we find negative values of the test statistic. It is, however,

unlikely that the skewness of the test statistic is so far to the left that this justifies rejection of the
null hypothesis.
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Also, with the spline method the CO2 case no longer produces such a TP if we

exclude Luxemburg. 16 We conclude that imposing the homogeneity assumption

might result in outcomes rather sensitive to the inclusion or exclusion of particular

countries.17 This simple finding already confirms the confusion that characterizes

the current literature on EKC, which has even fueled dissatisfaction with reduced-

form EKC estimation in general.

[INSERT FIGURE 2.a and 2.b]

As explained in section II also the specification of the time effect might seriously

influence the reduced-form estimations. This issue has so far generated much less

attention in the literature, with some exceptions such as Grossman and Krueger

[1995] who have pointed out the potential importance of the time variable in driving

emissions down. To see whether the use of non-linear country-specific time trends

may affect the results, we also consider an extension of the approach of Millimet et al.

[2003] by modeling the time trend via a (country-specific) third-order polynomial.

By way of illustration, Figure 3 shows the results for both Luxemburg and the

USA for both samples and for both parametric and non-parametric models.18 In

the parametric cases both the income link function and the time effect are modeled

16In the case of homogeneity, one major event — the closing-down of a large steel firm in the
1980s in Luxemburg — seems to drive our ultimate judgment on whether or not an EKC for SO2
and CO2 exists. Steel production was responsible for over 50% of industrial production in 1980
but was down to 3% in 2000.
17Specification tests reject the imposition of homogeneity on the cross-sections. For instance,

we generate Wald statistics by comparing the sum of squared residuals of the general model with
and without heterogeneous coefficients for only the GDP variables (“traditional models”) and/or
for the time-specific trend variable (general model). Because in the last case all coefficients are
country-specific, we estimated this model with country-specific time-series analysis. This results in

a Wald test statistic that is asymptotically χ269-distributed under the null hypothesis. The values
of the Wald statistic for the SO2 and CO2case are 1,254 and 1,219, respectively (see also List and
Gallet [1999], Martinez-Zarzoso and Bengochea-Morancho [2004] and Dijkgraaf and Vollebergh
[2005]). We also find clear indications that the spline models do not allow enough heterogeneity
if country-specific trends are included. With the same income levels for the different segments
applied at the country level, the homogeneity assumption is rejected for the preferred models in
all cases. For instance, the Wald test on heterogeneous coefficients of the income variables for the
8-spline model is asymptotically χ2126-distributed under the null hypothesis. The test statistic’s
value is 1,428 (we found similar results for 12-, 10- and the (non-preferred) 6-spline models; results
available upon request). Also, Millimet et al. [2003] report sensitivity of their semi-parametric

panel data results for the homogeneity assumption, particularly for the case of SO2 emissions.
18We provide country specific graphs for all countries in our supplement.
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as third-order polynomials, estimated simultaneously, resulting in the pronounced

graphs for the income curves. In the case of the PLR approach, however, one

first corrects for the time effect. Since a third-order polynomial time effect already

captures most of the variation, this results in rather flat curves for the income effects.

As a consequence, the results of the parametric and PLR approaches turn out to be

quite different, with the exception the CO2 case for the USA. Clearly, the imposed

model structure determines the outcomes. These findings for the two countries in the

upper tail of the income distribution are quite representative of the whole sample.

The estimations for all countries illustrate the importance of the imposed structure,

including the specification of the time effect. Comparing the results for countries

with overlapping income levels, or for a single country with the homogeneous case,

also yields notable differences in many cases. Both the existence and the location

of the TP differ, and also the polynomial-based parametric and PLR estimates

sometimes point to very different development patterns for a considerable number

of countries over time for both samples.

[INSERT FIGURE 3.a.1, 3.a.2, 3.b.1 and 3.b.2]

These results show that reduced-form estimations of an inverted-U relation for

both our emission data-sets with income are very sensitive to the model assump-

tions imposed. We find overwhelming support for the observation that inference

of reduced-form relationships with panel data crucially depends on the subjective

model choice, which is necessary since the underlying model (1) lacks identifica-

tion. Particular, the sensitivity to the way the time component is modeled might

be substantial. This is unsatisfactory, as it thwarts robust inference as to whether

a TP exists or not. Therefore, we now turn to our approach that, apart from a

very weak identifying condition, allows full flexibility, and thus, given the identify-

ing restriction, allows proper inference on the existence of inverted U-shaped link

functions.

IV The pairwise estimation approach

In this section we present the results from our new identification and estimation

procedure, and show that inference based on different priors generates remarkably

consistent results. Our pairwise (non-parametric) estimation approach allows as

much heterogeneity as possible, but still exploits the advantages of joint parame-

ter estimation. The pairwise procedure starts from the idea that countries might
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develop (more or less) similarly over time — for instance, because they are exposed

to common (technology, regulatory or price) shocks. By taking differences between

“co-developing” countries, we can identify their (country-specific) “pure” income

link function. As explained in section II, we estimate our pairwise model by ap-

plying (4) and using the Linton and Nielsen [1995] (LN) method. In the original

LN estimator, the corresponding confidence band is based on the assumption of ho-

moskedasticity. We extend the asymptotic limit distribution by also allowing for the

possibility of heteroskedasticity.19 Finally, we take it that our data obtained after

differencing do not suffer from unit root problems.20

Obviously, choosing the “right” combination of countries is crucial to identifica-

tion of the income effect in this pairwise procedure. Results are likely to be sensitive

to combinations of countries for which one assumes that the time trend is similar.

This assumption, however, is untestable and therefore causes model ambiguity (com-

pare Manski [2000] and Brock et al. [2003]).21 In other words, exact identification

comes at a price, because as many identifications as potential pairs of countries

(N − 1) are possible, i.e., in our case 23 identifications for each of 24 countries. The
(weak) assumption of similar time trends for a given pair of countries can only be

justified by an appeal to intuition or prior information [Heckman, 2000, p. 64].

19The asymptotic variance of the estimator of f(x, r) changes from the expression in Linton and

Nielsen [1995], which is given by σ2
Z

p2s(yst)/pr,s(yrt, yst)dyst, to the new expressionZ
E((εrt − εst)

2|yrt, yst)p2s(yst)/pr,s(yrt, yst)dyst

with ps(yst) the density of yst and pr,s(yrt, yst) the density of (yrt, yst). The sample analog follows
straightforwardly and is similar to Linton and Nielsen [1995].
20Recently, several papers have raised doubts about the stationarity of the sample data commonly

used for testing inverted U-shapes for SO2 and for CO2 (for example, Stern and Common [2001]),
although the findings of Lanne and Liski [2003] suggest that it is quite unlikely that we are missing
a structural break in the CO2-series for the limited period spanned by our data. Whether unit
roots are present or not does not have any consequence, however, for the identification problem

which is our main concern in this paper. Furthermore, the presence of unit roots in the original
data does not necessarily carry over to the data we use in our pairwise procedure. We found
ambiguous results using the KPSS test for unit roots in heterogeneous panels for randomly chosen
combinations of pairs [Kwiatkowski et al., 1992]. Indeed, results strongly depend on the modeling
assumptions of the test itself, which, as is well known, strongly affect the size and power of this
test.
21Note the important difference with the extra restrictions imposed within the standard literature

as explained in section II (in particular on the time effects included). These restrictions can be
tested; the results have been reported in the previous section.
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Unfortunately, prior information on equal time trends to select pairs of countries

is not as obvious as one might wish. Take as an example two closely linked countries

such as Belgium and the Netherlands. These countries are geographically close, form

a customs union throughout our sample period, and closely cooperate on many policy

issues. Nonetheless, their energy systems − which are to a large extent responsible
for the level of both SO2 and CO2 emissions − show notably different development
over time. Non-fossil-fuel energy use has grown from 0% to 22% of TPES in Belgium

but only to a small 2% in the Netherlands in 2000 [OECD, 2000]. Energy use per

capita, however, has grown much faster in the Netherlands than in Belgium in the

same period, namely by 160% and 120%, respectively.

To deal with the model ambiguity, we discuss three priors in detail.22 The first,

somewhat ad hoc, approach is a simple uniform prior (Bayes) that gives each likely

candidate an equal probability and then looks at the average of all 23 pairs (referred

to as BAYES). The second approach attaches a priori probabilities on some subset

of country pairs based on expert opinion on the likelihood of similar time effects.

We label this prior EXPERT. To derive this prior we use time-related developments

in energy use of country pairs and categorize countries using both the level of non-

fossil-fuel use and its developments over time, i.e., between 1960 and 2000.23

Even if the priors BAYES and EXPERT suggest that no inverted U exists, one

might still be able to infer an inverted-U shape for a country, if one is prepared to

choose a particular (set of) country pair(s) based on some (possibly extreme) prior.

To judge such priors that yield an inverted-U shape, we quantify the dependence of

any inference based on such a prior using an index ω (r, t) that minimizes the like-

lihood of accepting the hypothesis we try to reject (“cross-section r has an inverted

U for the pure income effect”). The index is computed for a given country r and a

given year t in the following way. First of all, for each of the 23 pairs we count the

number of country pairs that generate an inverted-U pattern. Next, we compute

the index as a factor that attaches a weight to the number of pairs that generate

inverted-U patterns as well as to the strength of this pattern by taking its gradient

into account. The factor ω (r, t) is then computed as the minimal weight that we

need to attach to the pairs generating an inverted-U shape compared with those

without such a shape, which are weighted by eω (r, t). To be precise, to compute this
22Another likely candidate suggested by Brock et al. [2003] would be a goodness-of-fit measure

for the different possible pairs. However, because our non-parametric estimation procedure leads
to very high goodness-of-fit statistics, the cutting power of this measure is rather weak.
23See the appendix for an explanation of the country pairs considered under prior EXPERT.
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factor, we minimize for each country and year the following LOSS program:

minω (r, t) , subject to ω (r, t)
X
s6=t

D (s, t) + eω (r, t)X
s6=t
(1−D (s, t)) = 23, and

ω (r, t)
X
s6=t

D (s, t) (−Grad (s, t)) ≥ eω (r, t))X
s 6=t
(1−D (s, t))Grad (s, t)

where D (s, t) is a dummy variable that is equal to 1 if an inverted U is observed

in case of country s in year t, and equal to 0 if this is not the case, and Grad (s, t)

measures the gradient of country s for the emission level in year t compared with

the year 2000, which is negative when D (s, t) is 1 and positive otherwise. So, with

ω (r, t) < 1, an inverted U is likely to exist, because one does not have to attach

much additional weight to the pairs that do show an inverted U. However, with

ω (r, t) >> 1 an inverted U is very unlikely for this country given that so much

weight has to be given to pairs that confirm this pattern. If there is some country

r for which all pairs have an inverted-U shape we set ω (r, t) = 0, and if there is no

pair (r, s) with an inverted-U shape we set ω (r, t) =∞.

[INSERT FIGURE 4.a and 4.b]

We present the results for the priors BAYES and EXPERT in Figures 4.a and

4.b, and for the index LOSS in Table 2 for both the SO2 and CO2sample. The

figures represent the (computed) average pure income and time effects for all relevant

country pairs.24 The results clearly show that the pure income effect is positive and

more or less linear. In other words, the scale effects positively influence per capita

emission levels for both samples. Also, the difference between the priors is small

to very small. This unambiguous result finds further support from using the index

LOSS. Table 2 shows the results for this prior for each of the different countries

and for two particular years, i.e. 1991 and 1997. The countries are ranked from

lowest to highest ω (r, t), using this index for the SO2 case in 1997. The level of the

factor ω (r, t) in both the SO2 and CO2 samples is usually (far) above 1 and there

is generally little difference between the two years, indicating that the result of a

positive pure income effect is very robust. The factor is only below 1 for Sweden and

Iceland in the CO2 case. These countries are also precisely the ones for which the

other priors generate an inverted U. For our SO2 sample all factors are above 1 and

24By averaging we deal with the problem that particularly country-specific time effects might
be estimated quite inaccurately. However, in the supplement we also present a complete country-
specific picture.
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on average higher than for the CO2 sample. For the SO2 and CO2 samples country

pairs that do yield an inverted U have to be counted as respectively 3.89 and 3.33

times stronger on average in 1991 than those country pairs that do not yield such

an inverted-U pure income effect. We conclude that it is very unlikely that the pure

income effect is negative.

[INSERT TABLE 2]

Overall the results for our three priors are remarkably consistent. Exact iden-

tification of the reduced-form hypothesis does not provide evidence of an inverted

U for the income effect in many countries. Our estimations confirm the importance

of the time effect but not the income effect in causing a downward trend in emis-

sions. Looking at Figure 4.a again we find that the (average) time-related effects

show a clear inverted-U pattern with per-capita SO2 emissions. Their peak comes

around 1965 with a steady decline since. In other words, the combined composi-

tion and technique effect is clearly negative and produces lower overall (per-capita)

emission levels. Time effects on per-capita CO2 emissions (Figure 4.b) also tend to

peak, though during an almost decade-long trajectory, and then more or less sta-

bilize from the beginning of the ’80s. Thus composition and technique effects seem

to have much less impact for CO2 than for SO2emissions. Given the clear upward

trend in the income effect, it is hardly surprising that there has been an almost

linear rise in overall CO2 emissions per capita since the trough at the beginning of

the 1980s. For SO2emissions the overall effect is clearly downward given the rather

steep decline in the time effect. These findings also substantiate common sense

observations for both types of emissions. The level of (per capita) SO2emissions ini-

tially benefited mainly from fuel substitution away from coal, and later on from the

rather intensive regulatory effort to bring these emissions down through abatement

technologies, which was also coordinated internationally by a substantial number of

countries within our panel (see for example, Popp [2002]). The picture is entirely

different for CO2emissions. In particular the benefit from fuel substitution and to a

lesser extent compositional changes is much smaller for these emissions, and interna-

tional standards for CO2 emissions are still quite lax and often almost non-binding

despite coordinated efforts such as the Kyoto protocol.
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V Conclusion

This paper shows that reduced-form panel-based estimations of hypothesized inverted-

U relationships should be treated with care. We demonstrate for two widely studied

panels, namely SO2 and CO2 emissions for OECD countries, that the current lack

of robustness of inverted-U estimations of emission-income relationships is due to

underidentification. In particular, results are strongly dependent on the imposed

identifying restrictions with respect to the independent variable (income) and the

control variable (time). Different identifying assumptions result in different model

specifications, inducing different inferences. Fortunately, our alternative inference

procedure makes clear that some merit still exists in reduced-form estimations of

inverted-U shapes, such as emission-income relationships.

Our pairwise estimation procedure, based on a very weak identifying assumption,

combined with different priors, generates clear and convincing patterns for the two

mechanisms that are widely perceived as being theoretically important in explaining

long-run developments. Specifically, our empirical analysis justifies the inference

that (on average) the income effect is not responsible for an inverted U. Instead,

on average it is time that explains the overall downward trend in country-specific

emission-income relationships, if such a trend exists at all. These results nicely

corroborate theoretical models that explicitly distinguish between scale, composition

and technique effects (for example, Stokey [1998], Andreoni and Levinson [2001]

and Brock and Taylor [2005]). Our pure income effect is consistent with the scale

effect that the theory expects to be positive: economies operating at a larger scale

generally use more inputs (emissions). One would only expect a declining overall

effect from a shift in sectors and technological change strong enough to offset this

scale effect. Such effects are typically time related, and our time effect estimates are

again plausible. Time effects are negative enough to more than offset the positive

scale effect in the case of the strongly regulated SO2-emissions, but not so for CO2
emissions which tend to go more or less unregulated.

The robust findings for our case studies suggest that our pairwise estimation

procedure, in combination with the sensitivity analysis of the priors involved, pro-

vides a promising direction for future work for comparable panel-based reduced-form

estimations suffering from similar identification problems.
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A. Appendix

A.1 Data description

We have taken our SO2 data from http://www.rpi.edu/~sternd/datasite.html and

they are described in more detail by Stern [2005]. Stern took his data for OECD

countries from the UNECE/EMEP emission database WebDab, which has been con-

structed with the purpose of facilitating the access to the emission data reported to

the Convention on Long-Range Transboundary Air Pollution (CLRTAP) on Main

Pollutants among other compounds. The database contains officially reported emis-

sion data for the emission years 1980 to 2003. Data for the 70’s are obtained from

OECD sources and for earlier periods from a database from ASL and Associates.

Stern [2005] and Stern and Common [2001] have also checked their results for SO2
emissions vis-a-vis earlier findings in the literature and they report almost no sensi-

tivity of their findings for the data-set they use.

Our data on CO2 emissions are calculated from energy consumption measured

in million tons of oil equivalent (TOE) using OECD (2000) and IEA/OECD [1991].

To calculate CO2 emissions, we use data for total primary energy supply (TPES)

per fuel, corrected for non-energy use of fuels such as chemical feedstocks. The

fuels incorporated in the calculations are coal, other solid fuels (for example, wood),

crude oil, petroleum products and natural gas. Total energy use and emissions per

country are corrected for exports and imports of fuels, as well as for stock changes

and international marine bunkers. Our procedure for calculating CO2 emissions

from OECD energy consumption data is similar to the approach followed by the

Carbon Dioxide Information Analysis Center of Oak Ridge National Laboratory

(ORNL), whose data are usually employed in empirical research on CO2 emissions,

such as Holtz-Eakin and Selden [1995] and Schmalensee et al. [1998]. To check the

sensitivity of our CO2 data-set, we also tested our results using this data-set for a

similar sample period, i.e., excluding data between 1990 and 1997.25 In all cases our

basic findings are similar.

Figures A.1.a and A.1.b show the scatter plots for both our SO2.and CO2 data-

sets. To illustrate the potential role of country heterogeneity, in particular in the

upper tail of the distribution, we have highlighted the data for the two countries at

25For this sensitivity analysis to be fully comparable we have also used income data taken from
the Penn World Table until 1992 for the same (OECD) sample. This also accounts for potential
problems with data on Y for Germany, as these data are restricted to West Germany only. These

results are available upon request.
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the highest income levels, namely the USA and Luxemburg.26

[INSERT FIGURE A.1.a and A.1.b]

A.2 Additional details for Figures 1.a and 1.b

We present results only for the best-performing models. In the SO2 case we find that

the cubic form is rejected when we allow for time fixed effects, but the cubic model

is preferred with country-specific trends. In the CO2 case the quadratic models

were all clearly rejected vis-à-vis the cubic specifications. Furthermore, both the

quadratic and cubic models without any fixed effects were also rejected.27 Table A.1

summarizes our main findings for the (pooled) parametric (log-linear) specification

for both emissions. The response coefficients for income in all specifications are

significantly different from zero at the p<0.01 level even when estimated jointly.

[INSERT TABLE A.1]

In the case of the flexible piecewise (linear) spline framework, such as in Schmalensee

et al. [1998], we first started with a model featuring 20- and 24-segment splines and

time fixed effects, where each segment contains the same number of data points. In

our case, we reject simplifications to 10 and 12 splines that preserve this symmetry,

but the differences are small. The same holds for simplifications from 16 to 8 splines.

Our findings for the spline method are included in Figures 1.a and 1.b in the main

text. We only present splines that are significant. Vertical lines are added at the

predicted peak of the parametric EKC and its upper and lower limits of the 95%

confidence interval.

A.3 Prior EXPERT

The prior EXPERT attaches a priori probabilities on some subset of country pairs

on the likelihood of homogeneous time effects as judged by some rationalized expert

judgment. We take it that expert opinion is shaped by time-related developments

in energy use of country pairs. Accordingly, the prior categorizes countries using

both the level of non-fossil fuel use in 1960 and 2000 and its development over time,

26Note that the high per capita emissions in Luxemburg are mainly due to the fact that the
share of steel production in GDP was over 50% in the first two decades of our sample period.
27Response coefficients for the quadratic model, as well as for models without country-specific

fixed effects and time fixed effects, are available upon request.
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i.e., between 1960 and 1997. Table A.2.a summarizes major developments in and

levels of energy use and its composition for fossil and non-fossil energy use, for all

countries in our sample using the OECD Energy Balances [OECD, 2000]. The first

four columns show the level and overall growth in non-fossil fuel use between 1960

and 1997 (measured as a percentage of overall TPES). For instance, the United

Kingdom only took 1% of its total primary energy use from non-fossil fuels in 1960,

whereas this percentage is as high as 11% in 1997. Therefore, both the level in 1997

and the growth rate in this period have been high. The next four columns provide

insight into the level and growth in overall energy use since 1960. Again take the

UK as an example. The level of primary energy use per capita has grown here from

3 in 1960 to only 4 in 1997 which is only a modest rise of 26%.

As to the overall ranking of the countries in groups, we followed a lexicographic

rule. First of all, a country gets an assessment of “good” if the level of non-fossil

fuel energy use exceeds 10% in 1997 and the growth rate is above 50%, and of “bad”

otherwise. Next, we categorize countries into “good”, “neutral” and “bad” according

to whether the growth of overall energy use is below 100%, between 100 and 200%

or above 200%, respectively. Accordingly, we create 6 groups of “homogeneous”

countries, putting most weight on the first indicator which captures the level of

non-fossil-fuel energy use in 1997. For instance, the first group has a high level of

non-fossil-fuel use in 1997 and a growth in energy use below 100% between 1960

and 1997. Accordingly, we find that the United Kingdom and Canada are the only

members of this group. Next, we apply our pairwise estimation procedure to both

countries using the other country as its reference country, which is clarrified in Table

A.2.b. The five other groups consist of respectively 7, 2, 3, 7 and 3 countries, which

is clarified in the last column of Table A.2.a. As a consequence, if a group contains 7

countries, we include for each of the countries in this group country pairs taking the

other 6 countries as their reference country. Finally, we have averaged these results

for each country.

[INSERT TABLE A.2.a and A.2.b]
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Tables and Figures

Table I.: Descriptive statisticsa

Variable Unit Mean SD Minimum Maximum

Income mln 1990 $ 483,479 972,380 1,218 7,500,777

Carbon tons 103,858 251,789 323 1,593,490

Sulfur tons 1,071 2,315 1.51 14,421

Population mln 33 50 0.2 275

Per-capita income 1990 $ 13,172 4,992 2,771 33,635

Per-capita carbon kg 2,606 1,801 167 12,333

Per-capita sulfur kg 29 24 1.25 154

a) Descriptive statistics are for the period 1960-2000 (n = 984)
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Table 2: Turning-point sensitivity for index LOSS for SO2 and CO2
SO2 CO2

1991 1997 1991 1997

JPN 1.07 1.07 2.70 3.03

SWI 1.23 1.22 3.67 3.66

DNK 1.51 1.59 2.79 3.13

NOR 1.77 1.64 2.29 2.00

CAN 1.60 1.66 1.92 2.03

UKD 1.88 1.67 1.71 1.62

NLD 2.04 1.98 2.15 1.96

AUT 1.85 2.04 2.00 1.91

BEL 2.07 2.08 1.80 1.87

SWE 2.39 2.43 0.62 0.60

LUX 2.38 2.45 1.74 1.66

NZL 2.63 2.75 7.46 5.64

IRE 3.57 2.78 6.46 3.71

USA 3.58 3.11 3.30 3.49

GER 3.13 3.18 1.30 1.31

FRA 3.17 3.19 1.28 1.28

ITA 2.93 3.37 4.14 4.17

SPA 3.42 3.40 4.94 3.52

TUR 3.11 4.08 9.76 7.27

GRE 4.27 4.35 8.34 6.18

FIN 6.91 6.76 1.63 1.46

ICE 7.05 7.13 0.68 0.68

AUS 7.20 20.17 3.92 4.73

POR 22.65 22.89 ∞ ∞
Average 3.89 4.46 3.33 2.91

Stdev 4.36 5.48 2.50 1.78
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Table A.1: Main test results for parametric estimations based on homogeneitya

SO2 per capita CO2 per capita

Ab B C D

Independent variables
GDP 28.01∗∗∗ -192.02∗∗∗ -31.12∗∗∗ -30.88∗∗∗

(1.12) (17.31) (-7.58) (-6.12)

GDP2 -1.50∗∗∗ 21.91∗∗∗ 4.22∗∗∗ 3.80∗∗∗

(0.06) (1.89) (-0.83) (-0.67)

GDP3 -0.82∗∗∗ -0.18∗∗∗ -0.15∗∗∗

(0.07) (-0.03) (-0.02)

Fixed effects, countries Yes Yes Yes Yes

Fixed effects, years Yes Yes

Country-specific trend Yes Yes

Homogeneity tests
Wald (GDP variables) 2,949∗∗∗c 1,254∗∗∗c 817∗∗∗c 1,219∗∗∗c

Wald (country-specific trends) 429∗∗∗d 357∗∗∗d

Wald (all variables) 4,514∗∗∗e 5,389∗∗∗e

a) Standard errors in parentheses.

b) Cubic form not significant.

c) Wald test with H0: b1r=b1r+1 and b2r=b2r+1 and b3r=b3r+1.

d) Wald test with H0: λr=λr+1.

e) Wald test with H0: b1r=b1r+1 and b2r=b2r+1 and b3r=b3r+1 and λr= λr+1.

*** Significant at 99% level.
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Table A.2.a: Data used for expert opinion

Non-fossil fuel use TPES Rank

Level1 Growth2 Assess- Level3 Growth2 Assess-

1960 1997 ’60-’97 ment 1960 1997 ’60-’97 ment

UKD 1 11 2,049 good 3.1 3.9 26 good 1

CAN 12 22 82 good 4.3 7.9 82 good 1

SWE 13 47 258 good 2.7 5.9 114 neutral 2

GER 1 13 1,732 good 2.0 4.2 116 neutral 2

BEL 0 22 33,482 good 2.5 5.6 120 neutral 2

FRA 4 44 881 good 1.7 4.2 143 neutral 2

SWI 23 37 57 good 1.4 3.7 160 neutral 2

ICE 27 64 134 good 3.2 8.6 172 neutral 2

FIN 5 20 324 good 2.2 6.4 192 neutral 2

JPN 6 18 195 good 0.9 4.1 370 bad 3

SPA 8 16 96 good 0.5 2.7 417 bad 3

LUX 0 0 290 bad 10.5 8.0 -24 good 4

USA 1 10 691 bad 5.7 8.1 43 good 4

AUS 1 2 38 bad 3.0 5.5 83 good 4

DNK 0 1 3,709 bad 2.0 4.0 103 neut. 5

AUT 9 11 25 bad 1.6 3.4 122 neutral 5

NZL 20 22 9 bad 1.7 4.4 156 neutral 5

IRE 2 0 -77 bad 1.3 3.4 156 neutral 5

NLD 0 1 na bad 1.8 4.8 161 neutral 5

NOR 38 39 1 bad 1.9 5.5 183 neutral 5

TUR 1 5 543 bad 0.4 1.1 190 neutral 5

ITA 14 4 -73 bad 0.8 2.8 260 bad 6

POR 9 6 -35 bad 0.3 2.1 489 bad 6

GRE 2 2 15 bad 0.3 2.4 703 bad 6

1. In % of TPES. 2. In % of 1960 level. 3. Per capita.
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Table A.2.b: Pairwise combinations for expert opinion

Paired with:

No Country 1st 2nd 3rd 4th 5th 6th

4 AUS LUX USA

5 AUT DNK IRE NLD NOR NZL TUR

2 BEL FIN FRA GER ICE SWE SWI

1 CAN UKD

5 DNK AUT IRE NLD NOR NZL TUR

2 FIN BEL FRA GER ICE SWE SWI

2 FRA BEL FIN GER ICE SWE SWI

2 GER BEL FIN FRA ICE SWE SWI

6 GRE ITA POR

2 ICE BEL FIN FRA GER SWE SWI

5 IRE AUT DNK NLD NOR NZL TUR

6 ITA GRE POR

3 JPN SPA

4 LUX AUS USA

5 NLD AUT DNK IRE NOR NZL TUR

5 NOR AUT DNK IRE NLD NZL TUR

5 NZL AUT DNK IRE NLD NOR TUR

6 POR GRE ITA

3 SPA JPN

2 SWE BEL FIN FRA GER ICE SWI

2 SWI BEL FIN FRA GER ICE SWE

5 TUR AUT DNK IRE NLD NOR NZL

1 UKD CAN

4 USA AUS LUX
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Figure 1.a. Estimation results for 24 OECD countries based on homogeneous

country and time fixed effects for SO2

Explanatonary legend:

- Cubic: parametric cubic specification

- Spline: 24 piecewise linear (significant splines only)

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 1.b. Estimation results for 24 OECD countries based on homogeneous

country and time fixed effects for CO2

Explanatonary legend:

- Cubic: parametric cubic specification

- Spline: 24 piecewise linear (significant splines only)

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 2.a. Estimation results for 23 OECD countries (excluding Luxemburg)

based on homogeneous country and time fixed effects for SO2

Explanatonary legend:

- Cubic: parametric cubic specification

- Spline: 24 piecewise linear (significant splines only)

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 2.b. Estimation results for 23 OECD countries (excluding Luxemburg)

based on homogeneous country and time fixed effects for CO2

Explanatonary legend:

- Cubic: parametric cubic specification

- Spline: 24 piecewise linear (significant splines only)

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 3.a.1. Results for third- order polynomial time effect assumption for

Luxemburg: SO2

Explanatonary legend:

- Cubic: parametric cubic specification

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 3.a.2. Results for third- order polynomial time effect assumption for the

USA: SO2

Explanatonary legend:

- Cubic: parametric cubic specification

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 3.b.1. Results for third- order polynomial time effect assumption for

Luxemburg: CO2

Explanatonary legend:

- Cubic: parametric cubic specification

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 3.b.2. Results for third- order polynomial time effect assumption for the

USA: CO2

Explanatonary legend:

- Cubic: parametric cubic specification

- TP±2SD: turning point ±2 standard deviations
- NP-LB/AV/UB: non-parametric PLR lower, average and upper bound
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Figure 4.a. Time- and income- related plots for whole sample using prior BAYES

and EXPERT for SO2
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Figure 4.b. Time- and income- related plots for whole sample using prior BAYES

and EXPERT for CO2
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Figure A.1.a. Data plot for SO2
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Figure A.1.b. Data plot for CO2
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Supplement: Country-specific results

S.1 Traditional approach

Estimated plots — similar to those presented in Figures 3.a and 3.b — are presented

for each country separately in Figure S.1.

[INSERT FIGURE S.1]

First of all, the graphs clearly indicate heterogeneity. Comparing countries with

overlapping income levels or comparing a single country with the homogeneous case

yields notable differences in many cases. For instance, the TP estimates across coun-

tries for the parametric specification differ remarkably, if they exist at all. Interest-

ingly, these findings confirm the heterogeneity predicted by some recent theoretical

models (see Brock and Taylor [2005]). According to such models, emission-income

profiles are likely to differ across countries, if countries differ in initial conditions or

in basic parameters, such as savings, technological change (in abatement), and pop-

ulation growth rates. Brock and Taylor [2005] even claim that empirical assessments

should typically have difficulties in finding the inverted U if they do not allow for

heterogeneity across countries in “when” (time) and “where” (income level) the peak

occurs and for differences in the growth rate of emissions. With this much more flex-

ible reduced-form specification, we indeed confirm notable differences across coun-

tries, but also, as we like to stress, patterns that are far from a convincing picture

of an inverted U.

Secondly, the difference between estimation methods is sometimes much less

pronounced and even disappears for several countries at different income levels. In

the case of CO2 emissions, for example, parametric pattern of countries such as

Turkey, Australia and the USA fits almost entirely within the PLR bounds. In

some other cases, however, such as Greece, Italy and Luxemburg, the difference is

still substantial. The polynomial-based parametric and the PLR estimates point to

very different development patterns over time for these countries. This also makes

robust judgments more difficult as to whether a TP exists or not.

Thirdly, the TP estimates for the countries differ remarkably, if they exist at all.

In the SO2 case we find no TP at all for 8 countries and of those that do produce a

TP 4 have a TP that is (far) out of their own sample. It is notable that in the case

of CO2 emissions as many as 17 of the 24 countries have a TP within the pooled

sample and most TPs are even within their own country’s income range. In contrast,

the PLR method yields very different results. Looking at the (weak) hypothesis that
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one could reject a TP for a particular country, the PLR method quite often does not

indicate a TP at all. The results for the highest-income countries appear somewhat

more robust, and several of the highest-income countries also indicate a TP according

to both methods, with Luxemburg (indeed!) as an important exception.

S.2 Pairwise approach

Figure S.2.a shows the country specific results for the SO2 sample, Figure S.2.b for

the CO2 sample. We present the average results per country, where we average over

the 23 pairs formed with the other countries.

[INSERT FIGURE S.2.a AND S.2.b]

In the case of the BAYES prior, we find that for the SO2 sample there is a

clear tendency for the income effect to be positive or at least stable for almost

all countries. The general picture that emerges from the CO2 sample is roughly

similar, with perhaps Canada being the main exception again. For some countries,

such as Australia, Finland, Germany and Portugal, the income effect is really strong.

Average time effects are clearly negative for most countries in the SO2 sample and

they even often reflect an inverted U-shaped pattern. In the CO2 case these effects

are much less strong and even provide an upward trend for several countries such as

Norway and New Zealand. The results from the prior EXPERT are more sensitive as

fewer observations underly the derivation of the country-specific income effects. For

instance, the UK only has Canada as the alternative country to form a pair with,

and vice versa, and the same holds for Spain and Belgium. For these countries,

differences with the BAYES prior can indeed be large.

Tables S.1.a and S.1.b present ω (r, t) for both samples for all countries and for

five years. The level of factor ω (r, t) in both tables is usually (far) above 1, and

there is typically little difference between the years, indicating that the result of a

positive pure income effect is very robust. The factor is only below 1 for Sweden

and Iceland in the CO2 case. These countries are also precisely the ones for which

the other priors generate an inverted U. For our SO2 sample all factors are above

1, and on average higher than for the CO2 sample. On average, country pairs that

do yield an inverted U have to be counted as 3.89 and 3.33 times stronger in 1991

than those country pairs that do not yield such an inverted-U pure income effect for

both samples respectively.

[INSERT TABLES S.1.a AND S.1.b]
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Supplement: Tables and Figures

Table S.1.a: Turning-point sensitivity for index LOSS for SO2
1991 1993 1995 1997 1999

JPN 1.07 1.07 1.07 1.07 1.07

SWI 1.23 1.21 1.21 1.22 1.25

DNK 1.51 1.52 1.56 1.59 1.61

NOR 1.77 1.69 1.62 1.64 1.65

CAN 1.60 1.61 1.64 1.66 1.71

UKD 1.88 1.88 1.76 1.67 1.69

NLD 2.04 2.06 2.10 1.98 2.02

AUT 1.85 1.85 2.02 2.04 1.90

BEL 2.07 2.07 2.07 2.08 2.08

SWE 2.39 2.12 2.40 2.43 2.47

LUX 2.38 2.42 2.44 2.45 2.23

NZL 2.63 2.67 2.73 2.75 2.51

IRE 3.57 3.50 3.05 2.78 2.56

USA 3.58 3.58 3.58 3.11 2.75

GER 3.13 3.12 3.15 3.18 3.21

FRA 3.17 3.17 3.18 3.19 2.81

ITA 2.93 2.92 3.36 3.37 3.39

SPA 3.42 3.43 3.41 3.40 2.97

TUR 3.11 3.34 3.28 4.08 3.98

GRE 4.27 4.23 4.28 4.35 4.41

FIN 6.91 10.17 6.85 6.76 6.78

ICE 7.05 6.99 7.04 7.13 7.20

AUS 7.20 10.52 19.98 20.17 20.31

POR 22.65 22.68 22.79 22.89 22.96

Average 3.89 4.16 4.44 4.46 4.40

Stdev 4.36 4.66 5.44 5.48 5.54

Correlation 0.98 0.93 1.00 1.00
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Table S.1.b: Turning-point sensitivity for index LOSS for CO2
1991 1993 1995 1997 1999

SWE 0.62 0.63 0.61 0.60 0.56

ICE 0.68 0.64 0.68 0.68 0.68

FRA 1.28 1.29 1.28 1.28 1.28

GER 1.30 1.30 1.30 1.31 1.32

FIN 1.63 1.73 1.55 1.46 1.44

UKD 1.71 1.71 1.67 1.62 1.45

LUX 1.74 1.84 1.66 1.66 1.66

BEL 1.80 1.79 1.83 1.87 1.92

AUT 2.00 2.00 1.95 1.91 1.86

NLD 2.15 2.15 2.13 1.96 1.92

NOR 2.29 2.26 2.05 2.00 1.86

CAN 1.92 1.93 1.98 2.03 2.16

JPN 2.70 2.70 2.70 3.03 3.03

DNK 2.79 2.79 2.78 3.13 3.14

USA 3.30 3.33 3.39 3.49 3.60

SPA 4.94 5.04 4.55 3.52 3.24

SWI 3.67 3.65 3.20 3.66 3.69

IRE 6.46 4.95 3.84 3.71 3.71

ITA 4.14 4.96 4.16 4.17 4.19

AUS 3.92 4.69 4.69 4.73 4.03

NZL 7.46 5.69 5.65 5.64 5.61

GRE 8.34 8.29 8.36 6.18 6.06

TUR 9.76 10.00 9.84 7.27 10.35

POR ∞ ∞ ∞ ∞ ∞
Average 3.33 3.28 3.12 2.91 2.99

Stdev 2.50 2.38 2.31 1.78 2.17

Correlation 0.98 0.99 0.97 0.96
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Figure S.1.a. Estimation results for 24 OECD countries based on heterogeneous

country and time fixed effects for SO2
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Figure S.1.a (cont.) Estimation results for 24 OECD countries based on

heterogeneous country and time fixed effects for SO2
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Figure S.1.a (cont.) Estimation results for 24 OECD countries based on

heterogeneous country and time fixed effects for SO2
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Figure S.1.a (cont.) Estimation results for 24 OECD countries based on

heterogeneous country and time fixed effects for SO2
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Figure S.1.b Estimation results for 24 OECD countries based on heterogeneous

country and time fixed effects for CO2
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Figure S.1.b (cont.) Estimation results for 24 OECD countries based on

heterogeneous country and time fixed effects for CO2
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Figure S.1.b (cont.) Estimation results for 24 OECD countries based on

heterogeneous country and time fixed effects for CO2
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Figure S.1.b (cont.) Estimation results for 24 OECD countries based on

heterogeneous country and time fixed effects for CO2
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Figure S.2.a. Estimation results for 24 OECD countries based on BAYES and

EXPERT prior for SO2
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Figure S.2.a (cont.) Estimation results for 24 OECD countries based on BAYES

and EXPERT prior for SO2

57



 

Japan

0

10000

20000

30000

40000

50000

60000

70000

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

 c
ap

ita
 S

O
2

Income Bayes Time Bayes Total Bayes
Income Expert Time Expert Total Expert

Luxembourg

0

10000

20000

30000

40000

50000

60000

70000

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

 c
ap

ita
 S

O
2

Income Bayes Time Bayes Total Bayes
Income Expert Time Expert Total Expert

Netherlands

0

5000

10000

15000

20000

25000

30000

35000

1960 1965 1970 1975 1980 1985 1990 1995 2000

Pe
r 

ca
pi

ta
 S

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Norway

0

5000

10000

15000

20000

25000

30000

1960 1965 1970 1975 1980 1985 1990 1995 2000

Pe
r 

ca
pi

ta
 S

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

New Zealand

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

 c
ap

ita
 S

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Portugal

0

10000

20000

30000

40000

50000

60000

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

 c
ap

ita
 S

O
2

Income Bayes Time Bayes Total Bayes
Income Expert Time Expert Total Expert

Figure S.2.a (cont.) Estimation results for 24 OECD countries based on BAYES

and EXPERT prior for SO2
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Figure S.2.a (cont.) Estimation results for 24 OECD countries based on BAYES

and EXPERT prior for SO2

59



 

Australia

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1960 1965 1970 1975 1980 1985 1990 1995 2000

Pe
r 

ca
p

ita
 C

O
2

Income Bayes Time Bayes Total Bayes
Income Expert Time Expert Total Expert

Austria

0

500

1000

1500

2000

2500

1960 1965 1970 1975 1980 1985 1990 1995 2000

Pe
r 

ca
p

ita
 C

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Belgium

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

 c
ap

ita
 C

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Canada

0

1000

2000

3000

4000

5000

6000

7000

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

 c
ap

ita
 C

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Denmark

0

500

1000

1500

2000

2500

3000

3500

4000

1960 1965 1970 1975 1980 1985 1990 1995 2000

Pe
r 

ca
p

ita
 C

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Finland

0

500

1000

1500

2000

2500

3000

3500

1960 1965 1970 1975 1980 1985 1990 1995 2000

Pe
r 

ca
p

ita
 C

O
2

Income Bayes T ime Bayes Total Bayes
Income Expert T ime Expert Total Expert

Figure S.2.b Estimation results for 24 OECD countries based on BAYES and

EXPERT prior for CO2
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Figure S.2.b (cont.) Estimation results for 24 OECD countries based on BAYES

and EXPERT prior for CO2
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Figure S.2.b (cont.) Estimation results for 24 OECD countries based on BAYES

and EXPERT prior for CO2
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Figure S.2.b (cont.) Estimation results for 24 OECD countries based on BAYES

and EXPERT prior for CO2
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